2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
45 #include <linux/of_platform.h>
47 #include <asm/dcr-regs.h>
49 #include "../dmaengine.h"
51 enum ppc_adma_init_code
{
56 PPC_ADMA_INIT_COHERENT
,
57 PPC_ADMA_INIT_CHANNEL
,
60 PPC_ADMA_INIT_REGISTER
63 static char *ppc_adma_errors
[] = {
64 [PPC_ADMA_INIT_OK
] = "ok",
65 [PPC_ADMA_INIT_MEMRES
] = "failed to get memory resource",
66 [PPC_ADMA_INIT_MEMREG
] = "failed to request memory region",
67 [PPC_ADMA_INIT_ALLOC
] = "failed to allocate memory for adev "
69 [PPC_ADMA_INIT_COHERENT
] = "failed to allocate coherent memory for "
70 "hardware descriptors",
71 [PPC_ADMA_INIT_CHANNEL
] = "failed to allocate memory for channel",
72 [PPC_ADMA_INIT_IRQ1
] = "failed to request first irq",
73 [PPC_ADMA_INIT_IRQ2
] = "failed to request second irq",
74 [PPC_ADMA_INIT_REGISTER
] = "failed to register dma async device",
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices
[PPC440SPE_ADMA_ENGINES_NUM
];
80 struct ppc_dma_chan_ref
{
81 struct dma_chan
*chan
;
82 struct list_head node
;
85 /* The list of channels exported by ppc440spe ADMA */
87 ppc440spe_adma_chan_list
= LIST_HEAD_INIT(ppc440spe_adma_chan_list
);
89 /* This flag is set when want to refetch the xor chain in the interrupt
92 static u32 do_xor_refetch
;
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf
;
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot
*chan_last_sub
[3];
99 static struct ppc440spe_adma_desc_slot
*chan_first_cdb
[3];
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot
*xor_last_linked
;
103 static struct ppc440spe_adma_desc_slot
*xor_last_submit
;
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword
[16];
108 static atomic_t ppc440spe_adma_err_irq_ref
;
109 static dcr_host_t ppc440spe_mq_dcr_host
;
110 static unsigned int ppc440spe_mq_dcr_len
;
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113 * the block size in transactions, then we do not allow to activate more than
114 * only one RXOR transactions simultaneously. So use this var to store
115 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116 * set) or not (PPC440SPE_RXOR_RUN is clear).
118 static unsigned long ppc440spe_rxor_state
;
120 /* These are used in enable & check routines
122 static u32 ppc440spe_r6_enabled
;
123 static struct ppc440spe_adma_chan
*ppc440spe_r6_tchan
;
124 static struct completion ppc440spe_r6_test_comp
;
126 static int ppc440spe_adma_dma2rxor_prep_src(
127 struct ppc440spe_adma_desc_slot
*desc
,
128 struct ppc440spe_rxor
*cursor
, int index
,
129 int src_cnt
, u32 addr
);
130 static void ppc440spe_adma_dma2rxor_set_src(
131 struct ppc440spe_adma_desc_slot
*desc
,
132 int index
, dma_addr_t addr
);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134 struct ppc440spe_adma_desc_slot
*desc
,
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
143 static void print_cb(struct ppc440spe_adma_chan
*chan
, void *block
)
149 switch (chan
->device
->id
) {
154 pr_debug("CDB at %p [%d]:\n"
155 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156 "\t sg1u 0x%08x sg1l 0x%08x\n"
157 "\t sg2u 0x%08x sg2l 0x%08x\n"
158 "\t sg3u 0x%08x sg3l 0x%08x\n",
159 cdb
, chan
->device
->id
,
160 cdb
->attr
, cdb
->opc
, le32_to_cpu(cdb
->cnt
),
161 le32_to_cpu(cdb
->sg1u
), le32_to_cpu(cdb
->sg1l
),
162 le32_to_cpu(cdb
->sg2u
), le32_to_cpu(cdb
->sg2l
),
163 le32_to_cpu(cdb
->sg3u
), le32_to_cpu(cdb
->sg3l
)
169 pr_debug("CB at %p [%d]:\n"
170 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171 "\t cbtah 0x%08x cbtal 0x%08x\n"
172 "\t cblah 0x%08x cblal 0x%08x\n",
173 cb
, chan
->device
->id
,
174 cb
->cbc
, cb
->cbbc
, cb
->cbs
,
175 cb
->cbtah
, cb
->cbtal
,
176 cb
->cblah
, cb
->cblal
);
177 for (i
= 0; i
< 16; i
++) {
178 if (i
&& !cb
->ops
[i
].h
&& !cb
->ops
[i
].l
)
180 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181 i
, cb
->ops
[i
].h
, cb
->ops
[i
].l
);
187 static void print_cb_list(struct ppc440spe_adma_chan
*chan
,
188 struct ppc440spe_adma_desc_slot
*iter
)
190 for (; iter
; iter
= iter
->hw_next
)
191 print_cb(chan
, iter
->hw_desc
);
194 static void prep_dma_xor_dbg(int id
, dma_addr_t dst
, dma_addr_t
*src
,
195 unsigned int src_cnt
)
199 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
200 for (i
= 0; i
< src_cnt
; i
++)
201 pr_debug("\t0x%016llx ", src
[i
]);
202 pr_debug("dst:\n\t0x%016llx\n", dst
);
205 static void prep_dma_pq_dbg(int id
, dma_addr_t
*dst
, dma_addr_t
*src
,
206 unsigned int src_cnt
)
210 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
211 for (i
= 0; i
< src_cnt
; i
++)
212 pr_debug("\t0x%016llx ", src
[i
]);
214 for (i
= 0; i
< 2; i
++)
215 pr_debug("\t0x%016llx ", dst
[i
]);
218 static void prep_dma_pqzero_sum_dbg(int id
, dma_addr_t
*src
,
219 unsigned int src_cnt
,
220 const unsigned char *scf
)
224 pr_debug("\n%s(%d):\nsrc(coef): ", __func__
, id
);
226 for (i
= 0; i
< src_cnt
; i
++)
227 pr_debug("\t0x%016llx(0x%02x) ", src
[i
], scf
[i
]);
229 for (i
= 0; i
< src_cnt
; i
++)
230 pr_debug("\t0x%016llx(no) ", src
[i
]);
234 for (i
= 0; i
< 2; i
++)
235 pr_debug("\t0x%016llx ", src
[src_cnt
+ i
]);
238 /******************************************************************************
239 * Command (Descriptor) Blocks low-level routines
240 ******************************************************************************/
242 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot
*desc
,
246 struct ppc440spe_adma_chan
*chan
)
250 switch (chan
->device
->id
) {
251 case PPC440SPE_XOR_ID
:
253 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
254 /* NOP with Command Block Complete Enable */
255 p
->cbc
= XOR_CBCR_CBCE_BIT
;
257 case PPC440SPE_DMA0_ID
:
258 case PPC440SPE_DMA1_ID
:
259 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
260 /* NOP with interrupt */
261 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
264 printk(KERN_ERR
"Unsupported id %d in %s\n", chan
->device
->id
,
271 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot
*desc
)
276 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
277 desc
->hw_next
= NULL
;
283 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot
*desc
,
286 int src_cnt
, unsigned long flags
)
288 struct xor_cb
*hw_desc
= desc
->hw_desc
;
290 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
291 desc
->hw_next
= NULL
;
292 desc
->src_cnt
= src_cnt
;
295 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
| src_cnt
;
296 if (flags
& DMA_PREP_INTERRUPT
)
297 /* Enable interrupt on completion */
298 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
302 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303 * operation in DMA2 controller
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot
*desc
,
306 int dst_cnt
, int src_cnt
, unsigned long flags
)
308 struct xor_cb
*hw_desc
= desc
->hw_desc
;
310 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
311 desc
->hw_next
= NULL
;
312 desc
->src_cnt
= src_cnt
;
313 desc
->dst_cnt
= dst_cnt
;
314 memset(desc
->reverse_flags
, 0, sizeof(desc
->reverse_flags
));
315 desc
->descs_per_op
= 0;
317 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
;
318 if (flags
& DMA_PREP_INTERRUPT
)
319 /* Enable interrupt on completion */
320 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
323 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
328 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot
*desc
,
332 int dst_cnt
, int src_cnt
, unsigned long flags
,
335 struct dma_cdb
*hw_desc
;
336 struct ppc440spe_adma_desc_slot
*iter
;
339 /* Common initialization of a PQ descriptors chain */
340 set_bits(op
, &desc
->flags
);
341 desc
->src_cnt
= src_cnt
;
342 desc
->dst_cnt
= dst_cnt
;
344 /* WXOR MULTICAST if both P and Q are being computed
345 * MV_SG1_SG2 if Q only
347 dopc
= (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) ?
348 DMA_CDB_OPC_MULTICAST
: DMA_CDB_OPC_MV_SG1_SG2
;
350 list_for_each_entry(iter
, &desc
->group_list
, chain_node
) {
351 hw_desc
= iter
->hw_desc
;
352 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
354 if (likely(!list_is_last(&iter
->chain_node
,
355 &desc
->group_list
))) {
356 /* set 'next' pointer */
357 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
358 struct ppc440spe_adma_desc_slot
, chain_node
);
359 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
361 /* this is the last descriptor.
362 * this slot will be pasted from ADMA level
363 * each time it wants to configure parameters
364 * of the transaction (src, dst, ...)
366 iter
->hw_next
= NULL
;
367 if (flags
& DMA_PREP_INTERRUPT
)
368 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
370 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
374 /* Set OPS depending on WXOR/RXOR type of operation */
375 if (!test_bit(PPC440SPE_DESC_RXOR
, &desc
->flags
)) {
376 /* This is a WXOR only chain:
377 * - first descriptors are for zeroing destinations
378 * if PPC440SPE_ZERO_P/Q set;
379 * - descriptors remained are for GF-XOR operations.
381 iter
= list_first_entry(&desc
->group_list
,
382 struct ppc440spe_adma_desc_slot
,
385 if (test_bit(PPC440SPE_ZERO_P
, &desc
->flags
)) {
386 hw_desc
= iter
->hw_desc
;
387 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
388 iter
= list_first_entry(&iter
->chain_node
,
389 struct ppc440spe_adma_desc_slot
,
393 if (test_bit(PPC440SPE_ZERO_Q
, &desc
->flags
)) {
394 hw_desc
= iter
->hw_desc
;
395 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
396 iter
= list_first_entry(&iter
->chain_node
,
397 struct ppc440spe_adma_desc_slot
,
401 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
402 hw_desc
= iter
->hw_desc
;
406 /* This is either RXOR-only or mixed RXOR/WXOR */
408 /* The first 1 or 2 slots in chain are always RXOR,
409 * if need to calculate P & Q, then there are two
410 * RXOR slots; if only P or only Q, then there is one
412 iter
= list_first_entry(&desc
->group_list
,
413 struct ppc440spe_adma_desc_slot
,
415 hw_desc
= iter
->hw_desc
;
416 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
418 if (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) {
419 iter
= list_first_entry(&iter
->chain_node
,
420 struct ppc440spe_adma_desc_slot
,
422 hw_desc
= iter
->hw_desc
;
423 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
426 /* The remaining descs (if any) are WXORs */
427 if (test_bit(PPC440SPE_DESC_WXOR
, &desc
->flags
)) {
428 iter
= list_first_entry(&iter
->chain_node
,
429 struct ppc440spe_adma_desc_slot
,
431 list_for_each_entry_from(iter
, &desc
->group_list
,
433 hw_desc
= iter
->hw_desc
;
441 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442 * for PQ_ZERO_SUM operation
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445 struct ppc440spe_adma_desc_slot
*desc
,
446 int dst_cnt
, int src_cnt
)
448 struct dma_cdb
*hw_desc
;
449 struct ppc440spe_adma_desc_slot
*iter
;
451 u8 dopc
= (dst_cnt
== 2) ? DMA_CDB_OPC_MULTICAST
:
452 DMA_CDB_OPC_MV_SG1_SG2
;
454 * Initialize starting from 2nd or 3rd descriptor dependent
455 * on dst_cnt. First one or two slots are for cloning P
456 * and/or Q to chan->pdest and/or chan->qdest as we have
457 * to preserve original P/Q.
459 iter
= list_first_entry(&desc
->group_list
,
460 struct ppc440spe_adma_desc_slot
, chain_node
);
461 iter
= list_entry(iter
->chain_node
.next
,
462 struct ppc440spe_adma_desc_slot
, chain_node
);
465 iter
= list_entry(iter
->chain_node
.next
,
466 struct ppc440spe_adma_desc_slot
, chain_node
);
468 /* initialize each source descriptor in chain */
469 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
470 hw_desc
= iter
->hw_desc
;
471 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
475 /* This is a ZERO_SUM operation:
476 * - <src_cnt> descriptors starting from 2nd or 3rd
477 * descriptor are for GF-XOR operations;
478 * - remaining <dst_cnt> descriptors are for checking the result
481 /* MV_SG1_SG2 if only Q is being verified
482 * MULTICAST if both P and Q are being verified
486 /* DMA_CDB_OPC_DCHECK128 operation */
487 hw_desc
->opc
= DMA_CDB_OPC_DCHECK128
;
489 if (likely(!list_is_last(&iter
->chain_node
,
490 &desc
->group_list
))) {
491 /* set 'next' pointer */
492 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
493 struct ppc440spe_adma_desc_slot
,
496 /* this is the last descriptor.
497 * this slot will be pasted from ADMA level
498 * each time it wants to configure parameters
499 * of the transaction (src, dst, ...)
