2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
48 __initdata
LIST_HEAD(huge_boot_pages
);
50 /* for command line parsing */
51 static struct hstate
* __initdata parsed_hstate
;
52 static unsigned long __initdata default_hstate_max_huge_pages
;
53 static unsigned long __initdata default_hstate_size
;
54 static bool __initdata parsed_valid_hugepagesz
= true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 /* minimum size accounting */
149 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
150 if (delta
> spool
->rsv_hpages
) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret
= delta
- spool
->rsv_hpages
;
156 spool
->rsv_hpages
= 0;
158 ret
= 0; /* reserves already accounted for */
159 spool
->rsv_hpages
-= delta
;
164 spin_unlock(&spool
->lock
);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
182 spin_lock(&spool
->lock
);
184 if (spool
->max_hpages
!= -1) /* maximum size accounting */
185 spool
->used_hpages
-= delta
;
187 /* minimum size accounting */
188 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
189 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
192 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
194 spool
->rsv_hpages
+= delta
;
195 if (spool
->rsv_hpages
> spool
->min_hpages
)
196 spool
->rsv_hpages
= spool
->min_hpages
;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool
);
208 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
210 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
213 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
215 return subpool_inode(file_inode(vma
->vm_file
));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link
;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map
*resv
, long f
, long t
)
259 struct list_head
*head
= &resv
->regions
;
260 struct file_region
*rg
, *nrg
, *trg
;
263 spin_lock(&resv
->lock
);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg
, head
, link
)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg
->link
== head
|| t
< rg
->from
) {
276 VM_BUG_ON(resv
->region_cache_count
<= 0);
278 resv
->region_cache_count
--;
279 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
281 list_del(&nrg
->link
);
285 list_add(&nrg
->link
, rg
->link
.prev
);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
298 if (&rg
->link
== head
)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add
-= (rg
->to
- rg
->from
);
319 add
+= (nrg
->from
- f
); /* Added to beginning of region */
321 add
+= t
- nrg
->to
; /* Added to end of region */
325 resv
->adds_in_progress
--;
326 spin_unlock(&resv
->lock
);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map
*resv
, long f
, long t
)
355 struct list_head
*head
= &resv
->regions
;
356 struct file_region
*rg
, *nrg
= NULL
;
360 spin_lock(&resv
->lock
);
362 resv
->adds_in_progress
++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
369 struct file_region
*trg
;
371 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv
->adds_in_progress
--;
374 spin_unlock(&resv
->lock
);
376 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
382 spin_lock(&resv
->lock
);
383 list_add(&trg
->link
, &resv
->region_cache
);
384 resv
->region_cache_count
++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg
, head
, link
)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg
->link
== head
|| t
< rg
->from
) {
398 resv
->adds_in_progress
--;
399 spin_unlock(&resv
->lock
);
400 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
406 INIT_LIST_HEAD(&nrg
->link
);
410 list_add(&nrg
->link
, rg
->link
.prev
);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
422 if (&rg
->link
== head
)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg
-= rg
->to
- rg
->from
;
438 spin_unlock(&resv
->lock
);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv
->lock
);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map
*resv
, long f
, long t
)
460 spin_lock(&resv
->lock
);
461 VM_BUG_ON(!resv
->region_cache_count
);
462 resv
->adds_in_progress
--;
463 spin_unlock(&resv
->lock
);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map
*resv
, long f
, long t
)
482 struct list_head
*head
= &resv
->regions
;
483 struct file_region
*rg
, *trg
;
484 struct file_region
*nrg
= NULL
;
488 spin_lock(&resv
->lock
);
489 list_for_each_entry_safe(rg
, trg
, head
, link
) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
503 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv
->region_cache_count
> resv
->adds_in_progress
) {
510 nrg
= list_first_entry(&resv
->region_cache
,
513 list_del(&nrg
->link
);
514 resv
->region_cache_count
--;
518 spin_unlock(&resv
->lock
);
519 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg
->link
);
532 /* Original entry is trimmed */
535 list_add(&nrg
->link
, &rg
->link
);
540 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
541 del
+= rg
->to
- rg
->from
;
547 if (f
<= rg
->from
) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv
->lock
);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode
*inode
)
572 struct hugepage_subpool
*spool
= subpool_inode(inode
);
575 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
577 struct hstate
*h
= hstate_inode(inode
);
579 hugetlb_acct_memory(h
, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map
*resv
, long f
, long t
)
589 struct list_head
*head
= &resv
->regions
;
590 struct file_region
*rg
;
593 spin_lock(&resv
->lock
);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg
, head
, link
) {
604 seg_from
= max(rg
->from
, f
);
605 seg_to
= min(rg
->to
, t
);
607 chg
+= seg_to
- seg_from
;
609 spin_unlock(&resv
->lock
);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
619 struct vm_area_struct
*vma
, unsigned long address
)
621 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
622 (vma
->vm_pgoff
>> huge_page_order(h
));
625 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
626 unsigned long address
)
628 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
638 struct hstate
*hstate
;
640 if (!is_vm_hugetlb_page(vma
))
643 hstate
= hstate_vma(vma
);
645 return 1UL << huge_page_shift(hstate
);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
658 return vma_kernel_pagesize(vma
);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
692 return (unsigned long)vma
->vm_private_data
;
695 static void set_vma_private_data(struct vm_area_struct
*vma
,
698 vma
->vm_private_data
= (void *)value
;
701 struct resv_map
*resv_map_alloc(void)
703 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
704 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
706 if (!resv_map
|| !rg
) {
712 kref_init(&resv_map
->refs
);
713 spin_lock_init(&resv_map
->lock
);
714 INIT_LIST_HEAD(&resv_map
->regions
);
716 resv_map
->adds_in_progress
= 0;
718 INIT_LIST_HEAD(&resv_map
->region_cache
);
719 list_add(&rg
->link
, &resv_map
->region_cache
);
720 resv_map
->region_cache_count
= 1;
725 void resv_map_release(struct kref
*ref
)
727 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
728 struct list_head
*head
= &resv_map
->region_cache
;
729 struct file_region
*rg
, *trg
;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map
, 0, LONG_MAX
);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg
, trg
, head
, link
) {
740 VM_BUG_ON(resv_map
->adds_in_progress
);
745 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
747 return inode
->i_mapping
->private_data
;
750 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
753 if (vma
->vm_flags
& VM_MAYSHARE
) {
754 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
755 struct inode
*inode
= mapping
->host
;
757 return inode_resv_map(inode
);
760 return (struct resv_map
*)(get_vma_private_data(vma
) &
765 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
768 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
770 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
771 HPAGE_RESV_MASK
) | (unsigned long)map
);
774 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
777 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
779 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
782 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
786 return (get_vma_private_data(vma
) & flag
) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
793 if (!(vma
->vm_flags
& VM_MAYSHARE
))
794 vma
->vm_private_data
= (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
800 if (vma
->vm_flags
& VM_NORESERVE
) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
816 /* Shared mappings always use reserves */
817 if (vma
->vm_flags
& VM_MAYSHARE
) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
860 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
862 int nid
= page_to_nid(page
);
863 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
864 h
->free_huge_pages
++;
865 h
->free_huge_pages_node
[nid
]++;
868 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
872 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
873 if (!is_migrate_isolate_page(page
))
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
881 list_move(&page
->lru
, &h
->hugepage_activelist
);
882 set_page_refcounted(page
);
883 h
->free_huge_pages
--;
884 h
->free_huge_pages_node
[nid
]--;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
891 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
892 return GFP_HIGHUSER_MOVABLE
;
897 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
898 struct vm_area_struct
*vma
,
899 unsigned long address
, int avoid_reserve
,
902 struct page
*page
= NULL
;
903 struct mempolicy
*mpol
;
904 nodemask_t
*nodemask
;
905 struct zonelist
*zonelist
;
908 unsigned int cpuset_mems_cookie
;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma
, chg
) &&
916 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
924 cpuset_mems_cookie
= read_mems_allowed_begin();
925 zonelist
= huge_zonelist(vma
, address
,
926 htlb_alloc_mask(h
), &mpol
, &nodemask
);
928 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
929 MAX_NR_ZONES
- 1, nodemask
) {
930 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
931 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
935 if (!vma_has_reserves(vma
, chg
))
938 SetPagePrivate(page
);
939 h
->resv_huge_pages
--;
946 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
963 nid
= next_node_in(nid
, *nodes_allowed
);
964 VM_BUG_ON(nid
>= MAX_NUMNODES
);
969 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
971 if (!node_isset(nid
, *nodes_allowed
))
972 nid
= next_node_allowed(nid
, nodes_allowed
);
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
982 static int hstate_next_node_to_alloc(struct hstate
*h
,
983 nodemask_t
*nodes_allowed
)
987 VM_BUG_ON(!nodes_allowed
);
989 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
990 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1005 VM_BUG_ON(!nodes_allowed
);
1007 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1008 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page
*page
,
1032 int nr_pages
= 1 << order
;
1033 struct page
*p
= page
+ 1;
1035 atomic_set(compound_mapcount_ptr(page
), 0);
1036 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1037 clear_compound_head(p
);
1038 set_page_refcounted(p
);
1041 set_compound_order(page
, 0);
1042 __ClearPageHead(page
);
1045 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1047 free_contig_range(page_to_pfn(page
), 1 << order
);
1050 static int __alloc_gigantic_page(unsigned long start_pfn
,
1051 unsigned long nr_pages
)
1053 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1054 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1057 static bool pfn_range_valid_gigantic(struct zone
*z
,
1058 unsigned long start_pfn
, unsigned long nr_pages
)
1060 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1063 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1067 page
= pfn_to_page(i
);
1069 if (page_zone(page
) != z
)
1072 if (PageReserved(page
))
1075 if (page_count(page
) > 0)
1085 static bool zone_spans_last_pfn(const struct zone
*zone
,
1086 unsigned long start_pfn
, unsigned long nr_pages
)
1088 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1089 return zone_spans_pfn(zone
, last_pfn
);
1092 static struct page
*alloc_gigantic_page(int nid
, unsigned int order
)
1094 unsigned long nr_pages
= 1 << order
;
1095 unsigned long ret
, pfn
, flags
;
1098 z
= NODE_DATA(nid
)->node_zones
;
1099 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
1100 spin_lock_irqsave(&z
->lock
, flags
);
1102 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
1103 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
1104 if (pfn_range_valid_gigantic(z
, pfn
, nr_pages
)) {
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1112 spin_unlock_irqrestore(&z
->lock
, flags
);
1113 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
1115 return pfn_to_page(pfn
);
1116 spin_lock_irqsave(&z
->lock
, flags
);
1121 spin_unlock_irqrestore(&z
->lock
, flags
);
1127 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1128 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1130 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1134 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
1136 prep_compound_gigantic_page(page
, huge_page_order(h
));
1137 prep_new_huge_page(h
, page
, nid
);
1143 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1144 nodemask_t
*nodes_allowed
)
1146 struct page
*page
= NULL
;
1149 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1150 page
= alloc_fresh_gigantic_page_node(h
, node
);
1158 static inline bool gigantic_page_supported(void) { return true; }
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1162 static inline void destroy_compound_gigantic_page(struct page
*page
,
1163 unsigned int order
) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1165 nodemask_t
*nodes_allowed
) { return 0; }
1168 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1172 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1176 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1177 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1178 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1179 1 << PG_referenced
| 1 << PG_dirty
|
1180 1 << PG_active
| 1 << PG_private
|
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1184 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1185 set_page_refcounted(page
);
1186 if (hstate_is_gigantic(h
)) {
1187 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1188 free_gigantic_page(page
, huge_page_order(h
));
1190 __free_pages(page
, huge_page_order(h
));
1194 struct hstate
*size_to_hstate(unsigned long size
)
1198 for_each_hstate(h
) {
1199 if (huge_page_size(h
) == size
)
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1209 * This function can be called for tail pages, but never returns true for them.
