ns proc: Add support for the ipc namespace
[linux/fpc-iii.git] / mm / hugetlb.c
blob8ee3bd8ec5b535b7e7f30cd063d840d65d614fff
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
76 static long region_add(struct list_head *head, long f, long t)
78 struct file_region *rg, *nrg, *trg;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
112 static long region_chg(struct list_head *head, long f, long t)
114 struct file_region *rg, *nrg;
115 long chg = 0;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
134 return t - f;
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
156 chg -= rg->to - rg->from;
158 return chg;
161 static long region_truncate(struct list_head *head, long end)
163 struct file_region *rg, *trg;
164 long chg = 0;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
188 return chg;
191 static long region_count(struct list_head *head, long f, long t)
193 struct file_region *rg;
194 long chg = 0;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
209 chg += seg_to - seg_from;
212 return chg;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
238 struct hstate *hstate;
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
243 hstate = hstate_vma(vma);
245 return 1UL << (hstate->order + PAGE_SHIFT);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
258 return vma_kernel_pagesize(vma);
260 #endif
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
292 return (unsigned long)vma->vm_private_data;
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
298 vma->vm_private_data = (void *)value;
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
306 static struct resv_map *resv_map_alloc(void)
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
315 return resv_map;
318 static void resv_map_release(struct kref *ref)
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
357 return (get_vma_private_data(vma) & flag) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
372 * Only the process that called mmap() has reserves for
373 * private mappings.
375 h->resv_huge_pages--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
397 static void copy_gigantic_page(struct page *dst, struct page *src)
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
414 void copy_huge_page(struct page *dst, struct page *src)
416 int i;
417 struct hstate *h = page_hstate(src);
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
441 struct page *page;
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
457 struct page *page = NULL;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma) &&
473 h->free_huge_pages - h->resv_huge_pages == 0)
474 goto err;
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 goto err;;
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
491 err:
492 mpol_cond_put(mpol);
493 put_mems_allowed();
494 return page;
497 static void update_and_free_page(struct hstate *h, struct page *page)
499 int i;
501 VM_BUG_ON(h->order >= MAX_ORDER);
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508 1 << PG_private | 1<< PG_writeback);
510 set_compound_page_dtor(page, NULL);
511 set_page_refcounted(page);
512 arch_release_hugepage(page);
513 __free_pages(page, huge_page_order(h));
516 struct hstate *size_to_hstate(unsigned long size)
518 struct hstate *h;
520 for_each_hstate(h) {
521 if (huge_page_size(h) == size)
522 return h;
524 return NULL;
527 static void free_huge_page(struct page *page)
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
533 struct hstate *h = page_hstate(page);
534 int nid = page_to_nid(page);
535 struct address_space *mapping;
537 mapping = (struct address_space *) page_private(page);
538 set_page_private(page, 0);
539 page->mapping = NULL;
540 BUG_ON(page_count(page));
541 BUG_ON(page_mapcount(page));
542 INIT_LIST_HEAD(&page->lru);
544 spin_lock(&hugetlb_lock);
545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 update_and_free_page(h, page);
547 h->surplus_huge_pages--;
548 h->surplus_huge_pages_node[nid]--;
549 } else {
550 enqueue_huge_page(h, page);
552 spin_unlock(&hugetlb_lock);
553 if (mapping)
554 hugetlb_put_quota(mapping, 1);
557 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 set_compound_page_dtor(page, free_huge_page);
560 spin_lock(&hugetlb_lock);
561 h->nr_huge_pages++;
562 h->nr_huge_pages_node[nid]++;
563 spin_unlock(&hugetlb_lock);
564 put_page(page); /* free it into the hugepage allocator */
567 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 int i;
570 int nr_pages = 1 << order;
571 struct page *p = page + 1;
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page, order);
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577 __SetPageTail(p);
578 p->first_page = page;
582 int PageHuge(struct page *page)
584 compound_page_dtor *dtor;
586 if (!PageCompound(page))
587 return 0;
589 page = compound_head(page);
590 dtor = get_compound_page_dtor(page);
592 return dtor == free_huge_page;
595 EXPORT_SYMBOL_GPL(PageHuge);
597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 struct page *page;
601 if (h->order >= MAX_ORDER)
602 return NULL;
604 page = alloc_pages_exact_node(nid,
605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606 __GFP_REPEAT|__GFP_NOWARN,
607 huge_page_order(h));
608 if (page) {
609 if (arch_prepare_hugepage(page)) {
610 __free_pages(page, huge_page_order(h));
611 return NULL;
613 prep_new_huge_page(h, page, nid);
616 return page;
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 nid = next_node(nid, *nodes_allowed);
629 if (nid == MAX_NUMNODES)
630 nid = first_node(*nodes_allowed);
631 VM_BUG_ON(nid >= MAX_NUMNODES);
633 return nid;
636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 if (!node_isset(nid, *nodes_allowed))
639 nid = next_node_allowed(nid, nodes_allowed);
640 return nid;
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
647 * mask.
649 static int hstate_next_node_to_alloc(struct hstate *h,
650 nodemask_t *nodes_allowed)
652 int nid;
654 VM_BUG_ON(!nodes_allowed);
656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659 return nid;
662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 struct page *page;
665 int start_nid;
666 int next_nid;
667 int ret = 0;
669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670 next_nid = start_nid;
672 do {
673 page = alloc_fresh_huge_page_node(h, next_nid);
674 if (page) {
675 ret = 1;
676 break;
678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679 } while (next_nid != start_nid);
681 if (ret)
682 count_vm_event(HTLB_BUDDY_PGALLOC);
683 else
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686 return ret;
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 int nid;
699 VM_BUG_ON(!nodes_allowed);
701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704 return nid;
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714 bool acct_surplus)
716 int start_nid;
717 int next_nid;
718 int ret = 0;
720 start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 next_nid = start_nid;
723 do {
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729 !list_empty(&h->hugepage_freelists[next_nid])) {
730 struct page *page =
731 list_entry(h->hugepage_freelists[next_nid].next,
732 struct page, lru);
733 list_del(&page->lru);
734 h->free_huge_pages--;
735 h->free_huge_pages_node[next_nid]--;
736 if (acct_surplus) {
737 h->surplus_huge_pages--;
738 h->surplus_huge_pages_node[next_nid]--;
740 update_and_free_page(h, page);
741 ret = 1;
742 break;
744 next_nid = hstate_next_node_to_free(h, nodes_allowed);
745 } while (next_nid != start_nid);
747 return ret;
750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 struct page *page;
753 unsigned int r_nid;
755 if (h->order >= MAX_ORDER)
756 return NULL;
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
761 * overcommit
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
781 spin_lock(&hugetlb_lock);
782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 spin_unlock(&hugetlb_lock);
784 return NULL;
785 } else {
786 h->nr_huge_pages++;
787 h->surplus_huge_pages++;
789 spin_unlock(&hugetlb_lock);
791 if (nid == NUMA_NO_NODE)
792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793 __GFP_REPEAT|__GFP_NOWARN,
794 huge_page_order(h));
795 else
796 page = alloc_pages_exact_node(nid,
797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800 if (page && arch_prepare_hugepage(page)) {
801 __free_pages(page, huge_page_order(h));
802 return NULL;
805 spin_lock(&hugetlb_lock);
806 if (page) {
807 r_nid = page_to_nid(page);
808 set_compound_page_dtor(page, free_huge_page);
810 * We incremented the global counters already
812 h->nr_huge_pages_node[r_nid]++;
813 h->surplus_huge_pages_node[r_nid]++;
814 __count_vm_event(HTLB_BUDDY_PGALLOC);
815 } else {
816 h->nr_huge_pages--;
817 h->surplus_huge_pages--;
818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820 spin_unlock(&hugetlb_lock);
822 return page;
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
830 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 struct page *page;
834 spin_lock(&hugetlb_lock);
835 page = dequeue_huge_page_node(h, nid);
836 spin_unlock(&hugetlb_lock);
838 if (!page)
839 page = alloc_buddy_huge_page(h, nid);
841 return page;
845 * Increase the hugetlb pool such that it can accommodate a reservation
846 * of size 'delta'.