501 iter
->hw_next
= NULL
;
502 /* always enable interrupt generation since we get
503 * the status of pqzero from the handler
505 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
508 desc
->src_cnt
= src_cnt
;
509 desc
->dst_cnt
= dst_cnt
;
513 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot
*desc
,
518 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
520 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
521 desc
->hw_next
= NULL
;
525 if (flags
& DMA_PREP_INTERRUPT
)
526 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
528 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
530 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
534 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot
*desc
,
537 int value
, unsigned long flags
)
539 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
541 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
542 desc
->hw_next
= NULL
;
546 if (flags
& DMA_PREP_INTERRUPT
)
547 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
549 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
551 hw_desc
->sg1u
= hw_desc
->sg1l
= cpu_to_le32((u32
)value
);
552 hw_desc
->sg3u
= hw_desc
->sg3l
= cpu_to_le32((u32
)value
);
553 hw_desc
->opc
= DMA_CDB_OPC_DFILL128
;
557 * ppc440spe_desc_set_src_addr - set source address into the descriptor
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
560 struct ppc440spe_adma_chan
*chan
,
561 int src_idx
, dma_addr_t addrh
,
564 struct dma_cdb
*dma_hw_desc
;
565 struct xor_cb
*xor_hw_desc
;
566 phys_addr_t addr64
, tmplow
, tmphi
;
568 switch (chan
->device
->id
) {
569 case PPC440SPE_DMA0_ID
:
570 case PPC440SPE_DMA1_ID
:
573 tmphi
= (addr64
>> 32);
574 tmplow
= (addr64
& 0xFFFFFFFF);
579 dma_hw_desc
= desc
->hw_desc
;
580 dma_hw_desc
->sg1l
= cpu_to_le32((u32
)tmplow
);
581 dma_hw_desc
->sg1u
|= cpu_to_le32((u32
)tmphi
);
583 case PPC440SPE_XOR_ID
:
584 xor_hw_desc
= desc
->hw_desc
;
585 xor_hw_desc
->ops
[src_idx
].l
= addrl
;
586 xor_hw_desc
->ops
[src_idx
].h
|= addrh
;
592 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot
*desc
,
595 struct ppc440spe_adma_chan
*chan
, u32 mult_index
,
596 int sg_index
, unsigned char mult_value
)
598 struct dma_cdb
*dma_hw_desc
;
599 struct xor_cb
*xor_hw_desc
;
602 switch (chan
->device
->id
) {
603 case PPC440SPE_DMA0_ID
:
604 case PPC440SPE_DMA1_ID
:
605 dma_hw_desc
= desc
->hw_desc
;
608 /* for RXOR operations set multiplier
609 * into source cued address
612 psgu
= &dma_hw_desc
->sg1u
;
614 /* for WXOR operations set multiplier
615 * into destination cued address(es)
617 case DMA_CDB_SG_DST1
:
618 psgu
= &dma_hw_desc
->sg2u
;
620 case DMA_CDB_SG_DST2
:
621 psgu
= &dma_hw_desc
->sg3u
;
627 *psgu
|= cpu_to_le32(mult_value
<< mult_index
);
629 case PPC440SPE_XOR_ID
:
630 xor_hw_desc
= desc
->hw_desc
;
638 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
641 struct ppc440spe_adma_chan
*chan
,
642 dma_addr_t addrh
, dma_addr_t addrl
,
645 struct dma_cdb
*dma_hw_desc
;
646 struct xor_cb
*xor_hw_desc
;
647 phys_addr_t addr64
, tmphi
, tmplow
;
650 switch (chan
->device
->id
) {
651 case PPC440SPE_DMA0_ID
:
652 case PPC440SPE_DMA1_ID
:
655 tmphi
= (addr64
>> 32);
656 tmplow
= (addr64
& 0xFFFFFFFF);
661 dma_hw_desc
= desc
->hw_desc
;
663 psgu
= dst_idx
? &dma_hw_desc
->sg3u
: &dma_hw_desc
->sg2u
;
664 psgl
= dst_idx
? &dma_hw_desc
->sg3l
: &dma_hw_desc
->sg2l
;
666 *psgl
= cpu_to_le32((u32
)tmplow
);
667 *psgu
|= cpu_to_le32((u32
)tmphi
);
669 case PPC440SPE_XOR_ID
:
670 xor_hw_desc
= desc
->hw_desc
;
671 xor_hw_desc
->cbtal
= addrl
;
672 xor_hw_desc
->cbtah
|= addrh
;
678 * ppc440spe_desc_set_byte_count - set number of data bytes involved
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot
*desc
,
682 struct ppc440spe_adma_chan
*chan
,
685 struct dma_cdb
*dma_hw_desc
;
686 struct xor_cb
*xor_hw_desc
;
688 switch (chan
->device
->id
) {
689 case PPC440SPE_DMA0_ID
:
690 case PPC440SPE_DMA1_ID
:
691 dma_hw_desc
= desc
->hw_desc
;
692 dma_hw_desc
->cnt
= cpu_to_le32(byte_count
);
694 case PPC440SPE_XOR_ID
:
695 xor_hw_desc
= desc
->hw_desc
;
696 xor_hw_desc
->cbbc
= byte_count
;
702 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count
)
706 /* assume that byte_count is aligned on the 512-boundary;
707 * thus write it directly to the register (bits 23:31 are
710 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CF2H
, byte_count
);
714 * ppc440spe_desc_set_dcheck - set CHECK pattern
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot
*desc
,
717 struct ppc440spe_adma_chan
*chan
, u8
*qword
)
719 struct dma_cdb
*dma_hw_desc
;
721 switch (chan
->device
->id
) {
722 case PPC440SPE_DMA0_ID
:
723 case PPC440SPE_DMA1_ID
:
724 dma_hw_desc
= desc
->hw_desc
;
725 iowrite32(qword
[0], &dma_hw_desc
->sg3l
);
726 iowrite32(qword
[4], &dma_hw_desc
->sg3u
);
727 iowrite32(qword
[8], &dma_hw_desc
->sg2l
);
728 iowrite32(qword
[12], &dma_hw_desc
->sg2u
);
736 * ppc440spe_xor_set_link - set link address in xor CB
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot
*prev_desc
,
739 struct ppc440spe_adma_desc_slot
*next_desc
)
741 struct xor_cb
*xor_hw_desc
= prev_desc
->hw_desc
;
743 if (unlikely(!next_desc
|| !(next_desc
->phys
))) {
744 printk(KERN_ERR
"%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
746 next_desc
? next_desc
->phys
: 0);
750 xor_hw_desc
->cbs
= 0;
751 xor_hw_desc
->cblal
= next_desc
->phys
;
752 xor_hw_desc
->cblah
= 0;
753 xor_hw_desc
->cbc
|= XOR_CBCR_LNK_BIT
;
757 * ppc440spe_desc_set_link - set the address of descriptor following this
758 * descriptor in chain
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan
*chan
,
761 struct ppc440spe_adma_desc_slot
*prev_desc
,
762 struct ppc440spe_adma_desc_slot
*next_desc
)
765 struct ppc440spe_adma_desc_slot
*tail
= next_desc
;
767 if (unlikely(!prev_desc
|| !next_desc
||
768 (prev_desc
->hw_next
&& prev_desc
->hw_next
!= next_desc
))) {
769 /* If previous next is overwritten something is wrong.
770 * though we may refetch from append to initiate list
771 * processing; in this case - it's ok.
773 printk(KERN_ERR
"%s: prev_desc=0x%p; next_desc=0x%p; "
774 "prev->hw_next=0x%p\n", __func__
, prev_desc
,
775 next_desc
, prev_desc
? prev_desc
->hw_next
: 0);
779 local_irq_save(flags
);
781 /* do s/w chaining both for DMA and XOR descriptors */
782 prev_desc
->hw_next
= next_desc
;
784 switch (chan
->device
->id
) {
785 case PPC440SPE_DMA0_ID
:
786 case PPC440SPE_DMA1_ID
:
788 case PPC440SPE_XOR_ID
:
789 /* bind descriptor to the chain */
790 while (tail
->hw_next
)
791 tail
= tail
->hw_next
;
792 xor_last_linked
= tail
;
794 if (prev_desc
== xor_last_submit
)
795 /* do not link to the last submitted CB */
797 ppc440spe_xor_set_link(prev_desc
, next_desc
);
801 local_irq_restore(flags
);
805 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
807 static u32
ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
808 struct ppc440spe_adma_chan
*chan
, int src_idx
)
810 struct dma_cdb
*dma_hw_desc
;
811 struct xor_cb
*xor_hw_desc
;
813 switch (chan
->device
->id
) {
814 case PPC440SPE_DMA0_ID
:
815 case PPC440SPE_DMA1_ID
:
816 dma_hw_desc
= desc
->hw_desc
;
817 /* May have 0, 1, 2, or 3 sources */
818 switch (dma_hw_desc
->opc
) {
819 case DMA_CDB_OPC_NO_OP
:
820 case DMA_CDB_OPC_DFILL128
:
822 case DMA_CDB_OPC_DCHECK128
:
823 if (unlikely(src_idx
)) {
824 printk(KERN_ERR
"%s: try to get %d source for"
825 " DCHECK128\n", __func__
, src_idx
);
828 return le32_to_cpu(dma_hw_desc
->sg1l
);
829 case DMA_CDB_OPC_MULTICAST
:
830 case DMA_CDB_OPC_MV_SG1_SG2
:
831 if (unlikely(src_idx
> 2)) {
832 printk(KERN_ERR
"%s: try to get %d source from"
833 " DMA descr\n", __func__
, src_idx
);
837 if (le32_to_cpu(dma_hw_desc
->sg1u
) &
838 DMA_CUED_XOR_WIN_MSK
) {
846 region
= (le32_to_cpu(
847 dma_hw_desc
->sg1u
)) >>
850 region
&= DMA_CUED_REGION_MSK
;
855 (desc
->unmap_len
<< 1);
859 (desc
->unmap_len
* 3);
863 (desc
->unmap_len
<< 2);
867 " get src3 for region %02x"
868 "PPC440SPE_DESC_RXOR12?\n",
875 " source for non-cued descr\n",
880 return le32_to_cpu(dma_hw_desc
->sg1l
);
882 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
883 __func__
, dma_hw_desc
->opc
);
886 return le32_to_cpu(dma_hw_desc
->sg1l
);
887 case PPC440SPE_XOR_ID
:
888 /* May have up to 16 sources */
889 xor_hw_desc
= desc
->hw_desc
;
890 return xor_hw_desc
->ops
[src_idx
].l
;
896 * ppc440spe_desc_get_dest_addr - extract the destination address from the
899 static u32
ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
900 struct ppc440spe_adma_chan
*chan
, int idx
)
902 struct dma_cdb
*dma_hw_desc
;
903 struct xor_cb
*xor_hw_desc
;
905 switch (chan
->device
->id
) {
906 case PPC440SPE_DMA0_ID
:
907 case PPC440SPE_DMA1_ID
:
908 dma_hw_desc
= desc
->hw_desc
;
911 return le32_to_cpu(dma_hw_desc
->sg2l
);
912 return le32_to_cpu(dma_hw_desc
->sg3l
);
913 case PPC440SPE_XOR_ID
:
914 xor_hw_desc
= desc
->hw_desc
;
915 return xor_hw_desc
->cbtal
;
921 * ppc440spe_desc_get_src_num - extract the number of source addresses from
924 static u32
ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot
*desc
,
925 struct ppc440spe_adma_chan
*chan
)
927 struct dma_cdb
*dma_hw_desc
;
928 struct xor_cb
*xor_hw_desc
;
930 switch (chan
->device
->id
) {
931 case PPC440SPE_DMA0_ID
:
932 case PPC440SPE_DMA1_ID
:
933 dma_hw_desc
= desc
->hw_desc
;
935 switch (dma_hw_desc
->opc
) {
936 case DMA_CDB_OPC_NO_OP
:
937 case DMA_CDB_OPC_DFILL128
:
939 case DMA_CDB_OPC_DCHECK128
:
941 case DMA_CDB_OPC_MV_SG1_SG2
:
942 case DMA_CDB_OPC_MULTICAST
:
944 * Only for RXOR operations we have more than
947 if (le32_to_cpu(dma_hw_desc
->sg1u
) &
948 DMA_CUED_XOR_WIN_MSK
) {
949 /* RXOR op, there are 2 or 3 sources */
950 if (((le32_to_cpu(dma_hw_desc
->sg1u
) >>
951 DMA_CUED_REGION_OFF
) &
952 DMA_CUED_REGION_MSK
) == DMA_RXOR12
) {
956 /* RXOR 1-2-3/1-2-4/1-2-5 */
962 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
963 __func__
, dma_hw_desc
->opc
);
966 case PPC440SPE_XOR_ID
:
967 /* up to 16 sources */
968 xor_hw_desc
= desc
->hw_desc
;
969 return xor_hw_desc
->cbc
& XOR_CDCR_OAC_MSK
;
977 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
980 static u32
ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot
*desc
,
981 struct ppc440spe_adma_chan
*chan
)
983 struct dma_cdb
*dma_hw_desc
;
985 switch (chan
->device
->id
) {
986 case PPC440SPE_DMA0_ID
:
987 case PPC440SPE_DMA1_ID
:
988 /* May be 1 or 2 destinations */
989 dma_hw_desc
= desc
->hw_desc
;
990 switch (dma_hw_desc
->opc
) {
991 case DMA_CDB_OPC_NO_OP
:
992 case DMA_CDB_OPC_DCHECK128
:
994 case DMA_CDB_OPC_MV_SG1_SG2
:
995 case DMA_CDB_OPC_DFILL128
:
997 case DMA_CDB_OPC_MULTICAST
:
998 if (desc
->dst_cnt
== 2)
1003 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
1004 __func__
, dma_hw_desc
->opc
);
1007 case PPC440SPE_XOR_ID
:
1008 /* Always only 1 destination */
1017 * ppc440spe_desc_get_link - get the address of the descriptor that
1020 static inline u32
ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot
*desc
,
1021 struct ppc440spe_adma_chan
*chan
)
1026 return desc
->hw_next
->phys
;
1030 * ppc440spe_desc_is_aligned - check alignment
1032 static inline int ppc440spe_desc_is_aligned(
1033 struct ppc440spe_adma_desc_slot
*desc
, int num_slots
)
1035 return (desc
->idx
& (num_slots
- 1)) ? 0 : 1;
1039 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1042 static int ppc440spe_chan_xor_slot_count(size_t len
, int src_cnt
,
1047 /* each XOR descriptor provides up to 16 source operands */
1048 slot_cnt
= *slots_per_op
= (src_cnt
+ XOR_MAX_OPS
- 1)/XOR_MAX_OPS
;
1050 if (likely(len
<= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
))
1053 printk(KERN_ERR
"%s: len %d > max %d !!\n",
1054 __func__
, len
, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
1060 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1063 static int ppc440spe_dma2_pq_slot_count(dma_addr_t
*srcs
,
1064 int src_cnt
, size_t len
)
1066 signed long long order
= 0;
1070 for (i
= 1; i
< src_cnt
; i
++) {
1071 dma_addr_t cur_addr
= srcs
[i
];
1072 dma_addr_t old_addr
= srcs
[i
-1];
1075 if (cur_addr
== old_addr
+ len
) {
1081 } else if (old_addr
== cur_addr
+ len
) {
1092 if (i
== src_cnt
-2 || (order
== -1
1093 && cur_addr
!= old_addr
- len
)) {
1097 } else if (cur_addr
== old_addr
+ len
*order
) {
1101 } else if (cur_addr
== old_addr
+ 2*len
) {
1105 } else if (cur_addr
== old_addr
+ 3*len
) {
1124 if (src_cnt
<= 1 || (state
!= 1 && state
!= 2)) {
1125 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1126 __func__
, src_cnt
, state
, addr_count
, order
);
1127 for (i
= 0; i
< src_cnt
; i
++)
1128 pr_err("\t[%d] 0x%llx \n", i
, srcs
[i
]);
1132 return (addr_count
+ XOR_MAX_OPS
- 1) / XOR_MAX_OPS
;
1136 /******************************************************************************
1137 * ADMA channel low-level routines
1138 ******************************************************************************/
1141 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
);
1142 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
);
1145 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1147 static void ppc440spe_adma_device_clear_eot_status(
1148 struct ppc440spe_adma_chan
*chan
)
1150 struct dma_regs
*dma_reg
;
1151 struct xor_regs
*xor_reg
;
1152 u8
*p
= chan
->device
->dma_desc_pool_virt
;
1153 struct dma_cdb
*cdb
;
1156 switch (chan
->device
->id
) {
1157 case PPC440SPE_DMA0_ID
:
1158 case PPC440SPE_DMA1_ID
:
1159 /* read FIFO to ack */
1160 dma_reg
= chan
->device
->dma_reg
;
1161 while ((rv
= ioread32(&dma_reg
->csfpl
))) {
1162 i
= rv
& DMA_CDB_ADDR_MSK
;
1163 cdb
= (struct dma_cdb
*)&p
[i
-
1164 (u32
)chan
->device
->dma_desc_pool
];
1166 /* Clear opcode to ack. This is necessary for
1167 * ZeroSum operations only
1171 if (test_bit(PPC440SPE_RXOR_RUN
,
1172 &ppc440spe_rxor_state
)) {
1173 /* probably this is a completed RXOR op,
1174 * get pointer to CDB using the fact that
1175 * physical and virtual addresses of CDB
1176 * in pools have the same offsets
1178 if (le32_to_cpu(cdb
->sg1u
) &
1179 DMA_CUED_XOR_BASE
) {
1180 /* this is a RXOR */
1181 clear_bit(PPC440SPE_RXOR_RUN
,
1182 &ppc440spe_rxor_state
);
1186 if (rv
& DMA_CDB_STATUS_MSK
) {
1187 /* ZeroSum check failed
1189 struct ppc440spe_adma_desc_slot
*iter
;
1190 dma_addr_t phys
= rv
& ~DMA_CDB_MSK
;
1193 * Update the status of corresponding
1196 list_for_each_entry(iter
, &chan
->chain
,
1198 if (iter
->phys
== phys
)
1202 * if cannot find the corresponding
1205 BUG_ON(&iter
->chain_node
== &chan
->chain
);
1207 if (iter
->xor_check_result
) {
1208 if (test_bit(PPC440SPE_DESC_PCHECK
,
1210 *iter
->xor_check_result
|=
1213 if (test_bit(PPC440SPE_DESC_QCHECK
,
1215 *iter
->xor_check_result
|=
1223 rv
= ioread32(&dma_reg
->dsts
);
1225 pr_err("DMA%d err status: 0x%x\n",
1226 chan
->device
->id
, rv
);
1227 /* write back to clear */
1228 iowrite32(rv
, &dma_reg
->dsts
);
1231 case PPC440SPE_XOR_ID
:
1232 /* reset status bits to ack */
1233 xor_reg
= chan
->device
->xor_reg
;
1234 rv
= ioread32be(&xor_reg
->sr
);
1235 iowrite32be(rv
, &xor_reg
->sr
);
1237 if (rv
& (XOR_IE_ICBIE_BIT
|XOR_IE_ICIE_BIT
|XOR_IE_RPTIE_BIT
)) {
1238 if (rv
& XOR_IE_RPTIE_BIT
) {
1239 /* Read PLB Timeout Error.