1211 bool page_huge_active(struct page
*page
)
1213 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1214 return PageHead(page
) && PagePrivate(&page
[1]);
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page
*page
)
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1221 SetPagePrivate(&page
[1]);
1224 static void clear_page_huge_active(struct page
*page
)
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1227 ClearPagePrivate(&page
[1]);
1230 void free_huge_page(struct page
*page
)
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1236 struct hstate
*h
= page_hstate(page
);
1237 int nid
= page_to_nid(page
);
1238 struct hugepage_subpool
*spool
=
1239 (struct hugepage_subpool
*)page_private(page
);
1240 bool restore_reserve
;
1242 set_page_private(page
, 0);
1243 page
->mapping
= NULL
;
1244 VM_BUG_ON_PAGE(page_count(page
), page
);
1245 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1246 restore_reserve
= PagePrivate(page
);
1247 ClearPagePrivate(page
);
1250 * A return code of zero implies that the subpool will be under its
1251 * minimum size if the reservation is not restored after page is free.
1252 * Therefore, force restore_reserve operation.
1254 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1255 restore_reserve
= true;
1257 spin_lock(&hugetlb_lock
);
1258 clear_page_huge_active(page
);
1259 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1260 pages_per_huge_page(h
), page
);
1261 if (restore_reserve
)
1262 h
->resv_huge_pages
++;
1264 if (h
->surplus_huge_pages_node
[nid
]) {
1265 /* remove the page from active list */
1266 list_del(&page
->lru
);
1267 update_and_free_page(h
, page
);
1268 h
->surplus_huge_pages
--;
1269 h
->surplus_huge_pages_node
[nid
]--;
1271 arch_clear_hugepage_flags(page
);
1272 enqueue_huge_page(h
, page
);
1274 spin_unlock(&hugetlb_lock
);
1277 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1279 INIT_LIST_HEAD(&page
->lru
);
1280 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1281 spin_lock(&hugetlb_lock
);
1282 set_hugetlb_cgroup(page
, NULL
);
1284 h
->nr_huge_pages_node
[nid
]++;
1285 spin_unlock(&hugetlb_lock
);
1286 put_page(page
); /* free it into the hugepage allocator */
1289 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1292 int nr_pages
= 1 << order
;
1293 struct page
*p
= page
+ 1;
1295 /* we rely on prep_new_huge_page to set the destructor */
1296 set_compound_order(page
, order
);
1297 __ClearPageReserved(page
);
1298 __SetPageHead(page
);
1299 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1301 * For gigantic hugepages allocated through bootmem at
1302 * boot, it's safer to be consistent with the not-gigantic
1303 * hugepages and clear the PG_reserved bit from all tail pages
1304 * too. Otherwse drivers using get_user_pages() to access tail
1305 * pages may get the reference counting wrong if they see
1306 * PG_reserved set on a tail page (despite the head page not
1307 * having PG_reserved set). Enforcing this consistency between
1308 * head and tail pages allows drivers to optimize away a check
1309 * on the head page when they need know if put_page() is needed
1310 * after get_user_pages().
1312 __ClearPageReserved(p
);
1313 set_page_count(p
, 0);
1314 set_compound_head(p
, page
);
1316 atomic_set(compound_mapcount_ptr(page
), -1);
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages. See the PageTransHuge() documentation for more
1324 int PageHuge(struct page
*page
)
1326 if (!PageCompound(page
))
1329 page
= compound_head(page
);
1330 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1332 EXPORT_SYMBOL_GPL(PageHuge
);
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1338 int PageHeadHuge(struct page
*page_head
)
1340 if (!PageHead(page_head
))
1343 return get_compound_page_dtor(page_head
) == free_huge_page
;
1346 pgoff_t
__basepage_index(struct page
*page
)
1348 struct page
*page_head
= compound_head(page
);
1349 pgoff_t index
= page_index(page_head
);
1350 unsigned long compound_idx
;
1352 if (!PageHuge(page_head
))
1353 return page_index(page
);
1355 if (compound_order(page_head
) >= MAX_ORDER
)
1356 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1358 compound_idx
= page
- page_head
;
1360 return (index
<< compound_order(page_head
)) + compound_idx
;
1363 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1367 page
= __alloc_pages_node(nid
,
1368 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1369 __GFP_REPEAT
|__GFP_NOWARN
,
1370 huge_page_order(h
));
1372 prep_new_huge_page(h
, page
, nid
);
1378 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1384 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1385 page
= alloc_fresh_huge_page_node(h
, node
);
1393 count_vm_event(HTLB_BUDDY_PGALLOC
);
1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1406 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1412 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1414 * If we're returning unused surplus pages, only examine
1415 * nodes with surplus pages.
1417 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1418 !list_empty(&h
->hugepage_freelists
[node
])) {
1420 list_entry(h
->hugepage_freelists
[node
].next
,
1422 list_del(&page
->lru
);
1423 h
->free_huge_pages
--;
1424 h
->free_huge_pages_node
[node
]--;
1426 h
->surplus_huge_pages
--;
1427 h
->surplus_huge_pages_node
[node
]--;
1429 update_and_free_page(h
, page
);
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441 * number of free hugepages would be reduced below the number of reserved
1444 static int dissolve_free_huge_page(struct page
*page
)
1448 spin_lock(&hugetlb_lock
);
1449 if (PageHuge(page
) && !page_count(page
)) {
1450 struct page
*head
= compound_head(page
);
1451 struct hstate
*h
= page_hstate(head
);
1452 int nid
= page_to_nid(head
);
1453 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0) {
1457 list_del(&head
->lru
);
1458 h
->free_huge_pages
--;
1459 h
->free_huge_pages_node
[nid
]--;
1460 h
->max_huge_pages
--;
1461 update_and_free_page(h
, head
);
1464 spin_unlock(&hugetlb_lock
);
1469 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470 * make specified memory blocks removable from the system.
1471 * Note that this will dissolve a free gigantic hugepage completely, if any
1472 * part of it lies within the given range.
1473 * Also note that if dissolve_free_huge_page() returns with an error, all
1474 * free hugepages that were dissolved before that error are lost.
1476 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1482 if (!hugepages_supported())
1485 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1486 page
= pfn_to_page(pfn
);
1487 if (PageHuge(page
) && !page_count(page
)) {
1488 rc
= dissolve_free_huge_page(page
);
1498 * There are 3 ways this can get called:
1499 * 1. With vma+addr: we use the VMA's memory policy
1500 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1501 * page from any node, and let the buddy allocator itself figure
1503 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1504 * strictly from 'nid'
1506 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1507 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1509 int order
= huge_page_order(h
);
1510 gfp_t gfp
= htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_REPEAT
|__GFP_NOWARN
;
1511 unsigned int cpuset_mems_cookie
;
1514 * We need a VMA to get a memory policy. If we do not
1515 * have one, we use the 'nid' argument.
1517 * The mempolicy stuff below has some non-inlined bits
1518 * and calls ->vm_ops. That makes it hard to optimize at
1519 * compile-time, even when NUMA is off and it does
1520 * nothing. This helps the compiler optimize it out.
1522 if (!IS_ENABLED(CONFIG_NUMA
) || !vma
) {
1524 * If a specific node is requested, make sure to
1525 * get memory from there, but only when a node
1526 * is explicitly specified.
1528 if (nid
!= NUMA_NO_NODE
)
1529 gfp
|= __GFP_THISNODE
;
1531 * Make sure to call something that can handle
1534 return alloc_pages_node(nid
, gfp
, order
);
1538 * OK, so we have a VMA. Fetch the mempolicy and try to
1539 * allocate a huge page with it. We will only reach this
1540 * when CONFIG_NUMA=y.
1544 struct mempolicy
*mpol
;
1545 struct zonelist
*zl
;
1546 nodemask_t
*nodemask
;
1548 cpuset_mems_cookie
= read_mems_allowed_begin();
1549 zl
= huge_zonelist(vma
, addr
, gfp
, &mpol
, &nodemask
);
1550 mpol_cond_put(mpol
);
1551 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nodemask
);
1554 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1560 * There are two ways to allocate a huge page:
1561 * 1. When you have a VMA and an address (like a fault)
1562 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1565 * this case which signifies that the allocation should be done with
1566 * respect for the VMA's memory policy.
1568 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569 * implies that memory policies will not be taken in to account.
1571 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
,
1572 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1577 if (hstate_is_gigantic(h
))
1581 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582 * This makes sure the caller is picking _one_ of the modes with which
1583 * we can call this function, not both.
1585 if (vma
|| (addr
!= -1)) {
1586 VM_WARN_ON_ONCE(addr
== -1);
1587 VM_WARN_ON_ONCE(nid
!= NUMA_NO_NODE
);
1590 * Assume we will successfully allocate the surplus page to
1591 * prevent racing processes from causing the surplus to exceed
1594 * This however introduces a different race, where a process B
1595 * tries to grow the static hugepage pool while alloc_pages() is
1596 * called by process A. B will only examine the per-node
1597 * counters in determining if surplus huge pages can be
1598 * converted to normal huge pages in adjust_pool_surplus(). A
1599 * won't be able to increment the per-node counter, until the
1600 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601 * no more huge pages can be converted from surplus to normal
1602 * state (and doesn't try to convert again). Thus, we have a
1603 * case where a surplus huge page exists, the pool is grown, and
1604 * the surplus huge page still exists after, even though it
1605 * should just have been converted to a normal huge page. This
1606 * does not leak memory, though, as the hugepage will be freed
1607 * once it is out of use. It also does not allow the counters to
1608 * go out of whack in adjust_pool_surplus() as we don't modify
1609 * the node values until we've gotten the hugepage and only the
1610 * per-node value is checked there.
