ALSA: doc: ReSTize README.maya44
[linux/fpc-iii.git] / mm / filemap.c
blobc7fe2f16503f9f906e3f01be0155818ef86c522e
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 #include <asm/mman.h>
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * Lock ordering:
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
150 radix_tree_replace_slot(slot, page);
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
155 * Don't track node that contains actual pages.
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
166 return 0;
169 static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
172 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
174 VM_BUG_ON_PAGE(!PageLocked(page), page);
175 VM_BUG_ON_PAGE(PageTail(page), page);
176 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
178 for (i = 0; i < nr; i++) {
179 struct radix_tree_node *node;
180 void **slot;
182 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183 &node, &slot);
185 radix_tree_clear_tags(&mapping->page_tree, node, slot);
187 if (!node) {
188 VM_BUG_ON_PAGE(nr != 1, page);
190 * We need a node to properly account shadow
191 * entries. Don't plant any without. XXX
193 shadow = NULL;
196 radix_tree_replace_slot(slot, shadow);
198 if (!node)
199 break;
201 workingset_node_pages_dec(node);
202 if (shadow)
203 workingset_node_shadows_inc(node);
204 else
205 if (__radix_tree_delete_node(&mapping->page_tree, node))
206 continue;
209 * Track node that only contains shadow entries. DAX mappings
210 * contain no shadow entries and may contain other exceptional
211 * entries so skip those.
213 * Avoid acquiring the list_lru lock if already tracked.
214 * The list_empty() test is safe as node->private_list is
215 * protected by mapping->tree_lock.
217 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 list_empty(&node->private_list)) {
219 node->private_data = mapping;
220 list_lru_add(&workingset_shadow_nodes,
221 &node->private_list);
225 if (shadow) {
226 mapping->nrexceptional += nr;
228 * Make sure the nrexceptional update is committed before
229 * the nrpages update so that final truncate racing
230 * with reclaim does not see both counters 0 at the
231 * same time and miss a shadow entry.
233 smp_wmb();
235 mapping->nrpages -= nr;
239 * Delete a page from the page cache and free it. Caller has to make
240 * sure the page is locked and that nobody else uses it - or that usage
241 * is safe. The caller must hold the mapping's tree_lock.
243 void __delete_from_page_cache(struct page *page, void *shadow)
245 struct address_space *mapping = page->mapping;
246 int nr = hpage_nr_pages(page);
248 trace_mm_filemap_delete_from_page_cache(page);
250 * if we're uptodate, flush out into the cleancache, otherwise
251 * invalidate any existing cleancache entries. We can't leave
252 * stale data around in the cleancache once our page is gone
254 if (PageUptodate(page) && PageMappedToDisk(page))
255 cleancache_put_page(page);
256 else
257 cleancache_invalidate_page(mapping, page);
259 VM_BUG_ON_PAGE(PageTail(page), page);
260 VM_BUG_ON_PAGE(page_mapped(page), page);
261 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 int mapcount;
264 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 dump_page(page, "still mapped when deleted");
267 dump_stack();
268 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
270 mapcount = page_mapcount(page);
271 if (mapping_exiting(mapping) &&
272 page_count(page) >= mapcount + 2) {
274 * All vmas have already been torn down, so it's
275 * a good bet that actually the page is unmapped,
276 * and we'd prefer not to leak it: if we're wrong,
277 * some other bad page check should catch it later.
279 page_mapcount_reset(page);
280 page_ref_sub(page, mapcount);
284 page_cache_tree_delete(mapping, page, shadow);
286 page->mapping = NULL;
287 /* Leave page->index set: truncation lookup relies upon it */
289 /* hugetlb pages do not participate in page cache accounting. */
290 if (!PageHuge(page))
291 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 if (PageSwapBacked(page)) {
293 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 if (PageTransHuge(page))
295 __dec_node_page_state(page, NR_SHMEM_THPS);
296 } else {
297 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
301 * At this point page must be either written or cleaned by truncate.
302 * Dirty page here signals a bug and loss of unwritten data.
304 * This fixes dirty accounting after removing the page entirely but
305 * leaves PageDirty set: it has no effect for truncated page and
306 * anyway will be cleared before returning page into buddy allocator.
308 if (WARN_ON_ONCE(PageDirty(page)))
309 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
313 * delete_from_page_cache - delete page from page cache
314 * @page: the page which the kernel is trying to remove from page cache
316 * This must be called only on pages that have been verified to be in the page
317 * cache and locked. It will never put the page into the free list, the caller
318 * has a reference on the page.
320 void delete_from_page_cache(struct page *page)
322 struct address_space *mapping = page_mapping(page);
323 unsigned long flags;
324 void (*freepage)(struct page *);
326 BUG_ON(!PageLocked(page));
328 freepage = mapping->a_ops->freepage;
330 spin_lock_irqsave(&mapping->tree_lock, flags);
331 __delete_from_page_cache(page, NULL);
332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
334 if (freepage)
335 freepage(page);
337 if (PageTransHuge(page) && !PageHuge(page)) {
338 page_ref_sub(page, HPAGE_PMD_NR);
339 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 } else {
341 put_page(page);
344 EXPORT_SYMBOL(delete_from_page_cache);
346 int filemap_check_errors(struct address_space *mapping)
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
358 EXPORT_SYMBOL(filemap_check_errors);
361 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362 * @mapping: address space structure to write
363 * @start: offset in bytes where the range starts
364 * @end: offset in bytes where the range ends (inclusive)
365 * @sync_mode: enable synchronous operation
367 * Start writeback against all of a mapping's dirty pages that lie
368 * within the byte offsets <start, end> inclusive.
370 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371 * opposed to a regular memory cleansing writeback. The difference between
372 * these two operations is that if a dirty page/buffer is encountered, it must
373 * be waited upon, and not just skipped over.
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 loff_t end, int sync_mode)
378 int ret;
379 struct writeback_control wbc = {
380 .sync_mode = sync_mode,
381 .nr_to_write = LONG_MAX,
382 .range_start = start,
383 .range_end = end,
386 if (!mapping_cap_writeback_dirty(mapping))
387 return 0;
389 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 ret = do_writepages(mapping, &wbc);
391 wbc_detach_inode(&wbc);
392 return ret;
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 int sync_mode)
398 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
401 int filemap_fdatawrite(struct address_space *mapping)
403 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
405 EXPORT_SYMBOL(filemap_fdatawrite);
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end)
410 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
415 * filemap_flush - mostly a non-blocking flush
416 * @mapping: target address_space
418 * This is a mostly non-blocking flush. Not suitable for data-integrity
419 * purposes - I/O may not be started against all dirty pages.
421 int filemap_flush(struct address_space *mapping)
423 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
425 EXPORT_SYMBOL(filemap_flush);
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
432 struct pagevec pvec;
433 int nr_pages;
434 int ret = 0;
436 if (end_byte < start_byte)
437 goto out;
439 pagevec_init(&pvec, 0);
440 while ((index <= end) &&
441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 PAGECACHE_TAG_WRITEBACK,
443 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 unsigned i;
446 for (i = 0; i < nr_pages; i++) {
447 struct page *page = pvec.pages[i];
449 /* until radix tree lookup accepts end_index */
450 if (page->index > end)
451 continue;
453 wait_on_page_writeback(page);
454 if (TestClearPageError(page))
455 ret = -EIO;
457 pagevec_release(&pvec);
458 cond_resched();
460 out:
461 return ret;
465 * filemap_fdatawait_range - wait for writeback to complete
466 * @mapping: address space structure to wait for
467 * @start_byte: offset in bytes where the range starts
468 * @end_byte: offset in bytes where the range ends (inclusive)
470 * Walk the list of under-writeback pages of the given address space
471 * in the given range and wait for all of them. Check error status of
472 * the address space and return it.
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 loff_t end_byte)
481 int ret, ret2;
483 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 ret2 = filemap_check_errors(mapping);
485 if (!ret)
486 ret = ret2;
488 return ret;
490 EXPORT_SYMBOL(filemap_fdatawait_range);
493 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494 * @mapping: address space structure to wait for
496 * Walk the list of under-writeback pages of the given address space
497 * and wait for all of them. Unlike filemap_fdatawait(), this function
498 * does not clear error status of the address space.
500 * Use this function if callers don't handle errors themselves. Expected
501 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502 * fsfreeze(8)
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
506 loff_t i_size = i_size_read(mapping->host);
508 if (i_size == 0)
509 return;
511 __filemap_fdatawait_range(mapping, 0, i_size - 1);
515 * filemap_fdatawait - wait for all under-writeback pages to complete
516 * @mapping: address space structure to wait for
518 * Walk the list of under-writeback pages of the given address space
519 * and wait for all of them. Check error status of the address space
520 * and return it.
522 * Since the error status of the address space is cleared by this function,
523 * callers are responsible for checking the return value and handling and/or
524 * reporting the error.
526 int filemap_fdatawait(struct address_space *mapping)
528 loff_t i_size = i_size_read(mapping->host);
530 if (i_size == 0)
531 return 0;
533 return filemap_fdatawait_range(mapping, 0, i_size - 1);
535 EXPORT_SYMBOL(filemap_fdatawait);
537 int filemap_write_and_wait(struct address_space *mapping)
539 int err = 0;
541 if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 (dax_mapping(mapping) && mapping->nrexceptional)) {
543 err = filemap_fdatawrite(mapping);
545 * Even if the above returned error, the pages may be
546 * written partially (e.g. -ENOSPC), so we wait for it.