1240 * Try to resubmit the CB
1242 u32 val
= ioread32be(&xor_reg
->ccbalr
);
1244 iowrite32be(val
, &xor_reg
->cblalr
);
1246 val
= ioread32be(&xor_reg
->crsr
);
1247 iowrite32be(val
| XOR_CRSR_XAE_BIT
,
1250 pr_err("XOR ERR 0x%x status\n", rv
);
1254 /* if the XORcore is idle, but there are unprocessed CBs
1255 * then refetch the s/w chain here
1257 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) &&
1259 ppc440spe_chan_append(chan
);
1265 * ppc440spe_chan_is_busy - get the channel status
1267 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan
*chan
)
1269 struct dma_regs
*dma_reg
;
1270 struct xor_regs
*xor_reg
;
1273 switch (chan
->device
->id
) {
1274 case PPC440SPE_DMA0_ID
:
1275 case PPC440SPE_DMA1_ID
:
1276 dma_reg
= chan
->device
->dma_reg
;
1277 /* if command FIFO's head and tail pointers are equal and
1278 * status tail is the same as command, then channel is free
1280 if (ioread16(&dma_reg
->cpfhp
) != ioread16(&dma_reg
->cpftp
) ||
1281 ioread16(&dma_reg
->cpftp
) != ioread16(&dma_reg
->csftp
))
1284 case PPC440SPE_XOR_ID
:
1285 /* use the special status bit for the XORcore
1287 xor_reg
= chan
->device
->xor_reg
;
1288 busy
= (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) ? 1 : 0;
1296 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1298 static void ppc440spe_chan_set_first_xor_descriptor(
1299 struct ppc440spe_adma_chan
*chan
,
1300 struct ppc440spe_adma_desc_slot
*next_desc
)
1302 struct xor_regs
*xor_reg
= chan
->device
->xor_reg
;
1304 if (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)
1305 printk(KERN_INFO
"%s: Warn: XORcore is running "
1306 "when try to set the first CDB!\n",
1309 xor_last_submit
= xor_last_linked
= next_desc
;
1311 iowrite32be(XOR_CRSR_64BA_BIT
, &xor_reg
->crsr
);
1313 iowrite32be(next_desc
->phys
, &xor_reg
->cblalr
);
1314 iowrite32be(0, &xor_reg
->cblahr
);
1315 iowrite32be(ioread32be(&xor_reg
->cbcr
) | XOR_CBCR_LNK_BIT
,
1318 chan
->hw_chain_inited
= 1;
1322 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1323 * called with irqs disabled
1325 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan
*chan
,
1326 struct ppc440spe_adma_desc_slot
*desc
)
1329 struct dma_regs
*dma_reg
= chan
->device
->dma_reg
;
1332 if (!test_bit(PPC440SPE_DESC_INT
, &desc
->flags
))
1333 pcdb
|= DMA_CDB_NO_INT
;
1335 chan_last_sub
[chan
->device
->id
] = desc
;
1337 ADMA_LL_DBG(print_cb(chan
, desc
->hw_desc
));
1339 iowrite32(pcdb
, &dma_reg
->cpfpl
);
1343 * ppc440spe_chan_append - update the h/w chain in the channel
1345 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
)
1347 struct xor_regs
*xor_reg
;
1348 struct ppc440spe_adma_desc_slot
*iter
;
1351 unsigned long flags
;
1353 local_irq_save(flags
);
1355 switch (chan
->device
->id
) {
1356 case PPC440SPE_DMA0_ID
:
1357 case PPC440SPE_DMA1_ID
:
1358 cur_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1360 if (likely(cur_desc
)) {
1361 iter
= chan_last_sub
[chan
->device
->id
];
1365 iter
= chan_first_cdb
[chan
->device
->id
];
1367 ppc440spe_dma_put_desc(chan
, iter
);
1368 chan
->hw_chain_inited
= 1;
1371 /* is there something new to append */
1375 /* flush descriptors from the s/w queue to fifo */
1376 list_for_each_entry_continue(iter
, &chan
->chain
, chain_node
) {
1377 ppc440spe_dma_put_desc(chan
, iter
);
1382 case PPC440SPE_XOR_ID
:
1383 /* update h/w links and refetch */
1384 if (!xor_last_submit
->hw_next
)
1387 xor_reg
= chan
->device
->xor_reg
;
1388 /* the last linked CDB has to generate an interrupt
1389 * that we'd be able to append the next lists to h/w
1390 * regardless of the XOR engine state at the moment of
1391 * appending of these next lists
1393 xcb
= xor_last_linked
->hw_desc
;
1394 xcb
->cbc
|= XOR_CBCR_CBCE_BIT
;
1396 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)) {
1397 /* XORcore is idle. Refetch now */
1399 ppc440spe_xor_set_link(xor_last_submit
,
1400 xor_last_submit
->hw_next
);
1402 ADMA_LL_DBG(print_cb_list(chan
,
1403 xor_last_submit
->hw_next
));
1405 xor_last_submit
= xor_last_linked
;
1406 iowrite32be(ioread32be(&xor_reg
->crsr
) |
1407 XOR_CRSR_RCBE_BIT
| XOR_CRSR_64BA_BIT
,
1410 /* XORcore is running. Refetch later in the handler */
1417 local_irq_restore(flags
);
1421 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1424 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
)
1426 struct dma_regs
*dma_reg
;
1427 struct xor_regs
*xor_reg
;
1429 if (unlikely(!chan
->hw_chain_inited
))
1430 /* h/w descriptor chain is not initialized yet */
1433 switch (chan
->device
->id
) {
1434 case PPC440SPE_DMA0_ID
:
1435 case PPC440SPE_DMA1_ID
:
1436 dma_reg
= chan
->device
->dma_reg
;
1437 return ioread32(&dma_reg
->acpl
) & (~DMA_CDB_MSK
);
1438 case PPC440SPE_XOR_ID
:
1439 xor_reg
= chan
->device
->xor_reg
;
1440 return ioread32be(&xor_reg
->ccbalr
);
1446 * ppc440spe_chan_run - enable the channel
1448 static void ppc440spe_chan_run(struct ppc440spe_adma_chan
*chan
)
1450 struct xor_regs
*xor_reg
;
1452 switch (chan
->device
->id
) {
1453 case PPC440SPE_DMA0_ID
:
1454 case PPC440SPE_DMA1_ID
:
1455 /* DMAs are always enabled, do nothing */
1457 case PPC440SPE_XOR_ID
:
1458 /* drain write buffer */
1459 xor_reg
= chan
->device
->xor_reg
;
1461 /* fetch descriptor pointed to in <link> */
1462 iowrite32be(XOR_CRSR_64BA_BIT
| XOR_CRSR_XAE_BIT
,
1468 /******************************************************************************
1470 ******************************************************************************/
1472 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
);
1473 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
);
1476 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
);
1478 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1479 dma_addr_t addr
, int index
);
1481 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1482 dma_addr_t addr
, int index
);
1485 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1486 dma_addr_t
*paddr
, unsigned long flags
);
1488 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1489 dma_addr_t addr
, int index
);
1491 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot
*tx
,
1492 unsigned char mult
, int index
, int dst_pos
);
1494 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1495 dma_addr_t paddr
, dma_addr_t qaddr
);
1497 static struct page
*ppc440spe_rxor_srcs
[32];
1500 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1502 static int ppc440spe_can_rxor(struct page
**srcs
, int src_cnt
, size_t len
)
1504 int i
, order
= 0, state
= 0;
1507 if (unlikely(!(src_cnt
> 1)))
1510 BUG_ON(src_cnt
> ARRAY_SIZE(ppc440spe_rxor_srcs
));
1512 /* Skip holes in the source list before checking */
1513 for (i
= 0; i
< src_cnt
; i
++) {
1516 ppc440spe_rxor_srcs
[idx
++] = srcs
[i
];
1520 for (i
= 1; i
< src_cnt
; i
++) {
1521 char *cur_addr
= page_address(ppc440spe_rxor_srcs
[i
]);
1522 char *old_addr
= page_address(ppc440spe_rxor_srcs
[i
- 1]);
1526 if (cur_addr
== old_addr
+ len
) {
1530 } else if (old_addr
== cur_addr
+ len
) {
1538 if ((i
== src_cnt
- 2) ||
1539 (order
== -1 && cur_addr
!= old_addr
- len
)) {
1542 } else if ((cur_addr
== old_addr
+ len
* order
) ||
1543 (cur_addr
== old_addr
+ 2 * len
) ||
1544 (cur_addr
== old_addr
+ 3 * len
)) {
1559 if (state
== 1 || state
== 2)
1566 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1567 * the operation given on this channel. It's assumed that 'chan' is
1568 * capable to process 'cap' type of operation.
1569 * @chan: channel to use
1570 * @cap: type of transaction
1571 * @dst_lst: array of destination pointers
1572 * @dst_cnt: number of destination operands
1573 * @src_lst: array of source pointers
1574 * @src_cnt: number of source operands
1575 * @src_sz: size of each source operand
1577 static int ppc440spe_adma_estimate(struct dma_chan
*chan
,
1578 enum dma_transaction_type cap
, struct page
**dst_lst
, int dst_cnt
,
1579 struct page
**src_lst
, int src_cnt
, size_t src_sz
)
1583 if (cap
== DMA_PQ
|| cap
== DMA_PQ_VAL
) {
1584 /* If RAID-6 capabilities were not activated don't try
1587 if (unlikely(!ppc440spe_r6_enabled
))
1590 /* In the current implementation of ppc440spe ADMA driver it
1591 * makes sense to pick out only pq case, because it may be
1593 * (1) either using Biskup method on DMA2;
1595 * Thus we give a favour to (1) if the sources are suitable;
1596 * else let it be processed on one of the DMA0/1 engines.
1597 * In the sum_product case where destination is also the
1598 * source process it on DMA0/1 only.
1600 if (cap
== DMA_PQ
&& chan
->chan_id
== PPC440SPE_XOR_ID
) {
1602 if (dst_cnt
== 1 && src_cnt
== 2 && dst_lst
[0] == src_lst
[1])
1603 ef
= 0; /* sum_product case, process on DMA0/1 */
1604 else if (ppc440spe_can_rxor(src_lst
, src_cnt
, src_sz
))
1605 ef
= 3; /* override (DMA0/1 + idle) */
1607 ef
= 0; /* can't process on DMA2 if !rxor */
1610 /* channel idleness increases the priority */
1612 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan
)))
1619 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap
,
1620 struct page
**dst_lst
, int dst_cnt
, struct page
**src_lst
,
1621 int src_cnt
, size_t src_sz
)
1623 struct dma_chan
*best_chan
= NULL
;
1624 struct ppc_dma_chan_ref
*ref
;
1627 if (unlikely(!src_sz
))
1629 if (src_sz
> PAGE_SIZE
) {
1631 * should a user of the api ever pass > PAGE_SIZE requests
1632 * we sort out cases where temporary page-sized buffers
1637 if (src_cnt
== 1 && dst_lst
[1] == src_lst
[0])
1639 if (src_cnt
== 2 && dst_lst
[1] == src_lst
[1])
1650 list_for_each_entry(ref
, &ppc440spe_adma_chan_list
, node
) {
1651 if (dma_has_cap(cap
, ref
->chan
->device
->cap_mask
)) {
1654 rank
= ppc440spe_adma_estimate(ref
->chan
, cap
, dst_lst
,
1655 dst_cnt
, src_lst
, src_cnt
, src_sz
);
1656 if (rank
> best_rank
) {
1658 best_chan
= ref
->chan
;
1665 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel
);
1668 * ppc440spe_get_group_entry - get group entry with index idx
1669 * @tdesc: is the last allocated slot in the group.
1671 static struct ppc440spe_adma_desc_slot
*
1672 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot
*tdesc
, u32 entry_idx
)
1674 struct ppc440spe_adma_desc_slot
*iter
= tdesc
->group_head
;
1677 if (entry_idx
< 0 || entry_idx
>= (tdesc
->src_cnt
+ tdesc
->dst_cnt
)) {
1678 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1679 __func__
, entry_idx
, tdesc
->src_cnt
, tdesc
->dst_cnt
);
1683 list_for_each_entry(iter
, &tdesc
->group_list
, chain_node
) {
1684 if (i
++ == entry_idx
)
1691 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1692 * @slot: Slot to free
1693 * Caller must hold &ppc440spe_chan->lock while calling this function
1695 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot
*slot
,
1696 struct ppc440spe_adma_chan
*chan
)
1698 int stride
= slot
->slots_per_op
;
1701 slot
->slots_per_op
= 0;
1702 slot
= list_entry(slot
->slot_node
.next
,
1703 struct ppc440spe_adma_desc_slot
,
1708 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan
*chan
,
1709 struct ppc440spe_adma_desc_slot
*desc
)
1711 u32 src_cnt
, dst_cnt
;
1715 * get the number of sources & destination
1716 * included in this descriptor and unmap
1719 src_cnt
= ppc440spe_desc_get_src_num(desc
, chan
);
1720 dst_cnt
= ppc440spe_desc_get_dst_num(desc
, chan
);
1722 /* unmap destinations */
1723 if (!(desc
->async_tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1725 addr
= ppc440spe_desc_get_dest_addr(
1726 desc
, chan
, dst_cnt
);
1727 dma_unmap_page(chan
->device
->dev
,
1728 addr
, desc
->unmap_len
,
1734 if (!(desc
->async_tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1736 addr
= ppc440spe_desc_get_src_addr(
1737 desc
, chan
, src_cnt
);
1738 dma_unmap_page(chan
->device
->dev
,
1739 addr
, desc
->unmap_len
,
1746 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1749 static dma_cookie_t
ppc440spe_adma_run_tx_complete_actions(
1750 struct ppc440spe_adma_desc_slot
*desc
,
1751 struct ppc440spe_adma_chan
*chan
,
1752 dma_cookie_t cookie
)
1756 BUG_ON(desc
->async_tx
.cookie
< 0);
1757 if (desc
->async_tx
.cookie
> 0) {
1758 cookie
= desc
->async_tx
.cookie
;
1759 desc
->async_tx
.cookie
= 0;
1761 /* call the callback (must not sleep or submit new
1762 * operations to this channel)
1764 if (desc
->async_tx
.callback
)
1765 desc
->async_tx
.callback(
1766 desc
->async_tx
.callback_param
);
1768 /* unmap dma addresses
1769 * (unmap_single vs unmap_page?)
1771 * actually, ppc's dma_unmap_page() functions are empty, so
1772 * the following code is just for the sake of completeness
1774 if (chan
&& chan
->needs_unmap
&& desc
->group_head
&&
1776 struct ppc440spe_adma_desc_slot
*unmap
=
1778 /* assume 1 slot per op always */
1779 u32 slot_count
= unmap
->slot_cnt
;
1781 /* Run through the group list and unmap addresses */
1782 for (i
= 0; i
< slot_count
; i
++) {
1784 ppc440spe_adma_unmap(chan
, unmap
);
1785 unmap
= unmap
->hw_next
;
1790 /* run dependent operations */
1791 dma_run_dependencies(&desc
->async_tx
);
1797 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1799 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot
*desc
,
1800 struct ppc440spe_adma_chan
*chan
)
1802 /* the client is allowed to attach dependent operations
1803 * until 'ack' is set
1805 if (!async_tx_test_ack(&desc
->async_tx
))
1808 /* leave the last descriptor in the chain
1809 * so we can append to it
1811 if (list_is_last(&desc
->chain_node
, &chan
->chain
) ||
1812 desc
->phys
== ppc440spe_chan_get_current_descriptor(chan
))
1815 if (chan
->device
->id
!= PPC440SPE_XOR_ID
) {
1816 /* our DMA interrupt handler clears opc field of
1817 * each processed descriptor. For all types of
1818 * operations except for ZeroSum we do not actually
1819 * need ack from the interrupt handler. ZeroSum is a
1820 * special case since the result of this operation
1821 * is available from the handler only, so if we see
1822 * such type of descriptor (which is unprocessed yet)
1823 * then leave it in chain.