848 static int gather_surplus_pages(struct hstate *h, int delta)
850 struct list_head surplus_list;
851 struct page *page, *tmp;
852 int ret, i;
853 int needed, allocated;
855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856 if (needed <= 0) {
857 h->resv_huge_pages += delta;
858 return 0;
861 allocated = 0;
862 INIT_LIST_HEAD(&surplus_list);
864 ret = -ENOMEM;
865 retry:
866 spin_unlock(&hugetlb_lock);
867 for (i = 0; i < needed; i++) {
868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869 if (!page)
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
875 goto free;
877 list_add(&page->lru, &surplus_list);
879 allocated += needed;
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
885 spin_lock(&hugetlb_lock);
886 needed = (h->resv_huge_pages + delta) -
887 (h->free_huge_pages + allocated);
888 if (needed > 0)
889 goto retry;
892 * The surplus_list now contains _at_least_ the number of extra pages
893 * needed to accommodate the reservation. Add the appropriate number
894 * of pages to the hugetlb pool and free the extras back to the buddy
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
899 needed += allocated;
900 h->resv_huge_pages += delta;
901 ret = 0;
903 spin_unlock(&hugetlb_lock);
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 if ((--needed) < 0)
907 break;
908 list_del(&page->lru);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page);
914 VM_BUG_ON(page_count(page));
915 enqueue_huge_page(h, page);
918 /* Free unnecessary surplus pages to the buddy allocator */
919 free:
920 if (!list_empty(&surplus_list)) {
921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 list_del(&page->lru);
923 put_page(page);
926 spin_lock(&hugetlb_lock);
928 return ret;
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
934 * never used.
935 * Called with hugetlb_lock held.
937 static void return_unused_surplus_pages(struct hstate *h,
938 unsigned long unused_resv_pages)
940 unsigned long nr_pages;
942 /* Uncommit the reservation */
943 h->resv_huge_pages -= unused_resv_pages;
945 /* Cannot return gigantic pages currently */
946 if (h->order >= MAX_ORDER)
947 return;
949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
952 * We want to release as many surplus pages as possible, spread
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
959 while (nr_pages--) {
960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961 break;
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
974 static long vma_needs_reservation(struct hstate *h,
975 struct vm_area_struct *vma, unsigned long addr)
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 if (vma->vm_flags & VM_MAYSHARE) {
981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 return region_chg(&inode->i_mapping->private_list,
983 idx, idx + 1);
985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986 return 1;
988 } else {
989 long err;
990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 struct resv_map *reservations = vma_resv_map(vma);
993 err = region_chg(&reservations->regions, idx, idx + 1);
994 if (err < 0)
995 return err;
996 return 0;
999 static void vma_commit_reservation(struct hstate *h,
1000 struct vm_area_struct *vma, unsigned long addr)
1002 struct address_space *mapping = vma->vm_file->f_mapping;
1003 struct inode *inode = mapping->host;
1005 if (vma->vm_flags & VM_MAYSHARE) {
1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 struct resv_map *reservations = vma_resv_map(vma);
1013 /* Mark this page used in the map. */
1014 region_add(&reservations->regions, idx, idx + 1);
1018 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019 unsigned long addr, int avoid_reserve)
1021 struct hstate *h = hstate_vma(vma);
1022 struct page *page;
1023 struct address_space *mapping = vma->vm_file->f_mapping;
1024 struct inode *inode = mapping->host;
1025 long chg;
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
1034 chg = vma_needs_reservation(h, vma, addr);
1035 if (chg < 0)
1036 return ERR_PTR(chg);
1037 if (chg)
1038 if (hugetlb_get_quota(inode->i_mapping, chg))
1039 return ERR_PTR(-ENOSPC);
1041 spin_lock(&hugetlb_lock);
1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043 spin_unlock(&hugetlb_lock);
1045 if (!page) {
1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047 if (!page) {
1048 hugetlb_put_quota(inode->i_mapping, chg);
1049 return ERR_PTR(-VM_FAULT_SIGBUS);
1053 set_page_private(page, (unsigned long) mapping);
1055 vma_commit_reservation(h, vma, addr);
1057 return page;
1060 int __weak alloc_bootmem_huge_page(struct hstate *h)
1062 struct huge_bootmem_page *m;
1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1065 while (nr_nodes) {
1066 void *addr;
1068 addr = __alloc_bootmem_node_nopanic(
1069 NODE_DATA(hstate_next_node_to_alloc(h,
1070 &node_states[N_HIGH_MEMORY])),
1071 huge_page_size(h), huge_page_size(h), 0);
1073 if (addr) {
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1079 m = addr;
1080 goto found;
1082 nr_nodes--;
1084 return 0;
1086 found:
1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m->list, &huge_boot_pages);
1090 m->hstate = h;
1091 return 1;
1094 static void prep_compound_huge_page(struct page *page, int order)
1096 if (unlikely(order > (MAX_ORDER - 1)))
1097 prep_compound_gigantic_page(page, order);
1098 else
1099 prep_compound_page(page, order);
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init gather_bootmem_prealloc(void)
1105 struct huge_bootmem_page *m;
1107 list_for_each_entry(m, &huge_boot_pages, list) {
1108 struct page *page = virt_to_page(m);
1109 struct hstate *h = m->hstate;
1110 __ClearPageReserved(page);
1111 WARN_ON(page_count(page) != 1);
1112 prep_compound_huge_page(page, h->order);
1113 prep_new_huge_page(h, page, page_to_nid(page));
1117 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1119 unsigned long i;
1121 for (i = 0; i < h->max_huge_pages; ++i) {
1122 if (h->order >= MAX_ORDER) {
1123 if (!alloc_bootmem_huge_page(h))
1124 break;
1125 } else if (!alloc_fresh_huge_page(h,
1126 &node_states[N_HIGH_MEMORY]))
1127 break;
1129 h->max_huge_pages = i;
1132 static void __init hugetlb_init_hstates(void)
1134 struct hstate *h;
1136 for_each_hstate(h) {
1137 /* oversize hugepages were init'ed in early boot */
1138 if (h->order < MAX_ORDER)
1139 hugetlb_hstate_alloc_pages(h);
1143 static char * __init memfmt(char *buf, unsigned long n)
1145 if (n >= (1UL << 30))
1146 sprintf(buf, "%lu GB", n >> 30);
1147 else if (n >= (1UL << 20))
1148 sprintf(buf, "%lu MB", n >> 20);
1149 else
1150 sprintf(buf, "%lu KB", n >> 10);
1151 return buf;
1154 static void __init report_hugepages(void)
1156 struct hstate *h;
1158 for_each_hstate(h) {
1159 char buf[32];
1160 printk(KERN_INFO "HugeTLB registered %s page size, "
1161 "pre-allocated %ld pages\n",
1162 memfmt(buf, huge_page_size(h)),
1163 h->free_huge_pages);
1167 #ifdef CONFIG_HIGHMEM
1168 static void try_to_free_low(struct hstate *h, unsigned long count,
1169 nodemask_t *nodes_allowed)
1171 int i;
1173 if (h->order >= MAX_ORDER)
1174 return;
1176 for_each_node_mask(i, *nodes_allowed) {
1177 struct page *page, *next;
1178 struct list_head *freel = &h->hugepage_freelists[i];
1179 list_for_each_entry_safe(page, next, freel, lru) {
1180 if (count >= h->nr_huge_pages)
1181 return;
1182 if (PageHighMem(page))
1183 continue;
1184 list_del(&page->lru);
1185 update_and_free_page(h, page);
1186 h->free_huge_pages--;
1187 h->free_huge_pages_node[page_to_nid(page)]--;
1191 #else
1192 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1193 nodemask_t *nodes_allowed)
1196 #endif
1199 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1200 * balanced by operating on them in a round-robin fashion.
1201 * Returns 1 if an adjustment was made.
