1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <linux/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_node
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree
{
141 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
147 struct mem_cgroup_eventfd_list
{
148 struct list_head list
;
149 struct eventfd_ctx
*eventfd
;
153 * cgroup_event represents events which userspace want to receive.
155 struct mem_cgroup_event
{
157 * memcg which the event belongs to.
159 struct mem_cgroup
*memcg
;
161 * eventfd to signal userspace about the event.
163 struct eventfd_ctx
*eventfd
;
165 * Each of these stored in a list by the cgroup.
167 struct list_head list
;
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
173 int (*register_event
)(struct mem_cgroup
*memcg
,
174 struct eventfd_ctx
*eventfd
, const char *args
);
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
180 void (*unregister_event
)(struct mem_cgroup
*memcg
,
181 struct eventfd_ctx
*eventfd
);
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
187 wait_queue_head_t
*wqh
;
189 struct work_struct remove
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
195 /* Stuffs for move charges at task migration. */
197 * Types of charges to be moved.
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct
{
205 spinlock_t lock
; /* for from, to */
206 struct mm_struct
*mm
;
207 struct mem_cgroup
*from
;
208 struct mem_cgroup
*to
;
210 unsigned long precharge
;
211 unsigned long moved_charge
;
212 unsigned long moved_swap
;
213 struct task_struct
*moving_task
; /* a task moving charges */
214 wait_queue_head_t waitq
; /* a waitq for other context */
216 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
217 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
228 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON
,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
235 /* for encoding cft->private value on file */
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
254 memcg
= root_mem_cgroup
;
255 return &memcg
->vmpressure
;
258 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
260 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
263 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
265 return (memcg
== root_mem_cgroup
);
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
280 static DEFINE_IDA(memcg_cache_ida
);
281 int memcg_nr_cache_ids
;
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem
);
286 void memcg_get_cache_ids(void)
288 down_read(&memcg_cache_ids_sem
);
291 void memcg_put_cache_ids(void)
293 up_read(&memcg_cache_ids_sem
);
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
320 #endif /* !CONFIG_SLOB */
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
333 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
335 struct mem_cgroup
*memcg
;
337 memcg
= page
->mem_cgroup
;
339 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
340 memcg
= root_mem_cgroup
;
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
358 ino_t
page_cgroup_ino(struct page
*page
)
360 struct mem_cgroup
*memcg
;
361 unsigned long ino
= 0;
364 memcg
= READ_ONCE(page
->mem_cgroup
);
365 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
366 memcg
= parent_mem_cgroup(memcg
);
368 ino
= cgroup_ino(memcg
->css
.cgroup
);
373 static struct mem_cgroup_per_node
*
374 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
376 int nid
= page_to_nid(page
);
378 return memcg
->nodeinfo
[nid
];
381 static struct mem_cgroup_tree_per_node
*
382 soft_limit_tree_node(int nid
)
384 return soft_limit_tree
.rb_tree_per_node
[nid
];
387 static struct mem_cgroup_tree_per_node
*
388 soft_limit_tree_from_page(struct page
*page
)
390 int nid
= page_to_nid(page
);
392 return soft_limit_tree
.rb_tree_per_node
[nid
];
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
396 struct mem_cgroup_tree_per_node
*mctz
,
397 unsigned long new_usage_in_excess
)
399 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
400 struct rb_node
*parent
= NULL
;
401 struct mem_cgroup_per_node
*mz_node
;
406 mz
->usage_in_excess
= new_usage_in_excess
;
407 if (!mz
->usage_in_excess
)
411 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
413 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
419 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
422 rb_link_node(&mz
->tree_node
, parent
, p
);
423 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
428 struct mem_cgroup_tree_per_node
*mctz
)
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
469 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
470 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
471 excess
= soft_limit_excess(memcg
);
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
476 if (excess
|| mz
->on_tree
) {
479 spin_lock_irqsave(&mctz
->lock
, flags
);
480 /* if on-tree, remove it */
482 __mem_cgroup_remove_exceeded(mz
, mctz
);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
488 spin_unlock_irqrestore(&mctz
->lock
, flags
);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
495 struct mem_cgroup_tree_per_node
*mctz
;
496 struct mem_cgroup_per_node
*mz
;
500 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
501 mctz
= soft_limit_tree_node(nid
);
502 mem_cgroup_remove_exceeded(mz
, mctz
);
506 static struct mem_cgroup_per_node
*
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
509 struct rb_node
*rightmost
= NULL
;
510 struct mem_cgroup_per_node
*mz
;
514 rightmost
= rb_last(&mctz
->rb_root
);
516 goto done
; /* Nothing to reclaim from */
518 mz
= rb_entry(rightmost
, struct mem_cgroup_per_node
, tree_node
);
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
524 __mem_cgroup_remove_exceeded(mz
, mctz
);
525 if (!soft_limit_excess(mz
->memcg
) ||
526 !css_tryget_online(&mz
->memcg
->css
))
532 static struct mem_cgroup_per_node
*
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
535 struct mem_cgroup_per_node
*mz
;
537 spin_lock_irq(&mctz
->lock
);
538 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
539 spin_unlock_irq(&mctz
->lock
);
544 * Return page count for single (non recursive) @memcg.
546 * Implementation Note: reading percpu statistics for memcg.
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
565 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu
)
572 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
583 enum mem_cgroup_events_index idx
)
585 unsigned long val
= 0;
588 for_each_possible_cpu(cpu
)
589 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
593 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
595 bool compound
, int nr_pages
)
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
602 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
605 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
609 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
610 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
614 /* pagein of a big page is an event. So, ignore page size */
616 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
618 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
619 nr_pages
= -nr_pages
; /* for event */
622 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
626 int nid
, unsigned int lru_mask
)
628 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
629 unsigned long nr
= 0;
632 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
635 if (!(BIT(lru
) & lru_mask
))
637 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
642 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
643 unsigned int lru_mask
)
645 unsigned long nr
= 0;
648 for_each_node_state(nid
, N_MEMORY
)
649 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
653 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
654 enum mem_cgroup_events_target target
)
656 unsigned long val
, next
;
658 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
659 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
660 /* from time_after() in jiffies.h */
661 if ((long)next
- (long)val
< 0) {
663 case MEM_CGROUP_TARGET_THRESH
:
664 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
666 case MEM_CGROUP_TARGET_SOFTLIMIT
:
667 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
669 case MEM_CGROUP_TARGET_NUMAINFO
:
670 next
= val
+ NUMAINFO_EVENTS_TARGET
;
675 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
682 * Check events in order.
685 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
687 /* threshold event is triggered in finer grain than soft limit */
688 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
689 MEM_CGROUP_TARGET_THRESH
))) {
691 bool do_numainfo __maybe_unused
;
693 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
694 MEM_CGROUP_TARGET_SOFTLIMIT
);
696 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
697 MEM_CGROUP_TARGET_NUMAINFO
);
699 mem_cgroup_threshold(memcg
);
700 if (unlikely(do_softlimit
))
701 mem_cgroup_update_tree(memcg
, page
);
703 if (unlikely(do_numainfo
))
704 atomic_inc(&memcg
->numainfo_events
);
709 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
712 * mm_update_next_owner() may clear mm->owner to NULL
713 * if it races with swapoff, page migration, etc.
714 * So this can be called with p == NULL.
719 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
721 EXPORT_SYMBOL(mem_cgroup_from_task
);
723 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
725 struct mem_cgroup
*memcg
= NULL
;
730 * Page cache insertions can happen withou an
731 * actual mm context, e.g. during disk probing
732 * on boot, loopback IO, acct() writes etc.
735 memcg
= root_mem_cgroup
;
737 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
738 if (unlikely(!memcg
))
739 memcg
= root_mem_cgroup
;
741 } while (!css_tryget_online(&memcg
->css
));
747 * mem_cgroup_iter - iterate over memory cgroup hierarchy
748 * @root: hierarchy root
749 * @prev: previously returned memcg, NULL on first invocation
750 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 * Returns references to children of the hierarchy below @root, or
753 * @root itself, or %NULL after a full round-trip.
755 * Caller must pass the return value in @prev on subsequent
756 * invocations for reference counting, or use mem_cgroup_iter_break()
757 * to cancel a hierarchy walk before the round-trip is complete.
759 * Reclaimers can specify a zone and a priority level in @reclaim to
760 * divide up the memcgs in the hierarchy among all concurrent
761 * reclaimers operating on the same zone and priority.
763 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
764 struct mem_cgroup
*prev
,
765 struct mem_cgroup_reclaim_cookie
*reclaim
)
767 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
768 struct cgroup_subsys_state
*css
= NULL
;
769 struct mem_cgroup
*memcg
= NULL
;
770 struct mem_cgroup
*pos
= NULL
;
772 if (mem_cgroup_disabled())
776 root
= root_mem_cgroup
;
778 if (prev
&& !reclaim
)
781 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
790 struct mem_cgroup_per_node
*mz
;
792 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
793 iter
= &mz
->iter
[reclaim
->priority
];
795 if (prev
&& reclaim
->generation
!= iter
->generation
)
799 pos
= READ_ONCE(iter
->position
);
800 if (!pos
|| css_tryget(&pos
->css
))
803 * css reference reached zero, so iter->position will
804 * be cleared by ->css_released. However, we should not
805 * rely on this happening soon, because ->css_released
806 * is called from a work queue, and by busy-waiting we
807 * might block it. So we clear iter->position right
810 (void)cmpxchg(&iter
->position
, pos
, NULL
);
818 css
= css_next_descendant_pre(css
, &root
->css
);
821 * Reclaimers share the hierarchy walk, and a
822 * new one might jump in right at the end of
823 * the hierarchy - make sure they see at least
824 * one group and restart from the beginning.
832 * Verify the css and acquire a reference. The root
833 * is provided by the caller, so we know it's alive
834 * and kicking, and don't take an extra reference.
836 memcg
= mem_cgroup_from_css(css
);
838 if (css
== &root
->css
)
849 * The position could have already been updated by a competing
850 * thread, so check that the value hasn't changed since we read
851 * it to avoid reclaiming from the same cgroup twice.
853 (void)cmpxchg(&iter
->position
, pos
, memcg
);
861 reclaim
->generation
= iter
->generation
;
867 if (prev
&& prev
!= root
)
874 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
875 * @root: hierarchy root
876 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
879 struct mem_cgroup
*prev
)
882 root
= root_mem_cgroup
;
883 if (prev
&& prev
!= root
)
887 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
889 struct mem_cgroup
*memcg
= dead_memcg
;
890 struct mem_cgroup_reclaim_iter
*iter
;
891 struct mem_cgroup_per_node
*mz
;
895 while ((memcg
= parent_mem_cgroup(memcg
))) {
897 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
898 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
900 cmpxchg(&iter
->position
,
908 * Iteration constructs for visiting all cgroups (under a tree). If
909 * loops are exited prematurely (break), mem_cgroup_iter_break() must
910 * be used for reference counting.
912 #define for_each_mem_cgroup_tree(iter, root) \
913 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter = mem_cgroup_iter(root, iter, NULL))
917 #define for_each_mem_cgroup(iter) \
918 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter = mem_cgroup_iter(NULL, iter, NULL))
923 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
924 * @memcg: hierarchy root
925 * @fn: function to call for each task
926 * @arg: argument passed to @fn
928 * This function iterates over tasks attached to @memcg or to any of its
929 * descendants and calls @fn for each task. If @fn returns a non-zero
930 * value, the function breaks the iteration loop and returns the value.
931 * Otherwise, it will iterate over all tasks and return 0.
933 * This function must not be called for the root memory cgroup.
935 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
936 int (*fn
)(struct task_struct
*, void *), void *arg
)
938 struct mem_cgroup
*iter
;
941 BUG_ON(memcg
== root_mem_cgroup
);
943 for_each_mem_cgroup_tree(iter
, memcg
) {
944 struct css_task_iter it
;
945 struct task_struct
*task
;
947 css_task_iter_start(&iter
->css
, &it
);
948 while (!ret
&& (task
= css_task_iter_next(&it
)))
950 css_task_iter_end(&it
);
952 mem_cgroup_iter_break(memcg
, iter
);
960 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962 * @zone: zone of the page
964 * This function is only safe when following the LRU page isolation
965 * and putback protocol: the LRU lock must be held, and the page must
966 * either be PageLRU() or the caller must have isolated/allocated it.
968 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
970 struct mem_cgroup_per_node
*mz
;
971 struct mem_cgroup
*memcg
;
972 struct lruvec
*lruvec
;
974 if (mem_cgroup_disabled()) {
975 lruvec
= &pgdat
->lruvec
;
979 memcg
= page
->mem_cgroup
;
981 * Swapcache readahead pages are added to the LRU - and
982 * possibly migrated - before they are charged.
985 memcg
= root_mem_cgroup
;
987 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
988 lruvec
= &mz
->lruvec
;
991 * Since a node can be onlined after the mem_cgroup was created,
992 * we have to be prepared to initialize lruvec->zone here;
993 * and if offlined then reonlined, we need to reinitialize it.
995 if (unlikely(lruvec
->pgdat
!= pgdat
))
996 lruvec
->pgdat
= pgdat
;
1001 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1002 * @lruvec: mem_cgroup per zone lru vector
1003 * @lru: index of lru list the page is sitting on
1004 * @zid: zone id of the accounted pages
1005 * @nr_pages: positive when adding or negative when removing
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1011 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1012 int zid
, int nr_pages
)
1014 struct mem_cgroup_per_node
*mz
;
1015 unsigned long *lru_size
;
1018 if (mem_cgroup_disabled())
1021 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1022 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1025 *lru_size
+= nr_pages
;
1028 if (WARN_ONCE(size
< 0,
1029 "%s(%p, %d, %d): lru_size %ld\n",
1030 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1036 *lru_size
+= nr_pages
;
1039 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1041 struct mem_cgroup
*task_memcg
;
1042 struct task_struct
*p
;
1045 p
= find_lock_task_mm(task
);
1047 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1051 * All threads may have already detached their mm's, but the oom
1052 * killer still needs to detect if they have already been oom
1053 * killed to prevent needlessly killing additional tasks.