547 * But the -EIO is special case, it may indicate the worst
548 * thing (e.g. bug) happened, so we avoid waiting for it.
550 if (err != -EIO) {
551 int err2 = filemap_fdatawait(mapping);
552 if (!err)
553 err = err2;
555 } else {
556 err = filemap_check_errors(mapping);
558 return err;
560 EXPORT_SYMBOL(filemap_write_and_wait);
563 * filemap_write_and_wait_range - write out & wait on a file range
564 * @mapping: the address_space for the pages
565 * @lstart: offset in bytes where the range starts
566 * @lend: offset in bytes where the range ends (inclusive)
568 * Write out and wait upon file offsets lstart->lend, inclusive.
570 * Note that `lend' is inclusive (describes the last byte to be written) so
571 * that this function can be used to write to the very end-of-file (end = -1).
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 loff_t lstart, loff_t lend)
576 int err = 0;
578 if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 (dax_mapping(mapping) && mapping->nrexceptional)) {
580 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 WB_SYNC_ALL);
582 /* See comment of filemap_write_and_wait() */
583 if (err != -EIO) {
584 int err2 = filemap_fdatawait_range(mapping,
585 lstart, lend);
586 if (!err)
587 err = err2;
589 } else {
590 err = filemap_check_errors(mapping);
592 return err;
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
597 * replace_page_cache_page - replace a pagecache page with a new one
598 * @old: page to be replaced
599 * @new: page to replace with
600 * @gfp_mask: allocation mode
602 * This function replaces a page in the pagecache with a new one. On
603 * success it acquires the pagecache reference for the new page and
604 * drops it for the old page. Both the old and new pages must be
605 * locked. This function does not add the new page to the LRU, the
606 * caller must do that.
608 * The remove + add is atomic. The only way this function can fail is
609 * memory allocation failure.
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
613 int error;
615 VM_BUG_ON_PAGE(!PageLocked(old), old);
616 VM_BUG_ON_PAGE(!PageLocked(new), new);
617 VM_BUG_ON_PAGE(new->mapping, new);
619 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 if (!error) {
621 struct address_space *mapping = old->mapping;
622 void (*freepage)(struct page *);
623 unsigned long flags;
625 pgoff_t offset = old->index;
626 freepage = mapping->a_ops->freepage;
628 get_page(new);
629 new->mapping = mapping;
630 new->index = offset;
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 __delete_from_page_cache(old, NULL);
634 error = page_cache_tree_insert(mapping, new, NULL);
635 BUG_ON(error);
638 * hugetlb pages do not participate in page cache accounting.
640 if (!PageHuge(new))
641 __inc_node_page_state(new, NR_FILE_PAGES);
642 if (PageSwapBacked(new))
643 __inc_node_page_state(new, NR_SHMEM);
644 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 mem_cgroup_migrate(old, new);
646 radix_tree_preload_end();
647 if (freepage)
648 freepage(old);
649 put_page(old);
652 return error;
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
656 static int __add_to_page_cache_locked(struct page *page,
657 struct address_space *mapping,
658 pgoff_t offset, gfp_t gfp_mask,
659 void **shadowp)
661 int huge = PageHuge(page);
662 struct mem_cgroup *memcg;
663 int error;
665 VM_BUG_ON_PAGE(!PageLocked(page), page);
666 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
668 if (!huge) {
669 error = mem_cgroup_try_charge(page, current->mm,
670 gfp_mask, &memcg, false);
671 if (error)
672 return error;
675 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 if (error) {
677 if (!huge)
678 mem_cgroup_cancel_charge(page, memcg, false);
679 return error;
682 get_page(page);
683 page->mapping = mapping;
684 page->index = offset;
686 spin_lock_irq(&mapping->tree_lock);
687 error = page_cache_tree_insert(mapping, page, shadowp);
688 radix_tree_preload_end();
689 if (unlikely(error))
690 goto err_insert;
692 /* hugetlb pages do not participate in page cache accounting. */
693 if (!huge)
694 __inc_node_page_state(page, NR_FILE_PAGES);
695 spin_unlock_irq(&mapping->tree_lock);
696 if (!huge)
697 mem_cgroup_commit_charge(page, memcg, false, false);
698 trace_mm_filemap_add_to_page_cache(page);
699 return 0;
700 err_insert:
701 page->mapping = NULL;
702 /* Leave page->index set: truncation relies upon it */
703 spin_unlock_irq(&mapping->tree_lock);
704 if (!huge)
705 mem_cgroup_cancel_charge(page, memcg, false);
706 put_page(page);
707 return error;
711 * add_to_page_cache_locked - add a locked page to the pagecache
712 * @page: page to add
713 * @mapping: the page's address_space
714 * @offset: page index
715 * @gfp_mask: page allocation mode
717 * This function is used to add a page to the pagecache. It must be locked.
718 * This function does not add the page to the LRU. The caller must do that.
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 pgoff_t offset, gfp_t gfp_mask)
723 return __add_to_page_cache_locked(page, mapping, offset,
724 gfp_mask, NULL);
726 EXPORT_SYMBOL(add_to_page_cache_locked);
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 pgoff_t offset, gfp_t gfp_mask)
731 void *shadow = NULL;
732 int ret;
734 __SetPageLocked(page);
735 ret = __add_to_page_cache_locked(page, mapping, offset,
736 gfp_mask, &shadow);
737 if (unlikely(ret))
738 __ClearPageLocked(page);
739 else {
741 * The page might have been evicted from cache only
742 * recently, in which case it should be activated like
743 * any other repeatedly accessed page.
744 * The exception is pages getting rewritten; evicting other
745 * data from the working set, only to cache data that will
746 * get overwritten with something else, is a waste of memory.
748 if (!(gfp_mask & __GFP_WRITE) &&
749 shadow && workingset_refault(shadow)) {
750 SetPageActive(page);
751 workingset_activation(page);
752 } else
753 ClearPageActive(page);
754 lru_cache_add(page);
756 return ret;
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
763 int n;
764 struct page *page;
766 if (cpuset_do_page_mem_spread()) {
767 unsigned int cpuset_mems_cookie;
768 do {
769 cpuset_mems_cookie = read_mems_allowed_begin();
770 n = cpuset_mem_spread_node();
771 page = __alloc_pages_node(n, gfp, 0);
772 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
774 return page;
776 return alloc_pages(gfp, 0);
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
782 * In order to wait for pages to become available there must be
783 * waitqueues associated with pages. By using a hash table of
784 * waitqueues where the bucket discipline is to maintain all
785 * waiters on the same queue and wake all when any of the pages
786 * become available, and for the woken contexts to check to be
787 * sure the appropriate page became available, this saves space
788 * at a cost of "thundering herd" phenomena during rare hash
789 * collisions.
791 wait_queue_head_t *page_waitqueue(struct page *page)
793 return bit_waitqueue(page, 0);
795 EXPORT_SYMBOL(page_waitqueue);
797 void wait_on_page_bit(struct page *page, int bit_nr)
799 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801 if (test_bit(bit_nr, &page->flags))
802 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
803 TASK_UNINTERRUPTIBLE);
805 EXPORT_SYMBOL(wait_on_page_bit);
807 int wait_on_page_bit_killable(struct page *page, int bit_nr)
809 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811 if (!test_bit(bit_nr, &page->flags))
812 return 0;
814 return __wait_on_bit(page_waitqueue(page), &wait,
815 bit_wait_io, TASK_KILLABLE);
818 int wait_on_page_bit_killable_timeout(struct page *page,
819 int bit_nr, unsigned long timeout)
821 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
823 wait.key.timeout = jiffies + timeout;
824 if (!test_bit(bit_nr, &page->flags))
825 return 0;
826 return __wait_on_bit(page_waitqueue(page), &wait,
827 bit_wait_io_timeout, TASK_KILLABLE);
829 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
832 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
833 * @page: Page defining the wait queue of interest
834 * @waiter: Waiter to add to the queue
836 * Add an arbitrary @waiter to the wait queue for the nominated @page.
838 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
840 wait_queue_head_t *q = page_waitqueue(page);
841 unsigned long flags;
843 spin_lock_irqsave(&q->lock, flags);
844 __add_wait_queue(q, waiter);
845 spin_unlock_irqrestore(&q->lock, flags);
847 EXPORT_SYMBOL_GPL(add_page_wait_queue);
850 * unlock_page - unlock a locked page
851 * @page: the page
853 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
854 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
855 * mechanism between PageLocked pages and PageWriteback pages is shared.
856 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
858 * The mb is necessary to enforce ordering between the clear_bit and the read
859 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
861 void unlock_page(struct page *page)
863 page = compound_head(page);
864 VM_BUG_ON_PAGE(!PageLocked(page), page);
865 clear_bit_unlock(PG_locked, &page->flags);
866 smp_mb__after_atomic();
867 wake_up_page(page, PG_locked);
869 EXPORT_SYMBOL(unlock_page);
872 * end_page_writeback - end writeback against a page
873 * @page: the page
875 void end_page_writeback(struct page *page)
878 * TestClearPageReclaim could be used here but it is an atomic
879 * operation and overkill in this particular case. Failing to
880 * shuffle a page marked for immediate reclaim is too mild to
881 * justify taking an atomic operation penalty at the end of
882 * ever page writeback.