1825 struct dma_cdb
*cdb
= desc
->hw_desc
;
1826 if (cdb
->opc
== DMA_CDB_OPC_DCHECK128
)
1830 dev_dbg(chan
->device
->common
.dev
, "\tfree slot %llx: %d stride: %d\n",
1831 desc
->phys
, desc
->idx
, desc
->slots_per_op
);
1833 list_del(&desc
->chain_node
);
1834 ppc440spe_adma_free_slots(desc
, chan
);
1839 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1840 * which runs through the channel CDBs list until reach the descriptor
1841 * currently processed. When routine determines that all CDBs of group
1842 * are completed then corresponding callbacks (if any) are called and slots
1845 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1847 struct ppc440spe_adma_desc_slot
*iter
, *_iter
, *group_start
= NULL
;
1848 dma_cookie_t cookie
= 0;
1849 u32 current_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1850 int busy
= ppc440spe_chan_is_busy(chan
);
1851 int seen_current
= 0, slot_cnt
= 0, slots_per_op
= 0;
1853 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: %s\n",
1854 chan
->device
->id
, __func__
);
1856 if (!current_desc
) {
1857 /* There were no transactions yet, so
1863 /* free completed slots from the chain starting with
1864 * the oldest descriptor
1866 list_for_each_entry_safe(iter
, _iter
, &chan
->chain
,
1868 dev_dbg(chan
->device
->common
.dev
, "\tcookie: %d slot: %d "
1869 "busy: %d this_desc: %#llx next_desc: %#x "
1870 "cur: %#x ack: %d\n",
1871 iter
->async_tx
.cookie
, iter
->idx
, busy
, iter
->phys
,
1872 ppc440spe_desc_get_link(iter
, chan
), current_desc
,
1873 async_tx_test_ack(&iter
->async_tx
));
1875 prefetch(&_iter
->async_tx
);
1877 /* do not advance past the current descriptor loaded into the
1878 * hardware channel,subsequent descriptors are either in process
1879 * or have not been submitted
1884 /* stop the search if we reach the current descriptor and the
1885 * channel is busy, or if it appears that the current descriptor
1886 * needs to be re-read (i.e. has been appended to)
1888 if (iter
->phys
== current_desc
) {
1889 BUG_ON(seen_current
++);
1890 if (busy
|| ppc440spe_desc_get_link(iter
, chan
)) {
1891 /* not all descriptors of the group have
1892 * been completed; exit.
1898 /* detect the start of a group transaction */
1899 if (!slot_cnt
&& !slots_per_op
) {
1900 slot_cnt
= iter
->slot_cnt
;
1901 slots_per_op
= iter
->slots_per_op
;
1902 if (slot_cnt
<= slots_per_op
) {
1911 slot_cnt
-= slots_per_op
;
1914 /* all the members of a group are complete */
1915 if (slots_per_op
!= 0 && slot_cnt
== 0) {
1916 struct ppc440spe_adma_desc_slot
*grp_iter
, *_grp_iter
;
1917 int end_of_chain
= 0;
1919 /* clean up the group */
1920 slot_cnt
= group_start
->slot_cnt
;
1921 grp_iter
= group_start
;
1922 list_for_each_entry_safe_from(grp_iter
, _grp_iter
,
1923 &chan
->chain
, chain_node
) {
1925 cookie
= ppc440spe_adma_run_tx_complete_actions(
1926 grp_iter
, chan
, cookie
);
1928 slot_cnt
-= slots_per_op
;
1929 end_of_chain
= ppc440spe_adma_clean_slot(
1931 if (end_of_chain
&& slot_cnt
) {
1932 /* Should wait for ZeroSum completion */
1934 chan
->common
.completed_cookie
= cookie
;
1938 if (slot_cnt
== 0 || end_of_chain
)
1942 /* the group should be complete at this point */
1951 } else if (slots_per_op
) /* wait for group completion */
1954 cookie
= ppc440spe_adma_run_tx_complete_actions(iter
, chan
,
1957 if (ppc440spe_adma_clean_slot(iter
, chan
))
1961 BUG_ON(!seen_current
);
1964 chan
->common
.completed_cookie
= cookie
;
1965 pr_debug("\tcompleted cookie %d\n", cookie
);
1971 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1973 static void ppc440spe_adma_tasklet(unsigned long data
)
1975 struct ppc440spe_adma_chan
*chan
= (struct ppc440spe_adma_chan
*) data
;
1977 spin_lock_nested(&chan
->lock
, SINGLE_DEPTH_NESTING
);
1978 __ppc440spe_adma_slot_cleanup(chan
);
1979 spin_unlock(&chan
->lock
);
1983 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1985 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1987 spin_lock_bh(&chan
->lock
);
1988 __ppc440spe_adma_slot_cleanup(chan
);
1989 spin_unlock_bh(&chan
->lock
);
1993 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1995 static struct ppc440spe_adma_desc_slot
*ppc440spe_adma_alloc_slots(
1996 struct ppc440spe_adma_chan
*chan
, int num_slots
,
1999 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *_iter
;
2000 struct ppc440spe_adma_desc_slot
*alloc_start
= NULL
;
2001 struct list_head chain
= LIST_HEAD_INIT(chain
);
2002 int slots_found
, retry
= 0;
2005 BUG_ON(!num_slots
|| !slots_per_op
);
2006 /* start search from the last allocated descrtiptor
2007 * if a contiguous allocation can not be found start searching
2008 * from the beginning of the list
2013 iter
= chan
->last_used
;
2015 iter
= list_entry(&chan
->all_slots
,
2016 struct ppc440spe_adma_desc_slot
,
2018 list_for_each_entry_safe_continue(iter
, _iter
, &chan
->all_slots
,
2021 prefetch(&_iter
->async_tx
);
2022 if (iter
->slots_per_op
) {
2027 /* start the allocation if the slot is correctly aligned */
2031 if (slots_found
== num_slots
) {
2032 struct ppc440spe_adma_desc_slot
*alloc_tail
= NULL
;
2033 struct ppc440spe_adma_desc_slot
*last_used
= NULL
;
2038 /* pre-ack all but the last descriptor */
2039 if (num_slots
!= slots_per_op
)
2040 async_tx_ack(&iter
->async_tx
);
2042 list_add_tail(&iter
->chain_node
, &chain
);
2044 iter
->async_tx
.cookie
= 0;
2045 iter
->hw_next
= NULL
;
2047 iter
->slot_cnt
= num_slots
;
2048 iter
->xor_check_result
= NULL
;
2049 for (i
= 0; i
< slots_per_op
; i
++) {
2050 iter
->slots_per_op
= slots_per_op
- i
;
2052 iter
= list_entry(iter
->slot_node
.next
,
2053 struct ppc440spe_adma_desc_slot
,
2056 num_slots
-= slots_per_op
;
2058 alloc_tail
->group_head
= alloc_start
;
2059 alloc_tail
->async_tx
.cookie
= -EBUSY
;
2060 list_splice(&chain
, &alloc_tail
->group_list
);
2061 chan
->last_used
= last_used
;
2068 /* try to free some slots if the allocation fails */
2069 tasklet_schedule(&chan
->irq_tasklet
);
2074 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
2076 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
)
2078 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2079 struct ppc440spe_adma_desc_slot
*slot
= NULL
;
2084 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2085 init
= ppc440spe_chan
->slots_allocated
? 0 : 1;
2086 chan
->chan_id
= ppc440spe_chan
->device
->id
;
2088 /* Allocate descriptor slots */
2089 i
= ppc440spe_chan
->slots_allocated
;
2090 if (ppc440spe_chan
->device
->id
!= PPC440SPE_XOR_ID
)
2091 db_sz
= sizeof(struct dma_cdb
);
2093 db_sz
= sizeof(struct xor_cb
);
2095 for (; i
< (ppc440spe_chan
->device
->pool_size
/ db_sz
); i
++) {
2096 slot
= kzalloc(sizeof(struct ppc440spe_adma_desc_slot
),
2099 printk(KERN_INFO
"SPE ADMA Channel only initialized"
2100 " %d descriptor slots", i
--);
2104 hw_desc
= (char *) ppc440spe_chan
->device
->dma_desc_pool_virt
;
2105 slot
->hw_desc
= (void *) &hw_desc
[i
* db_sz
];
2106 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
2107 slot
->async_tx
.tx_submit
= ppc440spe_adma_tx_submit
;
2108 INIT_LIST_HEAD(&slot
->chain_node
);
2109 INIT_LIST_HEAD(&slot
->slot_node
);
2110 INIT_LIST_HEAD(&slot
->group_list
);
2111 slot
->phys
= ppc440spe_chan
->device
->dma_desc_pool
+ i
* db_sz
;
2114 spin_lock_bh(&ppc440spe_chan
->lock
);
2115 ppc440spe_chan
->slots_allocated
++;
2116 list_add_tail(&slot
->slot_node
, &ppc440spe_chan
->all_slots
);
2117 spin_unlock_bh(&ppc440spe_chan
->lock
);
2120 if (i
&& !ppc440spe_chan
->last_used
) {
2121 ppc440spe_chan
->last_used
=
2122 list_entry(ppc440spe_chan
->all_slots
.next
,
2123 struct ppc440spe_adma_desc_slot
,
2127 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2128 "ppc440spe adma%d: allocated %d descriptor slots\n",
2129 ppc440spe_chan
->device
->id
, i
);
2131 /* initialize the channel and the chain with a null operation */
2133 switch (ppc440spe_chan
->device
->id
) {
2134 case PPC440SPE_DMA0_ID
:
2135 case PPC440SPE_DMA1_ID
:
2136 ppc440spe_chan
->hw_chain_inited
= 0;
2137 /* Use WXOR for self-testing */
2138 if (!ppc440spe_r6_tchan
)
2139 ppc440spe_r6_tchan
= ppc440spe_chan
;
2141 case PPC440SPE_XOR_ID
:
2142 ppc440spe_chan_start_null_xor(ppc440spe_chan
);
2147 ppc440spe_chan
->needs_unmap
= 1;
2150 return (i
> 0) ? i
: -ENOMEM
;
2154 * ppc440spe_rxor_set_region_data -
2156 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot
*desc
,
2157 u8 xor_arg_no
, u32 mask
)
2159 struct xor_cb
*xcb
= desc
->hw_desc
;
2161 xcb
->ops
[xor_arg_no
].h
|= mask
;
2165 * ppc440spe_rxor_set_src -
2167 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot
*desc
,
2168 u8 xor_arg_no
, dma_addr_t addr
)
2170 struct xor_cb
*xcb
= desc
->hw_desc
;
2172 xcb
->ops
[xor_arg_no
].h
|= DMA_CUED_XOR_BASE
;
2173 xcb
->ops
[xor_arg_no
].l
= addr
;
2177 * ppc440spe_rxor_set_mult -
2179 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot
*desc
,
2180 u8 xor_arg_no
, u8 idx
, u8 mult
)
2182 struct xor_cb
*xcb
= desc
->hw_desc
;
2184 xcb
->ops
[xor_arg_no
].h
|= mult
<< (DMA_CUED_MULT1_OFF
+ idx
* 8);
2188 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2191 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan
*chan
)
2193 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: pending: %d\n",
2194 chan
->device
->id
, chan
->pending
);
2196 if (chan
->pending
>= PPC440SPE_ADMA_THRESHOLD
) {
2198 ppc440spe_chan_append(chan
);
2203 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2204 * (it's not necessary that descriptors will be submitted to the h/w
2205 * chains too right now)
2207 static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
)
2209 struct ppc440spe_adma_desc_slot
*sw_desc
;
2210 struct ppc440spe_adma_chan
*chan
= to_ppc440spe_adma_chan(tx
->chan
);
2211 struct ppc440spe_adma_desc_slot
*group_start
, *old_chain_tail
;
2214 dma_cookie_t cookie
;
2216 sw_desc
= tx_to_ppc440spe_adma_slot(tx
);
2218 group_start
= sw_desc
->group_head
;
2219 slot_cnt
= group_start
->slot_cnt
;
2220 slots_per_op
= group_start
->slots_per_op
;
2222 spin_lock_bh(&chan
->lock
);
2223 cookie
= dma_cookie_assign(tx
);
2225 if (unlikely(list_empty(&chan
->chain
))) {
2227 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
2228 chan_first_cdb
[chan
->device
->id
] = group_start
;
2230 /* isn't first peer, bind CDBs to chain */
2231 old_chain_tail
= list_entry(chan
->chain
.prev
,
2232 struct ppc440spe_adma_desc_slot
,
2234 list_splice_init(&sw_desc
->group_list
,
2235 &old_chain_tail
->chain_node
);
2236 /* fix up the hardware chain */
2237 ppc440spe_desc_set_link(chan
, old_chain_tail
, group_start
);
2240 /* increment the pending count by the number of operations */
2241 chan
->pending
+= slot_cnt
/ slots_per_op
;
2242 ppc440spe_adma_check_threshold(chan
);
2243 spin_unlock_bh(&chan
->lock
);
2245 dev_dbg(chan
->device
->common
.dev
,
2246 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2247 chan
->device
->id
, __func__
,
2248 sw_desc
->async_tx
.cookie
, sw_desc
->idx
, sw_desc
);
2254 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2256 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_interrupt(
2257 struct dma_chan
*chan
, unsigned long flags
)
2259 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2260 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2261 int slot_cnt
, slots_per_op
;
2263 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2265 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2266 "ppc440spe adma%d: %s\n", ppc440spe_chan
->device
->id
,
2269 spin_lock_bh(&ppc440spe_chan
->lock
);
2270 slot_cnt
= slots_per_op
= 1;
2271 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2274 group_start
= sw_desc
->group_head
;
2275 ppc440spe_desc_init_interrupt(group_start
, ppc440spe_chan
);
2276 group_start
->unmap_len
= 0;
2277 sw_desc
->async_tx
.flags
= flags
;
2279 spin_unlock_bh(&ppc440spe_chan
->lock
);
2281 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2285 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2287 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memcpy(
2288 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2289 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
2291 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2292 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2293 int slot_cnt
, slots_per_op
;
2295 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2300 BUG_ON(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
);
2302 spin_lock_bh(&ppc440spe_chan
->lock
);
2304 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2305 "ppc440spe adma%d: %s len: %u int_en %d\n",
2306 ppc440spe_chan
->device
->id
, __func__
, len
,
2307 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2308 slot_cnt
= slots_per_op
= 1;
2309 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2312 group_start
= sw_desc
->group_head
;
2313 ppc440spe_desc_init_memcpy(group_start
, flags
);
2314 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2315 ppc440spe_adma_memcpy_xor_set_src(group_start
, dma_src
, 0);
2316 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2317 sw_desc
->unmap_len
= len
;
2318 sw_desc
->async_tx
.flags
= flags
;
2320 spin_unlock_bh(&ppc440spe_chan
->lock
);
2322 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2326 * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2328 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memset(
2329 struct dma_chan
*chan
, dma_addr_t dma_dest
, int value
,
2330 size_t len
, unsigned long flags
)
2332 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2333 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2334 int slot_cnt
, slots_per_op
;
2336 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2341 BUG_ON(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
);
2343 spin_lock_bh(&ppc440spe_chan
->lock
);
2345 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2346 "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2347 ppc440spe_chan
->device
->id
, __func__
, value
, len
,
2348 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2350 slot_cnt
= slots_per_op
= 1;
2351 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2354 group_start
= sw_desc
->group_head
;
2355 ppc440spe_desc_init_memset(group_start
, value
, flags
);
2356 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2357 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2358 sw_desc
->unmap_len
= len
;
2359 sw_desc
->async_tx
.flags
= flags
;
2361 spin_unlock_bh(&ppc440spe_chan
->lock
);
2363 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2367 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2369 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor(
2370 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2371 dma_addr_t
*dma_src
, u32 src_cnt
, size_t len
,
2372 unsigned long flags
)
2374 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2375 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2376 int slot_cnt
, slots_per_op
;
2378 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2380 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan
->device
->id
,
2381 dma_dest
, dma_src
, src_cnt
));
2384 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2386 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2387 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2388 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2389 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2391 spin_lock_bh(&ppc440spe_chan
->lock
);
2392 slot_cnt
= ppc440spe_chan_xor_slot_count(len
, src_cnt
, &slots_per_op
);
2393 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2396 group_start
= sw_desc
->group_head
;
2397 ppc440spe_desc_init_xor(group_start
, src_cnt
, flags
);
2398 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2400 ppc440spe_adma_memcpy_xor_set_src(group_start
,
2401 dma_src
[src_cnt
], src_cnt
);
2402 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2403 sw_desc
->unmap_len
= len
;
2404 sw_desc
->async_tx
.flags
= flags
;
2406 spin_unlock_bh(&ppc440spe_chan
->lock
);
2408 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2412 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot
*desc
,
2414 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
);
2417 * ppc440spe_adma_init_dma2rxor_slot -
2419 static void ppc440spe_adma_init_dma2rxor_slot(
2420 struct ppc440spe_adma_desc_slot
*desc
,
2421 dma_addr_t
*src
, int src_cnt
)
2425 /* initialize CDB */
2426 for (i
= 0; i
< src_cnt
; i
++) {
2427 ppc440spe_adma_dma2rxor_prep_src(desc
, &desc
->rxor_cursor
, i
,
2428 desc
->src_cnt
, (u32
)src
[i
]);
2433 * ppc440spe_dma01_prep_mult -
2434 * for Q operation where destination is also the source
2436 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_mult(
2437 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2438 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2439 const unsigned char *scf
, size_t len
, unsigned long flags
)
2441 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2442 unsigned long op
= 0;
2445 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2448 spin_lock_bh(&ppc440spe_chan
->lock
);
2450 /* use WXOR, each descriptor occupies one slot */
2451 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2453 struct ppc440spe_adma_chan
*chan
;
2454 struct ppc440spe_adma_desc_slot
*iter
;
2455 struct dma_cdb
*hw_desc
;
2457 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2458 set_bits(op
, &sw_desc
->flags
);
2459 sw_desc
->src_cnt
= src_cnt
;
2460 sw_desc
->dst_cnt
= dst_cnt
;
2461 /* First descriptor, zero data in the destination and copy it
2462 * to q page using MULTICAST transfer.