1612 spin_lock(&hugetlb_lock
);
1613 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1614 spin_unlock(&hugetlb_lock
);
1618 h
->surplus_huge_pages
++;
1620 spin_unlock(&hugetlb_lock
);
1622 page
= __hugetlb_alloc_buddy_huge_page(h
, vma
, addr
, nid
);
1624 spin_lock(&hugetlb_lock
);
1626 INIT_LIST_HEAD(&page
->lru
);
1627 r_nid
= page_to_nid(page
);
1628 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1629 set_hugetlb_cgroup(page
, NULL
);
1631 * We incremented the global counters already
1633 h
->nr_huge_pages_node
[r_nid
]++;
1634 h
->surplus_huge_pages_node
[r_nid
]++;
1635 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1638 h
->surplus_huge_pages
--;
1639 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1641 spin_unlock(&hugetlb_lock
);
1647 * Allocate a huge page from 'nid'. Note, 'nid' may be
1648 * NUMA_NO_NODE, which means that it may be allocated
1652 struct page
*__alloc_buddy_huge_page_no_mpol(struct hstate
*h
, int nid
)
1654 unsigned long addr
= -1;
1656 return __alloc_buddy_huge_page(h
, NULL
, addr
, nid
);
1660 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1664 struct vm_area_struct
*vma
, unsigned long addr
)
1666 return __alloc_buddy_huge_page(h
, vma
, addr
, NUMA_NO_NODE
);
1670 * This allocation function is useful in the context where vma is irrelevant.
1671 * E.g. soft-offlining uses this function because it only cares physical
1672 * address of error page.
1674 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1676 struct page
*page
= NULL
;
1678 spin_lock(&hugetlb_lock
);
1679 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1680 page
= dequeue_huge_page_node(h
, nid
);
1681 spin_unlock(&hugetlb_lock
);
1684 page
= __alloc_buddy_huge_page_no_mpol(h
, nid
);
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1693 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1695 struct list_head surplus_list
;
1696 struct page
*page
, *tmp
;
1698 int needed
, allocated
;
1699 bool alloc_ok
= true;
1701 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1703 h
->resv_huge_pages
+= delta
;
1708 INIT_LIST_HEAD(&surplus_list
);
1712 spin_unlock(&hugetlb_lock
);
1713 for (i
= 0; i
< needed
; i
++) {
1714 page
= __alloc_buddy_huge_page_no_mpol(h
, NUMA_NO_NODE
);
1719 list_add(&page
->lru
, &surplus_list
);
1724 * After retaking hugetlb_lock, we need to recalculate 'needed'
1725 * because either resv_huge_pages or free_huge_pages may have changed.
1727 spin_lock(&hugetlb_lock
);
1728 needed
= (h
->resv_huge_pages
+ delta
) -
1729 (h
->free_huge_pages
+ allocated
);
1734 * We were not able to allocate enough pages to
1735 * satisfy the entire reservation so we free what
1736 * we've allocated so far.
1741 * The surplus_list now contains _at_least_ the number of extra pages
1742 * needed to accommodate the reservation. Add the appropriate number
1743 * of pages to the hugetlb pool and free the extras back to the buddy
1744 * allocator. Commit the entire reservation here to prevent another
1745 * process from stealing the pages as they are added to the pool but
1746 * before they are reserved.
1748 needed
+= allocated
;
1749 h
->resv_huge_pages
+= delta
;
1752 /* Free the needed pages to the hugetlb pool */
1753 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1757 * This page is now managed by the hugetlb allocator and has
1758 * no users -- drop the buddy allocator's reference.
1760 put_page_testzero(page
);
1761 VM_BUG_ON_PAGE(page_count(page
), page
);
1762 enqueue_huge_page(h
, page
);
1765 spin_unlock(&hugetlb_lock
);
1767 /* Free unnecessary surplus pages to the buddy allocator */
1768 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1770 spin_lock(&hugetlb_lock
);
1776 * This routine has two main purposes:
1777 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1778 * in unused_resv_pages. This corresponds to the prior adjustments made
1779 * to the associated reservation map.
1780 * 2) Free any unused surplus pages that may have been allocated to satisfy
1781 * the reservation. As many as unused_resv_pages may be freed.
1783 * Called with hugetlb_lock held. However, the lock could be dropped (and
1784 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1785 * we must make sure nobody else can claim pages we are in the process of
1786 * freeing. Do this by ensuring resv_huge_page always is greater than the
1787 * number of huge pages we plan to free when dropping the lock.
1789 static void return_unused_surplus_pages(struct hstate
*h
,
1790 unsigned long unused_resv_pages
)
1792 unsigned long nr_pages
;
1794 /* Cannot return gigantic pages currently */
1795 if (hstate_is_gigantic(h
))
1799 * Part (or even all) of the reservation could have been backed
1800 * by pre-allocated pages. Only free surplus pages.
1802 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1805 * We want to release as many surplus pages as possible, spread
1806 * evenly across all nodes with memory. Iterate across these nodes
1807 * until we can no longer free unreserved surplus pages. This occurs
1808 * when the nodes with surplus pages have no free pages.
1809 * free_pool_huge_page() will balance the the freed pages across the
1810 * on-line nodes with memory and will handle the hstate accounting.
1812 * Note that we decrement resv_huge_pages as we free the pages. If
1813 * we drop the lock, resv_huge_pages will still be sufficiently large
1814 * to cover subsequent pages we may free.
1816 while (nr_pages
--) {
1817 h
->resv_huge_pages
--;
1818 unused_resv_pages
--;
1819 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1821 cond_resched_lock(&hugetlb_lock
);
1825 /* Fully uncommit the reservation */
1826 h
->resv_huge_pages
-= unused_resv_pages
;
1831 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1832 * are used by the huge page allocation routines to manage reservations.
1834 * vma_needs_reservation is called to determine if the huge page at addr
1835 * within the vma has an associated reservation. If a reservation is
1836 * needed, the value 1 is returned. The caller is then responsible for
1837 * managing the global reservation and subpool usage counts. After
1838 * the huge page has been allocated, vma_commit_reservation is called
1839 * to add the page to the reservation map. If the page allocation fails,
1840 * the reservation must be ended instead of committed. vma_end_reservation
1841 * is called in such cases.
1843 * In the normal case, vma_commit_reservation returns the same value
1844 * as the preceding vma_needs_reservation call. The only time this
1845 * is not the case is if a reserve map was changed between calls. It
1846 * is the responsibility of the caller to notice the difference and
1847 * take appropriate action.
1849 * vma_add_reservation is used in error paths where a reservation must
1850 * be restored when a newly allocated huge page must be freed. It is
1851 * to be called after calling vma_needs_reservation to determine if a
1852 * reservation exists.
1854 enum vma_resv_mode
{
1860 static long __vma_reservation_common(struct hstate
*h
,
1861 struct vm_area_struct
*vma
, unsigned long addr
,
1862 enum vma_resv_mode mode
)
1864 struct resv_map
*resv
;
1868 resv
= vma_resv_map(vma
);
1872 idx
= vma_hugecache_offset(h
, vma
, addr
);
1874 case VMA_NEEDS_RESV
:
1875 ret
= region_chg(resv
, idx
, idx
+ 1);
1877 case VMA_COMMIT_RESV
:
1878 ret
= region_add(resv
, idx
, idx
+ 1);
1881 region_abort(resv
, idx
, idx
+ 1);
1885 if (vma
->vm_flags
& VM_MAYSHARE
)
1886 ret
= region_add(resv
, idx
, idx
+ 1);
1888 region_abort(resv
, idx
, idx
+ 1);
1889 ret
= region_del(resv
, idx
, idx
+ 1);
1896 if (vma
->vm_flags
& VM_MAYSHARE
)
1898 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1900 * In most cases, reserves always exist for private mappings.
1901 * However, a file associated with mapping could have been
1902 * hole punched or truncated after reserves were consumed.
1903 * As subsequent fault on such a range will not use reserves.
1904 * Subtle - The reserve map for private mappings has the
1905 * opposite meaning than that of shared mappings. If NO
1906 * entry is in the reserve map, it means a reservation exists.
1907 * If an entry exists in the reserve map, it means the
1908 * reservation has already been consumed. As a result, the
1909 * return value of this routine is the opposite of the
1910 * value returned from reserve map manipulation routines above.
1918 return ret
< 0 ? ret
: 0;
1921 static long vma_needs_reservation(struct hstate
*h
,
1922 struct vm_area_struct
*vma
, unsigned long addr
)
1924 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1927 static long vma_commit_reservation(struct hstate
*h
,
1928 struct vm_area_struct
*vma
, unsigned long addr
)
1930 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1933 static void vma_end_reservation(struct hstate
*h
,
1934 struct vm_area_struct
*vma
, unsigned long addr
)
1936 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1939 static long vma_add_reservation(struct hstate
*h
,
1940 struct vm_area_struct
*vma
, unsigned long addr
)
1942 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1946 * This routine is called to restore a reservation on error paths. In the
1947 * specific error paths, a huge page was allocated (via alloc_huge_page)
1948 * and is about to be freed. If a reservation for the page existed,
1949 * alloc_huge_page would have consumed the reservation and set PagePrivate
1950 * in the newly allocated page. When the page is freed via free_huge_page,
1951 * the global reservation count will be incremented if PagePrivate is set.
1952 * However, free_huge_page can not adjust the reserve map. Adjust the
1953 * reserve map here to be consistent with global reserve count adjustments
1954 * to be made by free_huge_page.
1956 static void restore_reserve_on_error(struct hstate
*h
,
1957 struct vm_area_struct
*vma
, unsigned long address
,
1960 if (unlikely(PagePrivate(page
))) {
1961 long rc
= vma_needs_reservation(h
, vma
, address
);
1963 if (unlikely(rc
< 0)) {
1965 * Rare out of memory condition in reserve map
1966 * manipulation. Clear PagePrivate so that
1967 * global reserve count will not be incremented
1968 * by free_huge_page. This will make it appear
1969 * as though the reservation for this page was
1970 * consumed. This may prevent the task from
1971 * faulting in the page at a later time. This
1972 * is better than inconsistent global huge page
1973 * accounting of reserve counts.
1975 ClearPagePrivate(page
);
1977 rc
= vma_add_reservation(h
, vma
, address
);
1978 if (unlikely(rc
< 0))
1980 * See above comment about rare out of
1983 ClearPagePrivate(page
);
1985 vma_end_reservation(h
, vma
, address
);
1989 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1990 unsigned long addr
, int avoid_reserve
)
1992 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1993 struct hstate
*h
= hstate_vma(vma
);
1995 long map_chg
, map_commit
;
1998 struct hugetlb_cgroup
*h_cg
;
2000 idx
= hstate_index(h
);
2002 * Examine the region/reserve map to determine if the process
2003 * has a reservation for the page to be allocated. A return
2004 * code of zero indicates a reservation exists (no change).
2006 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2008 return ERR_PTR(-ENOMEM
);
2011 * Processes that did not create the mapping will have no
2012 * reserves as indicated by the region/reserve map. Check
2013 * that the allocation will not exceed the subpool limit.
2014 * Allocations for MAP_NORESERVE mappings also need to be
2015 * checked against any subpool limit.
