ipv6: reallocate addrconf router for ipv6 address when lo device up
[linux/fpc-iii.git] / drivers / cpufreq / powernow-k8.c
blobc671369a05bf45cb47b8cce682a7172212182659
1 /*
2 * (c) 2003-2012 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Maintainer:
8 * Andreas Herrmann <andreas.herrmann3@amd.com>
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@ucw.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
21 * Processor information obtained from Chapter 9 (Power and Thermal
22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 * Power Management" in BKDGs for newer AMD CPU families.
26 * Tables for specific CPUs can be inferred from AMD's processor
27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
41 #include <asm/msr.h>
42 #include <asm/cpu_device_id.h>
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51 #include "mperf.h"
53 /* serialize freq changes */
54 static DEFINE_MUTEX(fidvid_mutex);
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
58 static int cpu_family = CPU_OPTERON;
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as[8];
63 /* core performance boost */
64 static bool cpb_capable, cpb_enabled;
65 static struct msr __percpu *msrs;
67 static struct cpufreq_driver cpufreq_amd64_driver;
69 #ifndef CONFIG_SMP
70 static inline const struct cpumask *cpu_core_mask(int cpu)
72 return cpumask_of(0);
74 #endif
76 /* Return a frequency in MHz, given an input fid */
77 static u32 find_freq_from_fid(u32 fid)
79 return 800 + (fid * 100);
82 /* Return a frequency in KHz, given an input fid */
83 static u32 find_khz_freq_from_fid(u32 fid)
85 return 1000 * find_freq_from_fid(fid);
88 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89 u32 pstate)
91 return data[ps_to_as[pstate]].frequency;
94 /* Return the vco fid for an input fid
96 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97 * only from corresponding high fids. This returns "high" fid corresponding to
98 * "low" one.
100 static u32 convert_fid_to_vco_fid(u32 fid)
102 if (fid < HI_FID_TABLE_BOTTOM)
103 return 8 + (2 * fid);
104 else
105 return fid;
109 * Return 1 if the pending bit is set. Unless we just instructed the processor
110 * to transition to a new state, seeing this bit set is really bad news.
112 static int pending_bit_stuck(void)
114 u32 lo, hi;
116 if (cpu_family == CPU_HW_PSTATE)
117 return 0;
119 rdmsr(MSR_FIDVID_STATUS, lo, hi);
120 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
124 * Update the global current fid / vid values from the status msr.
125 * Returns 1 on error.
127 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
129 u32 lo, hi;
130 u32 i = 0;
132 if (cpu_family == CPU_HW_PSTATE) {
133 rdmsr(MSR_PSTATE_STATUS, lo, hi);
134 i = lo & HW_PSTATE_MASK;
135 data->currpstate = i;
138 * a workaround for family 11h erratum 311 might cause
139 * an "out-of-range Pstate if the core is in Pstate-0
141 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142 data->currpstate = HW_PSTATE_0;
144 return 0;
146 do {
147 if (i++ > 10000) {
148 pr_debug("detected change pending stuck\n");
149 return 1;
151 rdmsr(MSR_FIDVID_STATUS, lo, hi);
152 } while (lo & MSR_S_LO_CHANGE_PENDING);
154 data->currvid = hi & MSR_S_HI_CURRENT_VID;
155 data->currfid = lo & MSR_S_LO_CURRENT_FID;
157 return 0;
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data *data)
163 udelay((1 << data->irt) * 10);
164 return;
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data *data)
170 udelay(data->vstable * VST_UNITS_20US);
171 return;
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
177 u32 lo, hi;
178 u8 fid, vid;
180 rdmsr(MSR_FIDVID_STATUS, lo, hi);
181 vid = hi & MSR_S_HI_CURRENT_VID;
182 fid = lo & MSR_S_LO_CURRENT_FID;
183 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184 hi = MSR_C_HI_STP_GNT_BENIGN;
185 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186 wrmsr(MSR_FIDVID_CTL, lo, hi);
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
192 u32 lo;
193 u32 savevid = data->currvid;
194 u32 i = 0;
196 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198 return 1;
201 lo = fid;
202 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203 lo |= MSR_C_LO_INIT_FID_VID;
205 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
208 do {
209 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210 if (i++ > 100) {
211 printk(KERN_ERR PFX
212 "Hardware error - pending bit very stuck - "
213 "no further pstate changes possible\n");
214 return 1;
216 } while (query_current_values_with_pending_wait(data));
218 count_off_irt(data);
220 if (savevid != data->currvid) {
221 printk(KERN_ERR PFX
222 "vid change on fid trans, old 0x%x, new 0x%x\n",
223 savevid, data->currvid);
224 return 1;
227 if (fid != data->currfid) {
228 printk(KERN_ERR PFX
229 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230 data->currfid);
231 return 1;
234 return 0;
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
240 u32 lo;
241 u32 savefid = data->currfid;
242 int i = 0;
244 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246 return 1;
249 lo = data->currfid;
250 lo |= (vid << MSR_C_LO_VID_SHIFT);
251 lo |= MSR_C_LO_INIT_FID_VID;
253 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254 vid, lo, STOP_GRANT_5NS);
256 do {
257 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258 if (i++ > 100) {
259 printk(KERN_ERR PFX "internal error - pending bit "
260 "very stuck - no further pstate "
261 "changes possible\n");
262 return 1;
264 } while (query_current_values_with_pending_wait(data));
266 if (savefid != data->currfid) {
267 printk(KERN_ERR PFX "fid changed on vid trans, old "
268 "0x%x new 0x%x\n",
269 savefid, data->currfid);
270 return 1;
273 if (vid != data->currvid) {
274 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275 "curr 0x%x\n",
276 vid, data->currvid);
277 return 1;
280 return 0;
284 * Reduce the vid by the max of step or reqvid.