884 if (PageReclaim(page)) {
885 ClearPageReclaim(page);
886 rotate_reclaimable_page(page);
889 if (!test_clear_page_writeback(page))
890 BUG();
892 smp_mb__after_atomic();
893 wake_up_page(page, PG_writeback);
895 EXPORT_SYMBOL(end_page_writeback);
898 * After completing I/O on a page, call this routine to update the page
899 * flags appropriately
901 void page_endio(struct page *page, bool is_write, int err)
903 if (!is_write) {
904 if (!err) {
905 SetPageUptodate(page);
906 } else {
907 ClearPageUptodate(page);
908 SetPageError(page);
910 unlock_page(page);
911 } else {
912 if (err) {
913 SetPageError(page);
914 if (page->mapping)
915 mapping_set_error(page->mapping, err);
917 end_page_writeback(page);
920 EXPORT_SYMBOL_GPL(page_endio);
923 * __lock_page - get a lock on the page, assuming we need to sleep to get it
924 * @page: the page to lock
926 void __lock_page(struct page *page)
928 struct page *page_head = compound_head(page);
929 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
931 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
932 TASK_UNINTERRUPTIBLE);
934 EXPORT_SYMBOL(__lock_page);
936 int __lock_page_killable(struct page *page)
938 struct page *page_head = compound_head(page);
939 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
941 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
942 bit_wait_io, TASK_KILLABLE);
944 EXPORT_SYMBOL_GPL(__lock_page_killable);
947 * Return values:
948 * 1 - page is locked; mmap_sem is still held.
949 * 0 - page is not locked.
950 * mmap_sem has been released (up_read()), unless flags had both
951 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
952 * which case mmap_sem is still held.
954 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
955 * with the page locked and the mmap_sem unperturbed.
957 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
958 unsigned int flags)
960 if (flags & FAULT_FLAG_ALLOW_RETRY) {
962 * CAUTION! In this case, mmap_sem is not released
963 * even though return 0.
965 if (flags & FAULT_FLAG_RETRY_NOWAIT)
966 return 0;
968 up_read(&mm->mmap_sem);
969 if (flags & FAULT_FLAG_KILLABLE)
970 wait_on_page_locked_killable(page);
971 else
972 wait_on_page_locked(page);
973 return 0;
974 } else {
975 if (flags & FAULT_FLAG_KILLABLE) {
976 int ret;
978 ret = __lock_page_killable(page);
979 if (ret) {
980 up_read(&mm->mmap_sem);
981 return 0;
983 } else
984 __lock_page(page);
985 return 1;
990 * page_cache_next_hole - find the next hole (not-present entry)
991 * @mapping: mapping
992 * @index: index
993 * @max_scan: maximum range to search
995 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
996 * lowest indexed hole.
998 * Returns: the index of the hole if found, otherwise returns an index
999 * outside of the set specified (in which case 'return - index >=
1000 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1001 * be returned.
1003 * page_cache_next_hole may be called under rcu_read_lock. However,
1004 * like radix_tree_gang_lookup, this will not atomically search a
1005 * snapshot of the tree at a single point in time. For example, if a
1006 * hole is created at index 5, then subsequently a hole is created at
1007 * index 10, page_cache_next_hole covering both indexes may return 10
1008 * if called under rcu_read_lock.
1010 pgoff_t page_cache_next_hole(struct address_space *mapping,
1011 pgoff_t index, unsigned long max_scan)
1013 unsigned long i;
1015 for (i = 0; i < max_scan; i++) {
1016 struct page *page;
1018 page = radix_tree_lookup(&mapping->page_tree, index);
1019 if (!page || radix_tree_exceptional_entry(page))
1020 break;
1021 index++;
1022 if (index == 0)
1023 break;
1026 return index;
1028 EXPORT_SYMBOL(page_cache_next_hole);
1031 * page_cache_prev_hole - find the prev hole (not-present entry)
1032 * @mapping: mapping
1033 * @index: index
1034 * @max_scan: maximum range to search
1036 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1037 * the first hole.
1039 * Returns: the index of the hole if found, otherwise returns an index
1040 * outside of the set specified (in which case 'index - return >=
1041 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1042 * will be returned.
1044 * page_cache_prev_hole may be called under rcu_read_lock. However,
1045 * like radix_tree_gang_lookup, this will not atomically search a
1046 * snapshot of the tree at a single point in time. For example, if a
1047 * hole is created at index 10, then subsequently a hole is created at
1048 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1049 * called under rcu_read_lock.
1051 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1052 pgoff_t index, unsigned long max_scan)
1054 unsigned long i;
1056 for (i = 0; i < max_scan; i++) {
1057 struct page *page;
1059 page = radix_tree_lookup(&mapping->page_tree, index);
1060 if (!page || radix_tree_exceptional_entry(page))
1061 break;
1062 index--;
1063 if (index == ULONG_MAX)
1064 break;
1067 return index;
1069 EXPORT_SYMBOL(page_cache_prev_hole);
1072 * find_get_entry - find and get a page cache entry
1073 * @mapping: the address_space to search
1074 * @offset: the page cache index
1076 * Looks up the page cache slot at @mapping & @offset. If there is a
1077 * page cache page, it is returned with an increased refcount.
1079 * If the slot holds a shadow entry of a previously evicted page, or a
1080 * swap entry from shmem/tmpfs, it is returned.
1082 * Otherwise, %NULL is returned.
1084 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1086 void **pagep;
1087 struct page *head, *page;
1089 rcu_read_lock();
1090 repeat:
1091 page = NULL;
1092 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1093 if (pagep) {
1094 page = radix_tree_deref_slot(pagep);
1095 if (unlikely(!page))
1096 goto out;
1097 if (radix_tree_exception(page)) {
1098 if (radix_tree_deref_retry(page))
1099 goto repeat;
1101 * A shadow entry of a recently evicted page,
1102 * or a swap entry from shmem/tmpfs. Return
1103 * it without attempting to raise page count.
1105 goto out;
1108 head = compound_head(page);
1109 if (!page_cache_get_speculative(head))
1110 goto repeat;
1112 /* The page was split under us? */
1113 if (compound_head(page) != head) {
1114 put_page(head);
1115 goto repeat;
1119 * Has the page moved?
1120 * This is part of the lockless pagecache protocol. See
1121 * include/linux/pagemap.h for details.
1123 if (unlikely(page != *pagep)) {
1124 put_page(head);
1125 goto repeat;
1128 out:
1129 rcu_read_unlock();
1131 return page;
1133 EXPORT_SYMBOL(find_get_entry);
1136 * find_lock_entry - locate, pin and lock a page cache entry
1137 * @mapping: the address_space to search
1138 * @offset: the page cache index
1140 * Looks up the page cache slot at @mapping & @offset. If there is a
1141 * page cache page, it is returned locked and with an increased
1142 * refcount.
1144 * If the slot holds a shadow entry of a previously evicted page, or a
1145 * swap entry from shmem/tmpfs, it is returned.
1147 * Otherwise, %NULL is returned.
1149 * find_lock_entry() may sleep.
1151 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1153 struct page *page;
1155 repeat:
1156 page = find_get_entry(mapping, offset);
1157 if (page && !radix_tree_exception(page)) {
1158 lock_page(page);
1159 /* Has the page been truncated? */
1160 if (unlikely(page_mapping(page) != mapping)) {
1161 unlock_page(page);
1162 put_page(page);
1163 goto repeat;
1165 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1167 return page;
1169 EXPORT_SYMBOL(find_lock_entry);
1172 * pagecache_get_page - find and get a page reference
1173 * @mapping: the address_space to search
1174 * @offset: the page index
1175 * @fgp_flags: PCG flags
1176 * @gfp_mask: gfp mask to use for the page cache data page allocation
1178 * Looks up the page cache slot at @mapping & @offset.
1180 * PCG flags modify how the page is returned.
1182 * FGP_ACCESSED: the page will be marked accessed
1183 * FGP_LOCK: Page is return locked
1184 * FGP_CREAT: If page is not present then a new page is allocated using
1185 * @gfp_mask and added to the page cache and the VM's LRU
1186 * list. The page is returned locked and with an increased
1187 * refcount. Otherwise, %NULL is returned.
1189 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1190 * if the GFP flags specified for FGP_CREAT are atomic.
1192 * If there is a page cache page, it is returned with an increased refcount.
1194 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1195 int fgp_flags, gfp_t gfp_mask)
1197 struct page *page;
1199 repeat:
1200 page = find_get_entry(mapping, offset);
1201 if (radix_tree_exceptional_entry(page))
1202 page = NULL;
1203 if (!page)
1204 goto no_page;
1206 if (fgp_flags & FGP_LOCK) {
1207 if (fgp_flags & FGP_NOWAIT) {
1208 if (!trylock_page(page)) {
1209 put_page(page);
1210 return NULL;
1212 } else {
1213 lock_page(page);
1216 /* Has the page been truncated? */
1217 if (unlikely(page->mapping != mapping)) {
1218 unlock_page(page);
1219 put_page(page);
1220 goto repeat;
1222 VM_BUG_ON_PAGE(page->index != offset, page);
1225 if (page && (fgp_flags & FGP_ACCESSED))
1226 mark_page_accessed(page);
1228 no_page:
1229 if (!page && (fgp_flags & FGP_CREAT)) {
1230 int err;
1231 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1232 gfp_mask |= __GFP_WRITE;
1233 if (fgp_flags & FGP_NOFS)
1234 gfp_mask &= ~__GFP_FS;
1236 page = __page_cache_alloc(gfp_mask);
1237 if (!page)
1238 return NULL;
1240 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1241 fgp_flags |= FGP_LOCK;
1243 /* Init accessed so avoid atomic mark_page_accessed later */
1244 if (fgp_flags & FGP_ACCESSED)
1245 __SetPageReferenced(page);
1247 err = add_to_page_cache_lru(page, mapping, offset,
1248 gfp_mask & GFP_RECLAIM_MASK);
1249 if (unlikely(err)) {
1250 put_page(page);
1251 page = NULL;
1252 if (err == -EEXIST)
1253 goto repeat;
1257 return page;
1259 EXPORT_SYMBOL(pagecache_get_page);
1262 * find_get_entries - gang pagecache lookup
1263 * @mapping: The address_space to search
1264 * @start: The starting page cache index
1265 * @nr_entries: The maximum number of entries
1266 * @entries: Where the resulting entries are placed
1267 * @indices: The cache indices corresponding to the entries in @entries
1269 * find_get_entries() will search for and return a group of up to
1270 * @nr_entries entries in the mapping. The entries are placed at
1271 * @entries. find_get_entries() takes a reference against any actual
1272 * pages it returns.