2017 if (map_chg
|| avoid_reserve
) {
2018 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2020 vma_end_reservation(h
, vma
, addr
);
2021 return ERR_PTR(-ENOSPC
);
2025 * Even though there was no reservation in the region/reserve
2026 * map, there could be reservations associated with the
2027 * subpool that can be used. This would be indicated if the
2028 * return value of hugepage_subpool_get_pages() is zero.
2029 * However, if avoid_reserve is specified we still avoid even
2030 * the subpool reservations.
2036 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2038 goto out_subpool_put
;
2040 spin_lock(&hugetlb_lock
);
2042 * glb_chg is passed to indicate whether or not a page must be taken
2043 * from the global free pool (global change). gbl_chg == 0 indicates
2044 * a reservation exists for the allocation.
2046 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2048 spin_unlock(&hugetlb_lock
);
2049 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2051 goto out_uncharge_cgroup
;
2052 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2053 SetPagePrivate(page
);
2054 h
->resv_huge_pages
--;
2056 spin_lock(&hugetlb_lock
);
2057 list_move(&page
->lru
, &h
->hugepage_activelist
);
2060 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2061 spin_unlock(&hugetlb_lock
);
2063 set_page_private(page
, (unsigned long)spool
);
2065 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2066 if (unlikely(map_chg
> map_commit
)) {
2068 * The page was added to the reservation map between
2069 * vma_needs_reservation and vma_commit_reservation.
2070 * This indicates a race with hugetlb_reserve_pages.
2071 * Adjust for the subpool count incremented above AND
2072 * in hugetlb_reserve_pages for the same page. Also,
2073 * the reservation count added in hugetlb_reserve_pages
2074 * no longer applies.
2078 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2079 hugetlb_acct_memory(h
, -rsv_adjust
);
2083 out_uncharge_cgroup
:
2084 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2086 if (map_chg
|| avoid_reserve
)
2087 hugepage_subpool_put_pages(spool
, 1);
2088 vma_end_reservation(h
, vma
, addr
);
2089 return ERR_PTR(-ENOSPC
);
2093 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2094 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2095 * where no ERR_VALUE is expected to be returned.
2097 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
2098 unsigned long addr
, int avoid_reserve
)
2100 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
2106 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
2108 struct huge_bootmem_page
*m
;
2111 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2114 addr
= memblock_virt_alloc_try_nid_nopanic(
2115 huge_page_size(h
), huge_page_size(h
),
2116 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
2119 * Use the beginning of the huge page to store the
2120 * huge_bootmem_page struct (until gather_bootmem
2121 * puts them into the mem_map).
2130 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2131 /* Put them into a private list first because mem_map is not up yet */
2132 list_add(&m
->list
, &huge_boot_pages
);
2137 static void __init
prep_compound_huge_page(struct page
*page
,
2140 if (unlikely(order
> (MAX_ORDER
- 1)))
2141 prep_compound_gigantic_page(page
, order
);
2143 prep_compound_page(page
, order
);
2146 /* Put bootmem huge pages into the standard lists after mem_map is up */
2147 static void __init
gather_bootmem_prealloc(void)
2149 struct huge_bootmem_page
*m
;
2151 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2152 struct hstate
*h
= m
->hstate
;
2155 #ifdef CONFIG_HIGHMEM
2156 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2157 memblock_free_late(__pa(m
),
2158 sizeof(struct huge_bootmem_page
));
2160 page
= virt_to_page(m
);
2162 WARN_ON(page_count(page
) != 1);
2163 prep_compound_huge_page(page
, h
->order
);
2164 WARN_ON(PageReserved(page
));
2165 prep_new_huge_page(h
, page
, page_to_nid(page
));
2167 * If we had gigantic hugepages allocated at boot time, we need
2168 * to restore the 'stolen' pages to totalram_pages in order to
2169 * fix confusing memory reports from free(1) and another
2170 * side-effects, like CommitLimit going negative.
2172 if (hstate_is_gigantic(h
))
2173 adjust_managed_page_count(page
, 1 << h
->order
);
2177 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2181 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2182 if (hstate_is_gigantic(h
)) {
2183 if (!alloc_bootmem_huge_page(h
))
2185 } else if (!alloc_fresh_huge_page(h
,
2186 &node_states
[N_MEMORY
]))
2189 h
->max_huge_pages
= i
;
2192 static void __init
hugetlb_init_hstates(void)
2196 for_each_hstate(h
) {
2197 if (minimum_order
> huge_page_order(h
))
2198 minimum_order
= huge_page_order(h
);
2200 /* oversize hugepages were init'ed in early boot */
2201 if (!hstate_is_gigantic(h
))
2202 hugetlb_hstate_alloc_pages(h
);
2204 VM_BUG_ON(minimum_order
== UINT_MAX
);
2207 static char * __init
memfmt(char *buf
, unsigned long n
)
2209 if (n
>= (1UL << 30))
2210 sprintf(buf
, "%lu GB", n
>> 30);
2211 else if (n
>= (1UL << 20))
2212 sprintf(buf
, "%lu MB", n
>> 20);
2214 sprintf(buf
, "%lu KB", n
>> 10);
2218 static void __init
report_hugepages(void)
2222 for_each_hstate(h
) {
2224 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2225 memfmt(buf
, huge_page_size(h
)),
2226 h
->free_huge_pages
);
2230 #ifdef CONFIG_HIGHMEM
2231 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2232 nodemask_t
*nodes_allowed
)
2236 if (hstate_is_gigantic(h
))
2239 for_each_node_mask(i
, *nodes_allowed
) {
2240 struct page
*page
, *next
;
2241 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2242 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2243 if (count
>= h
->nr_huge_pages
)
2245 if (PageHighMem(page
))
2247 list_del(&page
->lru
);
2248 update_and_free_page(h
, page
);
2249 h
->free_huge_pages
--;
2250 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2255 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2256 nodemask_t
*nodes_allowed
)
2262 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2263 * balanced by operating on them in a round-robin fashion.
2264 * Returns 1 if an adjustment was made.
2266 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2271 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2274 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2275 if (h
->surplus_huge_pages_node
[node
])
2279 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2280 if (h
->surplus_huge_pages_node
[node
] <
2281 h
->nr_huge_pages_node
[node
])
2288 h
->surplus_huge_pages
+= delta
;
2289 h
->surplus_huge_pages_node
[node
] += delta
;
2293 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2294 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2295 nodemask_t
*nodes_allowed
)
2297 unsigned long min_count
, ret
;
2299 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2300 return h
->max_huge_pages
;
2303 * Increase the pool size
2304 * First take pages out of surplus state. Then make up the
2305 * remaining difference by allocating fresh huge pages.
2307 * We might race with __alloc_buddy_huge_page() here and be unable
2308 * to convert a surplus huge page to a normal huge page. That is
2309 * not critical, though, it just means the overall size of the
2310 * pool might be one hugepage larger than it needs to be, but
2311 * within all the constraints specified by the sysctls.
2313 spin_lock(&hugetlb_lock
);
2314 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2315 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2319 while (count
> persistent_huge_pages(h
)) {
2321 * If this allocation races such that we no longer need the
2322 * page, free_huge_page will handle it by freeing the page
2323 * and reducing the surplus.
2325 spin_unlock(&hugetlb_lock
);
2327 /* yield cpu to avoid soft lockup */
2330 if (hstate_is_gigantic(h
))
2331 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2333 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2334 spin_lock(&hugetlb_lock
);
2338 /* Bail for signals. Probably ctrl-c from user */
2339 if (signal_pending(current
))
2344 * Decrease the pool size
2345 * First return free pages to the buddy allocator (being careful
2346 * to keep enough around to satisfy reservations). Then place
2347 * pages into surplus state as needed so the pool will shrink
2348 * to the desired size as pages become free.
2350 * By placing pages into the surplus state independent of the
2351 * overcommit value, we are allowing the surplus pool size to
2352 * exceed overcommit. There are few sane options here. Since
2353 * __alloc_buddy_huge_page() is checking the global counter,
2354 * though, we'll note that we're not allowed to exceed surplus
2355 * and won't grow the pool anywhere else. Not until one of the
2356 * sysctls are changed, or the surplus pages go out of use.
2358 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2359 min_count
= max(count
, min_count
);
2360 try_to_free_low(h
, min_count
, nodes_allowed
);
2361 while (min_count
< persistent_huge_pages(h
)) {
2362 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2364 cond_resched_lock(&hugetlb_lock
);
2366 while (count
< persistent_huge_pages(h
)) {
2367 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2371 ret
= persistent_huge_pages(h
);
2372 spin_unlock(&hugetlb_lock
);
2376 #define HSTATE_ATTR_RO(_name) \
2377 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2379 #define HSTATE_ATTR(_name) \
2380 static struct kobj_attribute _name##_attr = \
2381 __ATTR(_name, 0644, _name##_show, _name##_store)
2383 static struct kobject
*hugepages_kobj
;
2384 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2386 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2388 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2392 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2393 if (hstate_kobjs
[i
] == kobj
) {
2395 *nidp
= NUMA_NO_NODE
;
2399 return kobj_to_node_hstate(kobj
, nidp
);
2402 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2403 struct kobj_attribute
*attr
, char *buf
)
2406 unsigned long nr_huge_pages
;
2409 h
= kobj_to_hstate(kobj
, &nid
);
2410 if (nid
== NUMA_NO_NODE
)
2411 nr_huge_pages
= h
->nr_huge_pages
;
2413 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2415 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2418 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2419 struct hstate
*h
, int nid
,
2420 unsigned long count
, size_t len
)
2423 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2425 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2430 if (nid
== NUMA_NO_NODE
) {
2432 * global hstate attribute
2434 if (!(obey_mempolicy
&&
2435 init_nodemask_of_mempolicy(nodes_allowed
))) {
2436 NODEMASK_FREE(nodes_allowed
);
2437 nodes_allowed
= &node_states
[N_MEMORY
];
2439 } else if (nodes_allowed
) {
2441 * per node hstate attribute: adjust count to global,
2442 * but restrict alloc/free to the specified node.
2444 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2445 init_nodemask_of_node(nodes_allowed
, nid
);
2447 nodes_allowed
= &node_states
[N_MEMORY
];
2449 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2451 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2452 NODEMASK_FREE(nodes_allowed
);
2456 NODEMASK_FREE(nodes_allowed
);
2460 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2461 struct kobject
*kobj
, const char *buf
,
2465 unsigned long count
;
2469 err
= kstrtoul(buf
, 10, &count
);
2473 h
= kobj_to_hstate(kobj
, &nid
);
2474 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2477 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2478 struct kobj_attribute
*attr
, char *buf
)
2480 return nr_hugepages_show_common(kobj
, attr
, buf
);
2483 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2484 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2486 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2488 HSTATE_ATTR(nr_hugepages
);
2493 * hstate attribute for optionally mempolicy-based constraint on persistent
2494 * huge page alloc/free.