285 * Decreasing vid codes represent increasing voltages:
286 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
288 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289 u32 reqvid, u32 step)
291 if ((data->currvid - reqvid) > step)
292 reqvid = data->currvid - step;
294 if (write_new_vid(data, reqvid))
295 return 1;
297 count_off_vst(data);
299 return 0;
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
305 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306 data->currpstate = pstate;
307 return 0;
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data *data,
312 u32 reqfid, u32 reqvid)
314 if (core_voltage_pre_transition(data, reqvid, reqfid))
315 return 1;
317 if (core_frequency_transition(data, reqfid))
318 return 1;
320 if (core_voltage_post_transition(data, reqvid))
321 return 1;
323 if (query_current_values_with_pending_wait(data))
324 return 1;
326 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328 "curr 0x%x 0x%x\n",
329 smp_processor_id(),
330 reqfid, reqvid, data->currfid, data->currvid);
331 return 1;
334 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335 smp_processor_id(), data->currfid, data->currvid);
337 return 0;
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data *data,
342 u32 reqvid, u32 reqfid)
344 u32 rvosteps = data->rvo;
345 u32 savefid = data->currfid;
346 u32 maxvid, lo, rvomult = 1;
348 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349 "reqvid 0x%x, rvo 0x%x\n",
350 smp_processor_id(),
351 data->currfid, data->currvid, reqvid, data->rvo);
353 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354 rvomult = 2;
355 rvosteps *= rvomult;
356 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357 maxvid = 0x1f & (maxvid >> 16);
358 pr_debug("ph1 maxvid=0x%x\n", maxvid);
359 if (reqvid < maxvid) /* lower numbers are higher voltages */
360 reqvid = maxvid;
362 while (data->currvid > reqvid) {
363 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364 data->currvid, reqvid);
365 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366 return 1;
369 while ((rvosteps > 0) &&
370 ((rvomult * data->rvo + data->currvid) > reqvid)) {
371 if (data->currvid == maxvid) {
372 rvosteps = 0;
373 } else {
374 pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375 data->currvid - 1);
376 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377 return 1;
378 rvosteps--;
382 if (query_current_values_with_pending_wait(data))
383 return 1;
385 if (savefid != data->currfid) {
386 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387 data->currfid);
388 return 1;
391 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392 data->currfid, data->currvid);
394 return 0;
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
400 u32 vcoreqfid, vcocurrfid, vcofiddiff;
401 u32 fid_interval, savevid = data->currvid;
403 if (data->currfid == reqfid) {
404 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405 data->currfid);
406 return 0;
409 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410 "reqfid 0x%x\n",
411 smp_processor_id(),
412 data->currfid, data->currvid, reqfid);
414 vcoreqfid = convert_fid_to_vco_fid(reqfid);
415 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417 : vcoreqfid - vcocurrfid;
419 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420 vcofiddiff = 0;
422 while (vcofiddiff > 2) {
423 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
425 if (reqfid > data->currfid) {
426 if (data->currfid > LO_FID_TABLE_TOP) {
427 if (write_new_fid(data,
428 data->currfid + fid_interval))
429 return 1;
430 } else {
431 if (write_new_fid
432 (data,
433 2 + convert_fid_to_vco_fid(data->currfid)))
434 return 1;
436 } else {
437 if (write_new_fid(data, data->currfid - fid_interval))
438 return 1;
441 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443 : vcoreqfid - vcocurrfid;
446 if (write_new_fid(data, reqfid))
447 return 1;
449 if (query_current_values_with_pending_wait(data))
450 return 1;
452 if (data->currfid != reqfid) {
453 printk(KERN_ERR PFX
454 "ph2: mismatch, failed fid transition, "
455 "curr 0x%x, req 0x%x\n",
456 data->currfid, reqfid);
457 return 1;
460 if (savevid != data->currvid) {
461 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462 savevid, data->currvid);
463 return 1;
466 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467 data->currfid, data->currvid);
469 return 0;
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data *data,
474 u32 reqvid)