1274 * The search returns a group of mapping-contiguous page cache entries
1275 * with ascending indexes. There may be holes in the indices due to
1276 * not-present pages.
1278 * Any shadow entries of evicted pages, or swap entries from
1279 * shmem/tmpfs, are included in the returned array.
1281 * find_get_entries() returns the number of pages and shadow entries
1282 * which were found.
1284 unsigned find_get_entries(struct address_space *mapping,
1285 pgoff_t start, unsigned int nr_entries,
1286 struct page **entries, pgoff_t *indices)
1288 void **slot;
1289 unsigned int ret = 0;
1290 struct radix_tree_iter iter;
1292 if (!nr_entries)
1293 return 0;
1295 rcu_read_lock();
1296 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1297 struct page *head, *page;
1298 repeat:
1299 page = radix_tree_deref_slot(slot);
1300 if (unlikely(!page))
1301 continue;
1302 if (radix_tree_exception(page)) {
1303 if (radix_tree_deref_retry(page)) {
1304 slot = radix_tree_iter_retry(&iter);
1305 continue;
1308 * A shadow entry of a recently evicted page, a swap
1309 * entry from shmem/tmpfs or a DAX entry. Return it
1310 * without attempting to raise page count.
1312 goto export;
1315 head = compound_head(page);
1316 if (!page_cache_get_speculative(head))
1317 goto repeat;
1319 /* The page was split under us? */
1320 if (compound_head(page) != head) {
1321 put_page(head);
1322 goto repeat;
1325 /* Has the page moved? */
1326 if (unlikely(page != *slot)) {
1327 put_page(head);
1328 goto repeat;
1330 export:
1331 indices[ret] = iter.index;
1332 entries[ret] = page;
1333 if (++ret == nr_entries)
1334 break;
1336 rcu_read_unlock();
1337 return ret;
1341 * find_get_pages - gang pagecache lookup
1342 * @mapping: The address_space to search
1343 * @start: The starting page index
1344 * @nr_pages: The maximum number of pages
1345 * @pages: Where the resulting pages are placed
1347 * find_get_pages() will search for and return a group of up to
1348 * @nr_pages pages in the mapping. The pages are placed at @pages.
1349 * find_get_pages() takes a reference against the returned pages.
1351 * The search returns a group of mapping-contiguous pages with ascending
1352 * indexes. There may be holes in the indices due to not-present pages.
1354 * find_get_pages() returns the number of pages which were found.
1356 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1357 unsigned int nr_pages, struct page **pages)
1359 struct radix_tree_iter iter;
1360 void **slot;
1361 unsigned ret = 0;
1363 if (unlikely(!nr_pages))
1364 return 0;
1366 rcu_read_lock();
1367 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1368 struct page *head, *page;
1369 repeat:
1370 page = radix_tree_deref_slot(slot);
1371 if (unlikely(!page))
1372 continue;
1374 if (radix_tree_exception(page)) {
1375 if (radix_tree_deref_retry(page)) {
1376 slot = radix_tree_iter_retry(&iter);
1377 continue;
1380 * A shadow entry of a recently evicted page,
1381 * or a swap entry from shmem/tmpfs. Skip
1382 * over it.
1384 continue;
1387 head = compound_head(page);
1388 if (!page_cache_get_speculative(head))
1389 goto repeat;
1391 /* The page was split under us? */
1392 if (compound_head(page) != head) {
1393 put_page(head);
1394 goto repeat;
1397 /* Has the page moved? */
1398 if (unlikely(page != *slot)) {
1399 put_page(head);
1400 goto repeat;
1403 pages[ret] = page;
1404 if (++ret == nr_pages)
1405 break;
1408 rcu_read_unlock();
1409 return ret;
1413 * find_get_pages_contig - gang contiguous pagecache lookup
1414 * @mapping: The address_space to search
1415 * @index: The starting page index
1416 * @nr_pages: The maximum number of pages
1417 * @pages: Where the resulting pages are placed
1419 * find_get_pages_contig() works exactly like find_get_pages(), except
1420 * that the returned number of pages are guaranteed to be contiguous.
1422 * find_get_pages_contig() returns the number of pages which were found.
1424 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1425 unsigned int nr_pages, struct page **pages)
1427 struct radix_tree_iter iter;
1428 void **slot;
1429 unsigned int ret = 0;
1431 if (unlikely(!nr_pages))
1432 return 0;
1434 rcu_read_lock();
1435 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1436 struct page *head, *page;
1437 repeat:
1438 page = radix_tree_deref_slot(slot);
1439 /* The hole, there no reason to continue */
1440 if (unlikely(!page))
1441 break;
1443 if (radix_tree_exception(page)) {
1444 if (radix_tree_deref_retry(page)) {
1445 slot = radix_tree_iter_retry(&iter);
1446 continue;
1449 * A shadow entry of a recently evicted page,
1450 * or a swap entry from shmem/tmpfs. Stop
1451 * looking for contiguous pages.
1453 break;
1456 head = compound_head(page);
1457 if (!page_cache_get_speculative(head))
1458 goto repeat;
1460 /* The page was split under us? */
1461 if (compound_head(page) != head) {
1462 put_page(head);
1463 goto repeat;
1466 /* Has the page moved? */
1467 if (unlikely(page != *slot)) {
1468 put_page(head);
1469 goto repeat;
1473 * must check mapping and index after taking the ref.
1474 * otherwise we can get both false positives and false
1475 * negatives, which is just confusing to the caller.
1477 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1478 put_page(page);
1479 break;
1482 pages[ret] = page;
1483 if (++ret == nr_pages)
1484 break;
1486 rcu_read_unlock();
1487 return ret;
1489 EXPORT_SYMBOL(find_get_pages_contig);
1492 * find_get_pages_tag - find and return pages that match @tag
1493 * @mapping: the address_space to search
1494 * @index: the starting page index
1495 * @tag: the tag index
1496 * @nr_pages: the maximum number of pages
1497 * @pages: where the resulting pages are placed
1499 * Like find_get_pages, except we only return pages which are tagged with
1500 * @tag. We update @index to index the next page for the traversal.
1502 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1503 int tag, unsigned int nr_pages, struct page **pages)
1505 struct radix_tree_iter iter;
1506 void **slot;
1507 unsigned ret = 0;
1509 if (unlikely(!nr_pages))
1510 return 0;
1512 rcu_read_lock();
1513 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1514 &iter, *index, tag) {
1515 struct page *head, *page;
1516 repeat:
1517 page = radix_tree_deref_slot(slot);
1518 if (unlikely(!page))
1519 continue;
1521 if (radix_tree_exception(page)) {
1522 if (radix_tree_deref_retry(page)) {
1523 slot = radix_tree_iter_retry(&iter);
1524 continue;
1527 * A shadow entry of a recently evicted page.
1529 * Those entries should never be tagged, but
1530 * this tree walk is lockless and the tags are
1531 * looked up in bulk, one radix tree node at a
1532 * time, so there is a sizable window for page
1533 * reclaim to evict a page we saw tagged.
1535 * Skip over it.
1537 continue;
1540 head = compound_head(page);
1541 if (!page_cache_get_speculative(head))
1542 goto repeat;
1544 /* The page was split under us? */
1545 if (compound_head(page) != head) {
1546 put_page(head);
1547 goto repeat;
1550 /* Has the page moved? */
1551 if (unlikely(page != *slot)) {
1552 put_page(head);
1553 goto repeat;
1556 pages[ret] = page;
1557 if (++ret == nr_pages)
1558 break;
1561 rcu_read_unlock();
1563 if (ret)
1564 *index = pages[ret - 1]->index + 1;
1566 return ret;
1568 EXPORT_SYMBOL(find_get_pages_tag);
1571 * find_get_entries_tag - find and return entries that match @tag
1572 * @mapping: the address_space to search
1573 * @start: the starting page cache index
1574 * @tag: the tag index
1575 * @nr_entries: the maximum number of entries
1576 * @entries: where the resulting entries are placed
1577 * @indices: the cache indices corresponding to the entries in @entries
1579 * Like find_get_entries, except we only return entries which are tagged with
1580 * @tag.