2496 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2497 struct kobj_attribute
*attr
, char *buf
)
2499 return nr_hugepages_show_common(kobj
, attr
, buf
);
2502 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2503 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2505 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2507 HSTATE_ATTR(nr_hugepages_mempolicy
);
2511 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2512 struct kobj_attribute
*attr
, char *buf
)
2514 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2515 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2518 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2519 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2522 unsigned long input
;
2523 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2525 if (hstate_is_gigantic(h
))
2528 err
= kstrtoul(buf
, 10, &input
);
2532 spin_lock(&hugetlb_lock
);
2533 h
->nr_overcommit_huge_pages
= input
;
2534 spin_unlock(&hugetlb_lock
);
2538 HSTATE_ATTR(nr_overcommit_hugepages
);
2540 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2541 struct kobj_attribute
*attr
, char *buf
)
2544 unsigned long free_huge_pages
;
2547 h
= kobj_to_hstate(kobj
, &nid
);
2548 if (nid
== NUMA_NO_NODE
)
2549 free_huge_pages
= h
->free_huge_pages
;
2551 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2553 return sprintf(buf
, "%lu\n", free_huge_pages
);
2555 HSTATE_ATTR_RO(free_hugepages
);
2557 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2558 struct kobj_attribute
*attr
, char *buf
)
2560 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2561 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2563 HSTATE_ATTR_RO(resv_hugepages
);
2565 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2566 struct kobj_attribute
*attr
, char *buf
)
2569 unsigned long surplus_huge_pages
;
2572 h
= kobj_to_hstate(kobj
, &nid
);
2573 if (nid
== NUMA_NO_NODE
)
2574 surplus_huge_pages
= h
->surplus_huge_pages
;
2576 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2578 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2580 HSTATE_ATTR_RO(surplus_hugepages
);
2582 static struct attribute
*hstate_attrs
[] = {
2583 &nr_hugepages_attr
.attr
,
2584 &nr_overcommit_hugepages_attr
.attr
,
2585 &free_hugepages_attr
.attr
,
2586 &resv_hugepages_attr
.attr
,
2587 &surplus_hugepages_attr
.attr
,
2589 &nr_hugepages_mempolicy_attr
.attr
,
2594 static struct attribute_group hstate_attr_group
= {
2595 .attrs
= hstate_attrs
,
2598 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2599 struct kobject
**hstate_kobjs
,
2600 struct attribute_group
*hstate_attr_group
)
2603 int hi
= hstate_index(h
);
2605 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2606 if (!hstate_kobjs
[hi
])
2609 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2611 kobject_put(hstate_kobjs
[hi
]);
2616 static void __init
hugetlb_sysfs_init(void)
2621 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2622 if (!hugepages_kobj
)
2625 for_each_hstate(h
) {
2626 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2627 hstate_kobjs
, &hstate_attr_group
);
2629 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2636 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2637 * with node devices in node_devices[] using a parallel array. The array
2638 * index of a node device or _hstate == node id.
2639 * This is here to avoid any static dependency of the node device driver, in
2640 * the base kernel, on the hugetlb module.
2642 struct node_hstate
{
2643 struct kobject
*hugepages_kobj
;
2644 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2646 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2649 * A subset of global hstate attributes for node devices
2651 static struct attribute
*per_node_hstate_attrs
[] = {
2652 &nr_hugepages_attr
.attr
,
2653 &free_hugepages_attr
.attr
,
2654 &surplus_hugepages_attr
.attr
,
2658 static struct attribute_group per_node_hstate_attr_group
= {
2659 .attrs
= per_node_hstate_attrs
,
2663 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2664 * Returns node id via non-NULL nidp.
2666 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2670 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2671 struct node_hstate
*nhs
= &node_hstates
[nid
];
2673 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2674 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2686 * Unregister hstate attributes from a single node device.
2687 * No-op if no hstate attributes attached.
2689 static void hugetlb_unregister_node(struct node
*node
)
2692 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2694 if (!nhs
->hugepages_kobj
)
2695 return; /* no hstate attributes */
2697 for_each_hstate(h
) {
2698 int idx
= hstate_index(h
);
2699 if (nhs
->hstate_kobjs
[idx
]) {
2700 kobject_put(nhs
->hstate_kobjs
[idx
]);
2701 nhs
->hstate_kobjs
[idx
] = NULL
;
2705 kobject_put(nhs
->hugepages_kobj
);
2706 nhs
->hugepages_kobj
= NULL
;
2711 * Register hstate attributes for a single node device.
2712 * No-op if attributes already registered.
2714 static void hugetlb_register_node(struct node
*node
)
2717 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2720 if (nhs
->hugepages_kobj
)
2721 return; /* already allocated */
2723 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2725 if (!nhs
->hugepages_kobj
)
2728 for_each_hstate(h
) {
2729 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2731 &per_node_hstate_attr_group
);
2733 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2734 h
->name
, node
->dev
.id
);
2735 hugetlb_unregister_node(node
);
2742 * hugetlb init time: register hstate attributes for all registered node
2743 * devices of nodes that have memory. All on-line nodes should have
2744 * registered their associated device by this time.
2746 static void __init
hugetlb_register_all_nodes(void)
2750 for_each_node_state(nid
, N_MEMORY
) {
2751 struct node
*node
= node_devices
[nid
];
2752 if (node
->dev
.id
== nid
)
2753 hugetlb_register_node(node
);
2757 * Let the node device driver know we're here so it can
2758 * [un]register hstate attributes on node hotplug.
2760 register_hugetlbfs_with_node(hugetlb_register_node
,
2761 hugetlb_unregister_node
);
2763 #else /* !CONFIG_NUMA */
2765 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2773 static void hugetlb_register_all_nodes(void) { }
2777 static int __init
hugetlb_init(void)
2781 if (!hugepages_supported())
2784 if (!size_to_hstate(default_hstate_size
)) {
2785 default_hstate_size
= HPAGE_SIZE
;
2786 if (!size_to_hstate(default_hstate_size
))
2787 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2789 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2790 if (default_hstate_max_huge_pages
) {
2791 if (!default_hstate
.max_huge_pages
)
2792 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2795 hugetlb_init_hstates();
2796 gather_bootmem_prealloc();
2799 hugetlb_sysfs_init();
2800 hugetlb_register_all_nodes();
2801 hugetlb_cgroup_file_init();
2804 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2806 num_fault_mutexes
= 1;
2808 hugetlb_fault_mutex_table
=
2809 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2810 BUG_ON(!hugetlb_fault_mutex_table
);
2812 for (i
= 0; i
< num_fault_mutexes
; i
++)
2813 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2816 subsys_initcall(hugetlb_init
);
2818 /* Should be called on processing a hugepagesz=... option */
2819 void __init
hugetlb_bad_size(void)
2821 parsed_valid_hugepagesz
= false;
2824 void __init
hugetlb_add_hstate(unsigned int order
)
2829 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2830 pr_warn("hugepagesz= specified twice, ignoring\n");
2833 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2835 h
= &hstates
[hugetlb_max_hstate
++];
2837 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2838 h
->nr_huge_pages
= 0;
2839 h
->free_huge_pages
= 0;
2840 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2841 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2842 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2843 h
->next_nid_to_alloc
= first_memory_node
;
2844 h
->next_nid_to_free
= first_memory_node
;
2845 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2846 huge_page_size(h
)/1024);
2851 static int __init
hugetlb_nrpages_setup(char *s
)
2854 static unsigned long *last_mhp
;
2856 if (!parsed_valid_hugepagesz
) {
2857 pr_warn("hugepages = %s preceded by "
2858 "an unsupported hugepagesz, ignoring\n", s
);
2859 parsed_valid_hugepagesz
= true;
2863 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2864 * so this hugepages= parameter goes to the "default hstate".
2866 else if (!hugetlb_max_hstate
)
2867 mhp
= &default_hstate_max_huge_pages
;
2869 mhp
= &parsed_hstate
->max_huge_pages
;
2871 if (mhp
== last_mhp
) {
2872 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876 if (sscanf(s
, "%lu", mhp
) <= 0)
2880 * Global state is always initialized later in hugetlb_init.
2881 * But we need to allocate >= MAX_ORDER hstates here early to still
2882 * use the bootmem allocator.
2884 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2885 hugetlb_hstate_alloc_pages(parsed_hstate
);
2891 __setup("hugepages=", hugetlb_nrpages_setup
);
2893 static int __init
hugetlb_default_setup(char *s
)
2895 default_hstate_size
= memparse(s
, &s
);
2898 __setup("default_hugepagesz=", hugetlb_default_setup
);
2900 static unsigned int cpuset_mems_nr(unsigned int *array
)
2903 unsigned int nr
= 0;
2905 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2911 #ifdef CONFIG_SYSCTL
2912 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2913 struct ctl_table
*table
, int write
,
2914 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2916 struct hstate
*h
= &default_hstate
;
2917 unsigned long tmp
= h
->max_huge_pages
;
2920 if (!hugepages_supported())
2924 table
->maxlen
= sizeof(unsigned long);
2925 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2930 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2931 NUMA_NO_NODE
, tmp
, *length
);
2936 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2937 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2940 return hugetlb_sysctl_handler_common(false, table
, write
,
2941 buffer
, length
, ppos
);
2945 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2946 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2948 return hugetlb_sysctl_handler_common(true, table
, write
,
2949 buffer
, length
, ppos
);
2951 #endif /* CONFIG_NUMA */
2953 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2954 void __user
*buffer
,
2955 size_t *length
, loff_t
*ppos
)
2957 struct hstate
*h
= &default_hstate
;
2961 if (!hugepages_supported())
2964 tmp
= h
->nr_overcommit_huge_pages
;
2966 if (write
&& hstate_is_gigantic(h
))
2970 table
->maxlen
= sizeof(unsigned long);
2971 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2976 spin_lock(&hugetlb_lock
);
2977 h
->nr_overcommit_huge_pages
= tmp
;
2978 spin_unlock(&hugetlb_lock
);
2984 #endif /* CONFIG_SYSCTL */
2986 void hugetlb_report_meminfo(struct seq_file
*m
)
2988 struct hstate
*h
= &default_hstate
;
2989 if (!hugepages_supported())
2992 "HugePages_Total: %5lu\n"
2993 "HugePages_Free: %5lu\n"
2994 "HugePages_Rsvd: %5lu\n"
2995 "HugePages_Surp: %5lu\n"
2996 "Hugepagesize: %8lu kB\n",
3000 h
->surplus_huge_pages
,
3001 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3004 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3006 struct hstate
*h
= &default_hstate
;
3007 if (!hugepages_supported())
3010 "Node %d HugePages_Total: %5u\n"
3011 "Node %d HugePages_Free: %5u\n"
3012 "Node %d HugePages_Surp: %5u\n",
3013 nid
, h
->nr_huge_pages_node
[nid
],
3014 nid
, h
->free_huge_pages_node
[nid
],
3015 nid
, h
->surplus_huge_pages_node
[nid
]);
3018 void hugetlb_show_meminfo(void)
3023 if (!hugepages_supported())
3026 for_each_node_state(nid
, N_MEMORY
)
3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 h
->nr_huge_pages_node
[nid
],
3031 h
->free_huge_pages_node
[nid
],
3032 h
->surplus_huge_pages_node
[nid
],
3033 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3036 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3038 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3039 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3046 unsigned long nr_total_pages
= 0;
3049 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3050 return nr_total_pages
;
3053 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3057 spin_lock(&hugetlb_lock
);
3059 * When cpuset is configured, it breaks the strict hugetlb page
3060 * reservation as the accounting is done on a global variable. Such
3061 * reservation is completely rubbish in the presence of cpuset because
3062 * the reservation is not checked against page availability for the
3063 * current cpuset. Application can still potentially OOM'ed by kernel
3064 * with lack of free htlb page in cpuset that the task is in.