476 u32 savefid = data->currfid;
477 u32 savereqvid = reqvid;
479 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480 smp_processor_id(),
481 data->currfid, data->currvid);
483 if (reqvid != data->currvid) {
484 if (write_new_vid(data, reqvid))
485 return 1;
487 if (savefid != data->currfid) {
488 printk(KERN_ERR PFX
489 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490 savefid, data->currfid);
491 return 1;
494 if (data->currvid != reqvid) {
495 printk(KERN_ERR PFX
496 "ph3: failed vid transition\n, "
497 "req 0x%x, curr 0x%x",
498 reqvid, data->currvid);
499 return 1;
503 if (query_current_values_with_pending_wait(data))
504 return 1;
506 if (savereqvid != data->currvid) {
507 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508 return 1;
511 if (savefid != data->currfid) {
512 pr_debug("ph3 failed, currfid changed 0x%x\n",
513 data->currfid);
514 return 1;
517 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518 data->currfid, data->currvid);
520 return 0;
523 static const struct x86_cpu_id powernow_k8_ids[] = {
524 /* IO based frequency switching */
525 { X86_VENDOR_AMD, 0xf },
526 /* MSR based frequency switching supported */
527 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
530 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
532 static void check_supported_cpu(void *_rc)
534 u32 eax, ebx, ecx, edx;
535 int *rc = _rc;
537 *rc = -ENODEV;
539 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
541 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
542 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
543 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
544 printk(KERN_INFO PFX
545 "Processor cpuid %x not supported\n", eax);
546 return;
549 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
550 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
551 printk(KERN_INFO PFX
552 "No frequency change capabilities detected\n");
553 return;
556 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
557 if ((edx & P_STATE_TRANSITION_CAPABLE)
558 != P_STATE_TRANSITION_CAPABLE) {
559 printk(KERN_INFO PFX
560 "Power state transitions not supported\n");
561 return;
563 } else { /* must be a HW Pstate capable processor */
564 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
565 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
566 cpu_family = CPU_HW_PSTATE;
567 else
568 return;
571 *rc = 0;
574 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
575 u8 maxvid)
577 unsigned int j;
578 u8 lastfid = 0xff;
580 for (j = 0; j < data->numps; j++) {
581 if (pst[j].vid > LEAST_VID) {
582 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
583 j, pst[j].vid);
584 return -EINVAL;
586 if (pst[j].vid < data->rvo) {
587 /* vid + rvo >= 0 */
588 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
589 " %d\n", j);
590 return -ENODEV;
592 if (pst[j].vid < maxvid + data->rvo) {
593 /* vid + rvo >= maxvid */
594 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
595 " %d\n", j);
596 return -ENODEV;
598 if (pst[j].fid > MAX_FID) {
599 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
600 " %d\n", j);
601 return -ENODEV;
603 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
604 /* Only first fid is allowed to be in "low" range */
605 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
606 "0x%x\n", j, pst[j].fid);
607 return -EINVAL;
609 if (pst[j].fid < lastfid)
610 lastfid = pst[j].fid;
612 if (lastfid & 1) {
613 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
614 return -EINVAL;
616 if (lastfid > LO_FID_TABLE_TOP)
617 printk(KERN_INFO FW_BUG PFX
618 "first fid not from lo freq table\n");
620 return 0;
623 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
624 unsigned int entry)
626 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
629 static void print_basics(struct powernow_k8_data *data)
631 int j;
632 for (j = 0; j < data->numps; j++) {
633 if (data->powernow_table[j].frequency !=
634 CPUFREQ_ENTRY_INVALID) {
635 if (cpu_family == CPU_HW_PSTATE) {
636 printk(KERN_INFO PFX
637 " %d : pstate %d (%d MHz)\n", j,
638 data->powernow_table[j].index,
639 data->powernow_table[j].frequency/1000);
640 } else {
641 printk(KERN_INFO PFX
642 "fid 0x%x (%d MHz), vid 0x%x\n",
643 data->powernow_table[j].index & 0xff,
644 data->powernow_table[j].frequency/1000,
645 data->powernow_table[j].index >> 8);
649 if (data->batps)
650 printk(KERN_INFO PFX "Only %d pstates on battery\n",
651 data->batps);