1582 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1583 int tag, unsigned int nr_entries,
1584 struct page **entries, pgoff_t *indices)
1586 void **slot;
1587 unsigned int ret = 0;
1588 struct radix_tree_iter iter;
1590 if (!nr_entries)
1591 return 0;
1593 rcu_read_lock();
1594 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1595 &iter, start, tag) {
1596 struct page *head, *page;
1597 repeat:
1598 page = radix_tree_deref_slot(slot);
1599 if (unlikely(!page))
1600 continue;
1601 if (radix_tree_exception(page)) {
1602 if (radix_tree_deref_retry(page)) {
1603 slot = radix_tree_iter_retry(&iter);
1604 continue;
1608 * A shadow entry of a recently evicted page, a swap
1609 * entry from shmem/tmpfs or a DAX entry. Return it
1610 * without attempting to raise page count.
1612 goto export;
1615 head = compound_head(page);
1616 if (!page_cache_get_speculative(head))
1617 goto repeat;
1619 /* The page was split under us? */
1620 if (compound_head(page) != head) {
1621 put_page(head);
1622 goto repeat;
1625 /* Has the page moved? */
1626 if (unlikely(page != *slot)) {
1627 put_page(head);
1628 goto repeat;
1630 export:
1631 indices[ret] = iter.index;
1632 entries[ret] = page;
1633 if (++ret == nr_entries)
1634 break;
1636 rcu_read_unlock();
1637 return ret;
1639 EXPORT_SYMBOL(find_get_entries_tag);
1642 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1643 * a _large_ part of the i/o request. Imagine the worst scenario:
1645 * ---R__________________________________________B__________
1646 * ^ reading here ^ bad block(assume 4k)
1648 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1649 * => failing the whole request => read(R) => read(R+1) =>
1650 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1651 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1652 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1654 * It is going insane. Fix it by quickly scaling down the readahead size.
1656 static void shrink_readahead_size_eio(struct file *filp,
1657 struct file_ra_state *ra)
1659 ra->ra_pages /= 4;
1663 * do_generic_file_read - generic file read routine
1664 * @filp: the file to read
1665 * @ppos: current file position
1666 * @iter: data destination
1667 * @written: already copied
1669 * This is a generic file read routine, and uses the
1670 * mapping->a_ops->readpage() function for the actual low-level stuff.
1672 * This is really ugly. But the goto's actually try to clarify some
1673 * of the logic when it comes to error handling etc.
1675 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1676 struct iov_iter *iter, ssize_t written)
1678 struct address_space *mapping = filp->f_mapping;
1679 struct inode *inode = mapping->host;
1680 struct file_ra_state *ra = &filp->f_ra;
1681 pgoff_t index;
1682 pgoff_t last_index;
1683 pgoff_t prev_index;
1684 unsigned long offset; /* offset into pagecache page */
1685 unsigned int prev_offset;
1686 int error = 0;
1688 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1689 return -EINVAL;
1690 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1692 index = *ppos >> PAGE_SHIFT;
1693 prev_index = ra->prev_pos >> PAGE_SHIFT;
1694 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1695 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1696 offset = *ppos & ~PAGE_MASK;
1698 for (;;) {
1699 struct page *page;
1700 pgoff_t end_index;
1701 loff_t isize;
1702 unsigned long nr, ret;
1704 cond_resched();
1705 find_page:
1706 page = find_get_page(mapping, index);
1707 if (!page) {
1708 page_cache_sync_readahead(mapping,
1709 ra, filp,
1710 index, last_index - index);
1711 page = find_get_page(mapping, index);
1712 if (unlikely(page == NULL))
1713 goto no_cached_page;
1715 if (PageReadahead(page)) {
1716 page_cache_async_readahead(mapping,
1717 ra, filp, page,
1718 index, last_index - index);
1720 if (!PageUptodate(page)) {
1722 * See comment in do_read_cache_page on why
1723 * wait_on_page_locked is used to avoid unnecessarily
1724 * serialisations and why it's safe.
1726 error = wait_on_page_locked_killable(page);
1727 if (unlikely(error))
1728 goto readpage_error;
1729 if (PageUptodate(page))
1730 goto page_ok;
1732 if (inode->i_blkbits == PAGE_SHIFT ||
1733 !mapping->a_ops->is_partially_uptodate)
1734 goto page_not_up_to_date;
1735 if (!trylock_page(page))
1736 goto page_not_up_to_date;
1737 /* Did it get truncated before we got the lock? */
1738 if (!page->mapping)
1739 goto page_not_up_to_date_locked;
1740 if (!mapping->a_ops->is_partially_uptodate(page,
1741 offset, iter->count))
1742 goto page_not_up_to_date_locked;
1743 unlock_page(page);
1745 page_ok:
1747 * i_size must be checked after we know the page is Uptodate.
1749 * Checking i_size after the check allows us to calculate
1750 * the correct value for "nr", which means the zero-filled
1751 * part of the page is not copied back to userspace (unless
1752 * another truncate extends the file - this is desired though).
1755 isize = i_size_read(inode);
1756 end_index = (isize - 1) >> PAGE_SHIFT;
1757 if (unlikely(!isize || index > end_index)) {
1758 put_page(page);
1759 goto out;
1762 /* nr is the maximum number of bytes to copy from this page */
1763 nr = PAGE_SIZE;
1764 if (index == end_index) {
1765 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1766 if (nr <= offset) {
1767 put_page(page);
1768 goto out;
1771 nr = nr - offset;
1773 /* If users can be writing to this page using arbitrary
1774 * virtual addresses, take care about potential aliasing
1775 * before reading the page on the kernel side.
1777 if (mapping_writably_mapped(mapping))
1778 flush_dcache_page(page);
1781 * When a sequential read accesses a page several times,
1782 * only mark it as accessed the first time.
1784 if (prev_index != index || offset != prev_offset)
1785 mark_page_accessed(page);
1786 prev_index = index;
1789 * Ok, we have the page, and it's up-to-date, so
1790 * now we can copy it to user space...
1793 ret = copy_page_to_iter(page, offset, nr, iter);
1794 offset += ret;
1795 index += offset >> PAGE_SHIFT;
1796 offset &= ~PAGE_MASK;
1797 prev_offset = offset;
1799 put_page(page);
1800 written += ret;
1801 if (!iov_iter_count(iter))
1802 goto out;
1803 if (ret < nr) {
1804 error = -EFAULT;
1805 goto out;
1807 continue;
1809 page_not_up_to_date:
1810 /* Get exclusive access to the page ... */
1811 error = lock_page_killable(page);
1812 if (unlikely(error))
1813 goto readpage_error;
1815 page_not_up_to_date_locked:
1816 /* Did it get truncated before we got the lock? */
1817 if (!page->mapping) {
1818 unlock_page(page);
1819 put_page(page);
1820 continue;
1823 /* Did somebody else fill it already? */
1824 if (PageUptodate(page)) {
1825 unlock_page(page);
1826 goto page_ok;
1829 readpage:
1831 * A previous I/O error may have been due to temporary
1832 * failures, eg. multipath errors.
1833 * PG_error will be set again if readpage fails.
1835 ClearPageError(page);
1836 /* Start the actual read. The read will unlock the page. */
1837 error = mapping->a_ops->readpage(filp, page);
1839 if (unlikely(error)) {
1840 if (error == AOP_TRUNCATED_PAGE) {
1841 put_page(page);
1842 error = 0;
1843 goto find_page;
1845 goto readpage_error;
1848 if (!PageUptodate(page)) {
1849 error = lock_page_killable(page);
1850 if (unlikely(error))
1851 goto readpage_error;
1852 if (!PageUptodate(page)) {
1853 if (page->mapping == NULL) {
1855 * invalidate_mapping_pages got it
1857 unlock_page(page);
1858 put_page(page);
1859 goto find_page;
1861 unlock_page(page);
1862 shrink_readahead_size_eio(filp, ra);
1863 error = -EIO;
1864 goto readpage_error;
1866 unlock_page(page);
1869 goto page_ok;
1871 readpage_error:
1872 /* UHHUH! A synchronous read error occurred. Report it */
1873 put_page(page);
1874 goto out;
1876 no_cached_page:
1878 * Ok, it wasn't cached, so we need to create a new
1879 * page..
1881 page = page_cache_alloc_cold(mapping);
1882 if (!page) {
1883 error = -ENOMEM;
1884 goto out;
1886 error = add_to_page_cache_lru(page, mapping, index,
1887 mapping_gfp_constraint(mapping, GFP_KERNEL));
1888 if (error) {
1889 put_page(page);
1890 if (error == -EEXIST) {
1891 error = 0;
1892 goto find_page;
1894 goto out;
1896 goto readpage;
1899 out:
1900 ra->prev_pos = prev_index;
1901 ra->prev_pos <<= PAGE_SHIFT;
1902 ra->prev_pos |= prev_offset;
1904 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1905 file_accessed(filp);
1906 return written ? written : error;
1910 * generic_file_read_iter - generic filesystem read routine
1911 * @iocb: kernel I/O control block
1912 * @iter: destination for the data read
1914 * This is the "read_iter()" routine for all filesystems
1915 * that can use the page cache directly.