1203 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1204 int delta)
1206 int start_nid, next_nid;
1207 int ret = 0;
1209 VM_BUG_ON(delta != -1 && delta != 1);
1211 if (delta < 0)
1212 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1213 else
1214 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1215 next_nid = start_nid;
1217 do {
1218 int nid = next_nid;
1219 if (delta < 0) {
1221 * To shrink on this node, there must be a surplus page
1223 if (!h->surplus_huge_pages_node[nid]) {
1224 next_nid = hstate_next_node_to_alloc(h,
1225 nodes_allowed);
1226 continue;
1229 if (delta > 0) {
1231 * Surplus cannot exceed the total number of pages
1233 if (h->surplus_huge_pages_node[nid] >=
1234 h->nr_huge_pages_node[nid]) {
1235 next_nid = hstate_next_node_to_free(h,
1236 nodes_allowed);
1237 continue;
1241 h->surplus_huge_pages += delta;
1242 h->surplus_huge_pages_node[nid] += delta;
1243 ret = 1;
1244 break;
1245 } while (next_nid != start_nid);
1247 return ret;
1250 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1252 nodemask_t *nodes_allowed)
1254 unsigned long min_count, ret;
1256 if (h->order >= MAX_ORDER)
1257 return h->max_huge_pages;
1260 * Increase the pool size
1261 * First take pages out of surplus state. Then make up the
1262 * remaining difference by allocating fresh huge pages.
1264 * We might race with alloc_buddy_huge_page() here and be unable
1265 * to convert a surplus huge page to a normal huge page. That is
1266 * not critical, though, it just means the overall size of the
1267 * pool might be one hugepage larger than it needs to be, but
1268 * within all the constraints specified by the sysctls.
1270 spin_lock(&hugetlb_lock);
1271 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1272 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1273 break;
1276 while (count > persistent_huge_pages(h)) {
1278 * If this allocation races such that we no longer need the
1279 * page, free_huge_page will handle it by freeing the page
1280 * and reducing the surplus.
1282 spin_unlock(&hugetlb_lock);
1283 ret = alloc_fresh_huge_page(h, nodes_allowed);
1284 spin_lock(&hugetlb_lock);
1285 if (!ret)
1286 goto out;
1288 /* Bail for signals. Probably ctrl-c from user */
1289 if (signal_pending(current))
1290 goto out;
1294 * Decrease the pool size
1295 * First return free pages to the buddy allocator (being careful
1296 * to keep enough around to satisfy reservations). Then place
1297 * pages into surplus state as needed so the pool will shrink
1298 * to the desired size as pages become free.
1300 * By placing pages into the surplus state independent of the
1301 * overcommit value, we are allowing the surplus pool size to
1302 * exceed overcommit. There are few sane options here. Since
1303 * alloc_buddy_huge_page() is checking the global counter,
1304 * though, we'll note that we're not allowed to exceed surplus
1305 * and won't grow the pool anywhere else. Not until one of the
1306 * sysctls are changed, or the surplus pages go out of use.
1308 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1309 min_count = max(count, min_count);
1310 try_to_free_low(h, min_count, nodes_allowed);
1311 while (min_count < persistent_huge_pages(h)) {
1312 if (!free_pool_huge_page(h, nodes_allowed, 0))
1313 break;
1315 while (count < persistent_huge_pages(h)) {
1316 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1317 break;
1319 out:
1320 ret = persistent_huge_pages(h);
1321 spin_unlock(&hugetlb_lock);
1322 return ret;
1325 #define HSTATE_ATTR_RO(_name) \
1326 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1328 #define HSTATE_ATTR(_name) \
1329 static struct kobj_attribute _name##_attr = \
1330 __ATTR(_name, 0644, _name##_show, _name##_store)
1332 static struct kobject *hugepages_kobj;
1333 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1335 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1337 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1339 int i;
1341 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1342 if (hstate_kobjs[i] == kobj) {
1343 if (nidp)
1344 *nidp = NUMA_NO_NODE;
1345 return &hstates[i];
1348 return kobj_to_node_hstate(kobj, nidp);
1351 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1352 struct kobj_attribute *attr, char *buf)
1354 struct hstate *h;
1355 unsigned long nr_huge_pages;
1356 int nid;
1358 h = kobj_to_hstate(kobj, &nid);
1359 if (nid == NUMA_NO_NODE)
1360 nr_huge_pages = h->nr_huge_pages;
1361 else
1362 nr_huge_pages = h->nr_huge_pages_node[nid];
1364 return sprintf(buf, "%lu\n", nr_huge_pages);
1367 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1368 struct kobject *kobj, struct kobj_attribute *attr,
1369 const char *buf, size_t len)
1371 int err;
1372 int nid;
1373 unsigned long count;
1374 struct hstate *h;
1375 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1377 err = strict_strtoul(buf, 10, &count);
1378 if (err)
1379 goto out;
1381 h = kobj_to_hstate(kobj, &nid);
1382 if (h->order >= MAX_ORDER) {
1383 err = -EINVAL;
1384 goto out;
1387 if (nid == NUMA_NO_NODE) {
1389 * global hstate attribute
1391 if (!(obey_mempolicy &&
1392 init_nodemask_of_mempolicy(nodes_allowed))) {
1393 NODEMASK_FREE(nodes_allowed);
1394 nodes_allowed = &node_states[N_HIGH_MEMORY];
1396 } else if (nodes_allowed) {
1398 * per node hstate attribute: adjust count to global,
1399 * but restrict alloc/free to the specified node.
1401 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1402 init_nodemask_of_node(nodes_allowed, nid);
1403 } else
1404 nodes_allowed = &node_states[N_HIGH_MEMORY];
1406 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1408 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409 NODEMASK_FREE(nodes_allowed);
1411 return len;
1412 out:
1413 NODEMASK_FREE(nodes_allowed);
1414 return err;
1417 static ssize_t nr_hugepages_show(struct kobject *kobj,
1418 struct kobj_attribute *attr, char *buf)
1420 return nr_hugepages_show_common(kobj, attr, buf);
1423 static ssize_t nr_hugepages_store(struct kobject *kobj,
1424 struct kobj_attribute *attr, const char *buf, size_t len)
1426 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1428 HSTATE_ATTR(nr_hugepages);
1430 #ifdef CONFIG_NUMA
1433 * hstate attribute for optionally mempolicy-based constraint on persistent
1434 * huge page alloc/free.
1436 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1437 struct kobj_attribute *attr, char *buf)
1439 return nr_hugepages_show_common(kobj, attr, buf);
1442 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1443 struct kobj_attribute *attr, const char *buf, size_t len)
1445 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1447 HSTATE_ATTR(nr_hugepages_mempolicy);
1448 #endif
1451 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1452 struct kobj_attribute *attr, char *buf)
1454 struct hstate *h = kobj_to_hstate(kobj, NULL);
1455 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1458 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1459 struct kobj_attribute *attr, const char *buf, size_t count)
1461 int err;
1462 unsigned long input;
1463 struct hstate *h = kobj_to_hstate(kobj, NULL);
1465 if (h->order >= MAX_ORDER)
1466 return -EINVAL;
1468 err = strict_strtoul(buf, 10, &input);
1469 if (err)
1470 return err;
1472 spin_lock(&hugetlb_lock);
1473 h->nr_overcommit_huge_pages = input;
1474 spin_unlock(&hugetlb_lock);
1476 return count;
1478 HSTATE_ATTR(nr_overcommit_hugepages);
1480 static ssize_t free_hugepages_show(struct kobject *kobj,
1481 struct kobj_attribute *attr, char *buf)
1483 struct hstate *h;
1484 unsigned long free_huge_pages;
1485 int nid;
1487 h = kobj_to_hstate(kobj, &nid);
1488 if (nid == NUMA_NO_NODE)
1489 free_huge_pages = h->free_huge_pages;
1490 else
1491 free_huge_pages = h->free_huge_pages_node[nid];
1493 return sprintf(buf, "%lu\n", free_huge_pages);
1495 HSTATE_ATTR_RO(free_hugepages);
1497 static ssize_t resv_hugepages_show(struct kobject *kobj,
1498 struct kobj_attribute *attr, char *buf)
1500 struct hstate *h = kobj_to_hstate(kobj, NULL);
1501 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1503 HSTATE_ATTR_RO(resv_hugepages);
1505 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1506 struct kobj_attribute *attr, char *buf)
1508 struct hstate *h;
1509 unsigned long surplus_huge_pages;
1510 int nid;
1512 h = kobj_to_hstate(kobj, &nid);
1513 if (nid == NUMA_NO_NODE)
1514 surplus_huge_pages = h->surplus_huge_pages;
1515 else
1516 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1518 return sprintf(buf, "%lu\n", surplus_huge_pages);
1520 HSTATE_ATTR_RO(surplus_hugepages);
1522 static struct attribute *hstate_attrs[] = {
1523 &nr_hugepages_attr.attr,
1524 &nr_overcommit_hugepages_attr.attr,
1525 &free_hugepages_attr.attr,
1526 &resv_hugepages_attr.attr,
1527 &surplus_hugepages_attr.attr,
1528 #ifdef CONFIG_NUMA
1529 &nr_hugepages_mempolicy_attr.attr,
1530 #endif
1531 NULL,
1534 static struct attribute_group hstate_attr_group = {
1535 .attrs = hstate_attrs,
1538 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1539 struct kobject **hstate_kobjs,
1540 struct attribute_group *hstate_attr_group)
1542 int retval;
1543 int hi = h - hstates;
1545 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1546 if (!hstate_kobjs[hi])
1547 return -ENOMEM;
1549 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1550 if (retval)
1551 kobject_put(hstate_kobjs[hi]);
1553 return retval;
1556 static void __init hugetlb_sysfs_init(void)
1558 struct hstate *h;
1559 int err;
1561 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1562 if (!hugepages_kobj)
1563 return;
1565 for_each_hstate(h) {
1566 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1567 hstate_kobjs, &hstate_attr_group);
1568 if (err)
1569 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1570 h->name);
1574 #ifdef CONFIG_NUMA
1577 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1578 * with node sysdevs in node_devices[] using a parallel array. The array
1579 * index of a node sysdev or _hstate == node id.