654 static u32 freq_from_fid_did(u32 fid, u32 did)
656 u32 mhz = 0;
658 if (boot_cpu_data.x86 == 0x10)
659 mhz = (100 * (fid + 0x10)) >> did;
660 else if (boot_cpu_data.x86 == 0x11)
661 mhz = (100 * (fid + 8)) >> did;
662 else
663 BUG();
665 return mhz * 1000;
668 static int fill_powernow_table(struct powernow_k8_data *data,
669 struct pst_s *pst, u8 maxvid)
671 struct cpufreq_frequency_table *powernow_table;
672 unsigned int j;
674 if (data->batps) {
675 /* use ACPI support to get full speed on mains power */
676 printk(KERN_WARNING PFX
677 "Only %d pstates usable (use ACPI driver for full "
678 "range\n", data->batps);
679 data->numps = data->batps;
682 for (j = 1; j < data->numps; j++) {
683 if (pst[j-1].fid >= pst[j].fid) {
684 printk(KERN_ERR PFX "PST out of sequence\n");
685 return -EINVAL;
689 if (data->numps < 2) {
690 printk(KERN_ERR PFX "no p states to transition\n");
691 return -ENODEV;
694 if (check_pst_table(data, pst, maxvid))
695 return -EINVAL;
697 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
698 * (data->numps + 1)), GFP_KERNEL);
699 if (!powernow_table) {
700 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
701 return -ENOMEM;
704 for (j = 0; j < data->numps; j++) {
705 int freq;
706 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
707 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
708 freq = find_khz_freq_from_fid(pst[j].fid);
709 powernow_table[j].frequency = freq;
711 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
712 powernow_table[data->numps].index = 0;
714 if (query_current_values_with_pending_wait(data)) {
715 kfree(powernow_table);
716 return -EIO;
719 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
720 data->powernow_table = powernow_table;
721 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
722 print_basics(data);
724 for (j = 0; j < data->numps; j++)
725 if ((pst[j].fid == data->currfid) &&
726 (pst[j].vid == data->currvid))
727 return 0;
729 pr_debug("currfid/vid do not match PST, ignoring\n");
730 return 0;
733 /* Find and validate the PSB/PST table in BIOS. */
734 static int find_psb_table(struct powernow_k8_data *data)
736 struct psb_s *psb;
737 unsigned int i;
738 u32 mvs;
739 u8 maxvid;
740 u32 cpst = 0;
741 u32 thiscpuid;
743 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
744 /* Scan BIOS looking for the signature. */
745 /* It can not be at ffff0 - it is too big. */
747 psb = phys_to_virt(i);
748 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
749 continue;
751 pr_debug("found PSB header at 0x%p\n", psb);
753 pr_debug("table vers: 0x%x\n", psb->tableversion);
754 if (psb->tableversion != PSB_VERSION_1_4) {
755 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
756 return -ENODEV;
759 pr_debug("flags: 0x%x\n", psb->flags1);
760 if (psb->flags1) {
761 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
762 return -ENODEV;
765 data->vstable = psb->vstable;
766 pr_debug("voltage stabilization time: %d(*20us)\n",
767 data->vstable);
769 pr_debug("flags2: 0x%x\n", psb->flags2);
770 data->rvo = psb->flags2 & 3;
771 data->irt = ((psb->flags2) >> 2) & 3;
772 mvs = ((psb->flags2) >> 4) & 3;
773 data->vidmvs = 1 << mvs;
774 data->batps = ((psb->flags2) >> 6) & 3;
776 pr_debug("ramp voltage offset: %d\n", data->rvo);
777 pr_debug("isochronous relief time: %d\n", data->irt);
778 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
780 pr_debug("numpst: 0x%x\n", psb->num_tables);
781 cpst = psb->num_tables;
782 if ((psb->cpuid == 0x00000fc0) ||
783 (psb->cpuid == 0x00000fe0)) {
784 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
785 if ((thiscpuid == 0x00000fc0) ||
786 (thiscpuid == 0x00000fe0))
787 cpst = 1;
789 if (cpst != 1) {
790 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
791 return -ENODEV;
794 data->plllock = psb->plllocktime;
795 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
796 pr_debug("maxfid: 0x%x\n", psb->maxfid);
797 pr_debug("maxvid: 0x%x\n", psb->maxvid);
798 maxvid = psb->maxvid;
800 data->numps = psb->numps;
801 pr_debug("numpstates: 0x%x\n", data->numps);
802 return fill_powernow_table(data,
803 (struct pst_s *)(psb+1), maxvid);
806 * If you see this message, complain to BIOS manufacturer. If
807 * he tells you "we do not support Linux" or some similar
808 * nonsense, remember that Windows 2000 uses the same legacy
809 * mechanism that the old Linux PSB driver uses. Tell them it
810 * is broken with Windows 2000.