1917 ssize_t
1918 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1920 struct file *file = iocb->ki_filp;
1921 ssize_t retval = 0;
1922 size_t count = iov_iter_count(iter);
1924 if (!count)
1925 goto out; /* skip atime */
1927 if (iocb->ki_flags & IOCB_DIRECT) {
1928 struct address_space *mapping = file->f_mapping;
1929 struct inode *inode = mapping->host;
1930 struct iov_iter data = *iter;
1931 loff_t size;
1933 size = i_size_read(inode);
1934 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1935 iocb->ki_pos + count - 1);
1936 if (retval < 0)
1937 goto out;
1939 file_accessed(file);
1941 retval = mapping->a_ops->direct_IO(iocb, &data);
1942 if (retval >= 0) {
1943 iocb->ki_pos += retval;
1944 iov_iter_advance(iter, retval);
1948 * Btrfs can have a short DIO read if we encounter
1949 * compressed extents, so if there was an error, or if
1950 * we've already read everything we wanted to, or if
1951 * there was a short read because we hit EOF, go ahead
1952 * and return. Otherwise fallthrough to buffered io for
1953 * the rest of the read. Buffered reads will not work for
1954 * DAX files, so don't bother trying.
1956 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1957 IS_DAX(inode))
1958 goto out;
1961 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1962 out:
1963 return retval;
1965 EXPORT_SYMBOL(generic_file_read_iter);
1967 #ifdef CONFIG_MMU
1969 * page_cache_read - adds requested page to the page cache if not already there
1970 * @file: file to read
1971 * @offset: page index
1972 * @gfp_mask: memory allocation flags
1974 * This adds the requested page to the page cache if it isn't already there,
1975 * and schedules an I/O to read in its contents from disk.
1977 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1979 struct address_space *mapping = file->f_mapping;
1980 struct page *page;
1981 int ret;
1983 do {
1984 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1985 if (!page)
1986 return -ENOMEM;
1988 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1989 if (ret == 0)
1990 ret = mapping->a_ops->readpage(file, page);
1991 else if (ret == -EEXIST)
1992 ret = 0; /* losing race to add is OK */
1994 put_page(page);
1996 } while (ret == AOP_TRUNCATED_PAGE);
1998 return ret;
2001 #define MMAP_LOTSAMISS (100)
2004 * Synchronous readahead happens when we don't even find
2005 * a page in the page cache at all.
2007 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2008 struct file_ra_state *ra,
2009 struct file *file,
2010 pgoff_t offset)
2012 struct address_space *mapping = file->f_mapping;
2014 /* If we don't want any read-ahead, don't bother */
2015 if (vma->vm_flags & VM_RAND_READ)
2016 return;
2017 if (!ra->ra_pages)
2018 return;
2020 if (vma->vm_flags & VM_SEQ_READ) {
2021 page_cache_sync_readahead(mapping, ra, file, offset,
2022 ra->ra_pages);
2023 return;
2026 /* Avoid banging the cache line if not needed */
2027 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2028 ra->mmap_miss++;
2031 * Do we miss much more than hit in this file? If so,
2032 * stop bothering with read-ahead. It will only hurt.
2034 if (ra->mmap_miss > MMAP_LOTSAMISS)
2035 return;
2038 * mmap read-around
2040 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2041 ra->size = ra->ra_pages;
2042 ra->async_size = ra->ra_pages / 4;
2043 ra_submit(ra, mapping, file);
2047 * Asynchronous readahead happens when we find the page and PG_readahead,
2048 * so we want to possibly extend the readahead further..
2050 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2051 struct file_ra_state *ra,
2052 struct file *file,
2053 struct page *page,
2054 pgoff_t offset)
2056 struct address_space *mapping = file->f_mapping;
2058 /* If we don't want any read-ahead, don't bother */
2059 if (vma->vm_flags & VM_RAND_READ)
2060 return;
2061 if (ra->mmap_miss > 0)
2062 ra->mmap_miss--;
2063 if (PageReadahead(page))
2064 page_cache_async_readahead(mapping, ra, file,
2065 page, offset, ra->ra_pages);
2069 * filemap_fault - read in file data for page fault handling
2070 * @vma: vma in which the fault was taken
2071 * @vmf: struct vm_fault containing details of the fault
2073 * filemap_fault() is invoked via the vma operations vector for a
2074 * mapped memory region to read in file data during a page fault.
2076 * The goto's are kind of ugly, but this streamlines the normal case of having
2077 * it in the page cache, and handles the special cases reasonably without
2078 * having a lot of duplicated code.
2080 * vma->vm_mm->mmap_sem must be held on entry.
2082 * If our return value has VM_FAULT_RETRY set, it's because
2083 * lock_page_or_retry() returned 0.
2084 * The mmap_sem has usually been released in this case.
2085 * See __lock_page_or_retry() for the exception.
2087 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2088 * has not been released.
2090 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2092 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2094 int error;
2095 struct file *file = vma->vm_file;
2096 struct address_space *mapping = file->f_mapping;
2097 struct file_ra_state *ra = &file->f_ra;
2098 struct inode *inode = mapping->host;
2099 pgoff_t offset = vmf->pgoff;
2100 struct page *page;
2101 loff_t size;
2102 int ret = 0;
2104 size = round_up(i_size_read(inode), PAGE_SIZE);
2105 if (offset >= size >> PAGE_SHIFT)
2106 return VM_FAULT_SIGBUS;
2109 * Do we have something in the page cache already?
2111 page = find_get_page(mapping, offset);
2112 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2114 * We found the page, so try async readahead before
2115 * waiting for the lock.
2117 do_async_mmap_readahead(vma, ra, file, page, offset);
2118 } else if (!page) {
2119 /* No page in the page cache at all */
2120 do_sync_mmap_readahead(vma, ra, file, offset);
2121 count_vm_event(PGMAJFAULT);
2122 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2123 ret = VM_FAULT_MAJOR;
2124 retry_find:
2125 page = find_get_page(mapping, offset);
2126 if (!page)
2127 goto no_cached_page;
2130 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2131 put_page(page);
2132 return ret | VM_FAULT_RETRY;
2135 /* Did it get truncated? */
2136 if (unlikely(page->mapping != mapping)) {
2137 unlock_page(page);
2138 put_page(page);
2139 goto retry_find;
2141 VM_BUG_ON_PAGE(page->index != offset, page);
2144 * We have a locked page in the page cache, now we need to check
2145 * that it's up-to-date. If not, it is going to be due to an error.
2147 if (unlikely(!PageUptodate(page)))
2148 goto page_not_uptodate;
2151 * Found the page and have a reference on it.
2152 * We must recheck i_size under page lock.
2154 size = round_up(i_size_read(inode), PAGE_SIZE);
2155 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2156 unlock_page(page);
2157 put_page(page);
2158 return VM_FAULT_SIGBUS;
2161 vmf->page = page;
2162 return ret | VM_FAULT_LOCKED;
2164 no_cached_page:
2166 * We're only likely to ever get here if MADV_RANDOM is in
2167 * effect.
2169 error = page_cache_read(file, offset, vmf->gfp_mask);
2172 * The page we want has now been added to the page cache.
2173 * In the unlikely event that someone removed it in the
2174 * meantime, we'll just come back here and read it again.
2176 if (error >= 0)
2177 goto retry_find;
2180 * An error return from page_cache_read can result if the
2181 * system is low on memory, or a problem occurs while trying
2182 * to schedule I/O.
2184 if (error == -ENOMEM)
2185 return VM_FAULT_OOM;
2186 return VM_FAULT_SIGBUS;
2188 page_not_uptodate:
2190 * Umm, take care of errors if the page isn't up-to-date.
2191 * Try to re-read it _once_. We do this synchronously,
2192 * because there really aren't any performance issues here
2193 * and we need to check for errors.
2195 ClearPageError(page);
2196 error = mapping->a_ops->readpage(file, page);
2197 if (!error) {
2198 wait_on_page_locked(page);
2199 if (!PageUptodate(page))
2200 error = -EIO;
2202 put_page(page);
2204 if (!error || error == AOP_TRUNCATED_PAGE)
2205 goto retry_find;
2207 /* Things didn't work out. Return zero to tell the mm layer so. */
2208 shrink_readahead_size_eio(file, ra);
2209 return VM_FAULT_SIGBUS;
2211 EXPORT_SYMBOL(filemap_fault);
2213 void filemap_map_pages(struct fault_env *fe,
2214 pgoff_t start_pgoff, pgoff_t end_pgoff)
2216 struct radix_tree_iter iter;
2217 void **slot;
2218 struct file *file = fe->vma->vm_file;
2219 struct address_space *mapping = file->f_mapping;
2220 pgoff_t last_pgoff = start_pgoff;
2221 loff_t size;
2222 struct page *head, *page;
2224 rcu_read_lock();
2225 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2226 start_pgoff) {
2227 if (iter.index > end_pgoff)
2228 break;
2229 repeat:
2230 page = radix_tree_deref_slot(slot);
2231 if (unlikely(!page))
2232 goto next;
2233 if (radix_tree_exception(page)) {
2234 if (radix_tree_deref_retry(page)) {
2235 slot = radix_tree_iter_retry(&iter);
2236 continue;
2238 goto next;
2241 head = compound_head(page);
2242 if (!page_cache_get_speculative(head))
2243 goto repeat;
2245 /* The page was split under us? */
2246 if (compound_head(page) != head) {
2247 put_page(head);
2248 goto repeat;
2251 /* Has the page moved? */
2252 if (unlikely(page != *slot)) {
2253 put_page(head);
2254 goto repeat;
2257 if (!PageUptodate(page) ||
2258 PageReadahead(page) ||
2259 PageHWPoison(page))
2260 goto skip;
2261 if (!trylock_page(page))
2262 goto skip;
2264 if (page->mapping != mapping || !PageUptodate(page))
2265 goto unlock;
2267 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2268 if (page->index >= size >> PAGE_SHIFT)
2269 goto unlock;
2271 if (file->f_ra.mmap_miss > 0)
2272 file->f_ra.mmap_miss--;
2274 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2275 if (fe->pte)
2276 fe->pte += iter.index - last_pgoff;
2277 last_pgoff = iter.index;
2278 if (alloc_set_pte(fe, NULL, page))
2279 goto unlock;
2280 unlock_page(page);
2281 goto next;
2282 unlock:
2283 unlock_page(page);
2284 skip:
2285 put_page(page);
2286 next:
2287 /* Huge page is mapped? No need to proceed. */
2288 if (pmd_trans_huge(*fe->pmd))
2289 break;
2290 if (iter.index == end_pgoff)
2291 break;
2293 rcu_read_unlock();
2295 EXPORT_SYMBOL(filemap_map_pages);
2297 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 struct page *page = vmf->page;
2300 struct inode *inode = file_inode(vma->vm_file);
2301 int ret = VM_FAULT_LOCKED;
2303 sb_start_pagefault(inode->i_sb);
2304 file_update_time(vma->vm_file);
2305 lock_page(page);
2306 if (page->mapping != inode->i_mapping) {
2307 unlock_page(page);
2308 ret = VM_FAULT_NOPAGE;
2309 goto out;
2312 * We mark the page dirty already here so that when freeze is in
2313 * progress, we are guaranteed that writeback during freezing will
2314 * see the dirty page and writeprotect it again.