2464 iter
= list_first_entry(&sw_desc
->group_list
,
2465 struct ppc440spe_adma_desc_slot
,
2467 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2468 /* set 'next' pointer */
2469 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2470 struct ppc440spe_adma_desc_slot
,
2472 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2473 hw_desc
= iter
->hw_desc
;
2474 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2476 ppc440spe_desc_set_dest_addr(iter
, chan
,
2477 DMA_CUED_XOR_BASE
, dst
[0], 0);
2478 ppc440spe_desc_set_dest_addr(iter
, chan
, 0, dst
[1], 1);
2479 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2481 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2482 iter
->unmap_len
= len
;
2485 * Second descriptor, multiply data from the q page
2486 * and store the result in real destination.
2488 iter
= list_first_entry(&iter
->chain_node
,
2489 struct ppc440spe_adma_desc_slot
,
2491 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2492 iter
->hw_next
= NULL
;
2493 if (flags
& DMA_PREP_INTERRUPT
)
2494 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2496 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2498 hw_desc
= iter
->hw_desc
;
2499 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2500 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2501 DMA_CUED_XOR_HB
, dst
[1]);
2502 ppc440spe_desc_set_dest_addr(iter
, chan
,
2503 DMA_CUED_XOR_BASE
, dst
[0], 0);
2505 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2506 DMA_CDB_SG_DST1
, scf
[0]);
2507 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2508 iter
->unmap_len
= len
;
2509 sw_desc
->async_tx
.flags
= flags
;
2512 spin_unlock_bh(&ppc440spe_chan
->lock
);
2518 * ppc440spe_dma01_prep_sum_product -
2519 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2522 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_sum_product(
2523 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2524 dma_addr_t
*dst
, dma_addr_t
*src
, int src_cnt
,
2525 const unsigned char *scf
, size_t len
, unsigned long flags
)
2527 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2528 unsigned long op
= 0;
2531 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2534 spin_lock_bh(&ppc440spe_chan
->lock
);
2536 /* WXOR, each descriptor occupies one slot */
2537 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2539 struct ppc440spe_adma_chan
*chan
;
2540 struct ppc440spe_adma_desc_slot
*iter
;
2541 struct dma_cdb
*hw_desc
;
2543 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2544 set_bits(op
, &sw_desc
->flags
);
2545 sw_desc
->src_cnt
= src_cnt
;
2546 sw_desc
->dst_cnt
= 1;
2547 /* 1st descriptor, src[1] data to q page and zero destination */
2548 iter
= list_first_entry(&sw_desc
->group_list
,
2549 struct ppc440spe_adma_desc_slot
,
2551 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2552 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2553 struct ppc440spe_adma_desc_slot
,
2555 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2556 hw_desc
= iter
->hw_desc
;
2557 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2559 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2561 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2562 ppc440spe_chan
->qdest
, 1);
2563 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2565 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2566 iter
->unmap_len
= len
;
2568 /* 2nd descriptor, multiply src[1] data and store the
2569 * result in destination */
2570 iter
= list_first_entry(&iter
->chain_node
,
2571 struct ppc440spe_adma_desc_slot
,
2573 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2574 /* set 'next' pointer */
2575 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2576 struct ppc440spe_adma_desc_slot
,
2578 if (flags
& DMA_PREP_INTERRUPT
)
2579 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2581 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2583 hw_desc
= iter
->hw_desc
;
2584 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2585 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2586 ppc440spe_chan
->qdest
);
2587 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2589 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2590 DMA_CDB_SG_DST1
, scf
[1]);
2591 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2592 iter
->unmap_len
= len
;
2595 * 3rd descriptor, multiply src[0] data and xor it
2598 iter
= list_first_entry(&iter
->chain_node
,
2599 struct ppc440spe_adma_desc_slot
,
2601 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2602 iter
->hw_next
= NULL
;
2603 if (flags
& DMA_PREP_INTERRUPT
)
2604 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2606 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2608 hw_desc
= iter
->hw_desc
;
2609 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2610 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2612 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2614 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2615 DMA_CDB_SG_DST1
, scf
[0]);
2616 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2617 iter
->unmap_len
= len
;
2618 sw_desc
->async_tx
.flags
= flags
;
2621 spin_unlock_bh(&ppc440spe_chan
->lock
);
2626 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_pq(
2627 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2628 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2629 const unsigned char *scf
, size_t len
, unsigned long flags
)
2632 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2633 unsigned long op
= 0;
2634 unsigned char mult
= 1;
2636 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2637 __func__
, dst_cnt
, src_cnt
, len
);
2638 /* select operations WXOR/RXOR depending on the
2639 * source addresses of operators and the number
2640 * of destinations (RXOR support only Q-parity calculations)
2642 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2643 if (!test_and_set_bit(PPC440SPE_RXOR_RUN
, &ppc440spe_rxor_state
)) {
2646 * - there are more than 1 source,
2647 * - len is aligned on 512-byte boundary,
2648 * - source addresses fit to one of 4 possible regions.
2651 !(len
& MQ0_CF2H_RXOR_BS_MASK
) &&
2652 (src
[0] + len
) == src
[1]) {
2653 /* may do RXOR R1 R2 */
2654 set_bit(PPC440SPE_DESC_RXOR
, &op
);
2656 /* may try to enhance region of RXOR */
2657 if ((src
[1] + len
) == src
[2]) {
2658 /* do RXOR R1 R2 R3 */
2659 set_bit(PPC440SPE_DESC_RXOR123
,
2661 } else if ((src
[1] + len
* 2) == src
[2]) {
2662 /* do RXOR R1 R2 R4 */
2663 set_bit(PPC440SPE_DESC_RXOR124
, &op
);
2664 } else if ((src
[1] + len
* 3) == src
[2]) {
2665 /* do RXOR R1 R2 R5 */
2666 set_bit(PPC440SPE_DESC_RXOR125
,
2670 set_bit(PPC440SPE_DESC_RXOR12
,
2675 set_bit(PPC440SPE_DESC_RXOR12
, &op
);
2679 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2680 /* can not do this operation with RXOR */
2681 clear_bit(PPC440SPE_RXOR_RUN
,
2682 &ppc440spe_rxor_state
);
2684 /* can do; set block size right now */
2685 ppc440spe_desc_set_rxor_block_size(len
);
2689 /* Number of necessary slots depends on operation type selected */
2690 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2691 /* This is a WXOR only chain. Need descriptors for each
2692 * source to GF-XOR them with WXOR, and need descriptors
2693 * for each destination to zero them with WXOR
2697 if (flags
& DMA_PREP_ZERO_P
) {
2699 set_bit(PPC440SPE_ZERO_P
, &op
);
2701 if (flags
& DMA_PREP_ZERO_Q
) {
2703 set_bit(PPC440SPE_ZERO_Q
, &op
);
2706 /* Need 1/2 descriptor for RXOR operation, and
2707 * need (src_cnt - (2 or 3)) for WXOR of sources
2712 if (flags
& DMA_PREP_ZERO_P
)
2713 set_bit(PPC440SPE_ZERO_P
, &op
);
2714 if (flags
& DMA_PREP_ZERO_Q
)
2715 set_bit(PPC440SPE_ZERO_Q
, &op
);
2717 if (test_bit(PPC440SPE_DESC_RXOR12
, &op
))
2718 slot_cnt
+= src_cnt
- 2;
2720 slot_cnt
+= src_cnt
- 3;
2722 /* Thus we have either RXOR only chain or
2725 if (slot_cnt
== dst_cnt
)
2726 /* RXOR only chain */
2727 clear_bit(PPC440SPE_DESC_WXOR
, &op
);
2730 spin_lock_bh(&ppc440spe_chan
->lock
);
2731 /* for both RXOR/WXOR each descriptor occupies one slot */
2732 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2734 ppc440spe_desc_init_dma01pq(sw_desc
, dst_cnt
, src_cnt
,
2737 /* setup dst/src/mult */
2738 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2739 __func__
, dst
[0], dst
[1]);
2740 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2742 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2745 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2746 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2747 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2748 * leads to zeroing source data after RXOR.
2749 * So, for P case set-up mult=1 explicitly.
2751 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2752 mult
= scf
[src_cnt
];
2753 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2754 mult
, src_cnt
, dst_cnt
- 1);
2757 /* Setup byte count foreach slot just allocated */
2758 sw_desc
->async_tx
.flags
= flags
;
2759 list_for_each_entry(iter
, &sw_desc
->group_list
,
2761 ppc440spe_desc_set_byte_count(iter
,
2762 ppc440spe_chan
, len
);
2763 iter
->unmap_len
= len
;
2766 spin_unlock_bh(&ppc440spe_chan
->lock
);
2771 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma2_prep_pq(
2772 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2773 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2774 const unsigned char *scf
, size_t len
, unsigned long flags
)
2776 int slot_cnt
, descs_per_op
;
2777 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2778 unsigned long op
= 0;
2779 unsigned char mult
= 1;
2782 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2783 __func__, dst_cnt, src_cnt, len);*/
2785 spin_lock_bh(&ppc440spe_chan
->lock
);
2786 descs_per_op
= ppc440spe_dma2_pq_slot_count(src
, src_cnt
, len
);
2787 if (descs_per_op
< 0) {
2788 spin_unlock_bh(&ppc440spe_chan
->lock
);
2792 /* depending on number of sources we have 1 or 2 RXOR chains */
2793 slot_cnt
= descs_per_op
* dst_cnt
;
2795 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2798 sw_desc
->async_tx
.flags
= flags
;
2799 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2800 ppc440spe_desc_init_dma2pq(iter
, dst_cnt
, src_cnt
,
2802 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2804 iter
->unmap_len
= len
;
2806 ppc440spe_init_rxor_cursor(&(iter
->rxor_cursor
));
2807 iter
->rxor_cursor
.len
= len
;
2808 iter
->descs_per_op
= descs_per_op
;
2811 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2813 if (op
% descs_per_op
== 0)
2814 ppc440spe_adma_init_dma2rxor_slot(iter
, src
,
2816 if (likely(!list_is_last(&iter
->chain_node
,
2817 &sw_desc
->group_list
))) {
2818 /* set 'next' pointer */
2820 list_entry(iter
->chain_node
.next
,
2821 struct ppc440spe_adma_desc_slot
,
2823 ppc440spe_xor_set_link(iter
, iter
->hw_next
);
2825 /* this is the last descriptor. */
2826 iter
->hw_next
= NULL
;
2830 /* fixup head descriptor */
2831 sw_desc
->dst_cnt
= dst_cnt
;
2832 if (flags
& DMA_PREP_ZERO_P
)
2833 set_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
);
2834 if (flags
& DMA_PREP_ZERO_Q
)
2835 set_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
);
2837 /* setup dst/src/mult */
2838 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2841 /* handle descriptors (if dst_cnt == 2) inside
2842 * the ppc440spe_adma_pq_set_srcxxx() functions
2844 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2846 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2847 mult
= scf
[src_cnt
];
2848 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2849 mult
, src_cnt
, dst_cnt
- 1);
2852 spin_unlock_bh(&ppc440spe_chan
->lock
);
2853 ppc440spe_desc_set_rxor_block_size(len
);
2858 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2860 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pq(
2861 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
2862 unsigned int src_cnt
, const unsigned char *scf
,
2863 size_t len
, unsigned long flags
)
2865 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2866 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2869 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2871 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan
->device
->id
,
2872 dst
, src
, src_cnt
));
2874 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2877 if (src_cnt
== 1 && dst
[1] == src
[0]) {
2880 /* dst[1] is real destination (Q) */
2882 /* this is the page to multicast source data to */
2883 dest
[1] = ppc440spe_chan
->qdest
;
2884 sw_desc
= ppc440spe_dma01_prep_mult(ppc440spe_chan
,
2885 dest
, 2, src
, src_cnt
, scf
, len
, flags
);
2886 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2889 if (src_cnt
== 2 && dst
[1] == src
[1]) {
2890 sw_desc
= ppc440spe_dma01_prep_sum_product(ppc440spe_chan
,
2891 &dst
[1], src
, 2, scf
, len
, flags
);
2892 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2895 if (!(flags
& DMA_PREP_PQ_DISABLE_P
)) {
2898 flags
|= DMA_PREP_ZERO_P
;
2901 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
)) {
2904 flags
|= DMA_PREP_ZERO_Q
;
2909 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2910 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2911 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2912 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2914 switch (ppc440spe_chan
->device
->id
) {
2915 case PPC440SPE_DMA0_ID
:
2916 case PPC440SPE_DMA1_ID
:
2917 sw_desc
= ppc440spe_dma01_prep_pq(ppc440spe_chan
,
2918 dst
, dst_cnt
, src
, src_cnt
, scf
,
2922 case PPC440SPE_XOR_ID
:
2923 sw_desc
= ppc440spe_dma2_prep_pq(ppc440spe_chan
,
2924 dst
, dst_cnt
, src
, src_cnt
, scf
,
2929 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2933 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2934 * a PQ_ZERO_SUM operation
2936 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pqzero_sum(
2937 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
2938 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
2939 enum sum_check_flags
*pqres
, unsigned long flags
)
2941 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2942 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
2943 dma_addr_t pdest
, qdest
;
2944 int slot_cnt
, slots_per_op
, idst
, dst_cnt
;
2946 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2948 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2953 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2958 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan
->device
->id
,
2959 src
, src_cnt
, scf
));
2961 /* Always use WXOR for P/Q calculations (two destinations).
2962 * Need 1 or 2 extra slots to verify results are zero.
2964 idst
= dst_cnt
= (pdest
&& qdest
) ? 2 : 1;
2966 /* One additional slot per destination to clone P/Q
2967 * before calculation (we have to preserve destinations).