1580 * This is here to avoid any static dependency of the node sysdev driver, in
1581 * the base kernel, on the hugetlb module.
1583 struct node_hstate {
1584 struct kobject *hugepages_kobj;
1585 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1587 struct node_hstate node_hstates[MAX_NUMNODES];
1590 * A subset of global hstate attributes for node sysdevs
1592 static struct attribute *per_node_hstate_attrs[] = {
1593 &nr_hugepages_attr.attr,
1594 &free_hugepages_attr.attr,
1595 &surplus_hugepages_attr.attr,
1596 NULL,
1599 static struct attribute_group per_node_hstate_attr_group = {
1600 .attrs = per_node_hstate_attrs,
1604 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1605 * Returns node id via non-NULL nidp.
1607 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1609 int nid;
1611 for (nid = 0; nid < nr_node_ids; nid++) {
1612 struct node_hstate *nhs = &node_hstates[nid];
1613 int i;
1614 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1615 if (nhs->hstate_kobjs[i] == kobj) {
1616 if (nidp)
1617 *nidp = nid;
1618 return &hstates[i];
1622 BUG();
1623 return NULL;
1627 * Unregister hstate attributes from a single node sysdev.
1628 * No-op if no hstate attributes attached.
1630 void hugetlb_unregister_node(struct node *node)
1632 struct hstate *h;
1633 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1635 if (!nhs->hugepages_kobj)
1636 return; /* no hstate attributes */
1638 for_each_hstate(h)
1639 if (nhs->hstate_kobjs[h - hstates]) {
1640 kobject_put(nhs->hstate_kobjs[h - hstates]);
1641 nhs->hstate_kobjs[h - hstates] = NULL;
1644 kobject_put(nhs->hugepages_kobj);
1645 nhs->hugepages_kobj = NULL;
1649 * hugetlb module exit: unregister hstate attributes from node sysdevs
1650 * that have them.
1652 static void hugetlb_unregister_all_nodes(void)
1654 int nid;
1657 * disable node sysdev registrations.
1659 register_hugetlbfs_with_node(NULL, NULL);
1662 * remove hstate attributes from any nodes that have them.
1664 for (nid = 0; nid < nr_node_ids; nid++)
1665 hugetlb_unregister_node(&node_devices[nid]);
1669 * Register hstate attributes for a single node sysdev.
1670 * No-op if attributes already registered.
1672 void hugetlb_register_node(struct node *node)
1674 struct hstate *h;
1675 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1676 int err;
1678 if (nhs->hugepages_kobj)
1679 return; /* already allocated */
1681 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1682 &node->sysdev.kobj);
1683 if (!nhs->hugepages_kobj)
1684 return;
1686 for_each_hstate(h) {
1687 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1688 nhs->hstate_kobjs,
1689 &per_node_hstate_attr_group);
1690 if (err) {
1691 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1692 " for node %d\n",
1693 h->name, node->sysdev.id);
1694 hugetlb_unregister_node(node);
1695 break;
1701 * hugetlb init time: register hstate attributes for all registered node
1702 * sysdevs of nodes that have memory. All on-line nodes should have
1703 * registered their associated sysdev by this time.
1705 static void hugetlb_register_all_nodes(void)
1707 int nid;
1709 for_each_node_state(nid, N_HIGH_MEMORY) {
1710 struct node *node = &node_devices[nid];
1711 if (node->sysdev.id == nid)
1712 hugetlb_register_node(node);
1716 * Let the node sysdev driver know we're here so it can
1717 * [un]register hstate attributes on node hotplug.
1719 register_hugetlbfs_with_node(hugetlb_register_node,
1720 hugetlb_unregister_node);
1722 #else /* !CONFIG_NUMA */
1724 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1726 BUG();
1727 if (nidp)
1728 *nidp = -1;
1729 return NULL;
1732 static void hugetlb_unregister_all_nodes(void) { }
1734 static void hugetlb_register_all_nodes(void) { }
1736 #endif
1738 static void __exit hugetlb_exit(void)
1740 struct hstate *h;
1742 hugetlb_unregister_all_nodes();
1744 for_each_hstate(h) {
1745 kobject_put(hstate_kobjs[h - hstates]);
1748 kobject_put(hugepages_kobj);
1750 module_exit(hugetlb_exit);
1752 static int __init hugetlb_init(void)
1754 /* Some platform decide whether they support huge pages at boot
1755 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1756 * there is no such support
1758 if (HPAGE_SHIFT == 0)
1759 return 0;
1761 if (!size_to_hstate(default_hstate_size)) {
1762 default_hstate_size = HPAGE_SIZE;
1763 if (!size_to_hstate(default_hstate_size))
1764 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1766 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1767 if (default_hstate_max_huge_pages)
1768 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1770 hugetlb_init_hstates();
1772 gather_bootmem_prealloc();
1774 report_hugepages();
1776 hugetlb_sysfs_init();
1778 hugetlb_register_all_nodes();
1780 return 0;
1782 module_init(hugetlb_init);
1784 /* Should be called on processing a hugepagesz=... option */
1785 void __init hugetlb_add_hstate(unsigned order)
1787 struct hstate *h;
1788 unsigned long i;
1790 if (size_to_hstate(PAGE_SIZE << order)) {
1791 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1792 return;
1794 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1795 BUG_ON(order == 0);
1796 h = &hstates[max_hstate++];
1797 h->order = order;
1798 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1799 h->nr_huge_pages = 0;
1800 h->free_huge_pages = 0;
1801 for (i = 0; i < MAX_NUMNODES; ++i)
1802 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1803 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1804 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1805 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1806 huge_page_size(h)/1024);
1808 parsed_hstate = h;
1811 static int __init hugetlb_nrpages_setup(char *s)
1813 unsigned long *mhp;
1814 static unsigned long *last_mhp;
1817 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1818 * so this hugepages= parameter goes to the "default hstate".
1820 if (!max_hstate)
1821 mhp = &default_hstate_max_huge_pages;
1822 else
1823 mhp = &parsed_hstate->max_huge_pages;
1825 if (mhp == last_mhp) {
1826 printk(KERN_WARNING "hugepages= specified twice without "
1827 "interleaving hugepagesz=, ignoring\n");
1828 return 1;
1831 if (sscanf(s, "%lu", mhp) <= 0)
1832 *mhp = 0;
1835 * Global state is always initialized later in hugetlb_init.