2316 set_page_dirty(page);
2317 wait_for_stable_page(page);
2318 out:
2319 sb_end_pagefault(inode->i_sb);
2320 return ret;
2322 EXPORT_SYMBOL(filemap_page_mkwrite);
2324 const struct vm_operations_struct generic_file_vm_ops = {
2325 .fault = filemap_fault,
2326 .map_pages = filemap_map_pages,
2327 .page_mkwrite = filemap_page_mkwrite,
2330 /* This is used for a general mmap of a disk file */
2332 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2334 struct address_space *mapping = file->f_mapping;
2336 if (!mapping->a_ops->readpage)
2337 return -ENOEXEC;
2338 file_accessed(file);
2339 vma->vm_ops = &generic_file_vm_ops;
2340 return 0;
2344 * This is for filesystems which do not implement ->writepage.
2346 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2348 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2349 return -EINVAL;
2350 return generic_file_mmap(file, vma);
2352 #else
2353 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2355 return -ENOSYS;
2357 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2359 return -ENOSYS;
2361 #endif /* CONFIG_MMU */
2363 EXPORT_SYMBOL(generic_file_mmap);
2364 EXPORT_SYMBOL(generic_file_readonly_mmap);
2366 static struct page *wait_on_page_read(struct page *page)
2368 if (!IS_ERR(page)) {
2369 wait_on_page_locked(page);
2370 if (!PageUptodate(page)) {
2371 put_page(page);
2372 page = ERR_PTR(-EIO);
2375 return page;
2378 static struct page *do_read_cache_page(struct address_space *mapping,
2379 pgoff_t index,
2380 int (*filler)(void *, struct page *),
2381 void *data,
2382 gfp_t gfp)
2384 struct page *page;
2385 int err;
2386 repeat:
2387 page = find_get_page(mapping, index);
2388 if (!page) {
2389 page = __page_cache_alloc(gfp | __GFP_COLD);
2390 if (!page)
2391 return ERR_PTR(-ENOMEM);
2392 err = add_to_page_cache_lru(page, mapping, index, gfp);
2393 if (unlikely(err)) {
2394 put_page(page);
2395 if (err == -EEXIST)
2396 goto repeat;
2397 /* Presumably ENOMEM for radix tree node */
2398 return ERR_PTR(err);
2401 filler:
2402 err = filler(data, page);
2403 if (err < 0) {
2404 put_page(page);
2405 return ERR_PTR(err);
2408 page = wait_on_page_read(page);
2409 if (IS_ERR(page))
2410 return page;
2411 goto out;
2413 if (PageUptodate(page))
2414 goto out;
2417 * Page is not up to date and may be locked due one of the following
2418 * case a: Page is being filled and the page lock is held
2419 * case b: Read/write error clearing the page uptodate status
2420 * case c: Truncation in progress (page locked)
2421 * case d: Reclaim in progress
2423 * Case a, the page will be up to date when the page is unlocked.
2424 * There is no need to serialise on the page lock here as the page
2425 * is pinned so the lock gives no additional protection. Even if the
2426 * the page is truncated, the data is still valid if PageUptodate as
2427 * it's a race vs truncate race.
2428 * Case b, the page will not be up to date
2429 * Case c, the page may be truncated but in itself, the data may still
2430 * be valid after IO completes as it's a read vs truncate race. The
2431 * operation must restart if the page is not uptodate on unlock but
2432 * otherwise serialising on page lock to stabilise the mapping gives
2433 * no additional guarantees to the caller as the page lock is
2434 * released before return.
2435 * Case d, similar to truncation. If reclaim holds the page lock, it
2436 * will be a race with remove_mapping that determines if the mapping
2437 * is valid on unlock but otherwise the data is valid and there is
2438 * no need to serialise with page lock.
2440 * As the page lock gives no additional guarantee, we optimistically
2441 * wait on the page to be unlocked and check if it's up to date and
2442 * use the page if it is. Otherwise, the page lock is required to
2443 * distinguish between the different cases. The motivation is that we
2444 * avoid spurious serialisations and wakeups when multiple processes
2445 * wait on the same page for IO to complete.
2447 wait_on_page_locked(page);
2448 if (PageUptodate(page))
2449 goto out;
2451 /* Distinguish between all the cases under the safety of the lock */
2452 lock_page(page);
2454 /* Case c or d, restart the operation */
2455 if (!page->mapping) {
2456 unlock_page(page);
2457 put_page(page);
2458 goto repeat;
2461 /* Someone else locked and filled the page in a very small window */
2462 if (PageUptodate(page)) {
2463 unlock_page(page);
2464 goto out;
2466 goto filler;
2468 out:
2469 mark_page_accessed(page);
2470 return page;
2474 * read_cache_page - read into page cache, fill it if needed
2475 * @mapping: the page's address_space
2476 * @index: the page index
2477 * @filler: function to perform the read
2478 * @data: first arg to filler(data, page) function, often left as NULL
2480 * Read into the page cache. If a page already exists, and PageUptodate() is
2481 * not set, try to fill the page and wait for it to become unlocked.
2483 * If the page does not get brought uptodate, return -EIO.
2485 struct page *read_cache_page(struct address_space *mapping,
2486 pgoff_t index,
2487 int (*filler)(void *, struct page *),
2488 void *data)
2490 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2492 EXPORT_SYMBOL(read_cache_page);
2495 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2496 * @mapping: the page's address_space
2497 * @index: the page index
2498 * @gfp: the page allocator flags to use if allocating
2500 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2501 * any new page allocations done using the specified allocation flags.
2503 * If the page does not get brought uptodate, return -EIO.
2505 struct page *read_cache_page_gfp(struct address_space *mapping,
2506 pgoff_t index,
2507 gfp_t gfp)
2509 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2511 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2513 EXPORT_SYMBOL(read_cache_page_gfp);
2516 * Performs necessary checks before doing a write
2518 * Can adjust writing position or amount of bytes to write.
2519 * Returns appropriate error code that caller should return or
2520 * zero in case that write should be allowed.
2522 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2524 struct file *file = iocb->ki_filp;
2525 struct inode *inode = file->f_mapping->host;
2526 unsigned long limit = rlimit(RLIMIT_FSIZE);
2527 loff_t pos;
2529 if (!iov_iter_count(from))
2530 return 0;
2532 /* FIXME: this is for backwards compatibility with 2.4 */
2533 if (iocb->ki_flags & IOCB_APPEND)
2534 iocb->ki_pos = i_size_read(inode);
2536 pos = iocb->ki_pos;
2538 if (limit != RLIM_INFINITY) {
2539 if (iocb->ki_pos >= limit) {
2540 send_sig(SIGXFSZ, current, 0);
2541 return -EFBIG;
2543 iov_iter_truncate(from, limit - (unsigned long)pos);
2547 * LFS rule
2549 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2550 !(file->f_flags & O_LARGEFILE))) {
2551 if (pos >= MAX_NON_LFS)
2552 return -EFBIG;
2553 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2557 * Are we about to exceed the fs block limit ?
2559 * If we have written data it becomes a short write. If we have
2560 * exceeded without writing data we send a signal and return EFBIG.
2561 * Linus frestrict idea will clean these up nicely..
2563 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2564 return -EFBIG;
2566 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2567 return iov_iter_count(from);
2569 EXPORT_SYMBOL(generic_write_checks);
2571 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2572 loff_t pos, unsigned len, unsigned flags,
2573 struct page **pagep, void **fsdata)
2575 const struct address_space_operations *aops = mapping->a_ops;
2577 return aops->write_begin(file, mapping, pos, len, flags,
2578 pagep, fsdata);
2580 EXPORT_SYMBOL(pagecache_write_begin);
2582 int pagecache_write_end(struct file *file, struct address_space *mapping,
2583 loff_t pos, unsigned len, unsigned copied,
2584 struct page *page, void *fsdata)
2586 const struct address_space_operations *aops = mapping->a_ops;
2588 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2590 EXPORT_SYMBOL(pagecache_write_end);
2592 ssize_t
2593 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2595 struct file *file = iocb->ki_filp;
2596 struct address_space *mapping = file->f_mapping;
2597 struct inode *inode = mapping->host;
2598 loff_t pos = iocb->ki_pos;
2599 ssize_t written;
2600 size_t write_len;
2601 pgoff_t end;
2602 struct iov_iter data;
2604 write_len = iov_iter_count(from);
2605 end = (pos + write_len - 1) >> PAGE_SHIFT;
2607 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2608 if (written)
2609 goto out;
2612 * After a write we want buffered reads to be sure to go to disk to get
2613 * the new data. We invalidate clean cached page from the region we're
2614 * about to write. We do this *before* the write so that we can return
2615 * without clobbering -EIOCBQUEUED from ->direct_IO().