812 * The reference to the AMD documentation is chapter 9 in the
813 * BIOS and Kernel Developer's Guide, which is available on
814 * www.amd.com
816 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
817 printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
818 " and Cool'N'Quiet support is enabled in BIOS setup\n");
819 return -ENODEV;
822 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
823 unsigned int index)
825 u64 control;
827 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
828 return;
830 control = data->acpi_data.states[index].control;
831 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
832 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
833 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
834 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
835 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
836 data->vstable = (control >> VST_SHIFT) & VST_MASK;
839 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
841 struct cpufreq_frequency_table *powernow_table;
842 int ret_val = -ENODEV;
843 u64 control, status;
845 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
846 pr_debug("register performance failed: bad ACPI data\n");
847 return -EIO;
850 /* verify the data contained in the ACPI structures */
851 if (data->acpi_data.state_count <= 1) {
852 pr_debug("No ACPI P-States\n");
853 goto err_out;
856 control = data->acpi_data.control_register.space_id;
857 status = data->acpi_data.status_register.space_id;
859 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
860 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
861 pr_debug("Invalid control/status registers (%llx - %llx)\n",
862 control, status);
863 goto err_out;
866 /* fill in data->powernow_table */
867 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
868 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
869 if (!powernow_table) {
870 pr_debug("powernow_table memory alloc failure\n");
871 goto err_out;
874 /* fill in data */
875 data->numps = data->acpi_data.state_count;
876 powernow_k8_acpi_pst_values(data, 0);
878 if (cpu_family == CPU_HW_PSTATE)
879 ret_val = fill_powernow_table_pstate(data, powernow_table);
880 else
881 ret_val = fill_powernow_table_fidvid(data, powernow_table);
882 if (ret_val)
883 goto err_out_mem;
885 powernow_table[data->acpi_data.state_count].frequency =
886 CPUFREQ_TABLE_END;
887 powernow_table[data->acpi_data.state_count].index = 0;
888 data->powernow_table = powernow_table;
890 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
891 print_basics(data);
893 /* notify BIOS that we exist */
894 acpi_processor_notify_smm(THIS_MODULE);
896 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
897 printk(KERN_ERR PFX
898 "unable to alloc powernow_k8_data cpumask\n");
899 ret_val = -ENOMEM;
900 goto err_out_mem;
903 return 0;
905 err_out_mem:
906 kfree(powernow_table);
908 err_out:
909 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
911 /* data->acpi_data.state_count informs us at ->exit()
912 * whether ACPI was used */
913 data->acpi_data.state_count = 0;
915 return ret_val;
918 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
919 struct cpufreq_frequency_table *powernow_table)
921 int i;
922 u32 hi = 0, lo = 0;
923 rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
924 data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
926 for (i = 0; i < data->acpi_data.state_count; i++) {
927 u32 index;
929 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
930 if (index > data->max_hw_pstate) {
931 printk(KERN_ERR PFX "invalid pstate %d - "
932 "bad value %d.\n", i, index);
933 printk(KERN_ERR PFX "Please report to BIOS "
934 "manufacturer\n");
935 invalidate_entry(powernow_table, i);
936 continue;
939 ps_to_as[index] = i;
941 /* Frequency may be rounded for these */
942 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
943 || boot_cpu_data.x86 == 0x11) {
945 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
946 if (!(hi & HW_PSTATE_VALID_MASK)) {
947 pr_debug("invalid pstate %d, ignoring\n", index);
948 invalidate_entry(powernow_table, i);
949 continue;
952 powernow_table[i].frequency =
953 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
954 } else
955 powernow_table[i].frequency =
956 data->acpi_data.states[i].core_frequency * 1000;
958 powernow_table[i].index = index;
960 return 0;
963 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
964 struct cpufreq_frequency_table *powernow_table)
966 int i;
968 for (i = 0; i < data->acpi_data.state_count; i++) {
969 u32 fid;
970 u32 vid;
971 u32 freq, index;
972 u64 status, control;
974 if (data->exttype) {
975 status = data->acpi_data.states[i].status;
976 fid = status & EXT_FID_MASK;
977 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
978 } else {
979 control = data->acpi_data.states[i].control;
980 fid = control & FID_MASK;
981 vid = (control >> VID_SHIFT) & VID_MASK;
984 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
986 index = fid | (vid<<8);
987 powernow_table[i].index = index;
989 freq = find_khz_freq_from_fid(fid);
990 powernow_table[i].frequency = freq;
992 /* verify frequency is OK */
993 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
994 pr_debug("invalid freq %u kHz, ignoring\n", freq);
995 invalidate_entry(powernow_table, i);
996 continue;
999 /* verify voltage is OK -
1000 * BIOSs are using "off" to indicate invalid */
1001 if (vid == VID_OFF) {
1002 pr_debug("invalid vid %u, ignoring\n", vid);
1003 invalidate_entry(powernow_table, i);
1004 continue;
1007 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008 printk(KERN_INFO PFX "invalid freq entries "
1009 "%u kHz vs. %u kHz\n", freq,
1010 (unsigned int)
1011 (data->acpi_data.states[i].core_frequency
1012 * 1000));
1013 invalidate_entry(powernow_table, i);
1014 continue;
1017 return 0;
1020 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1022 if (data->acpi_data.state_count)
1023 acpi_processor_unregister_performance(&data->acpi_data,
1024 data->cpu);
1025 free_cpumask_var(data->acpi_data.shared_cpu_map);
1028 static int get_transition_latency(struct powernow_k8_data *data)
1030 int max_latency = 0;
1031 int i;
1032 for (i = 0; i < data->acpi_data.state_count; i++) {
1033 int cur_latency = data->acpi_data.states[i].transition_latency
1034 + data->acpi_data.states[i].bus_master_latency;
1035 if (cur_latency > max_latency)
1036 max_latency = cur_latency;
1038 if (max_latency == 0) {
1040 * Fam 11h and later may return 0 as transition latency. This
1041 * is intended and means "very fast". While cpufreq core and
1042 * governors currently can handle that gracefully, better set it
1043 * to 1 to avoid problems in the future.