2969 slot_cnt
= src_cnt
+ dst_cnt
* 2;
2972 spin_lock_bh(&ppc440spe_chan
->lock
);
2973 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2976 ppc440spe_desc_init_dma01pqzero_sum(sw_desc
, dst_cnt
, src_cnt
);
2978 /* Setup byte count for each slot just allocated */
2979 sw_desc
->async_tx
.flags
= flags
;
2980 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2981 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2983 iter
->unmap_len
= len
;
2987 struct dma_cdb
*hw_desc
;
2988 struct ppc440spe_adma_chan
*chan
;
2990 iter
= sw_desc
->group_head
;
2991 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2992 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2993 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2994 struct ppc440spe_adma_desc_slot
,
2996 hw_desc
= iter
->hw_desc
;
2997 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
3000 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
3001 ppc440spe_chan
->pdest
, 0);
3002 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, pdest
);
3003 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
3005 iter
->unmap_len
= 0;
3006 /* override pdest to preserve original P */
3007 pdest
= ppc440spe_chan
->pdest
;
3010 struct dma_cdb
*hw_desc
;
3011 struct ppc440spe_adma_chan
*chan
;
3013 iter
= list_first_entry(&sw_desc
->group_list
,
3014 struct ppc440spe_adma_desc_slot
,
3016 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
3019 iter
= list_entry(iter
->chain_node
.next
,
3020 struct ppc440spe_adma_desc_slot
,
3024 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
3025 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
3026 struct ppc440spe_adma_desc_slot
,
3028 hw_desc
= iter
->hw_desc
;
3029 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
3032 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
3033 ppc440spe_chan
->qdest
, 0);
3034 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, qdest
);
3035 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
3037 iter
->unmap_len
= 0;
3038 /* override qdest to preserve original Q */
3039 qdest
= ppc440spe_chan
->qdest
;
3042 /* Setup destinations for P/Q ops */
3043 ppc440spe_adma_pqzero_sum_set_dest(sw_desc
, pdest
, qdest
);
3045 /* Setup zero QWORDs into DCHECK CDBs */
3047 list_for_each_entry_reverse(iter
, &sw_desc
->group_list
,
3050 * The last CDB corresponds to Q-parity check,
3051 * the one before last CDB corresponds
3054 if (idst
== DMA_DEST_MAX_NUM
) {
3055 if (idst
== dst_cnt
) {
3056 set_bit(PPC440SPE_DESC_QCHECK
,
3059 set_bit(PPC440SPE_DESC_PCHECK
,
3064 set_bit(PPC440SPE_DESC_QCHECK
,
3067 set_bit(PPC440SPE_DESC_PCHECK
,
3071 iter
->xor_check_result
= pqres
;
3074 * set it to zero, if check fail then result will
3077 *iter
->xor_check_result
= 0;
3078 ppc440spe_desc_set_dcheck(iter
, ppc440spe_chan
,
3085 /* Setup sources and mults for P/Q ops */
3086 list_for_each_entry_continue_reverse(iter
, &sw_desc
->group_list
,
3088 struct ppc440spe_adma_chan
*chan
;
3091 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
3092 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3096 mult_dst
= (dst_cnt
- 1) ? DMA_CDB_SG_DST2
:
3098 ppc440spe_desc_set_src_mult(iter
, chan
,
3107 spin_unlock_bh(&ppc440spe_chan
->lock
);
3108 return sw_desc
? &sw_desc
->async_tx
: NULL
;
3112 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3113 * XOR ZERO_SUM operation
3115 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor_zero_sum(
3116 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
3117 size_t len
, enum sum_check_flags
*result
, unsigned long flags
)
3119 struct dma_async_tx_descriptor
*tx
;
3122 /* validate P, disable Q */
3125 flags
|= DMA_PREP_PQ_DISABLE_Q
;
3127 tx
= ppc440spe_adma_prep_dma_pqzero_sum(chan
, pq
, &src
[1],
3128 src_cnt
- 1, 0, len
,
3134 * ppc440spe_adma_set_dest - set destination address into descriptor
3136 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
3137 dma_addr_t addr
, int index
)
3139 struct ppc440spe_adma_chan
*chan
;
3141 BUG_ON(index
>= sw_desc
->dst_cnt
);
3143 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3145 switch (chan
->device
->id
) {
3146 case PPC440SPE_DMA0_ID
:
3147 case PPC440SPE_DMA1_ID
:
3148 /* to do: support transfers lengths >
3149 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3151 ppc440spe_desc_set_dest_addr(sw_desc
->group_head
,
3152 chan
, 0, addr
, index
);
3154 case PPC440SPE_XOR_ID
:
3155 sw_desc
= ppc440spe_get_group_entry(sw_desc
, index
);
3156 ppc440spe_desc_set_dest_addr(sw_desc
,
3157 chan
, 0, addr
, index
);
3162 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot
*iter
,
3163 struct ppc440spe_adma_chan
*chan
, dma_addr_t addr
)
3165 /* To clear destinations update the descriptor
3166 * (P or Q depending on index) as follows:
3167 * addr is destination (0 corresponds to SG2):
3169 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
, addr
, 0);
3171 /* ... and the addr is source: */
3172 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
, addr
);
3174 /* addr is always SG2 then the mult is always DST1 */
3175 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
3176 DMA_CDB_SG_DST1
, 1);
3180 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3181 * for the PQXOR operation
3183 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
3184 dma_addr_t
*addrs
, unsigned long flags
)
3186 struct ppc440spe_adma_desc_slot
*iter
;
3187 struct ppc440spe_adma_chan
*chan
;
3188 dma_addr_t paddr
, qaddr
;
3189 dma_addr_t addr
= 0, ppath
, qpath
;
3192 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3194 if (flags
& DMA_PREP_PQ_DISABLE_P
)
3199 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
3204 if (!paddr
|| !qaddr
)
3205 addr
= paddr
? paddr
: qaddr
;
3207 switch (chan
->device
->id
) {
3208 case PPC440SPE_DMA0_ID
:
3209 case PPC440SPE_DMA1_ID
:
3210 /* walk through the WXOR source list and set P/Q-destinations
3213 if (!test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3214 /* This is WXOR-only chain; may have 1/2 zero descs */
3215 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3217 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3220 iter
= ppc440spe_get_group_entry(sw_desc
, index
);
3222 /* one destination */
3223 list_for_each_entry_from(iter
,
3224 &sw_desc
->group_list
, chain_node
)
3225 ppc440spe_desc_set_dest_addr(iter
, chan
,
3226 DMA_CUED_XOR_BASE
, addr
, 0);
3228 /* two destinations */
3229 list_for_each_entry_from(iter
,
3230 &sw_desc
->group_list
, chain_node
) {
3231 ppc440spe_desc_set_dest_addr(iter
, chan
,
3232 DMA_CUED_XOR_BASE
, paddr
, 0);
3233 ppc440spe_desc_set_dest_addr(iter
, chan
,
3234 DMA_CUED_XOR_BASE
, qaddr
, 1);
3239 /* To clear destinations update the descriptor
3240 * (1st,2nd, or both depending on flags)
3243 if (test_bit(PPC440SPE_ZERO_P
,
3245 iter
= ppc440spe_get_group_entry(
3247 ppc440spe_adma_pq_zero_op(iter
, chan
,
3251 if (test_bit(PPC440SPE_ZERO_Q
,
3253 iter
= ppc440spe_get_group_entry(
3255 ppc440spe_adma_pq_zero_op(iter
, chan
,
3262 /* This is RXOR-only or RXOR/WXOR mixed chain */
3264 /* If we want to include destination into calculations,
3265 * then make dest addresses cued with mult=1 (XOR).
3267 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
3270 (1 << DMA_CUED_MULT1_OFF
);
3271 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3274 (1 << DMA_CUED_MULT1_OFF
);
3276 /* Setup destination(s) in RXOR slot(s) */
3277 iter
= ppc440spe_get_group_entry(sw_desc
, index
++);
3278 ppc440spe_desc_set_dest_addr(iter
, chan
,
3279 paddr
? ppath
: qpath
,
3280 paddr
? paddr
: qaddr
, 0);
3282 /* two destinations */
3283 iter
= ppc440spe_get_group_entry(sw_desc
,
3285 ppc440spe_desc_set_dest_addr(iter
, chan
,
3289 if (test_bit(PPC440SPE_DESC_WXOR
, &sw_desc
->flags
)) {
3290 /* Setup destination(s) in remaining WXOR
3293 iter
= ppc440spe_get_group_entry(sw_desc
,
3296 /* one destination */
3297 list_for_each_entry_from(iter
,
3298 &sw_desc
->group_list
,
3300 ppc440spe_desc_set_dest_addr(
3306 /* two destinations */
3307 list_for_each_entry_from(iter
,
3308 &sw_desc
->group_list
,
3310 ppc440spe_desc_set_dest_addr(
3314 ppc440spe_desc_set_dest_addr(
3325 case PPC440SPE_XOR_ID
:
3326 /* DMA2 descriptors have only 1 destination, so there are
3327 * two chains - one for each dest.
3328 * If we want to include destination into calculations,
3329 * then make dest addresses cued with mult=1 (XOR).
3331 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
3334 (1 << DMA_CUED_MULT1_OFF
);
3336 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3339 (1 << DMA_CUED_MULT1_OFF
);
3341 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3342 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3343 ppc440spe_desc_set_dest_addr(iter
, chan
,
3344 paddr
? ppath
: qpath
,
3345 paddr
? paddr
: qaddr
, 0);
3346 iter
= list_entry(iter
->chain_node
.next
,
3347 struct ppc440spe_adma_desc_slot
,
3352 /* Two destinations; setup Q here */
3353 iter
= ppc440spe_get_group_entry(sw_desc
,
3354 sw_desc
->descs_per_op
);
3355 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3356 ppc440spe_desc_set_dest_addr(iter
,
3357 chan
, qpath
, qaddr
, 0);
3358 iter
= list_entry(iter
->chain_node
.next
,
3359 struct ppc440spe_adma_desc_slot
,
3369 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3370 * for the PQ_ZERO_SUM operation
3372 static void ppc440spe_adma_pqzero_sum_set_dest(
3373 struct ppc440spe_adma_desc_slot
*sw_desc
,
3374 dma_addr_t paddr
, dma_addr_t qaddr
)
3376 struct ppc440spe_adma_desc_slot
*iter
, *end
;
3377 struct ppc440spe_adma_chan
*chan
;
3378 dma_addr_t addr
= 0;
3381 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3383 /* walk through the WXOR source list and set P/Q-destinations
3386 idx
= (paddr
&& qaddr
) ? 2 : 1;
3388 list_for_each_entry_reverse(end
, &sw_desc
->group_list
,
3394 idx
= (paddr
&& qaddr
) ? 2 : 1;
3395 iter
= ppc440spe_get_group_entry(sw_desc
, idx
);
3397 if (paddr
&& qaddr
) {
3398 /* two destinations */
3399 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3401 if (unlikely(iter
== end
))
3403 ppc440spe_desc_set_dest_addr(iter
, chan
,
3404 DMA_CUED_XOR_BASE
, paddr
, 0);
3405 ppc440spe_desc_set_dest_addr(iter
, chan
,
3406 DMA_CUED_XOR_BASE
, qaddr
, 1);
3409 /* one destination */
3410 addr
= paddr
? paddr
: qaddr
;
3411 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3413 if (unlikely(iter
== end
))
3415 ppc440spe_desc_set_dest_addr(iter
, chan
,
3416 DMA_CUED_XOR_BASE
, addr
, 0);
3420 /* The remaining descriptors are DATACHECK. These have no need in
3421 * destination. Actually, these destinations are used there
3422 * as sources for check operation. So, set addr as source.