1836 * But we need to allocate >= MAX_ORDER hstates here early to still
1837 * use the bootmem allocator.
1839 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1840 hugetlb_hstate_alloc_pages(parsed_hstate);
1842 last_mhp = mhp;
1844 return 1;
1846 __setup("hugepages=", hugetlb_nrpages_setup);
1848 static int __init hugetlb_default_setup(char *s)
1850 default_hstate_size = memparse(s, &s);
1851 return 1;
1853 __setup("default_hugepagesz=", hugetlb_default_setup);
1855 static unsigned int cpuset_mems_nr(unsigned int *array)
1857 int node;
1858 unsigned int nr = 0;
1860 for_each_node_mask(node, cpuset_current_mems_allowed)
1861 nr += array[node];
1863 return nr;
1866 #ifdef CONFIG_SYSCTL
1867 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1868 struct ctl_table *table, int write,
1869 void __user *buffer, size_t *length, loff_t *ppos)
1871 struct hstate *h = &default_hstate;
1872 unsigned long tmp;
1873 int ret;
1875 tmp = h->max_huge_pages;
1877 if (write && h->order >= MAX_ORDER)
1878 return -EINVAL;
1880 table->data = &tmp;
1881 table->maxlen = sizeof(unsigned long);
1882 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1883 if (ret)
1884 goto out;
1886 if (write) {
1887 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1888 GFP_KERNEL | __GFP_NORETRY);
1889 if (!(obey_mempolicy &&
1890 init_nodemask_of_mempolicy(nodes_allowed))) {
1891 NODEMASK_FREE(nodes_allowed);
1892 nodes_allowed = &node_states[N_HIGH_MEMORY];
1894 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1896 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1897 NODEMASK_FREE(nodes_allowed);
1899 out:
1900 return ret;
1903 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1904 void __user *buffer, size_t *length, loff_t *ppos)
1907 return hugetlb_sysctl_handler_common(false, table, write,
1908 buffer, length, ppos);
1911 #ifdef CONFIG_NUMA
1912 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1913 void __user *buffer, size_t *length, loff_t *ppos)
1915 return hugetlb_sysctl_handler_common(true, table, write,
1916 buffer, length, ppos);
1918 #endif /* CONFIG_NUMA */
1920 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1921 void __user *buffer,
1922 size_t *length, loff_t *ppos)
1924 proc_dointvec(table, write, buffer, length, ppos);
1925 if (hugepages_treat_as_movable)
1926 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1927 else
1928 htlb_alloc_mask = GFP_HIGHUSER;
1929 return 0;
1932 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1933 void __user *buffer,
1934 size_t *length, loff_t *ppos)
1936 struct hstate *h = &default_hstate;
1937 unsigned long tmp;
1938 int ret;
1940 tmp = h->nr_overcommit_huge_pages;
1942 if (write && h->order >= MAX_ORDER)
1943 return -EINVAL;
1945 table->data = &tmp;
1946 table->maxlen = sizeof(unsigned long);
1947 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1948 if (ret)
1949 goto out;
1951 if (write) {
1952 spin_lock(&hugetlb_lock);
1953 h->nr_overcommit_huge_pages = tmp;
1954 spin_unlock(&hugetlb_lock);
1956 out:
1957 return ret;
1960 #endif /* CONFIG_SYSCTL */
1962 void hugetlb_report_meminfo(struct seq_file *m)
1964 struct hstate *h = &default_hstate;
1965 seq_printf(m,
1966 "HugePages_Total: %5lu\n"
1967 "HugePages_Free: %5lu\n"
1968 "HugePages_Rsvd: %5lu\n"
1969 "HugePages_Surp: %5lu\n"
1970 "Hugepagesize: %8lu kB\n",
1971 h->nr_huge_pages,
1972 h->free_huge_pages,
1973 h->resv_huge_pages,
1974 h->surplus_huge_pages,
1975 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1978 int hugetlb_report_node_meminfo(int nid, char *buf)
1980 struct hstate *h = &default_hstate;
1981 return sprintf(buf,
1982 "Node %d HugePages_Total: %5u\n"
1983 "Node %d HugePages_Free: %5u\n"
1984 "Node %d HugePages_Surp: %5u\n",
1985 nid, h->nr_huge_pages_node[nid],
1986 nid, h->free_huge_pages_node[nid],
1987 nid, h->surplus_huge_pages_node[nid]);
1990 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1991 unsigned long hugetlb_total_pages(void)
1993 struct hstate *h = &default_hstate;
1994 return h->nr_huge_pages * pages_per_huge_page(h);
1997 static int hugetlb_acct_memory(struct hstate *h, long delta)
1999 int ret = -ENOMEM;
2001 spin_lock(&hugetlb_lock);
2003 * When cpuset is configured, it breaks the strict hugetlb page
2004 * reservation as the accounting is done on a global variable. Such
2005 * reservation is completely rubbish in the presence of cpuset because
2006 * the reservation is not checked against page availability for the
2007 * current cpuset. Application can still potentially OOM'ed by kernel
2008 * with lack of free htlb page in cpuset that the task is in.
2009 * Attempt to enforce strict accounting with cpuset is almost
2010 * impossible (or too ugly) because cpuset is too fluid that
2011 * task or memory node can be dynamically moved between cpusets.
2013 * The change of semantics for shared hugetlb mapping with cpuset is
2014 * undesirable. However, in order to preserve some of the semantics,
2015 * we fall back to check against current free page availability as
2016 * a best attempt and hopefully to minimize the impact of changing
2017 * semantics that cpuset has.
2019 if (delta > 0) {
2020 if (gather_surplus_pages(h, delta) < 0)
2021 goto out;
2023 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2024 return_unused_surplus_pages(h, delta);
2025 goto out;
2029 ret = 0;
2030 if (delta < 0)
2031 return_unused_surplus_pages(h, (unsigned long) -delta);
2033 out:
2034 spin_unlock(&hugetlb_lock);
2035 return ret;
2038 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2040 struct resv_map *reservations = vma_resv_map(vma);
2043 * This new VMA should share its siblings reservation map if present.
2044 * The VMA will only ever have a valid reservation map pointer where
2045 * it is being copied for another still existing VMA. As that VMA
2046 * has a reference to the reservation map it cannot disappear until
2047 * after this open call completes. It is therefore safe to take a
2048 * new reference here without additional locking.
2050 if (reservations)
2051 kref_get(&reservations->refs);
2054 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2056 struct hstate *h = hstate_vma(vma);
2057 struct resv_map *reservations = vma_resv_map(vma);
2058 unsigned long reserve;
2059 unsigned long start;
2060 unsigned long end;
2062 if (reservations) {
2063 start = vma_hugecache_offset(h, vma, vma->vm_start);
2064 end = vma_hugecache_offset(h, vma, vma->vm_end);
2066 reserve = (end - start) -
2067 region_count(&reservations->regions, start, end);
2069 kref_put(&reservations->refs, resv_map_release);
2071 if (reserve) {
2072 hugetlb_acct_memory(h, -reserve);
2073 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2079 * We cannot handle pagefaults against hugetlb pages at all. They cause
2080 * handle_mm_fault() to try to instantiate regular-sized pages in the
2081 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2082 * this far.