3065 * Attempt to enforce strict accounting with cpuset is almost
3066 * impossible (or too ugly) because cpuset is too fluid that
3067 * task or memory node can be dynamically moved between cpusets.
3069 * The change of semantics for shared hugetlb mapping with cpuset is
3070 * undesirable. However, in order to preserve some of the semantics,
3071 * we fall back to check against current free page availability as
3072 * a best attempt and hopefully to minimize the impact of changing
3073 * semantics that cpuset has.
3076 if (gather_surplus_pages(h
, delta
) < 0)
3079 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3080 return_unused_surplus_pages(h
, delta
);
3087 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3090 spin_unlock(&hugetlb_lock
);
3094 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3096 struct resv_map
*resv
= vma_resv_map(vma
);
3099 * This new VMA should share its siblings reservation map if present.
3100 * The VMA will only ever have a valid reservation map pointer where
3101 * it is being copied for another still existing VMA. As that VMA
3102 * has a reference to the reservation map it cannot disappear until
3103 * after this open call completes. It is therefore safe to take a
3104 * new reference here without additional locking.
3106 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3107 kref_get(&resv
->refs
);
3110 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3112 struct hstate
*h
= hstate_vma(vma
);
3113 struct resv_map
*resv
= vma_resv_map(vma
);
3114 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3115 unsigned long reserve
, start
, end
;
3118 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3121 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3122 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3124 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3126 kref_put(&resv
->refs
, resv_map_release
);
3130 * Decrement reserve counts. The global reserve count may be
3131 * adjusted if the subpool has a minimum size.
3133 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3134 hugetlb_acct_memory(h
, -gbl_reserve
);
3139 * We cannot handle pagefaults against hugetlb pages at all. They cause
3140 * handle_mm_fault() to try to instantiate regular-sized pages in the
3141 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3144 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3150 const struct vm_operations_struct hugetlb_vm_ops
= {
3151 .fault
= hugetlb_vm_op_fault
,
3152 .open
= hugetlb_vm_op_open
,
3153 .close
= hugetlb_vm_op_close
,
3156 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3162 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3163 vma
->vm_page_prot
)));
3165 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3166 vma
->vm_page_prot
));
3168 entry
= pte_mkyoung(entry
);
3169 entry
= pte_mkhuge(entry
);
3170 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3175 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3176 unsigned long address
, pte_t
*ptep
)
3180 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3181 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3182 update_mmu_cache(vma
, address
, ptep
);
3185 static int is_hugetlb_entry_migration(pte_t pte
)
3189 if (huge_pte_none(pte
) || pte_present(pte
))
3191 swp
= pte_to_swp_entry(pte
);
3192 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3198 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3202 if (huge_pte_none(pte
) || pte_present(pte
))
3204 swp
= pte_to_swp_entry(pte
);
3205 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3211 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3212 struct vm_area_struct
*vma
)
3214 pte_t
*src_pte
, *dst_pte
, entry
;
3215 struct page
*ptepage
;
3218 struct hstate
*h
= hstate_vma(vma
);
3219 unsigned long sz
= huge_page_size(h
);
3220 unsigned long mmun_start
; /* For mmu_notifiers */
3221 unsigned long mmun_end
; /* For mmu_notifiers */
3224 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3226 mmun_start
= vma
->vm_start
;
3227 mmun_end
= vma
->vm_end
;
3229 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3231 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3232 spinlock_t
*src_ptl
, *dst_ptl
;
3233 src_pte
= huge_pte_offset(src
, addr
);
3236 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3242 /* If the pagetables are shared don't copy or take references */
3243 if (dst_pte
== src_pte
)
3246 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3247 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3248 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3249 entry
= huge_ptep_get(src_pte
);
3250 if (huge_pte_none(entry
)) { /* skip none entry */
3252 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3253 is_hugetlb_entry_hwpoisoned(entry
))) {
3254 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3256 if (is_write_migration_entry(swp_entry
) && cow
) {
3258 * COW mappings require pages in both
3259 * parent and child to be set to read.
3261 make_migration_entry_read(&swp_entry
);
3262 entry
= swp_entry_to_pte(swp_entry
);
3263 set_huge_pte_at(src
, addr
, src_pte
, entry
);
3265 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3268 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3269 mmu_notifier_invalidate_range(src
, mmun_start
,
3272 entry
= huge_ptep_get(src_pte
);
3273 ptepage
= pte_page(entry
);
3275 page_dup_rmap(ptepage
, true);
3276 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3277 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3279 spin_unlock(src_ptl
);
3280 spin_unlock(dst_ptl
);
3284 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3289 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3290 unsigned long start
, unsigned long end
,
3291 struct page
*ref_page
)
3293 struct mm_struct
*mm
= vma
->vm_mm
;
3294 unsigned long address
;
3299 struct hstate
*h
= hstate_vma(vma
);
3300 unsigned long sz
= huge_page_size(h
);
3301 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3302 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3304 WARN_ON(!is_vm_hugetlb_page(vma
));
3305 BUG_ON(start
& ~huge_page_mask(h
));
3306 BUG_ON(end
& ~huge_page_mask(h
));
3309 * This is a hugetlb vma, all the pte entries should point
3312 tlb_remove_check_page_size_change(tlb
, sz
);
3313 tlb_start_vma(tlb
, vma
);
3314 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3316 for (; address
< end
; address
+= sz
) {
3317 ptep
= huge_pte_offset(mm
, address
);
3321 ptl
= huge_pte_lock(h
, mm
, ptep
);
3322 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3327 pte
= huge_ptep_get(ptep
);
3328 if (huge_pte_none(pte
)) {
3334 * Migrating hugepage or HWPoisoned hugepage is already
3335 * unmapped and its refcount is dropped, so just clear pte here.
3337 if (unlikely(!pte_present(pte
))) {
3338 huge_pte_clear(mm
, address
, ptep
);
3343 page
= pte_page(pte
);
3345 * If a reference page is supplied, it is because a specific
3346 * page is being unmapped, not a range. Ensure the page we
3347 * are about to unmap is the actual page of interest.
3350 if (page
!= ref_page
) {
3355 * Mark the VMA as having unmapped its page so that
3356 * future faults in this VMA will fail rather than
3357 * looking like data was lost
3359 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3362 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3363 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3364 if (huge_pte_dirty(pte
))
3365 set_page_dirty(page
);
3367 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3368 page_remove_rmap(page
, true);
3371 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3373 * Bail out after unmapping reference page if supplied
3378 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3379 tlb_end_vma(tlb
, vma
);
3382 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3383 struct vm_area_struct
*vma
, unsigned long start
,
3384 unsigned long end
, struct page
*ref_page
)
3386 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3389 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3390 * test will fail on a vma being torn down, and not grab a page table
3391 * on its way out. We're lucky that the flag has such an appropriate
3392 * name, and can in fact be safely cleared here. We could clear it
3393 * before the __unmap_hugepage_range above, but all that's necessary
3394 * is to clear it before releasing the i_mmap_rwsem. This works
3395 * because in the context this is called, the VMA is about to be
3396 * destroyed and the i_mmap_rwsem is held.
3398 vma
->vm_flags
&= ~VM_MAYSHARE
;
3401 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3402 unsigned long end
, struct page
*ref_page
)
3404 struct mm_struct
*mm
;
3405 struct mmu_gather tlb
;
3409 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3410 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3411 tlb_finish_mmu(&tlb
, start
, end
);
3415 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3416 * mappping it owns the reserve page for. The intention is to unmap the page
3417 * from other VMAs and let the children be SIGKILLed if they are faulting the
3420 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3421 struct page
*page
, unsigned long address
)
3423 struct hstate
*h
= hstate_vma(vma
);
3424 struct vm_area_struct
*iter_vma
;
3425 struct address_space
*mapping
;
3429 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3430 * from page cache lookup which is in HPAGE_SIZE units.
3432 address
= address
& huge_page_mask(h
);
3433 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3435 mapping
= vma
->vm_file
->f_mapping
;
3438 * Take the mapping lock for the duration of the table walk. As
3439 * this mapping should be shared between all the VMAs,
3440 * __unmap_hugepage_range() is called as the lock is already held
3442 i_mmap_lock_write(mapping
);
3443 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3444 /* Do not unmap the current VMA */
3445 if (iter_vma
== vma
)
3449 * Shared VMAs have their own reserves and do not affect
3450 * MAP_PRIVATE accounting but it is possible that a shared
3451 * VMA is using the same page so check and skip such VMAs.
3453 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3457 * Unmap the page from other VMAs without their own reserves.
3458 * They get marked to be SIGKILLed if they fault in these
3459 * areas. This is because a future no-page fault on this VMA
3460 * could insert a zeroed page instead of the data existing
3461 * from the time of fork. This would look like data corruption
3463 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3464 unmap_hugepage_range(iter_vma
, address
,
3465 address
+ huge_page_size(h
), page
);
3467 i_mmap_unlock_write(mapping
);
3471 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3472 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3473 * cannot race with other handlers or page migration.
3474 * Keep the pte_same checks anyway to make transition from the mutex easier.
3476 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3477 unsigned long address
, pte_t
*ptep
,
3478 struct page
*pagecache_page
, spinlock_t
*ptl
)
3481 struct hstate
*h
= hstate_vma(vma
);
3482 struct page
*old_page
, *new_page
;
3483 int ret
= 0, outside_reserve
= 0;
3484 unsigned long mmun_start
; /* For mmu_notifiers */
3485 unsigned long mmun_end
; /* For mmu_notifiers */
3487 pte
= huge_ptep_get(ptep
);
3488 old_page
= pte_page(pte
);
3491 /* If no-one else is actually using this page, avoid the copy
3492 * and just make the page writable */
3493 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3494 page_move_anon_rmap(old_page
, vma
);
3495 set_huge_ptep_writable(vma
, address
, ptep
);
3500 * If the process that created a MAP_PRIVATE mapping is about to
3501 * perform a COW due to a shared page count, attempt to satisfy
3502 * the allocation without using the existing reserves. The pagecache
3503 * page is used to determine if the reserve at this address was
3504 * consumed or not. If reserves were used, a partial faulted mapping
3505 * at the time of fork() could consume its reserves on COW instead
3506 * of the full address range.
3508 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3509 old_page
!= pagecache_page
)
3510 outside_reserve
= 1;
3515 * Drop page table lock as buddy allocator may be called. It will
3516 * be acquired again before returning to the caller, as expected.