1045 if (boot_cpu_data.x86 < 0x11)
1046 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047 "latency\n");
1048 max_latency = 1;
1050 /* value in usecs, needs to be in nanoseconds */
1051 return 1000 * max_latency;
1054 /* Take a frequency, and issue the fid/vid transition command */
1055 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056 unsigned int index)
1058 u32 fid = 0;
1059 u32 vid = 0;
1060 int res, i;
1061 struct cpufreq_freqs freqs;
1063 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1065 /* fid/vid correctness check for k8 */
1066 /* fid are the lower 8 bits of the index we stored into
1067 * the cpufreq frequency table in find_psb_table, vid
1068 * are the upper 8 bits.
1070 fid = data->powernow_table[index].index & 0xFF;
1071 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1073 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1075 if (query_current_values_with_pending_wait(data))
1076 return 1;
1078 if ((data->currvid == vid) && (data->currfid == fid)) {
1079 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080 fid, vid);
1081 return 0;
1084 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085 smp_processor_id(), fid, vid);
1086 freqs.old = find_khz_freq_from_fid(data->currfid);
1087 freqs.new = find_khz_freq_from_fid(fid);
1089 for_each_cpu(i, data->available_cores) {
1090 freqs.cpu = i;
1091 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1094 res = transition_fid_vid(data, fid, vid);
1095 if (res)
1096 return res;
1098 freqs.new = find_khz_freq_from_fid(data->currfid);
1100 for_each_cpu(i, data->available_cores) {
1101 freqs.cpu = i;
1102 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1104 return res;
1107 /* Take a frequency, and issue the hardware pstate transition command */
1108 static int transition_frequency_pstate(struct powernow_k8_data *data,
1109 unsigned int index)
1111 u32 pstate = 0;
1112 int res, i;
1113 struct cpufreq_freqs freqs;
1115 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1117 /* get MSR index for hardware pstate transition */
1118 pstate = index & HW_PSTATE_MASK;
1119 if (pstate > data->max_hw_pstate)
1120 return -EINVAL;
1122 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123 data->currpstate);
1124 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1126 for_each_cpu(i, data->available_cores) {
1127 freqs.cpu = i;
1128 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1131 res = transition_pstate(data, pstate);
1132 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1134 for_each_cpu(i, data->available_cores) {
1135 freqs.cpu = i;
1136 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1138 return res;
1141 struct powernowk8_target_arg {
1142 struct cpufreq_policy *pol;
1143 unsigned targfreq;
1144 unsigned relation;
1147 static long powernowk8_target_fn(void *arg)
1149 struct powernowk8_target_arg *pta = arg;
1150 struct cpufreq_policy *pol = pta->pol;
1151 unsigned targfreq = pta->targfreq;
1152 unsigned relation = pta->relation;
1153 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154 u32 checkfid;
1155 u32 checkvid;
1156 unsigned int newstate;
1157 int ret;
1159 if (!data)
1160 return -EINVAL;
1162 checkfid = data->currfid;
1163 checkvid = data->currvid;
1165 if (pending_bit_stuck()) {
1166 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167 return -EIO;
1170 pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171 pol->cpu, targfreq, pol->min, pol->max, relation);
1173 if (query_current_values_with_pending_wait(data))
1174 return -EIO;
1176 if (cpu_family != CPU_HW_PSTATE) {
1177 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178 data->currfid, data->currvid);
1180 if ((checkvid != data->currvid) ||
1181 (checkfid != data->currfid)) {
1182 printk(KERN_INFO PFX
1183 "error - out of sync, fix 0x%x 0x%x, "
1184 "vid 0x%x 0x%x\n",
1185 checkfid, data->currfid,
1186 checkvid, data->currvid);
1190 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191 targfreq, relation, &newstate))
1192 return -EIO;
1194 mutex_lock(&fidvid_mutex);
1196 powernow_k8_acpi_pst_values(data, newstate);
1198 if (cpu_family == CPU_HW_PSTATE)
1199 ret = transition_frequency_pstate(data,
1200 data->powernow_table[newstate].index);
1201 else
1202 ret = transition_frequency_fidvid(data, newstate);
1203 if (ret) {
1204 printk(KERN_ERR PFX "transition frequency failed\n");
1205 mutex_unlock(&fidvid_mutex);
1206 return 1;
1208 mutex_unlock(&fidvid_mutex);
1210 if (cpu_family == CPU_HW_PSTATE)
1211 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212 data->powernow_table[newstate].index);
1213 else
1214 pol->cur = find_khz_freq_from_fid(data->currfid);
1216 return 0;
1219 /* Driver entry point to switch to the target frequency */
1220 static int powernowk8_target(struct cpufreq_policy *pol,
1221 unsigned targfreq, unsigned relation)
1223 struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224 .relation = relation };
1226 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1229 /* Driver entry point to verify the policy and range of frequencies */
1230 static int powernowk8_verify(struct cpufreq_policy *pol)
1232 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1234 if (!data)
1235 return -EINVAL;