1056 task_memcg
= mem_cgroup_from_task(task
);
1057 css_get(&task_memcg
->css
);
1060 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1061 css_put(&task_memcg
->css
);
1066 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1067 * @memcg: the memory cgroup
1069 * Returns the maximum amount of memory @mem can be charged with, in
1072 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1074 unsigned long margin
= 0;
1075 unsigned long count
;
1076 unsigned long limit
;
1078 count
= page_counter_read(&memcg
->memory
);
1079 limit
= READ_ONCE(memcg
->memory
.limit
);
1081 margin
= limit
- count
;
1083 if (do_memsw_account()) {
1084 count
= page_counter_read(&memcg
->memsw
);
1085 limit
= READ_ONCE(memcg
->memsw
.limit
);
1087 margin
= min(margin
, limit
- count
);
1096 * A routine for checking "mem" is under move_account() or not.
1098 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1099 * moving cgroups. This is for waiting at high-memory pressure
1102 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1104 struct mem_cgroup
*from
;
1105 struct mem_cgroup
*to
;
1108 * Unlike task_move routines, we access mc.to, mc.from not under
1109 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1111 spin_lock(&mc
.lock
);
1117 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1118 mem_cgroup_is_descendant(to
, memcg
);
1120 spin_unlock(&mc
.lock
);
1124 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1126 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1127 if (mem_cgroup_under_move(memcg
)) {
1129 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1130 /* moving charge context might have finished. */
1133 finish_wait(&mc
.waitq
, &wait
);
1140 #define K(x) ((x) << (PAGE_SHIFT-10))
1142 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1143 * @memcg: The memory cgroup that went over limit
1144 * @p: Task that is going to be killed
1146 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1151 struct mem_cgroup
*iter
;
1157 pr_info("Task in ");
1158 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1159 pr_cont(" killed as a result of limit of ");
1161 pr_info("Memory limit reached of cgroup ");
1164 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1169 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64
)page_counter_read(&memcg
->memory
)),
1171 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1172 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64
)page_counter_read(&memcg
->memsw
)),
1174 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1175 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64
)page_counter_read(&memcg
->kmem
)),
1177 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1179 for_each_mem_cgroup_tree(iter
, memcg
) {
1180 pr_info("Memory cgroup stats for ");
1181 pr_cont_cgroup_path(iter
->css
.cgroup
);
1184 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1185 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1187 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1188 K(mem_cgroup_read_stat(iter
, i
)));
1191 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1192 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1193 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1200 * This function returns the number of memcg under hierarchy tree. Returns
1201 * 1(self count) if no children.
1203 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1206 struct mem_cgroup
*iter
;
1208 for_each_mem_cgroup_tree(iter
, memcg
)
1214 * Return the memory (and swap, if configured) limit for a memcg.
1216 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1218 unsigned long limit
;
1220 limit
= memcg
->memory
.limit
;
1221 if (mem_cgroup_swappiness(memcg
)) {
1222 unsigned long memsw_limit
;
1223 unsigned long swap_limit
;
1225 memsw_limit
= memcg
->memsw
.limit
;
1226 swap_limit
= memcg
->swap
.limit
;
1227 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1228 limit
= min(limit
+ swap_limit
, memsw_limit
);
1233 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1236 struct oom_control oc
= {
1240 .gfp_mask
= gfp_mask
,
1245 mutex_lock(&oom_lock
);
1246 ret
= out_of_memory(&oc
);
1247 mutex_unlock(&oom_lock
);
1251 #if MAX_NUMNODES > 1
1254 * test_mem_cgroup_node_reclaimable
1255 * @memcg: the target memcg
1256 * @nid: the node ID to be checked.
1257 * @noswap : specify true here if the user wants flle only information.
1259 * This function returns whether the specified memcg contains any
1260 * reclaimable pages on a node. Returns true if there are any reclaimable
1261 * pages in the node.
1263 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1264 int nid
, bool noswap
)
1266 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1268 if (noswap
|| !total_swap_pages
)
1270 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1277 * Always updating the nodemask is not very good - even if we have an empty
1278 * list or the wrong list here, we can start from some node and traverse all
1279 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1286 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1287 * pagein/pageout changes since the last update.
1289 if (!atomic_read(&memcg
->numainfo_events
))
1291 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1294 /* make a nodemask where this memcg uses memory from */
1295 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1297 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1299 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1300 node_clear(nid
, memcg
->scan_nodes
);
1303 atomic_set(&memcg
->numainfo_events
, 0);
1304 atomic_set(&memcg
->numainfo_updating
, 0);
1308 * Selecting a node where we start reclaim from. Because what we need is just
1309 * reducing usage counter, start from anywhere is O,K. Considering
1310 * memory reclaim from current node, there are pros. and cons.
1312 * Freeing memory from current node means freeing memory from a node which
1313 * we'll use or we've used. So, it may make LRU bad. And if several threads
1314 * hit limits, it will see a contention on a node. But freeing from remote
1315 * node means more costs for memory reclaim because of memory latency.
1317 * Now, we use round-robin. Better algorithm is welcomed.
1319 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1323 mem_cgroup_may_update_nodemask(memcg
);
1324 node
= memcg
->last_scanned_node
;
1326 node
= next_node_in(node
, memcg
->scan_nodes
);
1328 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1329 * last time it really checked all the LRUs due to rate limiting.
1330 * Fallback to the current node in that case for simplicity.
1332 if (unlikely(node
== MAX_NUMNODES
))
1333 node
= numa_node_id();
1335 memcg
->last_scanned_node
= node
;
1339 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1345 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1348 unsigned long *total_scanned
)
1350 struct mem_cgroup
*victim
= NULL
;
1353 unsigned long excess
;
1354 unsigned long nr_scanned
;
1355 struct mem_cgroup_reclaim_cookie reclaim
= {
1360 excess
= soft_limit_excess(root_memcg
);
1363 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1368 * If we have not been able to reclaim
1369 * anything, it might because there are
1370 * no reclaimable pages under this hierarchy
1375 * We want to do more targeted reclaim.
1376 * excess >> 2 is not to excessive so as to
1377 * reclaim too much, nor too less that we keep
1378 * coming back to reclaim from this cgroup
1380 if (total
>= (excess
>> 2) ||
1381 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1386 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1387 pgdat
, &nr_scanned
);
1388 *total_scanned
+= nr_scanned
;
1389 if (!soft_limit_excess(root_memcg
))
1392 mem_cgroup_iter_break(root_memcg
, victim
);
1396 #ifdef CONFIG_LOCKDEP
1397 static struct lockdep_map memcg_oom_lock_dep_map
= {
1398 .name
= "memcg_oom_lock",
1402 static DEFINE_SPINLOCK(memcg_oom_lock
);
1405 * Check OOM-Killer is already running under our hierarchy.
1406 * If someone is running, return false.
1408 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1410 struct mem_cgroup
*iter
, *failed
= NULL
;
1412 spin_lock(&memcg_oom_lock
);
1414 for_each_mem_cgroup_tree(iter
, memcg
) {
1415 if (iter
->oom_lock
) {
1417 * this subtree of our hierarchy is already locked
1418 * so we cannot give a lock.
1421 mem_cgroup_iter_break(memcg
, iter
);
1424 iter
->oom_lock
= true;
1429 * OK, we failed to lock the whole subtree so we have
1430 * to clean up what we set up to the failing subtree
1432 for_each_mem_cgroup_tree(iter
, memcg
) {
1433 if (iter
== failed
) {
1434 mem_cgroup_iter_break(memcg
, iter
);
1437 iter
->oom_lock
= false;
1440 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1442 spin_unlock(&memcg_oom_lock
);
1447 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1449 struct mem_cgroup
*iter
;
1451 spin_lock(&memcg_oom_lock
);
1452 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1453 for_each_mem_cgroup_tree(iter
, memcg
)
1454 iter
->oom_lock
= false;
1455 spin_unlock(&memcg_oom_lock
);
1458 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1460 struct mem_cgroup
*iter
;
1462 spin_lock(&memcg_oom_lock
);
1463 for_each_mem_cgroup_tree(iter
, memcg
)
1465 spin_unlock(&memcg_oom_lock
);
1468 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1470 struct mem_cgroup
*iter
;
1473 * When a new child is created while the hierarchy is under oom,
1474 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1476 spin_lock(&memcg_oom_lock
);
1477 for_each_mem_cgroup_tree(iter
, memcg
)
1478 if (iter
->under_oom
> 0)
1480 spin_unlock(&memcg_oom_lock
);
1483 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1485 struct oom_wait_info
{
1486 struct mem_cgroup
*memcg
;
1490 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1491 unsigned mode
, int sync
, void *arg
)
1493 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1494 struct mem_cgroup
*oom_wait_memcg
;
1495 struct oom_wait_info
*oom_wait_info
;
1497 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1498 oom_wait_memcg
= oom_wait_info
->memcg
;
1500 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1501 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1503 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1506 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1509 * For the following lockless ->under_oom test, the only required
1510 * guarantee is that it must see the state asserted by an OOM when
1511 * this function is called as a result of userland actions
1512 * triggered by the notification of the OOM. This is trivially
1513 * achieved by invoking mem_cgroup_mark_under_oom() before
1514 * triggering notification.
1516 if (memcg
&& memcg
->under_oom
)
1517 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1520 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1522 if (!current
->memcg_may_oom
)
1525 * We are in the middle of the charge context here, so we
1526 * don't want to block when potentially sitting on a callstack
1527 * that holds all kinds of filesystem and mm locks.
1529 * Also, the caller may handle a failed allocation gracefully
1530 * (like optional page cache readahead) and so an OOM killer
1531 * invocation might not even be necessary.
1533 * That's why we don't do anything here except remember the
1534 * OOM context and then deal with it at the end of the page
1535 * fault when the stack is unwound, the locks are released,
1536 * and when we know whether the fault was overall successful.
1538 css_get(&memcg
->css
);
1539 current
->memcg_in_oom
= memcg
;
1540 current
->memcg_oom_gfp_mask
= mask
;
1541 current
->memcg_oom_order
= order
;
1545 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1546 * @handle: actually kill/wait or just clean up the OOM state
1548 * This has to be called at the end of a page fault if the memcg OOM
1549 * handler was enabled.
1551 * Memcg supports userspace OOM handling where failed allocations must
1552 * sleep on a waitqueue until the userspace task resolves the
1553 * situation. Sleeping directly in the charge context with all kinds
1554 * of locks held is not a good idea, instead we remember an OOM state
1555 * in the task and mem_cgroup_oom_synchronize() has to be called at
1556 * the end of the page fault to complete the OOM handling.
1558 * Returns %true if an ongoing memcg OOM situation was detected and
1559 * completed, %false otherwise.
1561 bool mem_cgroup_oom_synchronize(bool handle
)
1563 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1564 struct oom_wait_info owait
;
1567 /* OOM is global, do not handle */
1574 owait
.memcg
= memcg
;
1575 owait
.wait
.flags
= 0;
1576 owait
.wait
.func
= memcg_oom_wake_function
;
1577 owait
.wait
.private = current
;
1578 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1580 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1581 mem_cgroup_mark_under_oom(memcg
);
1583 locked
= mem_cgroup_oom_trylock(memcg
);
1586 mem_cgroup_oom_notify(memcg
);
1588 if (locked
&& !memcg
->oom_kill_disable
) {
1589 mem_cgroup_unmark_under_oom(memcg
);
1590 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1591 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1592 current
->memcg_oom_order
);
1595 mem_cgroup_unmark_under_oom(memcg
);
1596 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1600 mem_cgroup_oom_unlock(memcg
);
1602 * There is no guarantee that an OOM-lock contender
1603 * sees the wakeups triggered by the OOM kill
1604 * uncharges. Wake any sleepers explicitely.
1606 memcg_oom_recover(memcg
);
1609 current
->memcg_in_oom
= NULL
;
1610 css_put(&memcg
->css
);
1615 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * This function protects unlocked LRU pages from being moved to
1619 * another cgroup and stabilizes their page->mem_cgroup binding.
1621 void lock_page_memcg(struct page
*page
)
1623 struct mem_cgroup
*memcg
;
1624 unsigned long flags
;
1627 * The RCU lock is held throughout the transaction. The fast
1628 * path can get away without acquiring the memcg->move_lock
1629 * because page moving starts with an RCU grace period.
1633 if (mem_cgroup_disabled())
1636 memcg
= page
->mem_cgroup
;
1637 if (unlikely(!memcg
))
1640 if (atomic_read(&memcg
->moving_account
) <= 0)
1643 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1644 if (memcg
!= page
->mem_cgroup
) {
1645 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1650 * When charge migration first begins, we can have locked and
1651 * unlocked page stat updates happening concurrently. Track
1652 * the task who has the lock for unlock_page_memcg().
1654 memcg
->move_lock_task
= current
;
1655 memcg
->move_lock_flags
= flags
;
1659 EXPORT_SYMBOL(lock_page_memcg
);
1662 * unlock_page_memcg - unlock a page->mem_cgroup binding
1665 void unlock_page_memcg(struct page
*page
)
1667 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1669 if (memcg
&& memcg
->move_lock_task
== current
) {
1670 unsigned long flags
= memcg
->move_lock_flags
;
1672 memcg
->move_lock_task
= NULL
;
1673 memcg
->move_lock_flags
= 0;
1675 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1680 EXPORT_SYMBOL(unlock_page_memcg
);
1683 * size of first charge trial. "32" comes from vmscan.c's magic value.
1684 * TODO: maybe necessary to use big numbers in big irons.
1686 #define CHARGE_BATCH 32U
1687 struct memcg_stock_pcp
{
1688 struct mem_cgroup
*cached
; /* this never be root cgroup */
1689 unsigned int nr_pages
;
1690 struct work_struct work
;
1691 unsigned long flags
;
1692 #define FLUSHING_CACHED_CHARGE 0
1694 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1695 static DEFINE_MUTEX(percpu_charge_mutex
);
1698 * consume_stock: Try to consume stocked charge on this cpu.
1699 * @memcg: memcg to consume from.
1700 * @nr_pages: how many pages to charge.
1702 * The charges will only happen if @memcg matches the current cpu's memcg
1703 * stock, and at least @nr_pages are available in that stock. Failure to
1704 * service an allocation will refill the stock.
1706 * returns true if successful, false otherwise.
1708 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1710 struct memcg_stock_pcp
*stock
;
1711 unsigned long flags
;
1714 if (nr_pages
> CHARGE_BATCH
)
1717 local_irq_save(flags
);
1719 stock
= this_cpu_ptr(&memcg_stock
);
1720 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1721 stock
->nr_pages
-= nr_pages
;
1725 local_irq_restore(flags
);
1731 * Returns stocks cached in percpu and reset cached information.