2084 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2086 BUG();
2087 return 0;
2090 const struct vm_operations_struct hugetlb_vm_ops = {
2091 .fault = hugetlb_vm_op_fault,
2092 .open = hugetlb_vm_op_open,
2093 .close = hugetlb_vm_op_close,
2096 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2097 int writable)
2099 pte_t entry;
2101 if (writable) {
2102 entry =
2103 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2104 } else {
2105 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2107 entry = pte_mkyoung(entry);
2108 entry = pte_mkhuge(entry);
2110 return entry;
2113 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2114 unsigned long address, pte_t *ptep)
2116 pte_t entry;
2118 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2119 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2120 update_mmu_cache(vma, address, ptep);
2125 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2126 struct vm_area_struct *vma)
2128 pte_t *src_pte, *dst_pte, entry;
2129 struct page *ptepage;
2130 unsigned long addr;
2131 int cow;
2132 struct hstate *h = hstate_vma(vma);
2133 unsigned long sz = huge_page_size(h);
2135 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2137 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2138 src_pte = huge_pte_offset(src, addr);
2139 if (!src_pte)
2140 continue;
2141 dst_pte = huge_pte_alloc(dst, addr, sz);
2142 if (!dst_pte)
2143 goto nomem;
2145 /* If the pagetables are shared don't copy or take references */
2146 if (dst_pte == src_pte)
2147 continue;
2149 spin_lock(&dst->page_table_lock);
2150 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2151 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2152 if (cow)
2153 huge_ptep_set_wrprotect(src, addr, src_pte);
2154 entry = huge_ptep_get(src_pte);
2155 ptepage = pte_page(entry);
2156 get_page(ptepage);
2157 page_dup_rmap(ptepage);
2158 set_huge_pte_at(dst, addr, dst_pte, entry);
2160 spin_unlock(&src->page_table_lock);
2161 spin_unlock(&dst->page_table_lock);
2163 return 0;
2165 nomem:
2166 return -ENOMEM;
2169 static int is_hugetlb_entry_migration(pte_t pte)
2171 swp_entry_t swp;
2173 if (huge_pte_none(pte) || pte_present(pte))
2174 return 0;
2175 swp = pte_to_swp_entry(pte);
2176 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2177 return 1;
2178 } else
2179 return 0;
2182 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2184 swp_entry_t swp;
2186 if (huge_pte_none(pte) || pte_present(pte))
2187 return 0;
2188 swp = pte_to_swp_entry(pte);
2189 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2190 return 1;
2191 } else
2192 return 0;
2195 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2196 unsigned long end, struct page *ref_page)
2198 struct mm_struct *mm = vma->vm_mm;
2199 unsigned long address;
2200 pte_t *ptep;
2201 pte_t pte;
2202 struct page *page;
2203 struct page *tmp;
2204 struct hstate *h = hstate_vma(vma);
2205 unsigned long sz = huge_page_size(h);
2208 * A page gathering list, protected by per file i_mmap_lock. The
2209 * lock is used to avoid list corruption from multiple unmapping
2210 * of the same page since we are using page->lru.
2212 LIST_HEAD(page_list);
2214 WARN_ON(!is_vm_hugetlb_page(vma));
2215 BUG_ON(start & ~huge_page_mask(h));
2216 BUG_ON(end & ~huge_page_mask(h));
2218 mmu_notifier_invalidate_range_start(mm, start, end);
2219 spin_lock(&mm->page_table_lock);
2220 for (address = start; address < end; address += sz) {
2221 ptep = huge_pte_offset(mm, address);
2222 if (!ptep)
2223 continue;
2225 if (huge_pmd_unshare(mm, &address, ptep))
2226 continue;
2229 * If a reference page is supplied, it is because a specific
2230 * page is being unmapped, not a range. Ensure the page we
2231 * are about to unmap is the actual page of interest.
2233 if (ref_page) {
2234 pte = huge_ptep_get(ptep);
2235 if (huge_pte_none(pte))
2236 continue;
2237 page = pte_page(pte);
2238 if (page != ref_page)
2239 continue;
2242 * Mark the VMA as having unmapped its page so that
2243 * future faults in this VMA will fail rather than
2244 * looking like data was lost
2246 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2249 pte = huge_ptep_get_and_clear(mm, address, ptep);
2250 if (huge_pte_none(pte))
2251 continue;
2254 * HWPoisoned hugepage is already unmapped and dropped reference
2256 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2257 continue;
2259 page = pte_page(pte);
2260 if (pte_dirty(pte))
2261 set_page_dirty(page);
2262 list_add(&page->lru, &page_list);
2264 spin_unlock(&mm->page_table_lock);
2265 flush_tlb_range(vma, start, end);
2266 mmu_notifier_invalidate_range_end(mm, start, end);
2267 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2268 page_remove_rmap(page);
2269 list_del(&page->lru);
2270 put_page(page);
2274 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2275 unsigned long end, struct page *ref_page)
2277 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2278 __unmap_hugepage_range(vma, start, end, ref_page);
2279 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2283 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2284 * mappping it owns the reserve page for. The intention is to unmap the page
2285 * from other VMAs and let the children be SIGKILLed if they are faulting the
2286 * same region.
2288 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2289 struct page *page, unsigned long address)
2291 struct hstate *h = hstate_vma(vma);
2292 struct vm_area_struct *iter_vma;
2293 struct address_space *mapping;
2294 struct prio_tree_iter iter;
2295 pgoff_t pgoff;
2298 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2299 * from page cache lookup which is in HPAGE_SIZE units.
2301 address = address & huge_page_mask(h);
2302 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2303 + (vma->vm_pgoff >> PAGE_SHIFT);
2304 mapping = (struct address_space *)page_private(page);
2307 * Take the mapping lock for the duration of the table walk. As
2308 * this mapping should be shared between all the VMAs,
2309 * __unmap_hugepage_range() is called as the lock is already held
2311 spin_lock(&mapping->i_mmap_lock);
2312 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2313 /* Do not unmap the current VMA */
2314 if (iter_vma == vma)
2315 continue;
2318 * Unmap the page from other VMAs without their own reserves.
2319 * They get marked to be SIGKILLed if they fault in these
2320 * areas. This is because a future no-page fault on this VMA
2321 * could insert a zeroed page instead of the data existing
2322 * from the time of fork. This would look like data corruption
2324 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2325 __unmap_hugepage_range(iter_vma,
2326 address, address + huge_page_size(h),
2327 page);
2329 spin_unlock(&mapping->i_mmap_lock);
2331 return 1;
2335 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2337 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2338 unsigned long address, pte_t *ptep, pte_t pte,
2339 struct page *pagecache_page)
2341 struct hstate *h = hstate_vma(vma);
2342 struct page *old_page, *new_page;
2343 int avoidcopy;
2344 int outside_reserve = 0;
2346 old_page = pte_page(pte);
2348 retry_avoidcopy:
2349 /* If no-one else is actually using this page, avoid the copy
2350 * and just make the page writable */
2351 avoidcopy = (page_mapcount(old_page) == 1);
2352 if (avoidcopy) {
2353 if (PageAnon(old_page))
2354 page_move_anon_rmap(old_page, vma, address);
2355 set_huge_ptep_writable(vma, address, ptep);
2356 return 0;
2360 * If the process that created a MAP_PRIVATE mapping is about to
2361 * perform a COW due to a shared page count, attempt to satisfy
2362 * the allocation without using the existing reserves. The pagecache
2363 * page is used to determine if the reserve at this address was
2364 * consumed or not. If reserves were used, a partial faulted mapping
2365 * at the time of fork() could consume its reserves on COW instead
2366 * of the full address range.
2368 if (!(vma->vm_flags & VM_MAYSHARE) &&
2369 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2370 old_page != pagecache_page)
2371 outside_reserve = 1;
2373 page_cache_get(old_page);
2375 /* Drop page_table_lock as buddy allocator may be called */
2376 spin_unlock(&mm->page_table_lock);
2377 new_page = alloc_huge_page(vma, address, outside_reserve);
2379 if (IS_ERR(new_page)) {
2380 page_cache_release(old_page);
2383 * If a process owning a MAP_PRIVATE mapping fails to COW,
2384 * it is due to references held by a child and an insufficient
2385 * huge page pool. To guarantee the original mappers
2386 * reliability, unmap the page from child processes. The child
2387 * may get SIGKILLed if it later faults.
2389 if (outside_reserve) {
2390 BUG_ON(huge_pte_none(pte));
2391 if (unmap_ref_private(mm, vma, old_page, address)) {
2392 BUG_ON(page_count(old_page) != 1);
2393 BUG_ON(huge_pte_none(pte));
2394 spin_lock(&mm->page_table_lock);
2395 goto retry_avoidcopy;
2397 WARN_ON_ONCE(1);
2400 /* Caller expects lock to be held */
2401 spin_lock(&mm->page_table_lock);
2402 return -PTR_ERR(new_page);
2406 * When the original hugepage is shared one, it does not have
2407 * anon_vma prepared.