1237 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1240 struct init_on_cpu {
1241 struct powernow_k8_data *data;
1242 int rc;
1245 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1247 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1249 if (pending_bit_stuck()) {
1250 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1251 init_on_cpu->rc = -ENODEV;
1252 return;
1255 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1256 init_on_cpu->rc = -ENODEV;
1257 return;
1260 if (cpu_family == CPU_OPTERON)
1261 fidvid_msr_init();
1263 init_on_cpu->rc = 0;
1266 /* per CPU init entry point to the driver */
1267 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1269 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1270 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1271 FW_BUG PFX "Try again with latest BIOS.\n";
1272 struct powernow_k8_data *data;
1273 struct init_on_cpu init_on_cpu;
1274 int rc;
1275 struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1277 if (!cpu_online(pol->cpu))
1278 return -ENODEV;
1280 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1281 if (rc)
1282 return -ENODEV;
1284 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1285 if (!data) {
1286 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1287 return -ENOMEM;
1290 data->cpu = pol->cpu;
1291 data->currpstate = HW_PSTATE_INVALID;
1293 if (powernow_k8_cpu_init_acpi(data)) {
1295 * Use the PSB BIOS structure. This is only available on
1296 * an UP version, and is deprecated by AMD.
1298 if (num_online_cpus() != 1) {
1299 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1300 goto err_out;
1302 if (pol->cpu != 0) {
1303 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1304 "CPU other than CPU0. Complain to your BIOS "
1305 "vendor.\n");
1306 goto err_out;
1308 rc = find_psb_table(data);
1309 if (rc)
1310 goto err_out;
1312 /* Take a crude guess here.
1313 * That guess was in microseconds, so multiply with 1000 */
1314 pol->cpuinfo.transition_latency = (
1315 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1316 ((1 << data->irt) * 30)) * 1000;
1317 } else /* ACPI _PSS objects available */
1318 pol->cpuinfo.transition_latency = get_transition_latency(data);
1320 /* only run on specific CPU from here on */
1321 init_on_cpu.data = data;
1322 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1323 &init_on_cpu, 1);
1324 rc = init_on_cpu.rc;
1325 if (rc != 0)
1326 goto err_out_exit_acpi;
1328 if (cpu_family == CPU_HW_PSTATE)
1329 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1330 else
1331 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1332 data->available_cores = pol->cpus;
1334 if (cpu_family == CPU_HW_PSTATE)
1335 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1336 data->currpstate);
1337 else
1338 pol->cur = find_khz_freq_from_fid(data->currfid);
1339 pr_debug("policy current frequency %d kHz\n", pol->cur);
1341 /* min/max the cpu is capable of */
1342 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1343 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1344 powernow_k8_cpu_exit_acpi(data);
1345 kfree(data->powernow_table);
1346 kfree(data);
1347 return -EINVAL;
1350 /* Check for APERF/MPERF support in hardware */
1351 if (cpu_has(c, X86_FEATURE_APERFMPERF))
1352 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1354 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1356 if (cpu_family == CPU_HW_PSTATE)
1357 pr_debug("cpu_init done, current pstate 0x%x\n",
1358 data->currpstate);
1359 else
1360 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1361 data->currfid, data->currvid);
1363 per_cpu(powernow_data, pol->cpu) = data;
1365 return 0;
1367 err_out_exit_acpi:
1368 powernow_k8_cpu_exit_acpi(data);
1370 err_out:
1371 kfree(data);
1372 return -ENODEV;
1375 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1377 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1379 if (!data)
1380 return -EINVAL;
1382 powernow_k8_cpu_exit_acpi(data);
1384 cpufreq_frequency_table_put_attr(pol->cpu);
1386 kfree(data->powernow_table);
1387 kfree(data);
1388 per_cpu(powernow_data, pol->cpu) = NULL;
1390 return 0;
1393 static void query_values_on_cpu(void *_err)
1395 int *err = _err;
1396 struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1398 *err = query_current_values_with_pending_wait(data);
1401 static unsigned int powernowk8_get(unsigned int cpu)
1403 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1404 unsigned int khz = 0;
1405 int err;
1407 if (!data)
1408 return 0;
1410 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1411 if (err)
1412 goto out;
1414 if (cpu_family == CPU_HW_PSTATE)
1415 khz = find_khz_freq_from_pstate(data->powernow_table,
1416 data->currpstate);
1417 else
1418 khz = find_khz_freq_from_fid(data->currfid);
1421 out:
1422 return khz;
1425 static void _cpb_toggle_msrs(bool t)
1427 int cpu;
1429 get_online_cpus();
1431 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1433 for_each_cpu(cpu, cpu_online_mask) {
1434 struct msr *reg = per_cpu_ptr(msrs, cpu);
1435 if (t)
1436 reg->l &= ~BIT(25);
1437 else
1438 reg->l |= BIT(25);
1440 wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1442 put_online_cpus();
1446 * Switch on/off core performance boosting.