1733 static void drain_stock(struct memcg_stock_pcp
*stock
)
1735 struct mem_cgroup
*old
= stock
->cached
;
1737 if (stock
->nr_pages
) {
1738 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1739 if (do_memsw_account())
1740 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1741 css_put_many(&old
->css
, stock
->nr_pages
);
1742 stock
->nr_pages
= 0;
1744 stock
->cached
= NULL
;
1747 static void drain_local_stock(struct work_struct
*dummy
)
1749 struct memcg_stock_pcp
*stock
;
1750 unsigned long flags
;
1752 local_irq_save(flags
);
1754 stock
= this_cpu_ptr(&memcg_stock
);
1756 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1758 local_irq_restore(flags
);
1762 * Cache charges(val) to local per_cpu area.
1763 * This will be consumed by consume_stock() function, later.
1765 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1767 struct memcg_stock_pcp
*stock
;
1768 unsigned long flags
;
1770 local_irq_save(flags
);
1772 stock
= this_cpu_ptr(&memcg_stock
);
1773 if (stock
->cached
!= memcg
) { /* reset if necessary */
1775 stock
->cached
= memcg
;
1777 stock
->nr_pages
+= nr_pages
;
1779 local_irq_restore(flags
);
1783 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1784 * of the hierarchy under it.
1786 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1790 /* If someone's already draining, avoid adding running more workers. */
1791 if (!mutex_trylock(&percpu_charge_mutex
))
1793 /* Notify other cpus that system-wide "drain" is running */
1796 for_each_online_cpu(cpu
) {
1797 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1798 struct mem_cgroup
*memcg
;
1800 memcg
= stock
->cached
;
1801 if (!memcg
|| !stock
->nr_pages
)
1803 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1805 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1807 drain_local_stock(&stock
->work
);
1809 schedule_work_on(cpu
, &stock
->work
);
1814 mutex_unlock(&percpu_charge_mutex
);
1817 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1819 struct memcg_stock_pcp
*stock
;
1821 stock
= &per_cpu(memcg_stock
, cpu
);
1826 static void reclaim_high(struct mem_cgroup
*memcg
,
1827 unsigned int nr_pages
,
1831 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1833 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1834 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1835 } while ((memcg
= parent_mem_cgroup(memcg
)));
1838 static void high_work_func(struct work_struct
*work
)
1840 struct mem_cgroup
*memcg
;
1842 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1843 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1847 * Scheduled by try_charge() to be executed from the userland return path
1848 * and reclaims memory over the high limit.
1850 void mem_cgroup_handle_over_high(void)
1852 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1853 struct mem_cgroup
*memcg
;
1855 if (likely(!nr_pages
))
1858 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1859 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1860 css_put(&memcg
->css
);
1861 current
->memcg_nr_pages_over_high
= 0;
1864 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1865 unsigned int nr_pages
)
1867 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1868 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1869 struct mem_cgroup
*mem_over_limit
;
1870 struct page_counter
*counter
;
1871 unsigned long nr_reclaimed
;
1872 bool may_swap
= true;
1873 bool drained
= false;
1875 if (mem_cgroup_is_root(memcg
))
1878 if (consume_stock(memcg
, nr_pages
))
1881 if (!do_memsw_account() ||
1882 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1883 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1885 if (do_memsw_account())
1886 page_counter_uncharge(&memcg
->memsw
, batch
);
1887 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1889 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1893 if (batch
> nr_pages
) {
1899 * Unlike in global OOM situations, memcg is not in a physical
1900 * memory shortage. Allow dying and OOM-killed tasks to
1901 * bypass the last charges so that they can exit quickly and
1902 * free their memory.
1904 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1905 fatal_signal_pending(current
) ||
1906 current
->flags
& PF_EXITING
))
1910 * Prevent unbounded recursion when reclaim operations need to
1911 * allocate memory. This might exceed the limits temporarily,
1912 * but we prefer facilitating memory reclaim and getting back
1913 * under the limit over triggering OOM kills in these cases.
1915 if (unlikely(current
->flags
& PF_MEMALLOC
))
1918 if (unlikely(task_in_memcg_oom(current
)))
1921 if (!gfpflags_allow_blocking(gfp_mask
))
1924 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
1926 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1927 gfp_mask
, may_swap
);
1929 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1933 drain_all_stock(mem_over_limit
);
1938 if (gfp_mask
& __GFP_NORETRY
)
1941 * Even though the limit is exceeded at this point, reclaim
1942 * may have been able to free some pages. Retry the charge
1943 * before killing the task.
1945 * Only for regular pages, though: huge pages are rather
1946 * unlikely to succeed so close to the limit, and we fall back
1947 * to regular pages anyway in case of failure.
1949 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1952 * At task move, charge accounts can be doubly counted. So, it's
1953 * better to wait until the end of task_move if something is going on.
1955 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1961 if (gfp_mask
& __GFP_NOFAIL
)
1964 if (fatal_signal_pending(current
))
1967 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
1969 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
1970 get_order(nr_pages
* PAGE_SIZE
));
1972 if (!(gfp_mask
& __GFP_NOFAIL
))
1976 * The allocation either can't fail or will lead to more memory
1977 * being freed very soon. Allow memory usage go over the limit
1978 * temporarily by force charging it.
1980 page_counter_charge(&memcg
->memory
, nr_pages
);
1981 if (do_memsw_account())
1982 page_counter_charge(&memcg
->memsw
, nr_pages
);
1983 css_get_many(&memcg
->css
, nr_pages
);
1988 css_get_many(&memcg
->css
, batch
);
1989 if (batch
> nr_pages
)
1990 refill_stock(memcg
, batch
- nr_pages
);
1993 * If the hierarchy is above the normal consumption range, schedule
1994 * reclaim on returning to userland. We can perform reclaim here
1995 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1996 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1997 * not recorded as it most likely matches current's and won't
1998 * change in the meantime. As high limit is checked again before
1999 * reclaim, the cost of mismatch is negligible.
2002 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2003 /* Don't bother a random interrupted task */
2004 if (in_interrupt()) {
2005 schedule_work(&memcg
->high_work
);
2008 current
->memcg_nr_pages_over_high
+= batch
;
2009 set_notify_resume(current
);
2012 } while ((memcg
= parent_mem_cgroup(memcg
)));
2017 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2019 if (mem_cgroup_is_root(memcg
))
2022 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2023 if (do_memsw_account())
2024 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2026 css_put_many(&memcg
->css
, nr_pages
);
2029 static void lock_page_lru(struct page
*page
, int *isolated
)
2031 struct zone
*zone
= page_zone(page
);
2033 spin_lock_irq(zone_lru_lock(zone
));
2034 if (PageLRU(page
)) {
2035 struct lruvec
*lruvec
;
2037 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2039 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2045 static void unlock_page_lru(struct page
*page
, int isolated
)
2047 struct zone
*zone
= page_zone(page
);
2050 struct lruvec
*lruvec
;
2052 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2053 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2055 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2057 spin_unlock_irq(zone_lru_lock(zone
));
2060 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2065 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2068 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2069 * may already be on some other mem_cgroup's LRU. Take care of it.
2072 lock_page_lru(page
, &isolated
);
2075 * Nobody should be changing or seriously looking at
2076 * page->mem_cgroup at this point:
2078 * - the page is uncharged
2080 * - the page is off-LRU
2082 * - an anonymous fault has exclusive page access, except for
2083 * a locked page table
2085 * - a page cache insertion, a swapin fault, or a migration
2086 * have the page locked
2088 page
->mem_cgroup
= memcg
;
2091 unlock_page_lru(page
, isolated
);
2095 static int memcg_alloc_cache_id(void)
2100 id
= ida_simple_get(&memcg_cache_ida
,
2101 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2105 if (id
< memcg_nr_cache_ids
)
2109 * There's no space for the new id in memcg_caches arrays,
2110 * so we have to grow them.
2112 down_write(&memcg_cache_ids_sem
);
2114 size
= 2 * (id
+ 1);
2115 if (size
< MEMCG_CACHES_MIN_SIZE
)
2116 size
= MEMCG_CACHES_MIN_SIZE
;
2117 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2118 size
= MEMCG_CACHES_MAX_SIZE
;
2120 err
= memcg_update_all_caches(size
);
2122 err
= memcg_update_all_list_lrus(size
);
2124 memcg_nr_cache_ids
= size
;
2126 up_write(&memcg_cache_ids_sem
);
2129 ida_simple_remove(&memcg_cache_ida
, id
);
2135 static void memcg_free_cache_id(int id
)
2137 ida_simple_remove(&memcg_cache_ida
, id
);
2140 struct memcg_kmem_cache_create_work
{
2141 struct mem_cgroup
*memcg
;
2142 struct kmem_cache
*cachep
;
2143 struct work_struct work
;
2146 static struct workqueue_struct
*memcg_kmem_cache_create_wq
;
2148 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2150 struct memcg_kmem_cache_create_work
*cw
=
2151 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2152 struct mem_cgroup
*memcg
= cw
->memcg
;
2153 struct kmem_cache
*cachep
= cw
->cachep
;
2155 memcg_create_kmem_cache(memcg
, cachep
);
2157 css_put(&memcg
->css
);
2162 * Enqueue the creation of a per-memcg kmem_cache.
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2165 struct kmem_cache
*cachep
)
2167 struct memcg_kmem_cache_create_work
*cw
;
2169 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2173 css_get(&memcg
->css
);
2176 cw
->cachep
= cachep
;
2177 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2179 queue_work(memcg_kmem_cache_create_wq
, &cw
->work
);
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2183 struct kmem_cache
*cachep
)
2186 * We need to stop accounting when we kmalloc, because if the
2187 * corresponding kmalloc cache is not yet created, the first allocation
2188 * in __memcg_schedule_kmem_cache_create will recurse.
2190 * However, it is better to enclose the whole function. Depending on
2191 * the debugging options enabled, INIT_WORK(), for instance, can
2192 * trigger an allocation. This too, will make us recurse. Because at
2193 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194 * the safest choice is to do it like this, wrapping the whole function.
2196 current
->memcg_kmem_skip_account
= 1;
2197 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2198 current
->memcg_kmem_skip_account
= 0;
2201 static inline bool memcg_kmem_bypass(void)
2203 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2209 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210 * @cachep: the original global kmem cache
2212 * Return the kmem_cache we're supposed to use for a slab allocation.
2213 * We try to use the current memcg's version of the cache.
2215 * If the cache does not exist yet, if we are the first user of it, we
2216 * create it asynchronously in a workqueue and let the current allocation
2217 * go through with the original cache.
2219 * This function takes a reference to the cache it returns to assure it
2220 * won't get destroyed while we are working with it. Once the caller is
2221 * done with it, memcg_kmem_put_cache() must be called to release the
2224 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2226 struct mem_cgroup
*memcg
;
2227 struct kmem_cache
*memcg_cachep
;
2230 VM_BUG_ON(!is_root_cache(cachep
));
2232 if (memcg_kmem_bypass())
2235 if (current
->memcg_kmem_skip_account
)
2238 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2239 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2243 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2244 if (likely(memcg_cachep
))
2245 return memcg_cachep
;
2248 * If we are in a safe context (can wait, and not in interrupt
2249 * context), we could be be predictable and return right away.
2250 * This would guarantee that the allocation being performed
2251 * already belongs in the new cache.
2253 * However, there are some clashes that can arrive from locking.
2254 * For instance, because we acquire the slab_mutex while doing
2255 * memcg_create_kmem_cache, this means no further allocation
2256 * could happen with the slab_mutex held. So it's better to
2259 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2261 css_put(&memcg
->css
);
2266 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267 * @cachep: the cache returned by memcg_kmem_get_cache
2269 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2271 if (!is_root_cache(cachep
))
2272 css_put(&cachep
->memcg_params
.memcg
->css
);
2276 * memcg_kmem_charge: charge a kmem page
2277 * @page: page to charge
2278 * @gfp: reclaim mode
2279 * @order: allocation order
2280 * @memcg: memory cgroup to charge
2282 * Returns 0 on success, an error code on failure.
2284 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2285 struct mem_cgroup
*memcg
)
2287 unsigned int nr_pages
= 1 << order
;
2288 struct page_counter
*counter
;
2291 ret
= try_charge(memcg
, gfp
, nr_pages
);
2295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2296 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2297 cancel_charge(memcg
, nr_pages
);
2301 page
->mem_cgroup
= memcg
;
2307 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2312 * Returns 0 on success, an error code on failure.
2314 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2316 struct mem_cgroup
*memcg
;
2319 if (memcg_kmem_bypass())
2322 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2323 if (!mem_cgroup_is_root(memcg
)) {
2324 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2326 __SetPageKmemcg(page
);
2328 css_put(&memcg
->css
);
2332 * memcg_kmem_uncharge: uncharge a kmem page
2333 * @page: page to uncharge
2334 * @order: allocation order
2336 void memcg_kmem_uncharge(struct page
*page
, int order
)
2338 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2339 unsigned int nr_pages
= 1 << order
;
2344 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2347 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2349 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2350 if (do_memsw_account())
2351 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2353 page
->mem_cgroup
= NULL
;
2355 /* slab pages do not have PageKmemcg flag set */
2356 if (PageKmemcg(page
))
2357 __ClearPageKmemcg(page
);
2359 css_put_many(&memcg
->css
, nr_pages
);
2361 #endif /* !CONFIG_SLOB */
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2366 * Because tail pages are not marked as "used", set it. We're under
2367 * zone_lru_lock and migration entries setup in all page mappings.
2369 void mem_cgroup_split_huge_fixup(struct page
*head
)
2373 if (mem_cgroup_disabled())
2376 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2377 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2379 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2388 int val
= (charge
) ? 1 : -1;
2389 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394 * @entry: swap entry to be moved
2395 * @from: mem_cgroup which the entry is moved from
2396 * @to: mem_cgroup which the entry is moved to
2398 * It succeeds only when the swap_cgroup's record for this entry is the same
2399 * as the mem_cgroup's id of @from.
2401 * Returns 0 on success, -EINVAL on failure.
2403 * The caller must have charged to @to, IOW, called page_counter_charge() about
2404 * both res and memsw, and called css_get().