2409 if (unlikely(anon_vma_prepare(vma))) {
2410 /* Caller expects lock to be held */
2411 spin_lock(&mm->page_table_lock);
2412 return VM_FAULT_OOM;
2415 copy_user_huge_page(new_page, old_page, address, vma,
2416 pages_per_huge_page(h));
2417 __SetPageUptodate(new_page);
2420 * Retake the page_table_lock to check for racing updates
2421 * before the page tables are altered
2423 spin_lock(&mm->page_table_lock);
2424 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2425 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2426 /* Break COW */
2427 mmu_notifier_invalidate_range_start(mm,
2428 address & huge_page_mask(h),
2429 (address & huge_page_mask(h)) + huge_page_size(h));
2430 huge_ptep_clear_flush(vma, address, ptep);
2431 set_huge_pte_at(mm, address, ptep,
2432 make_huge_pte(vma, new_page, 1));
2433 page_remove_rmap(old_page);
2434 hugepage_add_new_anon_rmap(new_page, vma, address);
2435 /* Make the old page be freed below */
2436 new_page = old_page;
2437 mmu_notifier_invalidate_range_end(mm,
2438 address & huge_page_mask(h),
2439 (address & huge_page_mask(h)) + huge_page_size(h));
2441 page_cache_release(new_page);
2442 page_cache_release(old_page);
2443 return 0;
2446 /* Return the pagecache page at a given address within a VMA */
2447 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2448 struct vm_area_struct *vma, unsigned long address)
2450 struct address_space *mapping;
2451 pgoff_t idx;
2453 mapping = vma->vm_file->f_mapping;
2454 idx = vma_hugecache_offset(h, vma, address);
2456 return find_lock_page(mapping, idx);
2460 * Return whether there is a pagecache page to back given address within VMA.
2461 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2463 static bool hugetlbfs_pagecache_present(struct hstate *h,
2464 struct vm_area_struct *vma, unsigned long address)
2466 struct address_space *mapping;
2467 pgoff_t idx;
2468 struct page *page;
2470 mapping = vma->vm_file->f_mapping;
2471 idx = vma_hugecache_offset(h, vma, address);
2473 page = find_get_page(mapping, idx);
2474 if (page)
2475 put_page(page);
2476 return page != NULL;
2479 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2480 unsigned long address, pte_t *ptep, unsigned int flags)
2482 struct hstate *h = hstate_vma(vma);
2483 int ret = VM_FAULT_SIGBUS;
2484 pgoff_t idx;
2485 unsigned long size;
2486 struct page *page;
2487 struct address_space *mapping;
2488 pte_t new_pte;
2491 * Currently, we are forced to kill the process in the event the
2492 * original mapper has unmapped pages from the child due to a failed
2493 * COW. Warn that such a situation has occurred as it may not be obvious
2495 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2496 printk(KERN_WARNING
2497 "PID %d killed due to inadequate hugepage pool\n",
2498 current->pid);
2499 return ret;
2502 mapping = vma->vm_file->f_mapping;
2503 idx = vma_hugecache_offset(h, vma, address);
2506 * Use page lock to guard against racing truncation
2507 * before we get page_table_lock.
2509 retry:
2510 page = find_lock_page(mapping, idx);
2511 if (!page) {
2512 size = i_size_read(mapping->host) >> huge_page_shift(h);
2513 if (idx >= size)
2514 goto out;
2515 page = alloc_huge_page(vma, address, 0);
2516 if (IS_ERR(page)) {
2517 ret = -PTR_ERR(page);
2518 goto out;
2520 clear_huge_page(page, address, pages_per_huge_page(h));
2521 __SetPageUptodate(page);
2523 if (vma->vm_flags & VM_MAYSHARE) {
2524 int err;
2525 struct inode *inode = mapping->host;
2527 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2528 if (err) {
2529 put_page(page);
2530 if (err == -EEXIST)
2531 goto retry;
2532 goto out;
2535 spin_lock(&inode->i_lock);
2536 inode->i_blocks += blocks_per_huge_page(h);
2537 spin_unlock(&inode->i_lock);
2538 page_dup_rmap(page);
2539 } else {
2540 lock_page(page);
2541 if (unlikely(anon_vma_prepare(vma))) {
2542 ret = VM_FAULT_OOM;
2543 goto backout_unlocked;
2545 hugepage_add_new_anon_rmap(page, vma, address);
2547 } else {
2549 * If memory error occurs between mmap() and fault, some process
2550 * don't have hwpoisoned swap entry for errored virtual address.
2551 * So we need to block hugepage fault by PG_hwpoison bit check.
2553 if (unlikely(PageHWPoison(page))) {
2554 ret = VM_FAULT_HWPOISON |
2555 VM_FAULT_SET_HINDEX(h - hstates);
2556 goto backout_unlocked;
2558 page_dup_rmap(page);
2562 * If we are going to COW a private mapping later, we examine the
2563 * pending reservations for this page now. This will ensure that
2564 * any allocations necessary to record that reservation occur outside
2565 * the spinlock.
2567 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2568 if (vma_needs_reservation(h, vma, address) < 0) {
2569 ret = VM_FAULT_OOM;
2570 goto backout_unlocked;
2573 spin_lock(&mm->page_table_lock);
2574 size = i_size_read(mapping->host) >> huge_page_shift(h);
2575 if (idx >= size)
2576 goto backout;
2578 ret = 0;
2579 if (!huge_pte_none(huge_ptep_get(ptep)))
2580 goto backout;
2582 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2583 && (vma->vm_flags & VM_SHARED)));
2584 set_huge_pte_at(mm, address, ptep, new_pte);
2586 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2587 /* Optimization, do the COW without a second fault */
2588 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2591 spin_unlock(&mm->page_table_lock);
2592 unlock_page(page);
2593 out:
2594 return ret;
2596 backout:
2597 spin_unlock(&mm->page_table_lock);
2598 backout_unlocked:
2599 unlock_page(page);
2600 put_page(page);
2601 goto out;
2604 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2605 unsigned long address, unsigned int flags)
2607 pte_t *ptep;
2608 pte_t entry;
2609 int ret;
2610 struct page *page = NULL;
2611 struct page *pagecache_page = NULL;
2612 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2613 struct hstate *h = hstate_vma(vma);
2615 ptep = huge_pte_offset(mm, address);
2616 if (ptep) {
2617 entry = huge_ptep_get(ptep);
2618 if (unlikely(is_hugetlb_entry_migration(entry))) {
2619 migration_entry_wait(mm, (pmd_t *)ptep, address);
2620 return 0;
2621 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2622 return VM_FAULT_HWPOISON_LARGE |
2623 VM_FAULT_SET_HINDEX(h - hstates);
2626 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2627 if (!ptep)
2628 return VM_FAULT_OOM;
2631 * Serialize hugepage allocation and instantiation, so that we don't
2632 * get spurious allocation failures if two CPUs race to instantiate
2633 * the same page in the page cache.
2635 mutex_lock(&hugetlb_instantiation_mutex);
2636 entry = huge_ptep_get(ptep);
2637 if (huge_pte_none(entry)) {
2638 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2639 goto out_mutex;
2642 ret = 0;
2645 * If we are going to COW the mapping later, we examine the pending
2646 * reservations for this page now. This will ensure that any
2647 * allocations necessary to record that reservation occur outside the
2648 * spinlock. For private mappings, we also lookup the pagecache
2649 * page now as it is used to determine if a reservation has been
2650 * consumed.
2652 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2653 if (vma_needs_reservation(h, vma, address) < 0) {
2654 ret = VM_FAULT_OOM;
2655 goto out_mutex;
2658 if (!(vma->vm_flags & VM_MAYSHARE))
2659 pagecache_page = hugetlbfs_pagecache_page(h,
2660 vma, address);
2664 * hugetlb_cow() requires page locks of pte_page(entry) and
2665 * pagecache_page, so here we need take the former one
2666 * when page != pagecache_page or !pagecache_page.
2667 * Note that locking order is always pagecache_page -> page,
2668 * so no worry about deadlock.