3424 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, addr
? addr
: paddr
);
3427 end
= list_entry(end
->chain_node
.next
,
3428 struct ppc440spe_adma_desc_slot
, chain_node
);
3429 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, qaddr
);
3434 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3436 static inline void ppc440spe_desc_set_xor_src_cnt(
3437 struct ppc440spe_adma_desc_slot
*desc
,
3440 struct xor_cb
*hw_desc
= desc
->hw_desc
;
3442 hw_desc
->cbc
&= ~XOR_CDCR_OAC_MSK
;
3443 hw_desc
->cbc
|= src_cnt
;
3447 * ppc440spe_adma_pq_set_src - set source address into descriptor
3449 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*sw_desc
,
3450 dma_addr_t addr
, int index
)
3452 struct ppc440spe_adma_chan
*chan
;
3453 dma_addr_t haddr
= 0;
3454 struct ppc440spe_adma_desc_slot
*iter
= NULL
;
3456 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3458 switch (chan
->device
->id
) {
3459 case PPC440SPE_DMA0_ID
:
3460 case PPC440SPE_DMA1_ID
:
3461 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3463 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3464 /* RXOR-only or RXOR/WXOR operation */
3465 int iskip
= test_bit(PPC440SPE_DESC_RXOR12
,
3466 &sw_desc
->flags
) ? 2 : 3;
3469 /* 1st slot (RXOR) */
3470 /* setup sources region (R1-2-3, R1-2-4,
3473 if (test_bit(PPC440SPE_DESC_RXOR12
,
3475 haddr
= DMA_RXOR12
<<
3476 DMA_CUED_REGION_OFF
;
3477 else if (test_bit(PPC440SPE_DESC_RXOR123
,
3479 haddr
= DMA_RXOR123
<<
3480 DMA_CUED_REGION_OFF
;
3481 else if (test_bit(PPC440SPE_DESC_RXOR124
,
3483 haddr
= DMA_RXOR124
<<
3484 DMA_CUED_REGION_OFF
;
3485 else if (test_bit(PPC440SPE_DESC_RXOR125
,
3487 haddr
= DMA_RXOR125
<<
3488 DMA_CUED_REGION_OFF
;
3491 haddr
|= DMA_CUED_XOR_BASE
;
3492 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3493 } else if (index
< iskip
) {
3495 * shall actually set source address only once
3496 * instead of first <iskip>
3500 /* 2nd/3d and next slots (WXOR);
3501 * skip first slot with RXOR
3503 haddr
= DMA_CUED_XOR_HB
;
3504 iter
= ppc440spe_get_group_entry(sw_desc
,
3505 index
- iskip
+ sw_desc
->dst_cnt
);
3510 /* WXOR-only operation; skip first slots with
3511 * zeroing destinations
3513 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3515 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3518 haddr
= DMA_CUED_XOR_HB
;
3519 iter
= ppc440spe_get_group_entry(sw_desc
,
3524 ppc440spe_desc_set_src_addr(iter
, chan
, 0, haddr
, addr
);
3527 test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
) &&
3528 sw_desc
->dst_cnt
== 2) {
3529 /* if we have two destinations for RXOR, then
3530 * setup source in the second descr too
3532 iter
= ppc440spe_get_group_entry(sw_desc
, 1);
3533 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3539 case PPC440SPE_XOR_ID
:
3540 /* DMA2 may do Biskup */
3541 iter
= sw_desc
->group_head
;
3542 if (iter
->dst_cnt
== 2) {
3543 /* both P & Q calculations required; set P src here */
3544 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3547 iter
= ppc440spe_get_group_entry(sw_desc
,
3548 sw_desc
->descs_per_op
);
3550 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3556 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3558 static void ppc440spe_adma_memcpy_xor_set_src(
3559 struct ppc440spe_adma_desc_slot
*sw_desc
,
3560 dma_addr_t addr
, int index
)
3562 struct ppc440spe_adma_chan
*chan
;
3564 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3565 sw_desc
= sw_desc
->group_head
;
3567 if (likely(sw_desc
))
3568 ppc440spe_desc_set_src_addr(sw_desc
, chan
, index
, 0, addr
);
3572 * ppc440spe_adma_dma2rxor_inc_addr -
3574 static void ppc440spe_adma_dma2rxor_inc_addr(
3575 struct ppc440spe_adma_desc_slot
*desc
,
3576 struct ppc440spe_rxor
*cursor
, int index
, int src_cnt
)
3578 cursor
->addr_count
++;
3579 if (index
== src_cnt
- 1) {
3580 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3581 } else if (cursor
->addr_count
== XOR_MAX_OPS
) {
3582 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3583 cursor
->addr_count
= 0;
3584 cursor
->desc_count
++;
3589 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3591 static int ppc440spe_adma_dma2rxor_prep_src(
3592 struct ppc440spe_adma_desc_slot
*hdesc
,
3593 struct ppc440spe_rxor
*cursor
, int index
,
3594 int src_cnt
, u32 addr
)
3598 struct ppc440spe_adma_desc_slot
*desc
= hdesc
;
3601 for (i
= 0; i
< cursor
->desc_count
; i
++) {
3602 desc
= list_entry(hdesc
->chain_node
.next
,
3603 struct ppc440spe_adma_desc_slot
,
3607 switch (cursor
->state
) {
3609 if (addr
== cursor
->addrl
+ cursor
->len
) {
3612 cursor
->xor_count
++;
3613 if (index
== src_cnt
-1) {
3614 ppc440spe_rxor_set_region(desc
,
3616 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3617 ppc440spe_adma_dma2rxor_inc_addr(
3618 desc
, cursor
, index
, src_cnt
);
3620 } else if (cursor
->addrl
== addr
+ cursor
->len
) {
3623 cursor
->xor_count
++;
3624 set_bit(cursor
->addr_count
, &desc
->reverse_flags
[0]);
3625 if (index
== src_cnt
-1) {
3626 ppc440spe_rxor_set_region(desc
,
3628 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3629 ppc440spe_adma_dma2rxor_inc_addr(
3630 desc
, cursor
, index
, src_cnt
);
3633 printk(KERN_ERR
"Cannot build "
3634 "DMA2 RXOR command block.\n");
3639 sign
= test_bit(cursor
->addr_count
,
3640 desc
->reverse_flags
)
3642 if (index
== src_cnt
-2 || (sign
== -1
3643 && addr
!= cursor
->addrl
- 2*cursor
->len
)) {
3645 cursor
->xor_count
= 1;
3646 cursor
->addrl
= addr
;
3647 ppc440spe_rxor_set_region(desc
,
3649 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3650 ppc440spe_adma_dma2rxor_inc_addr(
3651 desc
, cursor
, index
, src_cnt
);
3652 } else if (addr
== cursor
->addrl
+ 2*sign
*cursor
->len
) {
3654 cursor
->xor_count
= 0;
3655 ppc440spe_rxor_set_region(desc
,
3657 DMA_RXOR123
<< DMA_CUED_REGION_OFF
);
3658 if (index
== src_cnt
-1) {
3659 ppc440spe_adma_dma2rxor_inc_addr(
3660 desc
, cursor
, index
, src_cnt
);
3662 } else if (addr
== cursor
->addrl
+ 3*cursor
->len
) {
3664 cursor
->xor_count
= 0;
3665 ppc440spe_rxor_set_region(desc
,
3667 DMA_RXOR124
<< DMA_CUED_REGION_OFF
);
3668 if (index
== src_cnt
-1) {
3669 ppc440spe_adma_dma2rxor_inc_addr(
3670 desc
, cursor
, index
, src_cnt
);
3672 } else if (addr
== cursor
->addrl
+ 4*cursor
->len
) {
3674 cursor
->xor_count
= 0;
3675 ppc440spe_rxor_set_region(desc
,
3677 DMA_RXOR125
<< DMA_CUED_REGION_OFF
);
3678 if (index
== src_cnt
-1) {
3679 ppc440spe_adma_dma2rxor_inc_addr(
3680 desc
, cursor
, index
, src_cnt
);
3684 cursor
->xor_count
= 1;
3685 cursor
->addrl
= addr
;
3686 ppc440spe_rxor_set_region(desc
,
3688 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3689 ppc440spe_adma_dma2rxor_inc_addr(
3690 desc
, cursor
, index
, src_cnt
);
3695 cursor
->addrl
= addr
;
3696 cursor
->xor_count
++;
3698 ppc440spe_adma_dma2rxor_inc_addr(
3699 desc
, cursor
, index
, src_cnt
);
3708 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3709 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3711 static void ppc440spe_adma_dma2rxor_set_src(
3712 struct ppc440spe_adma_desc_slot
*desc
,
3713 int index
, dma_addr_t addr
)
3715 struct xor_cb
*xcb
= desc
->hw_desc
;
3716 int k
= 0, op
= 0, lop
= 0;
3718 /* get the RXOR operand which corresponds to index addr */
3719 while (op
<= index
) {
3721 if (k
== XOR_MAX_OPS
) {
3723 desc
= list_entry(desc
->chain_node
.next
,
3724 struct ppc440spe_adma_desc_slot
, chain_node
);
3725 xcb
= desc
->hw_desc
;
3728 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3729 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3737 if (test_bit(k
-1, desc
->reverse_flags
)) {
3738 /* reverse operand order; put last op in RXOR group */
3739 if (index
== op
- 1)
3740 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3742 /* direct operand order; put first op in RXOR group */
3744 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3749 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3750 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3752 static void ppc440spe_adma_dma2rxor_set_mult(
3753 struct ppc440spe_adma_desc_slot
*desc
,
3756 struct xor_cb
*xcb
= desc
->hw_desc
;
3757 int k
= 0, op
= 0, lop
= 0;
3759 /* get the RXOR operand which corresponds to index mult */
3760 while (op
<= index
) {
3762 if (k
== XOR_MAX_OPS
) {
3764 desc
= list_entry(desc
->chain_node
.next
,
3765 struct ppc440spe_adma_desc_slot
,
3767 xcb
= desc
->hw_desc
;
3770 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3771 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3778 if (test_bit(k
-1, desc
->reverse_flags
)) {
3780 ppc440spe_rxor_set_mult(desc
, k
- 1, op
- index
- 1, mult
);
3783 ppc440spe_rxor_set_mult(desc
, k
- 1, index
- lop
, mult
);
3788 * ppc440spe_init_rxor_cursor -
3790 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
)
3792 memset(cursor
, 0, sizeof(struct ppc440spe_rxor
));
3797 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3798 * descriptor for the PQXOR operation
3800 static void ppc440spe_adma_pq_set_src_mult(
3801 struct ppc440spe_adma_desc_slot
*sw_desc
,
3802 unsigned char mult
, int index
, int dst_pos
)
3804 struct ppc440spe_adma_chan
*chan
;
3805 u32 mult_idx
, mult_dst
;
3806 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *iter1
= NULL
;
3808 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3810 switch (chan
->device
->id
) {
3811 case PPC440SPE_DMA0_ID
:
3812 case PPC440SPE_DMA1_ID
:
3813 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3814 int region
= test_bit(PPC440SPE_DESC_RXOR12
,
3815 &sw_desc
->flags
) ? 2 : 3;
3817 if (index
< region
) {
3818 /* RXOR multipliers */
3819 iter
= ppc440spe_get_group_entry(sw_desc
,
3820 sw_desc
->dst_cnt
- 1);
3821 if (sw_desc
->dst_cnt
== 2)
3822 iter1
= ppc440spe_get_group_entry(
3825 mult_idx
= DMA_CUED_MULT1_OFF
+ (index
<< 3);
3826 mult_dst
= DMA_CDB_SG_SRC
;
3828 /* WXOR multiplier */
3829 iter
= ppc440spe_get_group_entry(sw_desc
,
3832 mult_idx
= DMA_CUED_MULT1_OFF
;
3833 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
:
3840 * skip first slots with destinations (if ZERO_DST has
3843 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3845 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3848 iter
= ppc440spe_get_group_entry(sw_desc
, index
+ znum
);
3849 mult_idx
= DMA_CUED_MULT1_OFF
;
3850 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
: DMA_CDB_SG_DST1
;
3854 ppc440spe_desc_set_src_mult(iter
, chan
,
3855 mult_idx
, mult_dst
, mult
);
3857 if (unlikely(iter1
)) {
3858 /* if we have two destinations for RXOR, then
3859 * we've just set Q mult. Set-up P now.
3861 ppc440spe_desc_set_src_mult(iter1
, chan
,
3862 mult_idx
, mult_dst
, 1);
3868 case PPC440SPE_XOR_ID
:
3869 iter
= sw_desc
->group_head
;
3870 if (sw_desc
->dst_cnt
== 2) {
3871 /* both P & Q calculations required; set P mult here */
3872 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, 1);
3874 /* and then set Q mult */
3875 iter
= ppc440spe_get_group_entry(sw_desc
,
3876 sw_desc
->descs_per_op
);
3878 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, mult
);
3884 * ppc440spe_adma_free_chan_resources - free the resources allocated
3886 static void ppc440spe_adma_free_chan_resources(struct dma_chan
*chan
)
3888 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3889 struct ppc440spe_adma_desc_slot
*iter
, *_iter
;
3890 int in_use_descs
= 0;
3892 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3893 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3895 spin_lock_bh(&ppc440spe_chan
->lock
);
3896 list_for_each_entry_safe(iter
, _iter
, &ppc440spe_chan
->chain
,
3899 list_del(&iter
->chain_node
);
3901 list_for_each_entry_safe_reverse(iter
, _iter
,
3902 &ppc440spe_chan
->all_slots
, slot_node
) {
3903 list_del(&iter
->slot_node
);
3905 ppc440spe_chan
->slots_allocated
--;
3907 ppc440spe_chan
->last_used
= NULL
;
3909 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3910 "ppc440spe adma%d %s slots_allocated %d\n",
3911 ppc440spe_chan
->device
->id
,
3912 __func__
, ppc440spe_chan
->slots_allocated
);
3913 spin_unlock_bh(&ppc440spe_chan
->lock
);
3915 /* one is ok since we left it on there on purpose */
3916 if (in_use_descs
> 1)
3917 printk(KERN_ERR
"SPE: Freeing %d in use descriptors!\n",
3922 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3923 * @chan: ADMA channel handle
3924 * @cookie: ADMA transaction identifier
3925 * @txstate: a holder for the current state of the channel
3927 static enum dma_status
ppc440spe_adma_tx_status(struct dma_chan
*chan
,
3928 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
3930 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3931 enum dma_status ret
;
3933 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3934 ret
= dma_cookie_status(chan
, cookie
, txstate
);
3935 if (ret
== DMA_SUCCESS
)
3938 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3940 return dma_cookie_status(chan
, cookie
, txstate
);
3944 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3946 static irqreturn_t
ppc440spe_adma_eot_handler(int irq
, void *data
)
3948 struct ppc440spe_adma_chan
*chan
= data
;
3950 dev_dbg(chan
->device
->common
.dev
,
3951 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3953 tasklet_schedule(&chan
->irq_tasklet
);
3954 ppc440spe_adma_device_clear_eot_status(chan
);
3960 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3961 * do the same things as a eot handler
3963 static irqreturn_t
ppc440spe_adma_err_handler(int irq
, void *data
)
3965 struct ppc440spe_adma_chan
*chan
= data
;
3967 dev_dbg(chan
->device
->common
.dev
,
3968 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3970 tasklet_schedule(&chan
->irq_tasklet
);
3971 ppc440spe_adma_device_clear_eot_status(chan
);
3977 * ppc440spe_test_callback - called when test operation has been done
3979 static void ppc440spe_test_callback(void *unused
)
3981 complete(&ppc440spe_r6_test_comp
);
3985 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3987 static void ppc440spe_adma_issue_pending(struct dma_chan
*chan
)
3989 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3991 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3992 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3993 "ppc440spe adma%d: %s %d \n", ppc440spe_chan
->device
->id
,
3994 __func__
, ppc440spe_chan
->pending
);
3996 if (ppc440spe_chan
->pending
) {
3997 ppc440spe_chan
->pending
= 0;
3998 ppc440spe_chan_append(ppc440spe_chan
);
4003 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4004 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
4005 * specific operation)
4007 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
)
4009 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
4010 dma_cookie_t cookie
;
4011 int slot_cnt
, slots_per_op
;
4013 dev_dbg(chan
->device
->common
.dev
,
4014 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
4016 spin_lock_bh(&chan
->lock
);
4017 slot_cnt
= ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op
);
4018 sw_desc
= ppc440spe_adma_alloc_slots(chan
, slot_cnt
, slots_per_op
);
4020 group_start
= sw_desc
->group_head
;
4021 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
4022 async_tx_ack(&sw_desc
->async_tx
);
4023 ppc440spe_desc_init_null_xor(group_start
);
4025 cookie
= dma_cookie_assign(&sw_desc
->async_tx
);
4027 /* initialize the completed cookie to be less than
4028 * the most recently used cookie
4030 chan
->common
.completed_cookie
= cookie
- 1;
4032 /* channel should not be busy */
4033 BUG_ON(ppc440spe_chan_is_busy(chan
));
4035 /* set the descriptor address */
4036 ppc440spe_chan_set_first_xor_descriptor(chan
, sw_desc
);
4038 /* run the descriptor */
4039 ppc440spe_chan_run(chan
);
4041 printk(KERN_ERR
"ppc440spe adma%d"
4042 " failed to allocate null descriptor\n",
4044 spin_unlock_bh(&chan
->lock
);
4048 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4049 * For this we just perform one WXOR operation with the same source
4050 * and destination addresses, the GF-multiplier is 1; so if RAID-6
4051 * capabilities are enabled then we'll get src/dst filled with zero.