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2407 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2409 unsigned short old_id
, new_id
;
2411 old_id
= mem_cgroup_id(from
);
2412 new_id
= mem_cgroup_id(to
);
2414 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2415 mem_cgroup_swap_statistics(from
, false);
2416 mem_cgroup_swap_statistics(to
, true);
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2423 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2429 static DEFINE_MUTEX(memcg_limit_mutex
);
2431 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2432 unsigned long limit
)
2434 unsigned long curusage
;
2435 unsigned long oldusage
;
2436 bool enlarge
= false;
2441 * For keeping hierarchical_reclaim simple, how long we should retry
2442 * is depends on callers. We set our retry-count to be function
2443 * of # of children which we should visit in this loop.
2445 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2446 mem_cgroup_count_children(memcg
);
2448 oldusage
= page_counter_read(&memcg
->memory
);
2451 if (signal_pending(current
)) {
2456 mutex_lock(&memcg_limit_mutex
);
2457 if (limit
> memcg
->memsw
.limit
) {
2458 mutex_unlock(&memcg_limit_mutex
);
2462 if (limit
> memcg
->memory
.limit
)
2464 ret
= page_counter_limit(&memcg
->memory
, limit
);
2465 mutex_unlock(&memcg_limit_mutex
);
2470 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2472 curusage
= page_counter_read(&memcg
->memory
);
2473 /* Usage is reduced ? */
2474 if (curusage
>= oldusage
)
2477 oldusage
= curusage
;
2478 } while (retry_count
);
2480 if (!ret
&& enlarge
)
2481 memcg_oom_recover(memcg
);
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2487 unsigned long limit
)
2489 unsigned long curusage
;
2490 unsigned long oldusage
;
2491 bool enlarge
= false;
2495 /* see mem_cgroup_resize_res_limit */
2496 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2497 mem_cgroup_count_children(memcg
);
2499 oldusage
= page_counter_read(&memcg
->memsw
);
2502 if (signal_pending(current
)) {
2507 mutex_lock(&memcg_limit_mutex
);
2508 if (limit
< memcg
->memory
.limit
) {
2509 mutex_unlock(&memcg_limit_mutex
);
2513 if (limit
> memcg
->memsw
.limit
)
2515 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2516 mutex_unlock(&memcg_limit_mutex
);
2521 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2523 curusage
= page_counter_read(&memcg
->memsw
);
2524 /* Usage is reduced ? */
2525 if (curusage
>= oldusage
)
2528 oldusage
= curusage
;
2529 } while (retry_count
);
2531 if (!ret
&& enlarge
)
2532 memcg_oom_recover(memcg
);
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2539 unsigned long *total_scanned
)
2541 unsigned long nr_reclaimed
= 0;
2542 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2543 unsigned long reclaimed
;
2545 struct mem_cgroup_tree_per_node
*mctz
;
2546 unsigned long excess
;
2547 unsigned long nr_scanned
;
2552 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2555 * Do not even bother to check the largest node if the root
2556 * is empty. Do it lockless to prevent lock bouncing. Races
2557 * are acceptable as soft limit is best effort anyway.
2559 if (RB_EMPTY_ROOT(&mctz
->rb_root
))
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2571 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2576 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2577 gfp_mask
, &nr_scanned
);
2578 nr_reclaimed
+= reclaimed
;
2579 *total_scanned
+= nr_scanned
;
2580 spin_lock_irq(&mctz
->lock
);
2581 __mem_cgroup_remove_exceeded(mz
, mctz
);
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2589 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2591 excess
= soft_limit_excess(mz
->memcg
);
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2600 /* If excess == 0, no tree ops */
2601 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2602 spin_unlock_irq(&mctz
->lock
);
2603 css_put(&mz
->memcg
->css
);
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2610 if (!nr_reclaimed
&&
2612 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2614 } while (!nr_reclaimed
);
2616 css_put(&next_mz
->memcg
->css
);
2617 return nr_reclaimed
;
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2626 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2631 ret
= css_next_child(NULL
, &memcg
->css
);
2637 * Reclaims as many pages from the given memcg as possible.
2639 * Caller is responsible for holding css reference for memcg.
2641 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2643 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
2647 /* try to free all pages in this cgroup */
2648 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2651 if (signal_pending(current
))
2654 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2658 /* maybe some writeback is necessary */
2659 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2667 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2668 char *buf
, size_t nbytes
,
2671 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2673 if (mem_cgroup_is_root(memcg
))
2675 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2678 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2681 return mem_cgroup_from_css(css
)->use_hierarchy
;
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2685 struct cftype
*cft
, u64 val
)
2688 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2689 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2691 if (memcg
->use_hierarchy
== val
)
2695 * If parent's use_hierarchy is set, we can't make any modifications
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2702 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2703 (val
== 1 || val
== 0)) {
2704 if (!memcg_has_children(memcg
))
2705 memcg
->use_hierarchy
= val
;
2714 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2716 struct mem_cgroup
*iter
;
2719 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2721 for_each_mem_cgroup_tree(iter
, memcg
) {
2722 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2723 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2727 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2729 struct mem_cgroup
*iter
;
2732 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2734 for_each_mem_cgroup_tree(iter
, memcg
) {
2735 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2736 events
[i
] += mem_cgroup_read_events(iter
, i
);
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2742 unsigned long val
= 0;
2744 if (mem_cgroup_is_root(memcg
)) {
2745 struct mem_cgroup
*iter
;
2747 for_each_mem_cgroup_tree(iter
, memcg
) {
2748 val
+= mem_cgroup_read_stat(iter
,
2749 MEM_CGROUP_STAT_CACHE
);
2750 val
+= mem_cgroup_read_stat(iter
,
2751 MEM_CGROUP_STAT_RSS
);
2753 val
+= mem_cgroup_read_stat(iter
,
2754 MEM_CGROUP_STAT_SWAP
);
2758 val
= page_counter_read(&memcg
->memory
);
2760 val
= page_counter_read(&memcg
->memsw
);
2773 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2776 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2777 struct page_counter
*counter
;
2779 switch (MEMFILE_TYPE(cft
->private)) {
2781 counter
= &memcg
->memory
;
2784 counter
= &memcg
->memsw
;
2787 counter
= &memcg
->kmem
;
2790 counter
= &memcg
->tcpmem
;
2796 switch (MEMFILE_ATTR(cft
->private)) {
2798 if (counter
== &memcg
->memory
)
2799 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2800 if (counter
== &memcg
->memsw
)
2801 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2802 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2804 return (u64
)counter
->limit
* PAGE_SIZE
;
2806 return (u64
)counter
->watermark
* PAGE_SIZE
;
2808 return counter
->failcnt
;
2809 case RES_SOFT_LIMIT
:
2810 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2817 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2821 if (cgroup_memory_nokmem
)
2824 BUG_ON(memcg
->kmemcg_id
>= 0);
2825 BUG_ON(memcg
->kmem_state
);
2827 memcg_id
= memcg_alloc_cache_id();
2831 static_branch_inc(&memcg_kmem_enabled_key
);
2833 * A memory cgroup is considered kmem-online as soon as it gets
2834 * kmemcg_id. Setting the id after enabling static branching will
2835 * guarantee no one starts accounting before all call sites are
2838 memcg
->kmemcg_id
= memcg_id
;
2839 memcg
->kmem_state
= KMEM_ONLINE
;
2844 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2846 struct cgroup_subsys_state
*css
;
2847 struct mem_cgroup
*parent
, *child
;
2850 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2858 memcg
->kmem_state
= KMEM_ALLOCATED
;
2860 memcg_deactivate_kmem_caches(memcg
);
2862 kmemcg_id
= memcg
->kmemcg_id
;
2863 BUG_ON(kmemcg_id
< 0);
2865 parent
= parent_mem_cgroup(memcg
);
2867 parent
= root_mem_cgroup
;
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2877 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878 css_for_each_descendant_pre(css
, &memcg
->css
) {
2879 child
= mem_cgroup_from_css(css
);
2880 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2881 child
->kmemcg_id
= parent
->kmemcg_id
;
2882 if (!memcg
->use_hierarchy
)
2887 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2889 memcg_free_cache_id(kmemcg_id
);
2892 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2896 memcg_offline_kmem(memcg
);
2898 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2899 memcg_destroy_kmem_caches(memcg
);
2900 static_branch_dec(&memcg_kmem_enabled_key
);
2901 WARN_ON(page_counter_read(&memcg
->kmem
));
2905 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2909 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2912 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2915 #endif /* !CONFIG_SLOB */
2917 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2918 unsigned long limit
)
2922 mutex_lock(&memcg_limit_mutex
);
2923 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2924 mutex_unlock(&memcg_limit_mutex
);
2928 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2932 mutex_lock(&memcg_limit_mutex
);
2934 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2938 if (!memcg
->tcpmem_active
) {
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See mem_cgroup_sk_alloc()
2943 * for details, and note that we don't mark any socket as
2944 * belonging to this memcg until that flag is up.
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2951 * We never race with the readers in mem_cgroup_sk_alloc(),
2952 * because when this value change, the code to process it is not
2955 static_branch_inc(&memcg_sockets_enabled_key
);
2956 memcg
->tcpmem_active
= true;
2959 mutex_unlock(&memcg_limit_mutex
);
2964 * The user of this function is...
2967 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2968 char *buf
, size_t nbytes
, loff_t off
)
2970 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2971 unsigned long nr_pages
;
2974 buf
= strstrip(buf
);
2975 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2979 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2981 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2985 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2987 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
2990 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
2993 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
2996 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3000 case RES_SOFT_LIMIT
:
3001 memcg
->soft_limit
= nr_pages
;
3005 return ret
?: nbytes
;
3008 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3009 size_t nbytes
, loff_t off
)
3011 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3012 struct page_counter
*counter
;
3014 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3016 counter
= &memcg
->memory
;
3019 counter
= &memcg
->memsw
;
3022 counter
= &memcg
->kmem
;
3025 counter
= &memcg
->tcpmem
;
3031 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3033 page_counter_reset_watermark(counter
);
3036 counter
->failcnt
= 0;
3045 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3048 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3053 struct cftype
*cft
, u64 val
)
3055 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3057 if (val
& ~MOVE_MASK
)
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3066 memcg
->move_charge_at_immigrate
= val
;
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3071 struct cftype
*cft
, u64 val
)
3078 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3082 unsigned int lru_mask
;
3085 static const struct numa_stat stats
[] = {
3086 { "total", LRU_ALL
},
3087 { "file", LRU_ALL_FILE
},
3088 { "anon", LRU_ALL_ANON
},
3089 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3091 const struct numa_stat
*stat
;
3094 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3096 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3097 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3098 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3099 for_each_node_state(nid
, N_MEMORY
) {
3100 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3102 seq_printf(m
, " N%d=%lu", nid
, nr
);
3107 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3108 struct mem_cgroup
*iter
;
3111 for_each_mem_cgroup_tree(iter
, memcg
)
3112 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3113 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3114 for_each_node_state(nid
, N_MEMORY
) {
3116 for_each_mem_cgroup_tree(iter
, memcg
)
3117 nr
+= mem_cgroup_node_nr_lru_pages(
3118 iter
, nid
, stat
->lru_mask
);
3119 seq_printf(m
, " N%d=%lu", nid
, nr
);
3126 #endif /* CONFIG_NUMA */
3128 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3130 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3131 unsigned long memory
, memsw
;
3132 struct mem_cgroup
*mi
;
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3136 MEM_CGROUP_STAT_NSTATS
);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3138 MEM_CGROUP_EVENTS_NSTATS
);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3141 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3142 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3144 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3145 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3148 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3149 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3150 mem_cgroup_read_events(memcg
, i
));
3152 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3153 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3154 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3156 /* Hierarchical information */
3157 memory
= memsw
= PAGE_COUNTER_MAX
;
3158 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3159 memory
= min(memory
, mi
->memory
.limit
);
3160 memsw
= min(memsw
, mi
->memsw
.limit
);
3162 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3163 (u64
)memory
* PAGE_SIZE
);
3164 if (do_memsw_account())
3165 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3166 (u64
)memsw
* PAGE_SIZE
);
3168 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3169 unsigned long long val
= 0;
3171 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3173 for_each_mem_cgroup_tree(mi
, memcg
)
3174 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3175 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3178 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3179 unsigned long long val
= 0;
3181 for_each_mem_cgroup_tree(mi
, memcg
)
3182 val
+= mem_cgroup_read_events(mi
, i
);
3183 seq_printf(m
, "total_%s %llu\n",
3184 mem_cgroup_events_names
[i
], val
);
3187 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3188 unsigned long long val
= 0;
3190 for_each_mem_cgroup_tree(mi
, memcg
)
3191 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3192 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3195 #ifdef CONFIG_DEBUG_VM
3198 struct mem_cgroup_per_node
*mz
;
3199 struct zone_reclaim_stat
*rstat
;
3200 unsigned long recent_rotated
[2] = {0, 0};
3201 unsigned long recent_scanned
[2] = {0, 0};
3203 for_each_online_pgdat(pgdat
) {
3204 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3205 rstat
= &mz
->lruvec
.reclaim_stat
;
3207 recent_rotated
[0] += rstat
->recent_rotated
[0];
3208 recent_rotated
[1] += rstat
->recent_rotated
[1];
3209 recent_scanned
[0] += rstat
->recent_scanned
[0];
3210 recent_scanned
[1] += rstat
->recent_scanned
[1];
3212 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3213 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3214 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3215 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3222 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3227 return mem_cgroup_swappiness(memcg
);
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3231 struct cftype
*cft
, u64 val
)
3233 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3239 memcg
->swappiness
= val
;
3241 vm_swappiness
= val
;
3246 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3248 struct mem_cgroup_threshold_ary
*t
;
3249 unsigned long usage
;
3254 t
= rcu_dereference(memcg
->thresholds
.primary
);
3256 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3261 usage
= mem_cgroup_usage(memcg
, swap
);
3264 * current_threshold points to threshold just below or equal to usage.