1448 * 0=disable
1449 * 1=enable.
1451 static void cpb_toggle(bool t)
1453 if (!cpb_capable)
1454 return;
1456 if (t && !cpb_enabled) {
1457 cpb_enabled = true;
1458 _cpb_toggle_msrs(t);
1459 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1460 } else if (!t && cpb_enabled) {
1461 cpb_enabled = false;
1462 _cpb_toggle_msrs(t);
1463 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1467 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1468 size_t count)
1470 int ret = -EINVAL;
1471 unsigned long val = 0;
1473 ret = strict_strtoul(buf, 10, &val);
1474 if (!ret && (val == 0 || val == 1) && cpb_capable)
1475 cpb_toggle(val);
1476 else
1477 return -EINVAL;
1479 return count;
1482 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1484 return sprintf(buf, "%u\n", cpb_enabled);
1487 #define define_one_rw(_name) \
1488 static struct freq_attr _name = \
1489 __ATTR(_name, 0644, show_##_name, store_##_name)
1491 define_one_rw(cpb);
1493 static struct freq_attr *powernow_k8_attr[] = {
1494 &cpufreq_freq_attr_scaling_available_freqs,
1495 &cpb,
1496 NULL,
1499 static struct cpufreq_driver cpufreq_amd64_driver = {
1500 .verify = powernowk8_verify,
1501 .target = powernowk8_target,
1502 .bios_limit = acpi_processor_get_bios_limit,
1503 .init = powernowk8_cpu_init,
1504 .exit = __devexit_p(powernowk8_cpu_exit),
1505 .get = powernowk8_get,
1506 .name = "powernow-k8",
1507 .owner = THIS_MODULE,
1508 .attr = powernow_k8_attr,
1512 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1513 * cannot block the remaining ones from boosting. On the CPU_UP path we
1514 * simply keep the boost-disable flag in sync with the current global
1515 * state.
1517 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1518 void *hcpu)
1520 unsigned cpu = (long)hcpu;
1521 u32 lo, hi;
1523 switch (action) {
1524 case CPU_UP_PREPARE:
1525 case CPU_UP_PREPARE_FROZEN:
1527 if (!cpb_enabled) {
1528 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1529 lo |= BIT(25);
1530 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1532 break;
1534 case CPU_DOWN_PREPARE:
1535 case CPU_DOWN_PREPARE_FROZEN:
1536 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1537 lo &= ~BIT(25);
1538 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1539 break;
1541 default:
1542 break;
1545 return NOTIFY_OK;
1548 static struct notifier_block cpb_nb = {
1549 .notifier_call = cpb_notify,
1552 /* driver entry point for init */
1553 static int __cpuinit powernowk8_init(void)
1555 unsigned int i, supported_cpus = 0, cpu;
1556 int rv;
1558 if (!x86_match_cpu(powernow_k8_ids))
1559 return -ENODEV;
1561 for_each_online_cpu(i) {
1562 int rc;
1563 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1564 if (rc == 0)
1565 supported_cpus++;
1568 if (supported_cpus != num_online_cpus())
1569 return -ENODEV;
1571 printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1572 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1574 if (boot_cpu_has(X86_FEATURE_CPB)) {
1576 cpb_capable = true;
1578 msrs = msrs_alloc();
1579 if (!msrs) {
1580 printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1581 return -ENOMEM;
1584 register_cpu_notifier(&cpb_nb);
1586 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1588 for_each_cpu(cpu, cpu_online_mask) {
1589 struct msr *reg = per_cpu_ptr(msrs, cpu);
1590 cpb_enabled |= !(!!(reg->l & BIT(25)));
1593 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1594 (cpb_enabled ? "on" : "off"));
1597 rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1598 if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1599 unregister_cpu_notifier(&cpb_nb);
1600 msrs_free(msrs);
1601 msrs = NULL;
1603 return rv;
1606 /* driver entry point for term */
1607 static void __exit powernowk8_exit(void)
1609 pr_debug("exit\n");
1611 if (boot_cpu_has(X86_FEATURE_CPB)) {
1612 msrs_free(msrs);
1613 msrs = NULL;
1615 unregister_cpu_notifier(&cpb_nb);
1618 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1621 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1622 "Mark Langsdorf <mark.langsdorf@amd.com>");
1623 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1624 MODULE_LICENSE("GPL");
1626 late_initcall(powernowk8_init);
1627 module_exit(powernowk8_exit);