3519 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3521 if (IS_ERR(new_page
)) {
3523 * If a process owning a MAP_PRIVATE mapping fails to COW,
3524 * it is due to references held by a child and an insufficient
3525 * huge page pool. To guarantee the original mappers
3526 * reliability, unmap the page from child processes. The child
3527 * may get SIGKILLed if it later faults.
3529 if (outside_reserve
) {
3531 BUG_ON(huge_pte_none(pte
));
3532 unmap_ref_private(mm
, vma
, old_page
, address
);
3533 BUG_ON(huge_pte_none(pte
));
3535 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3537 pte_same(huge_ptep_get(ptep
), pte
)))
3538 goto retry_avoidcopy
;
3540 * race occurs while re-acquiring page table
3541 * lock, and our job is done.
3546 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3547 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3548 goto out_release_old
;
3552 * When the original hugepage is shared one, it does not have
3553 * anon_vma prepared.
3555 if (unlikely(anon_vma_prepare(vma
))) {
3557 goto out_release_all
;
3560 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3561 pages_per_huge_page(h
));
3562 __SetPageUptodate(new_page
);
3563 set_page_huge_active(new_page
);
3565 mmun_start
= address
& huge_page_mask(h
);
3566 mmun_end
= mmun_start
+ huge_page_size(h
);
3567 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3570 * Retake the page table lock to check for racing updates
3571 * before the page tables are altered
3574 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3575 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3576 ClearPagePrivate(new_page
);
3579 huge_ptep_clear_flush(vma
, address
, ptep
);
3580 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3581 set_huge_pte_at(mm
, address
, ptep
,
3582 make_huge_pte(vma
, new_page
, 1));
3583 page_remove_rmap(old_page
, true);
3584 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3585 /* Make the old page be freed below */
3586 new_page
= old_page
;
3589 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3591 restore_reserve_on_error(h
, vma
, address
, new_page
);
3596 spin_lock(ptl
); /* Caller expects lock to be held */
3600 /* Return the pagecache page at a given address within a VMA */
3601 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3602 struct vm_area_struct
*vma
, unsigned long address
)
3604 struct address_space
*mapping
;
3607 mapping
= vma
->vm_file
->f_mapping
;
3608 idx
= vma_hugecache_offset(h
, vma
, address
);
3610 return find_lock_page(mapping
, idx
);
3614 * Return whether there is a pagecache page to back given address within VMA.
3615 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3617 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3618 struct vm_area_struct
*vma
, unsigned long address
)
3620 struct address_space
*mapping
;
3624 mapping
= vma
->vm_file
->f_mapping
;
3625 idx
= vma_hugecache_offset(h
, vma
, address
);
3627 page
= find_get_page(mapping
, idx
);
3630 return page
!= NULL
;
3633 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3636 struct inode
*inode
= mapping
->host
;
3637 struct hstate
*h
= hstate_inode(inode
);
3638 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3642 ClearPagePrivate(page
);
3644 spin_lock(&inode
->i_lock
);
3645 inode
->i_blocks
+= blocks_per_huge_page(h
);
3646 spin_unlock(&inode
->i_lock
);
3650 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3651 struct address_space
*mapping
, pgoff_t idx
,
3652 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3654 struct hstate
*h
= hstate_vma(vma
);
3655 int ret
= VM_FAULT_SIGBUS
;
3663 * Currently, we are forced to kill the process in the event the
3664 * original mapper has unmapped pages from the child due to a failed
3665 * COW. Warn that such a situation has occurred as it may not be obvious
3667 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3668 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3674 * Use page lock to guard against racing truncation
3675 * before we get page_table_lock.
3678 page
= find_lock_page(mapping
, idx
);
3680 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3683 page
= alloc_huge_page(vma
, address
, 0);
3685 ret
= PTR_ERR(page
);
3689 ret
= VM_FAULT_SIGBUS
;
3692 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3693 __SetPageUptodate(page
);
3694 set_page_huge_active(page
);
3696 if (vma
->vm_flags
& VM_MAYSHARE
) {
3697 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3706 if (unlikely(anon_vma_prepare(vma
))) {
3708 goto backout_unlocked
;
3714 * If memory error occurs between mmap() and fault, some process
3715 * don't have hwpoisoned swap entry for errored virtual address.
3716 * So we need to block hugepage fault by PG_hwpoison bit check.
3718 if (unlikely(PageHWPoison(page
))) {
3719 ret
= VM_FAULT_HWPOISON
|
3720 VM_FAULT_SET_HINDEX(hstate_index(h
));
3721 goto backout_unlocked
;
3726 * If we are going to COW a private mapping later, we examine the
3727 * pending reservations for this page now. This will ensure that
3728 * any allocations necessary to record that reservation occur outside
3731 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3732 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3734 goto backout_unlocked
;
3736 /* Just decrements count, does not deallocate */
3737 vma_end_reservation(h
, vma
, address
);
3740 ptl
= huge_pte_lock(h
, mm
, ptep
);
3741 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3746 if (!huge_pte_none(huge_ptep_get(ptep
)))
3750 ClearPagePrivate(page
);
3751 hugepage_add_new_anon_rmap(page
, vma
, address
);
3753 page_dup_rmap(page
, true);
3754 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3755 && (vma
->vm_flags
& VM_SHARED
)));
3756 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3758 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3759 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3760 /* Optimization, do the COW without a second fault */
3761 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3773 restore_reserve_on_error(h
, vma
, address
, page
);
3779 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3780 struct vm_area_struct
*vma
,
3781 struct address_space
*mapping
,
3782 pgoff_t idx
, unsigned long address
)
3784 unsigned long key
[2];
3787 if (vma
->vm_flags
& VM_SHARED
) {
3788 key
[0] = (unsigned long) mapping
;
3791 key
[0] = (unsigned long) mm
;
3792 key
[1] = address
>> huge_page_shift(h
);
3795 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3797 return hash
& (num_fault_mutexes
- 1);
3801 * For uniprocesor systems we always use a single mutex, so just
3802 * return 0 and avoid the hashing overhead.
3804 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3805 struct vm_area_struct
*vma
,
3806 struct address_space
*mapping
,
3807 pgoff_t idx
, unsigned long address
)
3813 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3814 unsigned long address
, unsigned int flags
)
3821 struct page
*page
= NULL
;
3822 struct page
*pagecache_page
= NULL
;
3823 struct hstate
*h
= hstate_vma(vma
);
3824 struct address_space
*mapping
;
3825 int need_wait_lock
= 0;
3827 address
&= huge_page_mask(h
);
3829 ptep
= huge_pte_offset(mm
, address
);
3831 entry
= huge_ptep_get(ptep
);
3832 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3833 migration_entry_wait_huge(vma
, mm
, ptep
);
3835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3836 return VM_FAULT_HWPOISON_LARGE
|
3837 VM_FAULT_SET_HINDEX(hstate_index(h
));
3839 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3841 return VM_FAULT_OOM
;
3844 mapping
= vma
->vm_file
->f_mapping
;
3845 idx
= vma_hugecache_offset(h
, vma
, address
);
3848 * Serialize hugepage allocation and instantiation, so that we don't
3849 * get spurious allocation failures if two CPUs race to instantiate
3850 * the same page in the page cache.
3852 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3853 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3855 entry
= huge_ptep_get(ptep
);
3856 if (huge_pte_none(entry
)) {
3857 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3864 * entry could be a migration/hwpoison entry at this point, so this
3865 * check prevents the kernel from going below assuming that we have
3866 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3867 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3870 if (!pte_present(entry
))
3874 * If we are going to COW the mapping later, we examine the pending
3875 * reservations for this page now. This will ensure that any
3876 * allocations necessary to record that reservation occur outside the
3877 * spinlock. For private mappings, we also lookup the pagecache
3878 * page now as it is used to determine if a reservation has been
3881 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3882 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3886 /* Just decrements count, does not deallocate */
3887 vma_end_reservation(h
, vma
, address
);
3889 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3890 pagecache_page
= hugetlbfs_pagecache_page(h
,
3894 ptl
= huge_pte_lock(h
, mm
, ptep
);
3896 /* Check for a racing update before calling hugetlb_cow */
3897 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3901 * hugetlb_cow() requires page locks of pte_page(entry) and
3902 * pagecache_page, so here we need take the former one
3903 * when page != pagecache_page or !pagecache_page.
3905 page
= pte_page(entry
);
3906 if (page
!= pagecache_page
)
3907 if (!trylock_page(page
)) {
3914 if (flags
& FAULT_FLAG_WRITE
) {
3915 if (!huge_pte_write(entry
)) {
3916 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
3917 pagecache_page
, ptl
);
3920 entry
= huge_pte_mkdirty(entry
);
3922 entry
= pte_mkyoung(entry
);
3923 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3924 flags
& FAULT_FLAG_WRITE
))
3925 update_mmu_cache(vma
, address
, ptep
);
3927 if (page
!= pagecache_page
)
3933 if (pagecache_page
) {
3934 unlock_page(pagecache_page
);
3935 put_page(pagecache_page
);
3938 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3940 * Generally it's safe to hold refcount during waiting page lock. But
3941 * here we just wait to defer the next page fault to avoid busy loop and
3942 * the page is not used after unlocked before returning from the current
3943 * page fault. So we are safe from accessing freed page, even if we wait
3944 * here without taking refcount.
3947 wait_on_page_locked(page
);
3951 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3952 struct page
**pages
, struct vm_area_struct
**vmas
,
3953 unsigned long *position
, unsigned long *nr_pages
,
3954 long i
, unsigned int flags
)
3956 unsigned long pfn_offset
;
3957 unsigned long vaddr
= *position
;
3958 unsigned long remainder
= *nr_pages
;
3959 struct hstate
*h
= hstate_vma(vma
);
3961 while (vaddr
< vma
->vm_end
&& remainder
) {
3963 spinlock_t
*ptl
= NULL
;
3968 * If we have a pending SIGKILL, don't keep faulting pages and
3969 * potentially allocating memory.
3971 if (unlikely(fatal_signal_pending(current
))) {
3977 * Some archs (sparc64, sh*) have multiple pte_ts to
3978 * each hugepage. We have to make sure we get the
3979 * first, for the page indexing below to work.
3981 * Note that page table lock is not held when pte is null.
3983 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3985 ptl
= huge_pte_lock(h
, mm
, pte
);
3986 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3989 * When coredumping, it suits get_dump_page if we just return
3990 * an error where there's an empty slot with no huge pagecache
3991 * to back it. This way, we avoid allocating a hugepage, and
3992 * the sparse dumpfile avoids allocating disk blocks, but its
3993 * huge holes still show up with zeroes where they need to be.
3995 if (absent
&& (flags
& FOLL_DUMP
) &&
3996 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4004 * We need call hugetlb_fault for both hugepages under migration
4005 * (in which case hugetlb_fault waits for the migration,) and
4006 * hwpoisoned hugepages (in which case we need to prevent the
4007 * caller from accessing to them.) In order to do this, we use
4008 * here is_swap_pte instead of is_hugetlb_entry_migration and
4009 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4010 * both cases, and because we can't follow correct pages
4011 * directly from any kind of swap entries.