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3268 i
= t
->current_threshold
;
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3276 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3277 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3279 /* i = current_threshold + 1 */
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3288 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3289 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3291 /* Update current_threshold */
3292 t
->current_threshold
= i
- 1;
3297 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3300 __mem_cgroup_threshold(memcg
, false);
3301 if (do_memsw_account())
3302 __mem_cgroup_threshold(memcg
, true);
3304 memcg
= parent_mem_cgroup(memcg
);
3308 static int compare_thresholds(const void *a
, const void *b
)
3310 const struct mem_cgroup_threshold
*_a
= a
;
3311 const struct mem_cgroup_threshold
*_b
= b
;
3313 if (_a
->threshold
> _b
->threshold
)
3316 if (_a
->threshold
< _b
->threshold
)
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3324 struct mem_cgroup_eventfd_list
*ev
;
3326 spin_lock(&memcg_oom_lock
);
3328 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3329 eventfd_signal(ev
->eventfd
, 1);
3331 spin_unlock(&memcg_oom_lock
);
3335 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3337 struct mem_cgroup
*iter
;
3339 for_each_mem_cgroup_tree(iter
, memcg
)
3340 mem_cgroup_oom_notify_cb(iter
);
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3344 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3346 struct mem_cgroup_thresholds
*thresholds
;
3347 struct mem_cgroup_threshold_ary
*new;
3348 unsigned long threshold
;
3349 unsigned long usage
;
3352 ret
= page_counter_memparse(args
, "-1", &threshold
);
3356 mutex_lock(&memcg
->thresholds_lock
);
3359 thresholds
= &memcg
->thresholds
;
3360 usage
= mem_cgroup_usage(memcg
, false);
3361 } else if (type
== _MEMSWAP
) {
3362 thresholds
= &memcg
->memsw_thresholds
;
3363 usage
= mem_cgroup_usage(memcg
, true);
3367 /* Check if a threshold crossed before adding a new one */
3368 if (thresholds
->primary
)
3369 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3371 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3373 /* Allocate memory for new array of thresholds */
3374 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3382 /* Copy thresholds (if any) to new array */
3383 if (thresholds
->primary
) {
3384 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3385 sizeof(struct mem_cgroup_threshold
));
3388 /* Add new threshold */
3389 new->entries
[size
- 1].eventfd
= eventfd
;
3390 new->entries
[size
- 1].threshold
= threshold
;
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
3393 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3394 compare_thresholds
, NULL
);
3396 /* Find current threshold */
3397 new->current_threshold
= -1;
3398 for (i
= 0; i
< size
; i
++) {
3399 if (new->entries
[i
].threshold
<= usage
) {
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
3405 ++new->current_threshold
;
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds
->spare
);
3412 thresholds
->spare
= thresholds
->primary
;
3414 rcu_assign_pointer(thresholds
->primary
, new);
3416 /* To be sure that nobody uses thresholds */
3420 mutex_unlock(&memcg
->thresholds_lock
);
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3426 struct eventfd_ctx
*eventfd
, const char *args
)
3428 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3432 struct eventfd_ctx
*eventfd
, const char *args
)
3434 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3438 struct eventfd_ctx
*eventfd
, enum res_type type
)
3440 struct mem_cgroup_thresholds
*thresholds
;
3441 struct mem_cgroup_threshold_ary
*new;
3442 unsigned long usage
;
3445 mutex_lock(&memcg
->thresholds_lock
);
3448 thresholds
= &memcg
->thresholds
;
3449 usage
= mem_cgroup_usage(memcg
, false);
3450 } else if (type
== _MEMSWAP
) {
3451 thresholds
= &memcg
->memsw_thresholds
;
3452 usage
= mem_cgroup_usage(memcg
, true);
3456 if (!thresholds
->primary
)
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3462 /* Calculate new number of threshold */
3464 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3465 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3469 new = thresholds
->spare
;
3471 /* Set thresholds array to NULL if we don't have thresholds */
3480 /* Copy thresholds and find current threshold */
3481 new->current_threshold
= -1;
3482 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3483 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3486 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3487 if (new->entries
[j
].threshold
<= usage
) {
3489 * new->current_threshold will not be used
3490 * until rcu_assign_pointer(), so it's safe to increment
3493 ++new->current_threshold
;
3499 /* Swap primary and spare array */
3500 thresholds
->spare
= thresholds
->primary
;
3502 rcu_assign_pointer(thresholds
->primary
, new);
3504 /* To be sure that nobody uses thresholds */
3507 /* If all events are unregistered, free the spare array */
3509 kfree(thresholds
->spare
);
3510 thresholds
->spare
= NULL
;
3513 mutex_unlock(&memcg
->thresholds_lock
);
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3517 struct eventfd_ctx
*eventfd
)
3519 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3523 struct eventfd_ctx
*eventfd
)
3525 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3529 struct eventfd_ctx
*eventfd
, const char *args
)
3531 struct mem_cgroup_eventfd_list
*event
;
3533 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3537 spin_lock(&memcg_oom_lock
);
3539 event
->eventfd
= eventfd
;
3540 list_add(&event
->list
, &memcg
->oom_notify
);
3542 /* already in OOM ? */
3543 if (memcg
->under_oom
)
3544 eventfd_signal(eventfd
, 1);
3545 spin_unlock(&memcg_oom_lock
);
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3551 struct eventfd_ctx
*eventfd
)
3553 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3555 spin_lock(&memcg_oom_lock
);
3557 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3558 if (ev
->eventfd
== eventfd
) {
3559 list_del(&ev
->list
);
3564 spin_unlock(&memcg_oom_lock
);
3567 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3569 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3571 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3572 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3577 struct cftype
*cft
, u64 val
)
3579 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
3582 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3585 memcg
->oom_kill_disable
= val
;
3587 memcg_oom_recover(memcg
);
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3594 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3596 return &memcg
->cgwb_list
;
3599 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3601 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3604 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3606 wb_domain_exit(&memcg
->cgwb_domain
);
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3611 wb_domain_size_changed(&memcg
->cgwb_domain
);
3614 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3616 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3618 if (!memcg
->css
.parent
)
3621 return &memcg
->cgwb_domain
;
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
3642 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3643 unsigned long *pheadroom
, unsigned long *pdirty
,
3644 unsigned long *pwriteback
)
3646 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3647 struct mem_cgroup
*parent
;
3649 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3653 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3654 (1 << LRU_ACTIVE_FILE
));
3655 *pheadroom
= PAGE_COUNTER_MAX
;
3657 while ((parent
= parent_mem_cgroup(memcg
))) {
3658 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3659 unsigned long used
= page_counter_read(&memcg
->memory
);
3661 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3666 #else /* CONFIG_CGROUP_WRITEBACK */
3668 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3673 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3681 #endif /* CONFIG_CGROUP_WRITEBACK */
3684 * DO NOT USE IN NEW FILES.
3686 * "cgroup.event_control" implementation.
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3692 * Please deprecate this and replace with something simpler if at all
3697 * Unregister event and free resources.
3699 * Gets called from workqueue.
3701 static void memcg_event_remove(struct work_struct
*work
)
3703 struct mem_cgroup_event
*event
=
3704 container_of(work
, struct mem_cgroup_event
, remove
);
3705 struct mem_cgroup
*memcg
= event
->memcg
;
3707 remove_wait_queue(event
->wqh
, &event
->wait
);
3709 event
->unregister_event(memcg
, event
->eventfd
);
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event
->eventfd
, 1);
3714 eventfd_ctx_put(event
->eventfd
);
3716 css_put(&memcg
->css
);
3720 * Gets called on POLLHUP on eventfd when user closes it.
3722 * Called with wqh->lock held and interrupts disabled.
3724 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3725 int sync
, void *key
)
3727 struct mem_cgroup_event
*event
=
3728 container_of(wait
, struct mem_cgroup_event
, wait
);
3729 struct mem_cgroup
*memcg
= event
->memcg
;
3730 unsigned long flags
= (unsigned long)key
;
3732 if (flags
& POLLHUP
) {
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3742 spin_lock(&memcg
->event_list_lock
);
3743 if (!list_empty(&event
->list
)) {
3744 list_del_init(&event
->list
);
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3749 schedule_work(&event
->remove
);
3751 spin_unlock(&memcg
->event_list_lock
);
3757 static void memcg_event_ptable_queue_proc(struct file
*file
,
3758 wait_queue_head_t
*wqh
, poll_table
*pt
)
3760 struct mem_cgroup_event
*event
=
3761 container_of(pt
, struct mem_cgroup_event
, pt
);
3764 add_wait_queue(wqh
, &event
->wait
);
3768 * DO NOT USE IN NEW FILES.
3770 * Parse input and register new cgroup event handler.
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3775 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3776 char *buf
, size_t nbytes
, loff_t off
)
3778 struct cgroup_subsys_state
*css
= of_css(of
);
3779 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3780 struct mem_cgroup_event
*event
;
3781 struct cgroup_subsys_state
*cfile_css
;
3782 unsigned int efd
, cfd
;
3789 buf
= strstrip(buf
);
3791 efd
= simple_strtoul(buf
, &endp
, 10);
3796 cfd
= simple_strtoul(buf
, &endp
, 10);
3797 if ((*endp
!= ' ') && (*endp
!= '\0'))
3801 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3805 event
->memcg
= memcg
;
3806 INIT_LIST_HEAD(&event
->list
);
3807 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3808 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3809 INIT_WORK(&event
->remove
, memcg_event_remove
);
3817 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3818 if (IS_ERR(event
->eventfd
)) {
3819 ret
= PTR_ERR(event
->eventfd
);
3826 goto out_put_eventfd
;
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3841 * DO NOT ADD NEW FILES.
3843 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3845 if (!strcmp(name
, "memory.usage_in_bytes")) {
3846 event
->register_event
= mem_cgroup_usage_register_event
;
3847 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3848 } else if (!strcmp(name
, "memory.oom_control")) {
3849 event
->register_event
= mem_cgroup_oom_register_event
;
3850 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3851 } else if (!strcmp(name
, "memory.pressure_level")) {
3852 event
->register_event
= vmpressure_register_event
;
3853 event
->unregister_event
= vmpressure_unregister_event
;
3854 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3855 event
->register_event
= memsw_cgroup_usage_register_event
;
3856 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
3867 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3868 &memory_cgrp_subsys
);
3870 if (IS_ERR(cfile_css
))
3872 if (cfile_css
!= css
) {
3877 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3881 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3883 spin_lock(&memcg
->event_list_lock
);
3884 list_add(&event
->list
, &memcg
->event_list
);
3885 spin_unlock(&memcg
->event_list_lock
);
3897 eventfd_ctx_put(event
->eventfd
);
3906 static struct cftype mem_cgroup_legacy_files
[] = {
3908 .name
= "usage_in_bytes",
3909 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3910 .read_u64
= mem_cgroup_read_u64
,
3913 .name
= "max_usage_in_bytes",
3914 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3915 .write
= mem_cgroup_reset
,
3916 .read_u64
= mem_cgroup_read_u64
,
3919 .name
= "limit_in_bytes",
3920 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3921 .write
= mem_cgroup_write
,
3922 .read_u64
= mem_cgroup_read_u64
,
3925 .name
= "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3927 .write
= mem_cgroup_write
,
3928 .read_u64
= mem_cgroup_read_u64
,
3932 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3933 .write
= mem_cgroup_reset
,
3934 .read_u64
= mem_cgroup_read_u64
,
3938 .seq_show
= memcg_stat_show
,
3941 .name
= "force_empty",
3942 .write
= mem_cgroup_force_empty_write
,
3945 .name
= "use_hierarchy",
3946 .write_u64
= mem_cgroup_hierarchy_write
,
3947 .read_u64
= mem_cgroup_hierarchy_read
,
3950 .name
= "cgroup.event_control", /* XXX: for compat */
3951 .write
= memcg_write_event_control
,
3952 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3955 .name
= "swappiness",
3956 .read_u64
= mem_cgroup_swappiness_read
,
3957 .write_u64
= mem_cgroup_swappiness_write
,
3960 .name
= "move_charge_at_immigrate",
3961 .read_u64
= mem_cgroup_move_charge_read
,
3962 .write_u64
= mem_cgroup_move_charge_write
,
3965 .name
= "oom_control",
3966 .seq_show
= mem_cgroup_oom_control_read
,
3967 .write_u64
= mem_cgroup_oom_control_write
,
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3971 .name
= "pressure_level",
3975 .name
= "numa_stat",
3976 .seq_show
= memcg_numa_stat_show
,
3980 .name
= "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
3982 .write
= mem_cgroup_write
,
3983 .read_u64
= mem_cgroup_read_u64
,
3986 .name
= "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
3988 .read_u64
= mem_cgroup_read_u64
,
3991 .name
= "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
3993 .write
= mem_cgroup_reset
,
3994 .read_u64
= mem_cgroup_read_u64
,
3997 .name
= "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
3999 .write
= mem_cgroup_reset
,
4000 .read_u64
= mem_cgroup_read_u64
,
4002 #ifdef CONFIG_SLABINFO
4004 .name
= "kmem.slabinfo",
4005 .seq_start
= slab_start
,
4006 .seq_next
= slab_next
,
4007 .seq_stop
= slab_stop
,
4008 .seq_show
= memcg_slab_show
,
4012 .name
= "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4014 .write
= mem_cgroup_write
,
4015 .read_u64
= mem_cgroup_read_u64
,
4018 .name
= "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4020 .read_u64
= mem_cgroup_read_u64
,
4023 .name
= "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4025 .write
= mem_cgroup_reset
,
4026 .read_u64
= mem_cgroup_read_u64
,
4029 .name
= "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4031 .write
= mem_cgroup_reset
,
4032 .read_u64
= mem_cgroup_read_u64
,
4034 { }, /* terminate */
4038 * Private memory cgroup IDR
4040 * Swap-out records and page cache shadow entries need to store memcg
4041 * references in constrained space, so we maintain an ID space that is
4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043 * memory-controlled cgroups to 64k.
4045 * However, there usually are many references to the oflline CSS after
4046 * the cgroup has been destroyed, such as page cache or reclaimable
4047 * slab objects, that don't need to hang on to the ID. We want to keep
4048 * those dead CSS from occupying IDs, or we might quickly exhaust the
4049 * relatively small ID space and prevent the creation of new cgroups
4050 * even when there are much fewer than 64k cgroups - possibly none.
4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053 * be freed and recycled when it's no longer needed, which is usually
4054 * when the CSS is offlined.
4056 * The only exception to that are records of swapped out tmpfs/shmem
4057 * pages that need to be attributed to live ancestors on swapin. But
4058 * those references are manageable from userspace.
4061 static DEFINE_IDR(mem_cgroup_idr
);
4063 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4065 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4066 atomic_add(n
, &memcg
->id
.ref
);
4069 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4071 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4072 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4073 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4076 /* Memcg ID pins CSS */
4077 css_put(&memcg
->css
);
4081 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4083 mem_cgroup_id_get_many(memcg
, 1);
4086 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4088 mem_cgroup_id_put_many(memcg
, 1);
4092 * mem_cgroup_from_id - look up a memcg from a memcg id
4093 * @id: the memcg id to look up
4095 * Caller must hold rcu_read_lock().