2670 page = pte_page(entry);
2671 if (page != pagecache_page)
2672 lock_page(page);
2674 spin_lock(&mm->page_table_lock);
2675 /* Check for a racing update before calling hugetlb_cow */
2676 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2677 goto out_page_table_lock;
2680 if (flags & FAULT_FLAG_WRITE) {
2681 if (!pte_write(entry)) {
2682 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2683 pagecache_page);
2684 goto out_page_table_lock;
2686 entry = pte_mkdirty(entry);
2688 entry = pte_mkyoung(entry);
2689 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2690 flags & FAULT_FLAG_WRITE))
2691 update_mmu_cache(vma, address, ptep);
2693 out_page_table_lock:
2694 spin_unlock(&mm->page_table_lock);
2696 if (pagecache_page) {
2697 unlock_page(pagecache_page);
2698 put_page(pagecache_page);
2700 if (page != pagecache_page)
2701 unlock_page(page);
2703 out_mutex:
2704 mutex_unlock(&hugetlb_instantiation_mutex);
2706 return ret;
2709 /* Can be overriden by architectures */
2710 __attribute__((weak)) struct page *
2711 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2712 pud_t *pud, int write)
2714 BUG();
2715 return NULL;
2718 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2719 struct page **pages, struct vm_area_struct **vmas,
2720 unsigned long *position, int *length, int i,
2721 unsigned int flags)
2723 unsigned long pfn_offset;
2724 unsigned long vaddr = *position;
2725 int remainder = *length;
2726 struct hstate *h = hstate_vma(vma);
2728 spin_lock(&mm->page_table_lock);
2729 while (vaddr < vma->vm_end && remainder) {
2730 pte_t *pte;
2731 int absent;
2732 struct page *page;
2735 * Some archs (sparc64, sh*) have multiple pte_ts to
2736 * each hugepage. We have to make sure we get the
2737 * first, for the page indexing below to work.
2739 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2740 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2743 * When coredumping, it suits get_dump_page if we just return
2744 * an error where there's an empty slot with no huge pagecache
2745 * to back it. This way, we avoid allocating a hugepage, and
2746 * the sparse dumpfile avoids allocating disk blocks, but its
2747 * huge holes still show up with zeroes where they need to be.
2749 if (absent && (flags & FOLL_DUMP) &&
2750 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2751 remainder = 0;
2752 break;
2755 if (absent ||
2756 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2757 int ret;
2759 spin_unlock(&mm->page_table_lock);
2760 ret = hugetlb_fault(mm, vma, vaddr,
2761 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2762 spin_lock(&mm->page_table_lock);
2763 if (!(ret & VM_FAULT_ERROR))
2764 continue;
2766 remainder = 0;
2767 break;
2770 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2771 page = pte_page(huge_ptep_get(pte));
2772 same_page:
2773 if (pages) {
2774 pages[i] = mem_map_offset(page, pfn_offset);
2775 get_page(pages[i]);
2778 if (vmas)
2779 vmas[i] = vma;
2781 vaddr += PAGE_SIZE;
2782 ++pfn_offset;
2783 --remainder;
2784 ++i;
2785 if (vaddr < vma->vm_end && remainder &&
2786 pfn_offset < pages_per_huge_page(h)) {
2788 * We use pfn_offset to avoid touching the pageframes
2789 * of this compound page.
2791 goto same_page;
2794 spin_unlock(&mm->page_table_lock);
2795 *length = remainder;
2796 *position = vaddr;
2798 return i ? i : -EFAULT;
2801 void hugetlb_change_protection(struct vm_area_struct *vma,
2802 unsigned long address, unsigned long end, pgprot_t newprot)
2804 struct mm_struct *mm = vma->vm_mm;
2805 unsigned long start = address;
2806 pte_t *ptep;
2807 pte_t pte;
2808 struct hstate *h = hstate_vma(vma);
2810 BUG_ON(address >= end);
2811 flush_cache_range(vma, address, end);
2813 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2814 spin_lock(&mm->page_table_lock);
2815 for (; address < end; address += huge_page_size(h)) {
2816 ptep = huge_pte_offset(mm, address);
2817 if (!ptep)
2818 continue;
2819 if (huge_pmd_unshare(mm, &address, ptep))
2820 continue;
2821 if (!huge_pte_none(huge_ptep_get(ptep))) {
2822 pte = huge_ptep_get_and_clear(mm, address, ptep);
2823 pte = pte_mkhuge(pte_modify(pte, newprot));
2824 set_huge_pte_at(mm, address, ptep, pte);
2827 spin_unlock(&mm->page_table_lock);
2828 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2830 flush_tlb_range(vma, start, end);
2833 int hugetlb_reserve_pages(struct inode *inode,
2834 long from, long to,
2835 struct vm_area_struct *vma,
2836 int acctflag)
2838 long ret, chg;
2839 struct hstate *h = hstate_inode(inode);
2842 * Only apply hugepage reservation if asked. At fault time, an
2843 * attempt will be made for VM_NORESERVE to allocate a page
2844 * and filesystem quota without using reserves
2846 if (acctflag & VM_NORESERVE)
2847 return 0;
2850 * Shared mappings base their reservation on the number of pages that
2851 * are already allocated on behalf of the file. Private mappings need
2852 * to reserve the full area even if read-only as mprotect() may be
2853 * called to make the mapping read-write. Assume !vma is a shm mapping
2855 if (!vma || vma->vm_flags & VM_MAYSHARE)
2856 chg = region_chg(&inode->i_mapping->private_list, from, to);
2857 else {
2858 struct resv_map *resv_map = resv_map_alloc();
2859 if (!resv_map)
2860 return -ENOMEM;
2862 chg = to - from;
2864 set_vma_resv_map(vma, resv_map);
2865 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2868 if (chg < 0)
2869 return chg;
2871 /* There must be enough filesystem quota for the mapping */
2872 if (hugetlb_get_quota(inode->i_mapping, chg))
2873 return -ENOSPC;
2876 * Check enough hugepages are available for the reservation.
2877 * Hand back the quota if there are not
2879 ret = hugetlb_acct_memory(h, chg);
2880 if (ret < 0) {
2881 hugetlb_put_quota(inode->i_mapping, chg);
2882 return ret;
2886 * Account for the reservations made. Shared mappings record regions
2887 * that have reservations as they are shared by multiple VMAs.
2888 * When the last VMA disappears, the region map says how much
2889 * the reservation was and the page cache tells how much of
2890 * the reservation was consumed. Private mappings are per-VMA and
2891 * only the consumed reservations are tracked. When the VMA
2892 * disappears, the original reservation is the VMA size and the
2893 * consumed reservations are stored in the map. Hence, nothing
2894 * else has to be done for private mappings here
2896 if (!vma || vma->vm_flags & VM_MAYSHARE)
2897 region_add(&inode->i_mapping->private_list, from, to);
2898 return 0;
2901 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2903 struct hstate *h = hstate_inode(inode);
2904 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2906 spin_lock(&inode->i_lock);
2907 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2908 spin_unlock(&inode->i_lock);
2910 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2911 hugetlb_acct_memory(h, -(chg - freed));
2914 #ifdef CONFIG_MEMORY_FAILURE
2916 /* Should be called in hugetlb_lock */
2917 static int is_hugepage_on_freelist(struct page *hpage)
2919 struct page *page;
2920 struct page *tmp;
2921 struct hstate *h = page_hstate(hpage);
2922 int nid = page_to_nid(hpage);
2924 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2925 if (page == hpage)
2926 return 1;
2927 return 0;
2931 * This function is called from memory failure code.
2932 * Assume the caller holds page lock of the head page.
2934 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2936 struct hstate *h = page_hstate(hpage);
2937 int nid = page_to_nid(hpage);
2938 int ret = -EBUSY;
2940 spin_lock(&hugetlb_lock);
2941 if (is_hugepage_on_freelist(hpage)) {
2942 list_del(&hpage->lru);
2943 set_page_refcounted(hpage);
2944 h->free_huge_pages--;
2945 h->free_huge_pages_node[nid]--;
2946 ret = 0;
2948 spin_unlock(&hugetlb_lock);
2949 return ret;
2951 #endif