2617 if (mapping->nrpages) {
2618 written = invalidate_inode_pages2_range(mapping,
2619 pos >> PAGE_SHIFT, end);
2621 * If a page can not be invalidated, return 0 to fall back
2622 * to buffered write.
2624 if (written) {
2625 if (written == -EBUSY)
2626 return 0;
2627 goto out;
2631 data = *from;
2632 written = mapping->a_ops->direct_IO(iocb, &data);
2635 * Finally, try again to invalidate clean pages which might have been
2636 * cached by non-direct readahead, or faulted in by get_user_pages()
2637 * if the source of the write was an mmap'ed region of the file
2638 * we're writing. Either one is a pretty crazy thing to do,
2639 * so we don't support it 100%. If this invalidation
2640 * fails, tough, the write still worked...
2642 if (mapping->nrpages) {
2643 invalidate_inode_pages2_range(mapping,
2644 pos >> PAGE_SHIFT, end);
2647 if (written > 0) {
2648 pos += written;
2649 iov_iter_advance(from, written);
2650 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2651 i_size_write(inode, pos);
2652 mark_inode_dirty(inode);
2654 iocb->ki_pos = pos;
2656 out:
2657 return written;
2659 EXPORT_SYMBOL(generic_file_direct_write);
2662 * Find or create a page at the given pagecache position. Return the locked
2663 * page. This function is specifically for buffered writes.
2665 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2666 pgoff_t index, unsigned flags)
2668 struct page *page;
2669 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2671 if (flags & AOP_FLAG_NOFS)
2672 fgp_flags |= FGP_NOFS;
2674 page = pagecache_get_page(mapping, index, fgp_flags,
2675 mapping_gfp_mask(mapping));
2676 if (page)
2677 wait_for_stable_page(page);
2679 return page;
2681 EXPORT_SYMBOL(grab_cache_page_write_begin);
2683 ssize_t generic_perform_write(struct file *file,
2684 struct iov_iter *i, loff_t pos)
2686 struct address_space *mapping = file->f_mapping;
2687 const struct address_space_operations *a_ops = mapping->a_ops;
2688 long status = 0;
2689 ssize_t written = 0;
2690 unsigned int flags = 0;
2693 * Copies from kernel address space cannot fail (NFSD is a big user).
2695 if (!iter_is_iovec(i))
2696 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2698 do {
2699 struct page *page;
2700 unsigned long offset; /* Offset into pagecache page */
2701 unsigned long bytes; /* Bytes to write to page */
2702 size_t copied; /* Bytes copied from user */
2703 void *fsdata;
2705 offset = (pos & (PAGE_SIZE - 1));
2706 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2707 iov_iter_count(i));
2709 again:
2711 * Bring in the user page that we will copy from _first_.
2712 * Otherwise there's a nasty deadlock on copying from the
2713 * same page as we're writing to, without it being marked
2714 * up-to-date.
2716 * Not only is this an optimisation, but it is also required
2717 * to check that the address is actually valid, when atomic
2718 * usercopies are used, below.
2720 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2721 status = -EFAULT;
2722 break;
2725 if (fatal_signal_pending(current)) {
2726 status = -EINTR;
2727 break;
2730 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2731 &page, &fsdata);
2732 if (unlikely(status < 0))
2733 break;
2735 if (mapping_writably_mapped(mapping))
2736 flush_dcache_page(page);
2738 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2739 flush_dcache_page(page);
2741 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2742 page, fsdata);
2743 if (unlikely(status < 0))
2744 break;
2745 copied = status;
2747 cond_resched();
2749 iov_iter_advance(i, copied);
2750 if (unlikely(copied == 0)) {
2752 * If we were unable to copy any data at all, we must
2753 * fall back to a single segment length write.
2755 * If we didn't fallback here, we could livelock
2756 * because not all segments in the iov can be copied at
2757 * once without a pagefault.
2759 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2760 iov_iter_single_seg_count(i));
2761 goto again;
2763 pos += copied;
2764 written += copied;
2766 balance_dirty_pages_ratelimited(mapping);
2767 } while (iov_iter_count(i));
2769 return written ? written : status;
2771 EXPORT_SYMBOL(generic_perform_write);
2774 * __generic_file_write_iter - write data to a file
2775 * @iocb: IO state structure (file, offset, etc.)
2776 * @from: iov_iter with data to write
2778 * This function does all the work needed for actually writing data to a
2779 * file. It does all basic checks, removes SUID from the file, updates
2780 * modification times and calls proper subroutines depending on whether we
2781 * do direct IO or a standard buffered write.
2783 * It expects i_mutex to be grabbed unless we work on a block device or similar
2784 * object which does not need locking at all.
2786 * This function does *not* take care of syncing data in case of O_SYNC write.
2787 * A caller has to handle it. This is mainly due to the fact that we want to
2788 * avoid syncing under i_mutex.
2790 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2792 struct file *file = iocb->ki_filp;
2793 struct address_space * mapping = file->f_mapping;
2794 struct inode *inode = mapping->host;
2795 ssize_t written = 0;
2796 ssize_t err;
2797 ssize_t status;
2799 /* We can write back this queue in page reclaim */
2800 current->backing_dev_info = inode_to_bdi(inode);
2801 err = file_remove_privs(file);
2802 if (err)
2803 goto out;
2805 err = file_update_time(file);
2806 if (err)
2807 goto out;
2809 if (iocb->ki_flags & IOCB_DIRECT) {
2810 loff_t pos, endbyte;
2812 written = generic_file_direct_write(iocb, from);
2814 * If the write stopped short of completing, fall back to
2815 * buffered writes. Some filesystems do this for writes to
2816 * holes, for example. For DAX files, a buffered write will
2817 * not succeed (even if it did, DAX does not handle dirty
2818 * page-cache pages correctly).
2820 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2821 goto out;
2823 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2825 * If generic_perform_write() returned a synchronous error
2826 * then we want to return the number of bytes which were
2827 * direct-written, or the error code if that was zero. Note
2828 * that this differs from normal direct-io semantics, which
2829 * will return -EFOO even if some bytes were written.
2831 if (unlikely(status < 0)) {
2832 err = status;
2833 goto out;
2836 * We need to ensure that the page cache pages are written to
2837 * disk and invalidated to preserve the expected O_DIRECT
2838 * semantics.
2840 endbyte = pos + status - 1;
2841 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2842 if (err == 0) {
2843 iocb->ki_pos = endbyte + 1;
2844 written += status;
2845 invalidate_mapping_pages(mapping,
2846 pos >> PAGE_SHIFT,
2847 endbyte >> PAGE_SHIFT);
2848 } else {
2850 * We don't know how much we wrote, so just return
2851 * the number of bytes which were direct-written
2854 } else {
2855 written = generic_perform_write(file, from, iocb->ki_pos);
2856 if (likely(written > 0))
2857 iocb->ki_pos += written;
2859 out:
2860 current->backing_dev_info = NULL;
2861 return written ? written : err;
2863 EXPORT_SYMBOL(__generic_file_write_iter);
2866 * generic_file_write_iter - write data to a file
2867 * @iocb: IO state structure
2868 * @from: iov_iter with data to write
2870 * This is a wrapper around __generic_file_write_iter() to be used by most
2871 * filesystems. It takes care of syncing the file in case of O_SYNC file
2872 * and acquires i_mutex as needed.
2874 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2876 struct file *file = iocb->ki_filp;
2877 struct inode *inode = file->f_mapping->host;
2878 ssize_t ret;
2880 inode_lock(inode);
2881 ret = generic_write_checks(iocb, from);
2882 if (ret > 0)
2883 ret = __generic_file_write_iter(iocb, from);
2884 inode_unlock(inode);
2886 if (ret > 0)
2887 ret = generic_write_sync(iocb, ret);
2888 return ret;
2890 EXPORT_SYMBOL(generic_file_write_iter);
2893 * try_to_release_page() - release old fs-specific metadata on a page
2895 * @page: the page which the kernel is trying to free
2896 * @gfp_mask: memory allocation flags (and I/O mode)
2898 * The address_space is to try to release any data against the page
2899 * (presumably at page->private). If the release was successful, return `1'.
2900 * Otherwise return zero.
2902 * This may also be called if PG_fscache is set on a page, indicating that the
2903 * page is known to the local caching routines.
2905 * The @gfp_mask argument specifies whether I/O may be performed to release
2906 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2909 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2911 struct address_space * const mapping = page->mapping;
2913 BUG_ON(!PageLocked(page));
2914 if (PageWriteback(page))
2915 return 0;
2917 if (mapping && mapping->a_ops->releasepage)
2918 return mapping->a_ops->releasepage(page, gfp_mask);
2919 return try_to_free_buffers(page);
2922 EXPORT_SYMBOL(try_to_release_page);