4097 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4099 WARN_ON_ONCE(!rcu_read_lock_held());
4100 return idr_find(&mem_cgroup_idr
, id
);
4103 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4105 struct mem_cgroup_per_node
*pn
;
4108 * This routine is called against possible nodes.
4109 * But it's BUG to call kmalloc() against offline node.
4111 * TODO: this routine can waste much memory for nodes which will
4112 * never be onlined. It's better to use memory hotplug callback
4115 if (!node_state(node
, N_NORMAL_MEMORY
))
4117 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4121 lruvec_init(&pn
->lruvec
);
4122 pn
->usage_in_excess
= 0;
4123 pn
->on_tree
= false;
4126 memcg
->nodeinfo
[node
] = pn
;
4130 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4132 kfree(memcg
->nodeinfo
[node
]);
4135 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4140 free_mem_cgroup_per_node_info(memcg
, node
);
4141 free_percpu(memcg
->stat
);
4145 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4147 memcg_wb_domain_exit(memcg
);
4148 __mem_cgroup_free(memcg
);
4151 static struct mem_cgroup
*mem_cgroup_alloc(void)
4153 struct mem_cgroup
*memcg
;
4157 size
= sizeof(struct mem_cgroup
);
4158 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4160 memcg
= kzalloc(size
, GFP_KERNEL
);
4164 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4165 1, MEM_CGROUP_ID_MAX
,
4167 if (memcg
->id
.id
< 0)
4170 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4175 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4178 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4181 INIT_WORK(&memcg
->high_work
, high_work_func
);
4182 memcg
->last_scanned_node
= MAX_NUMNODES
;
4183 INIT_LIST_HEAD(&memcg
->oom_notify
);
4184 mutex_init(&memcg
->thresholds_lock
);
4185 spin_lock_init(&memcg
->move_lock
);
4186 vmpressure_init(&memcg
->vmpressure
);
4187 INIT_LIST_HEAD(&memcg
->event_list
);
4188 spin_lock_init(&memcg
->event_list_lock
);
4189 memcg
->socket_pressure
= jiffies
;
4191 memcg
->kmemcg_id
= -1;
4193 #ifdef CONFIG_CGROUP_WRITEBACK
4194 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4196 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4199 if (memcg
->id
.id
> 0)
4200 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4201 __mem_cgroup_free(memcg
);
4205 static struct cgroup_subsys_state
* __ref
4206 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4208 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4209 struct mem_cgroup
*memcg
;
4210 long error
= -ENOMEM
;
4212 memcg
= mem_cgroup_alloc();
4214 return ERR_PTR(error
);
4216 memcg
->high
= PAGE_COUNTER_MAX
;
4217 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4219 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4220 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4222 if (parent
&& parent
->use_hierarchy
) {
4223 memcg
->use_hierarchy
= true;
4224 page_counter_init(&memcg
->memory
, &parent
->memory
);
4225 page_counter_init(&memcg
->swap
, &parent
->swap
);
4226 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4227 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4228 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4230 page_counter_init(&memcg
->memory
, NULL
);
4231 page_counter_init(&memcg
->swap
, NULL
);
4232 page_counter_init(&memcg
->memsw
, NULL
);
4233 page_counter_init(&memcg
->kmem
, NULL
);
4234 page_counter_init(&memcg
->tcpmem
, NULL
);
4236 * Deeper hierachy with use_hierarchy == false doesn't make
4237 * much sense so let cgroup subsystem know about this
4238 * unfortunate state in our controller.
4240 if (parent
!= root_mem_cgroup
)
4241 memory_cgrp_subsys
.broken_hierarchy
= true;
4244 /* The following stuff does not apply to the root */
4246 root_mem_cgroup
= memcg
;
4250 error
= memcg_online_kmem(memcg
);
4254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4255 static_branch_inc(&memcg_sockets_enabled_key
);
4259 mem_cgroup_free(memcg
);
4260 return ERR_PTR(-ENOMEM
);
4263 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4265 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4267 /* Online state pins memcg ID, memcg ID pins CSS */
4268 atomic_set(&memcg
->id
.ref
, 1);
4273 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4275 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4276 struct mem_cgroup_event
*event
, *tmp
;
4279 * Unregister events and notify userspace.
4280 * Notify userspace about cgroup removing only after rmdir of cgroup
4281 * directory to avoid race between userspace and kernelspace.
4283 spin_lock(&memcg
->event_list_lock
);
4284 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4285 list_del_init(&event
->list
);
4286 schedule_work(&event
->remove
);
4288 spin_unlock(&memcg
->event_list_lock
);
4290 memcg_offline_kmem(memcg
);
4291 wb_memcg_offline(memcg
);
4293 mem_cgroup_id_put(memcg
);
4296 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4298 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4300 invalidate_reclaim_iterators(memcg
);
4303 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4305 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4307 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4308 static_branch_dec(&memcg_sockets_enabled_key
);
4310 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4311 static_branch_dec(&memcg_sockets_enabled_key
);
4313 vmpressure_cleanup(&memcg
->vmpressure
);
4314 cancel_work_sync(&memcg
->high_work
);
4315 mem_cgroup_remove_from_trees(memcg
);
4316 memcg_free_kmem(memcg
);
4317 mem_cgroup_free(memcg
);
4321 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4322 * @css: the target css
4324 * Reset the states of the mem_cgroup associated with @css. This is
4325 * invoked when the userland requests disabling on the default hierarchy
4326 * but the memcg is pinned through dependency. The memcg should stop
4327 * applying policies and should revert to the vanilla state as it may be
4328 * made visible again.
4330 * The current implementation only resets the essential configurations.
4331 * This needs to be expanded to cover all the visible parts.
4333 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4335 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4337 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4338 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4339 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4340 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4341 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4343 memcg
->high
= PAGE_COUNTER_MAX
;
4344 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4345 memcg_wb_domain_size_changed(memcg
);
4349 /* Handlers for move charge at task migration. */
4350 static int mem_cgroup_do_precharge(unsigned long count
)
4354 /* Try a single bulk charge without reclaim first, kswapd may wake */
4355 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4357 mc
.precharge
+= count
;
4361 /* Try charges one by one with reclaim, but do not retry */
4363 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4377 enum mc_target_type
{
4383 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4384 unsigned long addr
, pte_t ptent
)
4386 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4388 if (!page
|| !page_mapped(page
))
4390 if (PageAnon(page
)) {
4391 if (!(mc
.flags
& MOVE_ANON
))
4394 if (!(mc
.flags
& MOVE_FILE
))
4397 if (!get_page_unless_zero(page
))
4404 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4405 pte_t ptent
, swp_entry_t
*entry
)
4407 struct page
*page
= NULL
;
4408 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4410 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4413 * Because lookup_swap_cache() updates some statistics counter,
4414 * we call find_get_page() with swapper_space directly.
4416 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4417 if (do_memsw_account())
4418 entry
->val
= ent
.val
;
4423 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4424 pte_t ptent
, swp_entry_t
*entry
)
4430 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4431 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4433 struct page
*page
= NULL
;
4434 struct address_space
*mapping
;
4437 if (!vma
->vm_file
) /* anonymous vma */
4439 if (!(mc
.flags
& MOVE_FILE
))
4442 mapping
= vma
->vm_file
->f_mapping
;
4443 pgoff
= linear_page_index(vma
, addr
);
4445 /* page is moved even if it's not RSS of this task(page-faulted). */
4447 /* shmem/tmpfs may report page out on swap: account for that too. */
4448 if (shmem_mapping(mapping
)) {
4449 page
= find_get_entry(mapping
, pgoff
);
4450 if (radix_tree_exceptional_entry(page
)) {
4451 swp_entry_t swp
= radix_to_swp_entry(page
);
4452 if (do_memsw_account())
4454 page
= find_get_page(swap_address_space(swp
),
4458 page
= find_get_page(mapping
, pgoff
);
4460 page
= find_get_page(mapping
, pgoff
);
4466 * mem_cgroup_move_account - move account of the page
4468 * @compound: charge the page as compound or small page
4469 * @from: mem_cgroup which the page is moved from.
4470 * @to: mem_cgroup which the page is moved to. @from != @to.
4472 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4474 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4477 static int mem_cgroup_move_account(struct page
*page
,
4479 struct mem_cgroup
*from
,
4480 struct mem_cgroup
*to
)
4482 unsigned long flags
;
4483 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4487 VM_BUG_ON(from
== to
);
4488 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4489 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4492 * Prevent mem_cgroup_migrate() from looking at
4493 * page->mem_cgroup of its source page while we change it.
4496 if (!trylock_page(page
))
4500 if (page
->mem_cgroup
!= from
)
4503 anon
= PageAnon(page
);
4505 spin_lock_irqsave(&from
->move_lock
, flags
);
4507 if (!anon
&& page_mapped(page
)) {
4508 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4510 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4515 * move_lock grabbed above and caller set from->moving_account, so
4516 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4517 * So mapping should be stable for dirty pages.
4519 if (!anon
&& PageDirty(page
)) {
4520 struct address_space
*mapping
= page_mapping(page
);
4522 if (mapping_cap_account_dirty(mapping
)) {
4523 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4525 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4530 if (PageWriteback(page
)) {
4531 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4533 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4538 * It is safe to change page->mem_cgroup here because the page
4539 * is referenced, charged, and isolated - we can't race with
4540 * uncharging, charging, migration, or LRU putback.
4543 /* caller should have done css_get */
4544 page
->mem_cgroup
= to
;
4545 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4549 local_irq_disable();
4550 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4551 memcg_check_events(to
, page
);
4552 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4553 memcg_check_events(from
, page
);
4562 * get_mctgt_type - get target type of moving charge
4563 * @vma: the vma the pte to be checked belongs
4564 * @addr: the address corresponding to the pte to be checked
4565 * @ptent: the pte to be checked
4566 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4569 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4570 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4571 * move charge. if @target is not NULL, the page is stored in target->page
4572 * with extra refcnt got(Callers should handle it).
4573 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4574 * target for charge migration. if @target is not NULL, the entry is stored
4577 * Called with pte lock held.
4580 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4581 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4583 struct page
*page
= NULL
;
4584 enum mc_target_type ret
= MC_TARGET_NONE
;
4585 swp_entry_t ent
= { .val
= 0 };
4587 if (pte_present(ptent
))
4588 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4589 else if (is_swap_pte(ptent
))
4590 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4591 else if (pte_none(ptent
))
4592 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4594 if (!page
&& !ent
.val
)
4598 * Do only loose check w/o serialization.
4599 * mem_cgroup_move_account() checks the page is valid or
4600 * not under LRU exclusion.
4602 if (page
->mem_cgroup
== mc
.from
) {
4603 ret
= MC_TARGET_PAGE
;
4605 target
->page
= page
;
4607 if (!ret
|| !target
)
4610 /* There is a swap entry and a page doesn't exist or isn't charged */
4611 if (ent
.val
&& !ret
&&
4612 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4613 ret
= MC_TARGET_SWAP
;
4620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4622 * We don't consider swapping or file mapped pages because THP does not
4623 * support them for now.
4624 * Caller should make sure that pmd_trans_huge(pmd) is true.
4626 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4627 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4629 struct page
*page
= NULL
;
4630 enum mc_target_type ret
= MC_TARGET_NONE
;
4632 page
= pmd_page(pmd
);
4633 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4634 if (!(mc
.flags
& MOVE_ANON
))
4636 if (page
->mem_cgroup
== mc
.from
) {
4637 ret
= MC_TARGET_PAGE
;
4640 target
->page
= page
;
4646 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4647 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4649 return MC_TARGET_NONE
;
4653 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4654 unsigned long addr
, unsigned long end
,
4655 struct mm_walk
*walk
)
4657 struct vm_area_struct
*vma
= walk
->vma
;
4661 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4663 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4664 mc
.precharge
+= HPAGE_PMD_NR
;
4669 if (pmd_trans_unstable(pmd
))
4671 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4672 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4673 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4674 mc
.precharge
++; /* increment precharge temporarily */
4675 pte_unmap_unlock(pte
- 1, ptl
);
4681 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4683 unsigned long precharge
;
4685 struct mm_walk mem_cgroup_count_precharge_walk
= {
4686 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4689 down_read(&mm
->mmap_sem
);
4690 walk_page_range(0, mm
->highest_vm_end
,
4691 &mem_cgroup_count_precharge_walk
);
4692 up_read(&mm
->mmap_sem
);
4694 precharge
= mc
.precharge
;
4700 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4702 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4704 VM_BUG_ON(mc
.moving_task
);
4705 mc
.moving_task
= current
;
4706 return mem_cgroup_do_precharge(precharge
);
4709 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710 static void __mem_cgroup_clear_mc(void)
4712 struct mem_cgroup
*from
= mc
.from
;
4713 struct mem_cgroup
*to
= mc
.to
;
4715 /* we must uncharge all the leftover precharges from mc.to */
4717 cancel_charge(mc
.to
, mc
.precharge
);
4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 * we must uncharge here.
4724 if (mc
.moved_charge
) {
4725 cancel_charge(mc
.from
, mc
.moved_charge
);
4726 mc
.moved_charge
= 0;
4728 /* we must fixup refcnts and charges */
4729 if (mc
.moved_swap
) {
4730 /* uncharge swap account from the old cgroup */
4731 if (!mem_cgroup_is_root(mc
.from
))
4732 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4734 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4737 * we charged both to->memory and to->memsw, so we
4738 * should uncharge to->memory.
4740 if (!mem_cgroup_is_root(mc
.to
))
4741 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4743 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4744 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4748 memcg_oom_recover(from
);
4749 memcg_oom_recover(to
);
4750 wake_up_all(&mc
.waitq
);
4753 static void mem_cgroup_clear_mc(void)
4755 struct mm_struct
*mm
= mc
.mm
;
4758 * we must clear moving_task before waking up waiters at the end of
4761 mc
.moving_task
= NULL
;
4762 __mem_cgroup_clear_mc();
4763 spin_lock(&mc
.lock
);
4767 spin_unlock(&mc
.lock
);
4772 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4774 struct cgroup_subsys_state
*css
;
4775 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4776 struct mem_cgroup
*from
;
4777 struct task_struct
*leader
, *p
;
4778 struct mm_struct
*mm
;
4779 unsigned long move_flags
;
4782 /* charge immigration isn't supported on the default hierarchy */
4783 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4787 * Multi-process migrations only happen on the default hierarchy
4788 * where charge immigration is not used. Perform charge
4789 * immigration if @tset contains a leader and whine if there are
4793 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4796 memcg
= mem_cgroup_from_css(css
);
4802 * We are now commited to this value whatever it is. Changes in this
4803 * tunable will only affect upcoming migrations, not the current one.