4013 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4014 ((flags
& FOLL_WRITE
) &&
4015 !huge_pte_write(huge_ptep_get(pte
)))) {
4020 ret
= hugetlb_fault(mm
, vma
, vaddr
,
4021 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
4022 if (!(ret
& VM_FAULT_ERROR
))
4029 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4030 page
= pte_page(huge_ptep_get(pte
));
4033 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4044 if (vaddr
< vma
->vm_end
&& remainder
&&
4045 pfn_offset
< pages_per_huge_page(h
)) {
4047 * We use pfn_offset to avoid touching the pageframes
4048 * of this compound page.
4054 *nr_pages
= remainder
;
4057 return i
? i
: -EFAULT
;
4060 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4062 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4065 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4068 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4069 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4071 struct mm_struct
*mm
= vma
->vm_mm
;
4072 unsigned long start
= address
;
4075 struct hstate
*h
= hstate_vma(vma
);
4076 unsigned long pages
= 0;
4078 BUG_ON(address
>= end
);
4079 flush_cache_range(vma
, address
, end
);
4081 mmu_notifier_invalidate_range_start(mm
, start
, end
);
4082 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4083 for (; address
< end
; address
+= huge_page_size(h
)) {
4085 ptep
= huge_pte_offset(mm
, address
);
4088 ptl
= huge_pte_lock(h
, mm
, ptep
);
4089 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4094 pte
= huge_ptep_get(ptep
);
4095 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4099 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4100 swp_entry_t entry
= pte_to_swp_entry(pte
);
4102 if (is_write_migration_entry(entry
)) {
4105 make_migration_entry_read(&entry
);
4106 newpte
= swp_entry_to_pte(entry
);
4107 set_huge_pte_at(mm
, address
, ptep
, newpte
);
4113 if (!huge_pte_none(pte
)) {
4114 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4115 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
4116 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4117 set_huge_pte_at(mm
, address
, ptep
, pte
);
4123 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4124 * may have cleared our pud entry and done put_page on the page table:
4125 * once we release i_mmap_rwsem, another task can do the final put_page
4126 * and that page table be reused and filled with junk.
4128 flush_hugetlb_tlb_range(vma
, start
, end
);
4129 mmu_notifier_invalidate_range(mm
, start
, end
);
4130 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4131 mmu_notifier_invalidate_range_end(mm
, start
, end
);
4133 return pages
<< h
->order
;
4136 int hugetlb_reserve_pages(struct inode
*inode
,
4138 struct vm_area_struct
*vma
,
4139 vm_flags_t vm_flags
)
4142 struct hstate
*h
= hstate_inode(inode
);
4143 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4144 struct resv_map
*resv_map
;
4148 * Only apply hugepage reservation if asked. At fault time, an
4149 * attempt will be made for VM_NORESERVE to allocate a page
4150 * without using reserves
4152 if (vm_flags
& VM_NORESERVE
)
4156 * Shared mappings base their reservation on the number of pages that
4157 * are already allocated on behalf of the file. Private mappings need
4158 * to reserve the full area even if read-only as mprotect() may be
4159 * called to make the mapping read-write. Assume !vma is a shm mapping
4161 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4162 resv_map
= inode_resv_map(inode
);
4164 chg
= region_chg(resv_map
, from
, to
);
4167 resv_map
= resv_map_alloc();
4173 set_vma_resv_map(vma
, resv_map
);
4174 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4183 * There must be enough pages in the subpool for the mapping. If
4184 * the subpool has a minimum size, there may be some global
4185 * reservations already in place (gbl_reserve).
4187 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4188 if (gbl_reserve
< 0) {
4194 * Check enough hugepages are available for the reservation.
4195 * Hand the pages back to the subpool if there are not
4197 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4199 /* put back original number of pages, chg */
4200 (void)hugepage_subpool_put_pages(spool
, chg
);
4205 * Account for the reservations made. Shared mappings record regions
4206 * that have reservations as they are shared by multiple VMAs.
4207 * When the last VMA disappears, the region map says how much
4208 * the reservation was and the page cache tells how much of
4209 * the reservation was consumed. Private mappings are per-VMA and
4210 * only the consumed reservations are tracked. When the VMA
4211 * disappears, the original reservation is the VMA size and the
4212 * consumed reservations are stored in the map. Hence, nothing
4213 * else has to be done for private mappings here
4215 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4216 long add
= region_add(resv_map
, from
, to
);
4218 if (unlikely(chg
> add
)) {
4220 * pages in this range were added to the reserve
4221 * map between region_chg and region_add. This
4222 * indicates a race with alloc_huge_page. Adjust
4223 * the subpool and reserve counts modified above
4224 * based on the difference.
4228 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4230 hugetlb_acct_memory(h
, -rsv_adjust
);
4235 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4236 region_abort(resv_map
, from
, to
);
4237 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4238 kref_put(&resv_map
->refs
, resv_map_release
);
4242 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4245 struct hstate
*h
= hstate_inode(inode
);
4246 struct resv_map
*resv_map
= inode_resv_map(inode
);
4248 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4252 chg
= region_del(resv_map
, start
, end
);
4254 * region_del() can fail in the rare case where a region
4255 * must be split and another region descriptor can not be
4256 * allocated. If end == LONG_MAX, it will not fail.
4262 spin_lock(&inode
->i_lock
);
4263 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4264 spin_unlock(&inode
->i_lock
);
4267 * If the subpool has a minimum size, the number of global
4268 * reservations to be released may be adjusted.
4270 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4271 hugetlb_acct_memory(h
, -gbl_reserve
);
4276 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4277 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4278 struct vm_area_struct
*vma
,
4279 unsigned long addr
, pgoff_t idx
)
4281 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4283 unsigned long sbase
= saddr
& PUD_MASK
;
4284 unsigned long s_end
= sbase
+ PUD_SIZE
;
4286 /* Allow segments to share if only one is marked locked */
4287 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4288 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4291 * match the virtual addresses, permission and the alignment of the
4294 if (pmd_index(addr
) != pmd_index(saddr
) ||
4295 vm_flags
!= svm_flags
||
4296 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4302 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4304 unsigned long base
= addr
& PUD_MASK
;
4305 unsigned long end
= base
+ PUD_SIZE
;
4308 * check on proper vm_flags and page table alignment
4310 if (vma
->vm_flags
& VM_MAYSHARE
&&
4311 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4317 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4318 * and returns the corresponding pte. While this is not necessary for the
4319 * !shared pmd case because we can allocate the pmd later as well, it makes the
4320 * code much cleaner. pmd allocation is essential for the shared case because
4321 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4322 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4323 * bad pmd for sharing.
4325 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4327 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4328 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4329 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4331 struct vm_area_struct
*svma
;
4332 unsigned long saddr
;
4337 if (!vma_shareable(vma
, addr
))
4338 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4340 i_mmap_lock_write(mapping
);
4341 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4345 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4347 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
4349 get_page(virt_to_page(spte
));
4358 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4359 if (pud_none(*pud
)) {
4360 pud_populate(mm
, pud
,
4361 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4364 put_page(virt_to_page(spte
));
4368 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4369 i_mmap_unlock_write(mapping
);
4374 * unmap huge page backed by shared pte.
4376 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4377 * indicated by page_count > 1, unmap is achieved by clearing pud and
4378 * decrementing the ref count. If count == 1, the pte page is not shared.
4380 * called with page table lock held.
4382 * returns: 1 successfully unmapped a shared pte page
4383 * 0 the underlying pte page is not shared, or it is the last user
4385 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4387 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4388 pud_t
*pud
= pud_offset(pgd
, *addr
);
4390 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4391 if (page_count(virt_to_page(ptep
)) == 1)
4395 put_page(virt_to_page(ptep
));
4397 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4400 #define want_pmd_share() (1)
4401 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4402 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4407 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4411 #define want_pmd_share() (0)
4412 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4414 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4415 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4416 unsigned long addr
, unsigned long sz
)
4422 pgd
= pgd_offset(mm
, addr
);
4423 pud
= pud_alloc(mm
, pgd
, addr
);
4425 if (sz
== PUD_SIZE
) {
4428 BUG_ON(sz
!= PMD_SIZE
);
4429 if (want_pmd_share() && pud_none(*pud
))
4430 pte
= huge_pmd_share(mm
, addr
, pud
);
4432 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4435 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4440 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
4446 pgd
= pgd_offset(mm
, addr
);
4447 if (pgd_present(*pgd
)) {
4448 pud
= pud_offset(pgd
, addr
);
4449 if (pud_present(*pud
)) {
4451 return (pte_t
*)pud
;
4452 pmd
= pmd_offset(pud
, addr
);
4455 return (pte_t
*) pmd
;
4458 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4461 * These functions are overwritable if your architecture needs its own
4464 struct page
* __weak
4465 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4468 return ERR_PTR(-EINVAL
);
4471 struct page
* __weak
4472 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4473 pmd_t
*pmd
, int flags
)
4475 struct page
*page
= NULL
;
4479 ptl
= pmd_lockptr(mm
, pmd
);
4482 * make sure that the address range covered by this pmd is not
4483 * unmapped from other threads.
4485 if (!pmd_huge(*pmd
))
4487 pte
= huge_ptep_get((pte_t
*)pmd
);
4488 if (pte_present(pte
)) {
4489 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4490 if (flags
& FOLL_GET
)
4493 if (is_hugetlb_entry_migration(pte
)) {
4495 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4499 * hwpoisoned entry is treated as no_page_table in
4500 * follow_page_mask().
4508 struct page
* __weak
4509 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4510 pud_t
*pud
, int flags
)
4512 if (flags
& FOLL_GET
)
4515 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4518 #ifdef CONFIG_MEMORY_FAILURE
4521 * This function is called from memory failure code.
4523 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
4525 struct hstate
*h
= page_hstate(hpage
);
4526 int nid
= page_to_nid(hpage
);
4529 spin_lock(&hugetlb_lock
);
4531 * Just checking !page_huge_active is not enough, because that could be
4532 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4534 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
4536 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4537 * but dangling hpage->lru can trigger list-debug warnings
4538 * (this happens when we call unpoison_memory() on it),
4539 * so let it point to itself with list_del_init().
4541 list_del_init(&hpage
->lru
);
4542 set_page_refcounted(hpage
);
4543 h
->free_huge_pages
--;
4544 h
->free_huge_pages_node
[nid
]--;
4547 spin_unlock(&hugetlb_lock
);
4552 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4556 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4557 spin_lock(&hugetlb_lock
);
4558 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4562 clear_page_huge_active(page
);
4563 list_move_tail(&page
->lru
, list
);
4565 spin_unlock(&hugetlb_lock
);
4569 void putback_active_hugepage(struct page
*page
)
4571 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4572 spin_lock(&hugetlb_lock
);
4573 set_page_huge_active(page
);
4574 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4575 spin_unlock(&hugetlb_lock
);