4804 * So we need to save it, and keep it going.
4806 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4810 from
= mem_cgroup_from_task(p
);
4812 VM_BUG_ON(from
== memcg
);
4814 mm
= get_task_mm(p
);
4817 /* We move charges only when we move a owner of the mm */
4818 if (mm
->owner
== p
) {
4821 VM_BUG_ON(mc
.precharge
);
4822 VM_BUG_ON(mc
.moved_charge
);
4823 VM_BUG_ON(mc
.moved_swap
);
4825 spin_lock(&mc
.lock
);
4829 mc
.flags
= move_flags
;
4830 spin_unlock(&mc
.lock
);
4831 /* We set mc.moving_task later */
4833 ret
= mem_cgroup_precharge_mc(mm
);
4835 mem_cgroup_clear_mc();
4842 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4845 mem_cgroup_clear_mc();
4848 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4849 unsigned long addr
, unsigned long end
,
4850 struct mm_walk
*walk
)
4853 struct vm_area_struct
*vma
= walk
->vma
;
4856 enum mc_target_type target_type
;
4857 union mc_target target
;
4860 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4862 if (mc
.precharge
< HPAGE_PMD_NR
) {
4866 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4867 if (target_type
== MC_TARGET_PAGE
) {
4869 if (!isolate_lru_page(page
)) {
4870 if (!mem_cgroup_move_account(page
, true,
4872 mc
.precharge
-= HPAGE_PMD_NR
;
4873 mc
.moved_charge
+= HPAGE_PMD_NR
;
4875 putback_lru_page(page
);
4883 if (pmd_trans_unstable(pmd
))
4886 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4887 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4888 pte_t ptent
= *(pte
++);
4894 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4895 case MC_TARGET_PAGE
:
4898 * We can have a part of the split pmd here. Moving it
4899 * can be done but it would be too convoluted so simply
4900 * ignore such a partial THP and keep it in original
4901 * memcg. There should be somebody mapping the head.
4903 if (PageTransCompound(page
))
4905 if (isolate_lru_page(page
))
4907 if (!mem_cgroup_move_account(page
, false,
4910 /* we uncharge from mc.from later. */
4913 putback_lru_page(page
);
4914 put
: /* get_mctgt_type() gets the page */
4917 case MC_TARGET_SWAP
:
4919 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4921 /* we fixup refcnts and charges later. */
4929 pte_unmap_unlock(pte
- 1, ptl
);
4934 * We have consumed all precharges we got in can_attach().
4935 * We try charge one by one, but don't do any additional
4936 * charges to mc.to if we have failed in charge once in attach()
4939 ret
= mem_cgroup_do_precharge(1);
4947 static void mem_cgroup_move_charge(void)
4949 struct mm_walk mem_cgroup_move_charge_walk
= {
4950 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4954 lru_add_drain_all();
4956 * Signal lock_page_memcg() to take the memcg's move_lock
4957 * while we're moving its pages to another memcg. Then wait
4958 * for already started RCU-only updates to finish.
4960 atomic_inc(&mc
.from
->moving_account
);
4963 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
4965 * Someone who are holding the mmap_sem might be waiting in
4966 * waitq. So we cancel all extra charges, wake up all waiters,
4967 * and retry. Because we cancel precharges, we might not be able
4968 * to move enough charges, but moving charge is a best-effort
4969 * feature anyway, so it wouldn't be a big problem.
4971 __mem_cgroup_clear_mc();
4976 * When we have consumed all precharges and failed in doing
4977 * additional charge, the page walk just aborts.
4979 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
4981 up_read(&mc
.mm
->mmap_sem
);
4982 atomic_dec(&mc
.from
->moving_account
);
4985 static void mem_cgroup_move_task(void)
4988 mem_cgroup_move_charge();
4989 mem_cgroup_clear_mc();
4992 #else /* !CONFIG_MMU */
4993 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4997 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5000 static void mem_cgroup_move_task(void)
5006 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5007 * to verify whether we're attached to the default hierarchy on each mount
5010 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5013 * use_hierarchy is forced on the default hierarchy. cgroup core
5014 * guarantees that @root doesn't have any children, so turning it
5015 * on for the root memcg is enough.
5017 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5018 root_mem_cgroup
->use_hierarchy
= true;
5020 root_mem_cgroup
->use_hierarchy
= false;
5023 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5026 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5028 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5031 static int memory_low_show(struct seq_file
*m
, void *v
)
5033 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5034 unsigned long low
= READ_ONCE(memcg
->low
);
5036 if (low
== PAGE_COUNTER_MAX
)
5037 seq_puts(m
, "max\n");
5039 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5044 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5045 char *buf
, size_t nbytes
, loff_t off
)
5047 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5051 buf
= strstrip(buf
);
5052 err
= page_counter_memparse(buf
, "max", &low
);
5061 static int memory_high_show(struct seq_file
*m
, void *v
)
5063 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5064 unsigned long high
= READ_ONCE(memcg
->high
);
5066 if (high
== PAGE_COUNTER_MAX
)
5067 seq_puts(m
, "max\n");
5069 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5074 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5075 char *buf
, size_t nbytes
, loff_t off
)
5077 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5078 unsigned long nr_pages
;
5082 buf
= strstrip(buf
);
5083 err
= page_counter_memparse(buf
, "max", &high
);
5089 nr_pages
= page_counter_read(&memcg
->memory
);
5090 if (nr_pages
> high
)
5091 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5094 memcg_wb_domain_size_changed(memcg
);
5098 static int memory_max_show(struct seq_file
*m
, void *v
)
5100 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5101 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5103 if (max
== PAGE_COUNTER_MAX
)
5104 seq_puts(m
, "max\n");
5106 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5111 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5112 char *buf
, size_t nbytes
, loff_t off
)
5114 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5115 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5116 bool drained
= false;
5120 buf
= strstrip(buf
);
5121 err
= page_counter_memparse(buf
, "max", &max
);
5125 xchg(&memcg
->memory
.limit
, max
);
5128 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5130 if (nr_pages
<= max
)
5133 if (signal_pending(current
)) {
5139 drain_all_stock(memcg
);
5145 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5151 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5152 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5156 memcg_wb_domain_size_changed(memcg
);
5160 static int memory_events_show(struct seq_file
*m
, void *v
)
5162 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5164 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5165 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5166 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5167 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5172 static int memory_stat_show(struct seq_file
*m
, void *v
)
5174 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5175 unsigned long stat
[MEMCG_NR_STAT
];
5176 unsigned long events
[MEMCG_NR_EVENTS
];
5180 * Provide statistics on the state of the memory subsystem as
5181 * well as cumulative event counters that show past behavior.
5183 * This list is ordered following a combination of these gradients:
5184 * 1) generic big picture -> specifics and details
5185 * 2) reflecting userspace activity -> reflecting kernel heuristics
5187 * Current memory state:
5190 tree_stat(memcg
, stat
);
5191 tree_events(memcg
, events
);
5193 seq_printf(m
, "anon %llu\n",
5194 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5195 seq_printf(m
, "file %llu\n",
5196 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5197 seq_printf(m
, "kernel_stack %llu\n",
5198 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5199 seq_printf(m
, "slab %llu\n",
5200 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5201 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5202 seq_printf(m
, "sock %llu\n",
5203 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5205 seq_printf(m
, "file_mapped %llu\n",
5206 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5207 seq_printf(m
, "file_dirty %llu\n",
5208 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5209 seq_printf(m
, "file_writeback %llu\n",
5210 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5212 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5213 struct mem_cgroup
*mi
;
5214 unsigned long val
= 0;
5216 for_each_mem_cgroup_tree(mi
, memcg
)
5217 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5218 seq_printf(m
, "%s %llu\n",
5219 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5222 seq_printf(m
, "slab_reclaimable %llu\n",
5223 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5224 seq_printf(m
, "slab_unreclaimable %llu\n",
5225 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5227 /* Accumulated memory events */
5229 seq_printf(m
, "pgfault %lu\n",
5230 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5231 seq_printf(m
, "pgmajfault %lu\n",
5232 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5237 static struct cftype memory_files
[] = {
5240 .flags
= CFTYPE_NOT_ON_ROOT
,
5241 .read_u64
= memory_current_read
,
5245 .flags
= CFTYPE_NOT_ON_ROOT
,
5246 .seq_show
= memory_low_show
,
5247 .write
= memory_low_write
,
5251 .flags
= CFTYPE_NOT_ON_ROOT
,
5252 .seq_show
= memory_high_show
,
5253 .write
= memory_high_write
,
5257 .flags
= CFTYPE_NOT_ON_ROOT
,
5258 .seq_show
= memory_max_show
,
5259 .write
= memory_max_write
,
5263 .flags
= CFTYPE_NOT_ON_ROOT
,
5264 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5265 .seq_show
= memory_events_show
,
5269 .flags
= CFTYPE_NOT_ON_ROOT
,
5270 .seq_show
= memory_stat_show
,
5275 struct cgroup_subsys memory_cgrp_subsys
= {
5276 .css_alloc
= mem_cgroup_css_alloc
,
5277 .css_online
= mem_cgroup_css_online
,
5278 .css_offline
= mem_cgroup_css_offline
,
5279 .css_released
= mem_cgroup_css_released
,
5280 .css_free
= mem_cgroup_css_free
,
5281 .css_reset
= mem_cgroup_css_reset
,
5282 .can_attach
= mem_cgroup_can_attach
,
5283 .cancel_attach
= mem_cgroup_cancel_attach
,
5284 .post_attach
= mem_cgroup_move_task
,
5285 .bind
= mem_cgroup_bind
,
5286 .dfl_cftypes
= memory_files
,
5287 .legacy_cftypes
= mem_cgroup_legacy_files
,
5292 * mem_cgroup_low - check if memory consumption is below the normal range
5293 * @root: the highest ancestor to consider
5294 * @memcg: the memory cgroup to check
5296 * Returns %true if memory consumption of @memcg, and that of all
5297 * configurable ancestors up to @root, is below the normal range.
5299 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5301 if (mem_cgroup_disabled())
5305 * The toplevel group doesn't have a configurable range, so
5306 * it's never low when looked at directly, and it is not
5307 * considered an ancestor when assessing the hierarchy.
5310 if (memcg
== root_mem_cgroup
)
5313 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5316 while (memcg
!= root
) {
5317 memcg
= parent_mem_cgroup(memcg
);
5319 if (memcg
== root_mem_cgroup
)
5322 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5329 * mem_cgroup_try_charge - try charging a page
5330 * @page: page to charge
5331 * @mm: mm context of the victim
5332 * @gfp_mask: reclaim mode
5333 * @memcgp: charged memcg return
5334 * @compound: charge the page as compound or small page
5336 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5337 * pages according to @gfp_mask if necessary.
5339 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5340 * Otherwise, an error code is returned.
5342 * After page->mapping has been set up, the caller must finalize the
5343 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5344 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5346 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5347 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5350 struct mem_cgroup
*memcg
= NULL
;
5351 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5354 if (mem_cgroup_disabled())
5357 if (PageSwapCache(page
)) {
5359 * Every swap fault against a single page tries to charge the
5360 * page, bail as early as possible. shmem_unuse() encounters
5361 * already charged pages, too. The USED bit is protected by
5362 * the page lock, which serializes swap cache removal, which
5363 * in turn serializes uncharging.
5365 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5366 if (page
->mem_cgroup
)
5369 if (do_swap_account
) {
5370 swp_entry_t ent
= { .val
= page_private(page
), };
5371 unsigned short id
= lookup_swap_cgroup_id(ent
);
5374 memcg
= mem_cgroup_from_id(id
);
5375 if (memcg
&& !css_tryget_online(&memcg
->css
))
5382 memcg
= get_mem_cgroup_from_mm(mm
);
5384 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5386 css_put(&memcg
->css
);
5393 * mem_cgroup_commit_charge - commit a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5396 * @lrucare: page might be on LRU already
5397 * @compound: charge the page as compound or small page
5399 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5400 * after page->mapping has been set up. This must happen atomically
5401 * as part of the page instantiation, i.e. under the page table lock
5402 * for anonymous pages, under the page lock for page and swap cache.
5404 * In addition, the page must not be on the LRU during the commit, to
5405 * prevent racing with task migration. If it might be, use @lrucare.
5407 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5409 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5410 bool lrucare
, bool compound
)
5412 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5414 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5415 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5417 if (mem_cgroup_disabled())
5420 * Swap faults will attempt to charge the same page multiple
5421 * times. But reuse_swap_page() might have removed the page
5422 * from swapcache already, so we can't check PageSwapCache().
5427 commit_charge(page
, memcg
, lrucare
);
5429 local_irq_disable();
5430 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5431 memcg_check_events(memcg
, page
);
5434 if (do_memsw_account() && PageSwapCache(page
)) {
5435 swp_entry_t entry
= { .val
= page_private(page
) };
5437 * The swap entry might not get freed for a long time,
5438 * let's not wait for it. The page already received a
5439 * memory+swap charge, drop the swap entry duplicate.
5441 mem_cgroup_uncharge_swap(entry
);
5446 * mem_cgroup_cancel_charge - cancel a page charge
5447 * @page: page to charge
5448 * @memcg: memcg to charge the page to
5449 * @compound: charge the page as compound or small page
5451 * Cancel a charge transaction started by mem_cgroup_try_charge().
5453 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5456 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5458 if (mem_cgroup_disabled())
5461 * Swap faults will attempt to charge the same page multiple
5462 * times. But reuse_swap_page() might have removed the page
5463 * from swapcache already, so we can't check PageSwapCache().
5468 cancel_charge(memcg
, nr_pages
);
5471 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5472 unsigned long nr_anon
, unsigned long nr_file
,
5473 unsigned long nr_huge
, unsigned long nr_kmem
,
5474 struct page
*dummy_page
)
5476 unsigned long nr_pages
= nr_anon
+ nr_file
+ nr_kmem
;
5477 unsigned long flags
;
5479 if (!mem_cgroup_is_root(memcg
)) {
5480 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5481 if (do_memsw_account())
5482 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5483 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && nr_kmem
)
5484 page_counter_uncharge(&memcg
->kmem
, nr_kmem
);
5485 memcg_oom_recover(memcg
);
5488 local_irq_save(flags
);
5489 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5490 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5491 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5492 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5493 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5494 memcg_check_events(memcg
, dummy_page
);
5495 local_irq_restore(flags
);
5497 if (!mem_cgroup_is_root(memcg
))
5498 css_put_many(&memcg
->css
, nr_pages
);
5501 static void uncharge_list(struct list_head
*page_list
)
5503 struct mem_cgroup
*memcg
= NULL
;
5504 unsigned long nr_anon
= 0;
5505 unsigned long nr_file
= 0;
5506 unsigned long nr_huge
= 0;
5507 unsigned long nr_kmem
= 0;
5508 unsigned long pgpgout
= 0;
5509 struct list_head
*next
;
5513 * Note that the list can be a single page->lru; hence the
5514 * do-while loop instead of a simple list_for_each_entry().
5516 next
= page_list
->next
;
5518 page
= list_entry(next
, struct page
, lru
);
5519 next
= page
->lru
.next
;
5521 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5522 VM_BUG_ON_PAGE(page_count(page
), page
);
5524 if (!page
->mem_cgroup
)
5528 * Nobody should be changing or seriously looking at
5529 * page->mem_cgroup at this point, we have fully
5530 * exclusive access to the page.
5533 if (memcg
!= page
->mem_cgroup
) {
5535 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5536 nr_huge
, nr_kmem
, page
);
5537 pgpgout
= nr_anon
= nr_file
=
5538 nr_huge
= nr_kmem
= 0;
5540 memcg
= page
->mem_cgroup
;
5543 if (!PageKmemcg(page
)) {
5544 unsigned int nr_pages
= 1;
5546 if (PageTransHuge(page
)) {
5547 nr_pages
<<= compound_order(page
);
5548 nr_huge
+= nr_pages
;
5551 nr_anon
+= nr_pages
;
5553 nr_file
+= nr_pages
;
5556 nr_kmem
+= 1 << compound_order(page
);
5557 __ClearPageKmemcg(page
);
5560 page
->mem_cgroup
= NULL
;
5561 } while (next
!= page_list
);
5564 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5565 nr_huge
, nr_kmem
, page
);
5569 * mem_cgroup_uncharge - uncharge a page
5570 * @page: page to uncharge
5572 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5573 * mem_cgroup_commit_charge().
5575 void mem_cgroup_uncharge(struct page
*page
)
5577 if (mem_cgroup_disabled())
5580 /* Don't touch page->lru of any random page, pre-check: */
5581 if (!page
->mem_cgroup
)
5584 INIT_LIST_HEAD(&page
->lru
);
5585 uncharge_list(&page
->lru
);
5589 * mem_cgroup_uncharge_list - uncharge a list of page
5590 * @page_list: list of pages to uncharge
5592 * Uncharge a list of pages previously charged with
5593 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5595 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5597 if (mem_cgroup_disabled())
5600 if (!list_empty(page_list
))
5601 uncharge_list(page_list
);
5605 * mem_cgroup_migrate - charge a page's replacement
5606 * @oldpage: currently circulating page
5607 * @newpage: replacement page
5609 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5610 * be uncharged upon free.
5612 * Both pages must be locked, @newpage->mapping must be set up.
5614 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5616 struct mem_cgroup
*memcg
;
5617 unsigned int nr_pages
;
5619 unsigned long flags
;
5621 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5622 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5623 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5624 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5627 if (mem_cgroup_disabled())
5630 /* Page cache replacement: new page already charged? */
5631 if (newpage
->mem_cgroup
)
5634 /* Swapcache readahead pages can get replaced before being charged */
5635 memcg
= oldpage
->mem_cgroup
;
5639 /* Force-charge the new page. The old one will be freed soon */
5640 compound
= PageTransHuge(newpage
);
5641 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5643 page_counter_charge(&memcg
->memory
, nr_pages
);
5644 if (do_memsw_account())
5645 page_counter_charge(&memcg
->memsw
, nr_pages
);
5646 css_get_many(&memcg
->css
, nr_pages
);
5648 commit_charge(newpage
, memcg
, false);
5650 local_irq_save(flags
);
5651 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5652 memcg_check_events(memcg
, newpage
);
5653 local_irq_restore(flags
);
5656 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5657 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5659 void mem_cgroup_sk_alloc(struct sock
*sk
)
5661 struct mem_cgroup
*memcg
;
5663 if (!mem_cgroup_sockets_enabled
)
5667 * Socket cloning can throw us here with sk_memcg already
5668 * filled. It won't however, necessarily happen from
5669 * process context. So the test for root memcg given
5670 * the current task's memcg won't help us in this case.
5672 * Respecting the original socket's memcg is a better
5673 * decision in this case.
5676 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5677 css_get(&sk
->sk_memcg
->css
);
5682 memcg
= mem_cgroup_from_task(current
);
5683 if (memcg
== root_mem_cgroup
)
5685 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5687 if (css_tryget_online(&memcg
->css
))
5688 sk
->sk_memcg
= memcg
;
5693 void mem_cgroup_sk_free(struct sock
*sk
)
5696 css_put(&sk
->sk_memcg
->css
);
5700 * mem_cgroup_charge_skmem - charge socket memory
5701 * @memcg: memcg to charge
5702 * @nr_pages: number of pages to charge
5704 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5705 * @memcg's configured limit, %false if the charge had to be forced.
5707 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5709 gfp_t gfp_mask
= GFP_KERNEL
;
5711 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5712 struct page_counter
*fail
;
5714 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5715 memcg
->tcpmem_pressure
= 0;
5718 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5719 memcg
->tcpmem_pressure
= 1;
5723 /* Don't block in the packet receive path */
5725 gfp_mask
= GFP_NOWAIT
;
5727 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5729 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5732 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5737 * mem_cgroup_uncharge_skmem - uncharge socket memory
5738 * @memcg - memcg to uncharge
5739 * @nr_pages - number of pages to uncharge
5741 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5743 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5744 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5748 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5750 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5751 css_put_many(&memcg
->css
, nr_pages
);
5754 static int __init
cgroup_memory(char *s
)
5758 while ((token
= strsep(&s
, ",")) != NULL
) {
5761 if (!strcmp(token
, "nosocket"))
5762 cgroup_memory_nosocket
= true;
5763 if (!strcmp(token
, "nokmem"))
5764 cgroup_memory_nokmem
= true;
5768 __setup("cgroup.memory=", cgroup_memory
);
5771 * subsys_initcall() for memory controller.
5773 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5774 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5775 * basically everything that doesn't depend on a specific mem_cgroup structure
5776 * should be initialized from here.
5778 static int __init
mem_cgroup_init(void)
5784 * Kmem cache creation is mostly done with the slab_mutex held,
5785 * so use a special workqueue to avoid stalling all worker
5786 * threads in case lots of cgroups are created simultaneously.
5788 memcg_kmem_cache_create_wq
=
5789 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5790 BUG_ON(!memcg_kmem_cache_create_wq
);
5793 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
5794 memcg_hotplug_cpu_dead
);
5796 for_each_possible_cpu(cpu
)
5797 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5800 for_each_node(node
) {
5801 struct mem_cgroup_tree_per_node
*rtpn
;
5803 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5804 node_online(node
) ? node
: NUMA_NO_NODE
);
5806 rtpn
->rb_root
= RB_ROOT
;
5807 spin_lock_init(&rtpn
->lock
);
5808 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5813 subsys_initcall(mem_cgroup_init
);
5815 #ifdef CONFIG_MEMCG_SWAP
5816 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5818 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5820 * The root cgroup cannot be destroyed, so it's refcount must
5823 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5827 memcg
= parent_mem_cgroup(memcg
);
5829 memcg
= root_mem_cgroup
;
5835 * mem_cgroup_swapout - transfer a memsw charge to swap
5836 * @page: page whose memsw charge to transfer
5837 * @entry: swap entry to move the charge to
5839 * Transfer the memsw charge of @page to @entry.
5841 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5843 struct mem_cgroup
*memcg
, *swap_memcg
;
5844 unsigned short oldid
;
5846 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5847 VM_BUG_ON_PAGE(page_count(page
), page
);
5849 if (!do_memsw_account())
5852 memcg
= page
->mem_cgroup
;
5854 /* Readahead page, never charged */
5859 * In case the memcg owning these pages has been offlined and doesn't
5860 * have an ID allocated to it anymore, charge the closest online
5861 * ancestor for the swap instead and transfer the memory+swap charge.
5863 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5864 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
));
5865 VM_BUG_ON_PAGE(oldid
, page
);
5866 mem_cgroup_swap_statistics(swap_memcg
, true);
5868 page
->mem_cgroup
= NULL
;
5870 if (!mem_cgroup_is_root(memcg
))
5871 page_counter_uncharge(&memcg
->memory
, 1);
5873 if (memcg
!= swap_memcg
) {
5874 if (!mem_cgroup_is_root(swap_memcg
))
5875 page_counter_charge(&swap_memcg
->memsw
, 1);
5876 page_counter_uncharge(&memcg
->memsw
, 1);
5880 * Interrupts should be disabled here because the caller holds the
5881 * mapping->tree_lock lock which is taken with interrupts-off. It is
5882 * important here to have the interrupts disabled because it is the
5883 * only synchronisation we have for udpating the per-CPU variables.
5885 VM_BUG_ON(!irqs_disabled());
5886 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5887 memcg_check_events(memcg
, page
);
5889 if (!mem_cgroup_is_root(memcg
))
5890 css_put(&memcg
->css
);
5894 * mem_cgroup_try_charge_swap - try charging a swap entry
5895 * @page: page being added to swap
5896 * @entry: swap entry to charge
5898 * Try to charge @entry to the memcg that @page belongs to.
5900 * Returns 0 on success, -ENOMEM on failure.
5902 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5904 struct mem_cgroup
*memcg
;
5905 struct page_counter
*counter
;
5906 unsigned short oldid
;
5908 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5911 memcg
= page
->mem_cgroup
;
5913 /* Readahead page, never charged */
5917 memcg
= mem_cgroup_id_get_online(memcg
);
5919 if (!mem_cgroup_is_root(memcg
) &&
5920 !page_counter_try_charge(&memcg
->swap
, 1, &counter
)) {
5921 mem_cgroup_id_put(memcg
);
5925 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5926 VM_BUG_ON_PAGE(oldid
, page
);
5927 mem_cgroup_swap_statistics(memcg
, true);
5933 * mem_cgroup_uncharge_swap - uncharge a swap entry
5934 * @entry: swap entry to uncharge
5936 * Drop the swap charge associated with @entry.
5938 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5940 struct mem_cgroup
*memcg
;
5943 if (!do_swap_account
)
5946 id
= swap_cgroup_record(entry
, 0);
5948 memcg
= mem_cgroup_from_id(id
);
5950 if (!mem_cgroup_is_root(memcg
)) {
5951 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5952 page_counter_uncharge(&memcg
->swap
, 1);
5954 page_counter_uncharge(&memcg
->memsw
, 1);
5956 mem_cgroup_swap_statistics(memcg
, false);
5957 mem_cgroup_id_put(memcg
);
5962 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5964 long nr_swap_pages
= get_nr_swap_pages();
5966 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5967 return nr_swap_pages
;
5968 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5969 nr_swap_pages
= min_t(long, nr_swap_pages
,
5970 READ_ONCE(memcg
->swap
.limit
) -
5971 page_counter_read(&memcg
->swap
));
5972 return nr_swap_pages
;
5975 bool mem_cgroup_swap_full(struct page
*page
)
5977 struct mem_cgroup
*memcg
;
5979 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5983 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5986 memcg
= page
->mem_cgroup
;
5990 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5991 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
5997 /* for remember boot option*/
5998 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5999 static int really_do_swap_account __initdata
= 1;
6001 static int really_do_swap_account __initdata
;
6004 static int __init
enable_swap_account(char *s
)
6006 if (!strcmp(s
, "1"))
6007 really_do_swap_account
= 1;
6008 else if (!strcmp(s
, "0"))
6009 really_do_swap_account
= 0;
6012 __setup("swapaccount=", enable_swap_account
);
6014 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6017 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6019 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6022 static int swap_max_show(struct seq_file
*m
, void *v
)
6024 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6025 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6027 if (max
== PAGE_COUNTER_MAX
)
6028 seq_puts(m
, "max\n");
6030 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6035 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6036 char *buf
, size_t nbytes
, loff_t off
)
6038 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6042 buf
= strstrip(buf
);
6043 err
= page_counter_memparse(buf
, "max", &max
);
6047 mutex_lock(&memcg_limit_mutex
);
6048 err
= page_counter_limit(&memcg
->swap
, max
);
6049 mutex_unlock(&memcg_limit_mutex
);
6056 static struct cftype swap_files
[] = {
6058 .name
= "swap.current",
6059 .flags
= CFTYPE_NOT_ON_ROOT
,
6060 .read_u64
= swap_current_read
,
6064 .flags
= CFTYPE_NOT_ON_ROOT
,
6065 .seq_show
= swap_max_show
,
6066 .write
= swap_max_write
,
6071 static struct cftype memsw_cgroup_files
[] = {
6073 .name
= "memsw.usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6075 .read_u64
= mem_cgroup_read_u64
,
6078 .name
= "memsw.max_usage_in_bytes",
6079 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6080 .write
= mem_cgroup_reset
,
6081 .read_u64
= mem_cgroup_read_u64
,
6084 .name
= "memsw.limit_in_bytes",
6085 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6086 .write
= mem_cgroup_write
,
6087 .read_u64
= mem_cgroup_read_u64
,
6090 .name
= "memsw.failcnt",
6091 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6092 .write
= mem_cgroup_reset
,
6093 .read_u64
= mem_cgroup_read_u64
,
6095 { }, /* terminate */
6098 static int __init
mem_cgroup_swap_init(void)
6100 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6101 do_swap_account
= 1;
6102 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6104 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6105 memsw_cgroup_files
));
6109 subsys_initcall(mem_cgroup_swap_init
);
6111 #endif /* CONFIG_MEMCG_SWAP */