4053 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan
*chan
)
4055 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
4058 dma_addr_t dma_addr
, addrs
[2];
4059 unsigned long op
= 0;
4062 set_bit(PPC440SPE_DESC_WXOR
, &op
);
4064 pg
= alloc_page(GFP_KERNEL
);
4068 spin_lock_bh(&chan
->lock
);
4069 sw_desc
= ppc440spe_adma_alloc_slots(chan
, 1, 1);
4071 /* 1 src, 1 dsr, int_ena, WXOR */
4072 ppc440spe_desc_init_dma01pq(sw_desc
, 1, 1, 1, op
);
4073 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
4074 ppc440spe_desc_set_byte_count(iter
, chan
, PAGE_SIZE
);
4075 iter
->unmap_len
= PAGE_SIZE
;
4079 spin_unlock_bh(&chan
->lock
);
4082 spin_unlock_bh(&chan
->lock
);
4084 /* Fill the test page with ones */
4085 memset(page_address(pg
), 0xFF, PAGE_SIZE
);
4086 dma_addr
= dma_map_page(chan
->device
->dev
, pg
, 0,
4087 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4089 /* Setup addresses */
4090 ppc440spe_adma_pq_set_src(sw_desc
, dma_addr
, 0);
4091 ppc440spe_adma_pq_set_src_mult(sw_desc
, 1, 0, 0);
4092 addrs
[0] = dma_addr
;
4094 ppc440spe_adma_pq_set_dest(sw_desc
, addrs
, DMA_PREP_PQ_DISABLE_Q
);
4096 async_tx_ack(&sw_desc
->async_tx
);
4097 sw_desc
->async_tx
.callback
= ppc440spe_test_callback
;
4098 sw_desc
->async_tx
.callback_param
= NULL
;
4100 init_completion(&ppc440spe_r6_test_comp
);
4102 ppc440spe_adma_tx_submit(&sw_desc
->async_tx
);
4103 ppc440spe_adma_issue_pending(&chan
->common
);
4105 wait_for_completion(&ppc440spe_r6_test_comp
);
4107 /* Now check if the test page is zeroed */
4108 a
= page_address(pg
);
4109 if ((*(u32
*)a
) == 0 && memcmp(a
, a
+4, PAGE_SIZE
-4) == 0) {
4110 /* page is zero - RAID-6 enabled */
4113 /* RAID-6 was not enabled */
4121 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device
*adev
)
4124 case PPC440SPE_DMA0_ID
:
4125 case PPC440SPE_DMA1_ID
:
4126 dma_cap_set(DMA_MEMCPY
, adev
->common
.cap_mask
);
4127 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
4128 dma_cap_set(DMA_MEMSET
, adev
->common
.cap_mask
);
4129 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
4130 dma_cap_set(DMA_PQ_VAL
, adev
->common
.cap_mask
);
4131 dma_cap_set(DMA_XOR_VAL
, adev
->common
.cap_mask
);
4133 case PPC440SPE_XOR_ID
:
4134 dma_cap_set(DMA_XOR
, adev
->common
.cap_mask
);
4135 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
4136 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
4137 adev
->common
.cap_mask
= adev
->common
.cap_mask
;
4141 /* Set base routines */
4142 adev
->common
.device_alloc_chan_resources
=
4143 ppc440spe_adma_alloc_chan_resources
;
4144 adev
->common
.device_free_chan_resources
=
4145 ppc440spe_adma_free_chan_resources
;
4146 adev
->common
.device_tx_status
= ppc440spe_adma_tx_status
;
4147 adev
->common
.device_issue_pending
= ppc440spe_adma_issue_pending
;
4149 /* Set prep routines based on capability */
4150 if (dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
)) {
4151 adev
->common
.device_prep_dma_memcpy
=
4152 ppc440spe_adma_prep_dma_memcpy
;
4154 if (dma_has_cap(DMA_MEMSET
, adev
->common
.cap_mask
)) {
4155 adev
->common
.device_prep_dma_memset
=
4156 ppc440spe_adma_prep_dma_memset
;
4158 if (dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
)) {
4159 adev
->common
.max_xor
= XOR_MAX_OPS
;
4160 adev
->common
.device_prep_dma_xor
=
4161 ppc440spe_adma_prep_dma_xor
;
4163 if (dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
)) {
4165 case PPC440SPE_DMA0_ID
:
4166 dma_set_maxpq(&adev
->common
,
4167 DMA0_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
4169 case PPC440SPE_DMA1_ID
:
4170 dma_set_maxpq(&adev
->common
,
4171 DMA1_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
4173 case PPC440SPE_XOR_ID
:
4174 adev
->common
.max_pq
= XOR_MAX_OPS
* 3;
4177 adev
->common
.device_prep_dma_pq
=
4178 ppc440spe_adma_prep_dma_pq
;
4180 if (dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
)) {
4182 case PPC440SPE_DMA0_ID
:
4183 adev
->common
.max_pq
= DMA0_FIFO_SIZE
/
4184 sizeof(struct dma_cdb
);
4186 case PPC440SPE_DMA1_ID
:
4187 adev
->common
.max_pq
= DMA1_FIFO_SIZE
/
4188 sizeof(struct dma_cdb
);
4191 adev
->common
.device_prep_dma_pq_val
=
4192 ppc440spe_adma_prep_dma_pqzero_sum
;
4194 if (dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
)) {
4196 case PPC440SPE_DMA0_ID
:
4197 adev
->common
.max_xor
= DMA0_FIFO_SIZE
/
4198 sizeof(struct dma_cdb
);
4200 case PPC440SPE_DMA1_ID
:
4201 adev
->common
.max_xor
= DMA1_FIFO_SIZE
/
4202 sizeof(struct dma_cdb
);
4205 adev
->common
.device_prep_dma_xor_val
=
4206 ppc440spe_adma_prep_dma_xor_zero_sum
;
4208 if (dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
)) {
4209 adev
->common
.device_prep_dma_interrupt
=
4210 ppc440spe_adma_prep_dma_interrupt
;
4212 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4213 "( %s%s%s%s%s%s%s)\n",
4214 dev_name(adev
->dev
),
4215 dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
) ? "pq " : "",
4216 dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
) ? "pq_val " : "",
4217 dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
) ? "xor " : "",
4218 dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
) ? "xor_val " : "",
4219 dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
) ? "memcpy " : "",
4220 dma_has_cap(DMA_MEMSET
, adev
->common
.cap_mask
) ? "memset " : "",
4221 dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
) ? "intr " : "");
4224 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device
*adev
,
4225 struct ppc440spe_adma_chan
*chan
,
4228 struct platform_device
*ofdev
;
4229 struct device_node
*np
;
4232 ofdev
= container_of(adev
->dev
, struct platform_device
, dev
);
4233 np
= ofdev
->dev
.of_node
;
4234 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4235 adev
->err_irq
= irq_of_parse_and_map(np
, 1);
4236 if (adev
->err_irq
== NO_IRQ
) {
4237 dev_warn(adev
->dev
, "no err irq resource?\n");
4238 *initcode
= PPC_ADMA_INIT_IRQ2
;
4239 adev
->err_irq
= -ENXIO
;
4241 atomic_inc(&ppc440spe_adma_err_irq_ref
);
4243 adev
->err_irq
= -ENXIO
;
4246 adev
->irq
= irq_of_parse_and_map(np
, 0);
4247 if (adev
->irq
== NO_IRQ
) {
4248 dev_err(adev
->dev
, "no irq resource\n");
4249 *initcode
= PPC_ADMA_INIT_IRQ1
;
4253 dev_dbg(adev
->dev
, "irq %d, err irq %d\n",
4254 adev
->irq
, adev
->err_irq
);
4256 ret
= request_irq(adev
->irq
, ppc440spe_adma_eot_handler
,
4257 0, dev_driver_string(adev
->dev
), chan
);
4259 dev_err(adev
->dev
, "can't request irq %d\n",
4261 *initcode
= PPC_ADMA_INIT_IRQ1
;
4266 /* only DMA engines have a separate error IRQ
4267 * so it's Ok if err_irq < 0 in XOR engine case.
4269 if (adev
->err_irq
> 0) {
4270 /* both DMA engines share common error IRQ */
4271 ret
= request_irq(adev
->err_irq
,
4272 ppc440spe_adma_err_handler
,
4274 dev_driver_string(adev
->dev
),
4277 dev_err(adev
->dev
, "can't request irq %d\n",
4279 *initcode
= PPC_ADMA_INIT_IRQ2
;
4285 if (adev
->id
== PPC440SPE_XOR_ID
) {
4286 /* enable XOR engine interrupts */
4287 iowrite32be(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
4288 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
,
4289 &adev
->xor_reg
->ier
);
4293 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4295 pr_err("%s: can't find I2O device tree node\n",
4300 adev
->i2o_reg
= of_iomap(np
, 0);
4301 if (!adev
->i2o_reg
) {
4302 pr_err("%s: failed to map I2O registers\n", __func__
);
4308 /* Unmask 'CS FIFO Attention' interrupts and
4309 * enable generating interrupts on errors
4311 enable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4312 ~(I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4313 ~(I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4314 mask
= ioread32(&adev
->i2o_reg
->iopim
) & enable
;
4315 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4320 free_irq(adev
->irq
, chan
);
4322 irq_dispose_mapping(adev
->irq
);
4324 if (adev
->err_irq
> 0) {
4325 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
))
4326 irq_dispose_mapping(adev
->err_irq
);
4331 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device
*adev
,
4332 struct ppc440spe_adma_chan
*chan
)
4336 if (adev
->id
== PPC440SPE_XOR_ID
) {
4337 /* disable XOR engine interrupts */
4338 mask
= ioread32be(&adev
->xor_reg
->ier
);
4339 mask
&= ~(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
4340 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
);
4341 iowrite32be(mask
, &adev
->xor_reg
->ier
);
4343 /* disable DMAx engine interrupts */
4344 disable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4345 (I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4346 (I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4347 mask
= ioread32(&adev
->i2o_reg
->iopim
) | disable
;
4348 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4350 free_irq(adev
->irq
, chan
);
4351 irq_dispose_mapping(adev
->irq
);
4352 if (adev
->err_irq
> 0) {
4353 free_irq(adev
->err_irq
, chan
);
4354 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
)) {
4355 irq_dispose_mapping(adev
->err_irq
);
4356 iounmap(adev
->i2o_reg
);
4362 * ppc440spe_adma_probe - probe the asynch device
4364 static int __devinit
ppc440spe_adma_probe(struct platform_device
*ofdev
)
4366 struct device_node
*np
= ofdev
->dev
.of_node
;
4367 struct resource res
;
4368 struct ppc440spe_adma_device
*adev
;
4369 struct ppc440spe_adma_chan
*chan
;
4370 struct ppc_dma_chan_ref
*ref
, *_ref
;
4371 int ret
= 0, initcode
= PPC_ADMA_INIT_OK
;
4377 if (of_device_is_compatible(np
, "amcc,xor-accelerator")) {
4378 id
= PPC440SPE_XOR_ID
;
4379 /* As far as the XOR engine is concerned, it does not
4380 * use FIFOs but uses linked list. So there is no dependency
4381 * between pool size to allocate and the engine configuration.
4383 pool_size
= PAGE_SIZE
<< 1;
4385 /* it is DMA0 or DMA1 */
4386 idx
= of_get_property(np
, "cell-index", &len
);
4387 if (!idx
|| (len
!= sizeof(u32
))) {
4388 dev_err(&ofdev
->dev
, "Device node %s has missing "
4389 "or invalid cell-index property\n",
4394 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4395 * should allocate the pool accordingly to size of this
4396 * FIFO. Thus, the pool size depends on the FIFO depth:
4397 * how much CDBs pointers the FIFO may contain then so
4398 * much CDBs we should provide in the pool.
4401 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4402 * Pool size = CDBs number * CDB size =
4403 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4405 pool_size
= (id
== PPC440SPE_DMA0_ID
) ?
4406 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4410 if (of_address_to_resource(np
, 0, &res
)) {
4411 dev_err(&ofdev
->dev
, "failed to get memory resource\n");
4412 initcode
= PPC_ADMA_INIT_MEMRES
;
4417 if (!request_mem_region(res
.start
, resource_size(&res
),
4418 dev_driver_string(&ofdev
->dev
))) {
4419 dev_err(&ofdev
->dev
, "failed to request memory region %pR\n",
4421 initcode
= PPC_ADMA_INIT_MEMREG
;
4426 /* create a device */
4427 adev
= kzalloc(sizeof(*adev
), GFP_KERNEL
);
4429 dev_err(&ofdev
->dev
, "failed to allocate device\n");
4430 initcode
= PPC_ADMA_INIT_ALLOC
;
4432 goto err_adev_alloc
;
4436 adev
->pool_size
= pool_size
;
4437 /* allocate coherent memory for hardware descriptors */
4438 adev
->dma_desc_pool_virt
= dma_alloc_coherent(&ofdev
->dev
,
4439 adev
->pool_size
, &adev
->dma_desc_pool
,
4441 if (adev
->dma_desc_pool_virt
== NULL
) {
4442 dev_err(&ofdev
->dev
, "failed to allocate %d bytes of coherent "
4443 "memory for hardware descriptors\n",
4445 initcode
= PPC_ADMA_INIT_COHERENT
;
4449 dev_dbg(&ofdev
->dev
, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
4450 adev
->dma_desc_pool_virt
, (u64
)adev
->dma_desc_pool
);
4452 regs
= ioremap(res
.start
, resource_size(&res
));
4454 dev_err(&ofdev
->dev
, "failed to ioremap regs!\n");
4455 goto err_regs_alloc
;
4458 if (adev
->id
== PPC440SPE_XOR_ID
) {
4459 adev
->xor_reg
= regs
;
4461 iowrite32be(XOR_CRSR_XASR_BIT
, &adev
->xor_reg
->crsr
);
4462 iowrite32be(XOR_CRSR_64BA_BIT
, &adev
->xor_reg
->crrr
);
4464 size_t fifo_size
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4465 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4466 adev
->dma_reg
= regs
;
4467 /* DMAx_FIFO_SIZE is defined in bytes,
4468 * <fsiz> - is defined in number of CDB pointers (8byte).
4469 * DMA FIFO Length = CSlength + CPlength, where
4470 * CSlength = CPlength = (fsiz + 1) * 8.
4472 iowrite32(DMA_FIFO_ENABLE
| ((fifo_size
>> 3) - 2),
4473 &adev
->dma_reg
->fsiz
);
4474 /* Configure DMA engine */
4475 iowrite32(DMA_CFG_DXEPR_HP
| DMA_CFG_DFMPP_HP
| DMA_CFG_FALGN
,
4476 &adev
->dma_reg
->cfg
);
4478 iowrite32(~0, &adev
->dma_reg
->dsts
);
4481 adev
->dev
= &ofdev
->dev
;
4482 adev
->common
.dev
= &ofdev
->dev
;
4483 INIT_LIST_HEAD(&adev
->common
.channels
);
4484 dev_set_drvdata(&ofdev
->dev
, adev
);
4486 /* create a channel */
4487 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
4489 dev_err(&ofdev
->dev
, "can't allocate channel structure\n");
4490 initcode
= PPC_ADMA_INIT_CHANNEL
;
4492 goto err_chan_alloc
;
4495 spin_lock_init(&chan
->lock
);
4496 INIT_LIST_HEAD(&chan
->chain
);
4497 INIT_LIST_HEAD(&chan
->all_slots
);
4498 chan
->device
= adev
;
4499 chan
->common
.device
= &adev
->common
;
4500 dma_cookie_init(&chan
->common
);
4501 list_add_tail(&chan
->common
.device_node
, &adev
->common
.channels
);
4502 tasklet_init(&chan
->irq_tasklet
, ppc440spe_adma_tasklet
,
4503 (unsigned long)chan
);
4505 /* allocate and map helper pages for async validation or
4506 * async_mult/async_sum_product operations on DMA0/1.
4508 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4509 chan
->pdest_page
= alloc_page(GFP_KERNEL
);
4510 chan
->qdest_page
= alloc_page(GFP_KERNEL
);
4511 if (!chan
->pdest_page
||
4512 !chan
->qdest_page
) {
4513 if (chan
->pdest_page
)
4514 __free_page(chan
->pdest_page
);
4515 if (chan
->qdest_page
)
4516 __free_page(chan
->qdest_page
);
4518 goto err_page_alloc
;
4520 chan
->pdest
= dma_map_page(&ofdev
->dev
, chan
->pdest_page
, 0,
4521 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4522 chan
->qdest
= dma_map_page(&ofdev
->dev
, chan
->qdest_page
, 0,
4523 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4526 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
4528 ref
->chan
= &chan
->common
;
4529 INIT_LIST_HEAD(&ref
->node
);
4530 list_add_tail(&ref
->node
, &ppc440spe_adma_chan_list
);
4532 dev_err(&ofdev
->dev
, "failed to allocate channel reference!\n");
4537 ret
= ppc440spe_adma_setup_irqs(adev
, chan
, &initcode
);
4541 ppc440spe_adma_init_capabilities(adev
);
4543 ret
= dma_async_device_register(&adev
->common
);
4545 initcode
= PPC_ADMA_INIT_REGISTER
;
4546 dev_err(&ofdev
->dev
, "failed to register dma device\n");
4553 ppc440spe_adma_release_irqs(adev
, chan
);
4555 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
, node
) {
4556 if (chan
== to_ppc440spe_adma_chan(ref
->chan
)) {
4557 list_del(&ref
->node
);
4562 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4563 dma_unmap_page(&ofdev
->dev
, chan
->pdest
,
4564 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4565 dma_unmap_page(&ofdev
->dev
, chan
->qdest
,
4566 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4567 __free_page(chan
->pdest_page
);
4568 __free_page(chan
->qdest_page
);
4573 if (adev
->id
== PPC440SPE_XOR_ID
)
4574 iounmap(adev
->xor_reg
);
4576 iounmap(adev
->dma_reg
);
4578 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4579 adev
->dma_desc_pool_virt
,
4580 adev
->dma_desc_pool
);
4584 release_mem_region(res
.start
, resource_size(&res
));
4586 if (id
< PPC440SPE_ADMA_ENGINES_NUM
)
4587 ppc440spe_adma_devices
[id
] = initcode
;
4593 * ppc440spe_adma_remove - remove the asynch device
4595 static int __devexit
ppc440spe_adma_remove(struct platform_device
*ofdev
)
4597 struct ppc440spe_adma_device
*adev
= dev_get_drvdata(&ofdev
->dev
);
4598 struct device_node
*np
= ofdev
->dev
.of_node
;
4599 struct resource res
;
4600 struct dma_chan
*chan
, *_chan
;
4601 struct ppc_dma_chan_ref
*ref
, *_ref
;
4602 struct ppc440spe_adma_chan
*ppc440spe_chan
;
4604 dev_set_drvdata(&ofdev
->dev
, NULL
);
4605 if (adev
->id
< PPC440SPE_ADMA_ENGINES_NUM
)
4606 ppc440spe_adma_devices
[adev
->id
] = -1;
4608 dma_async_device_unregister(&adev
->common
);
4610 list_for_each_entry_safe(chan
, _chan
, &adev
->common
.channels
,
4612 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
4613 ppc440spe_adma_release_irqs(adev
, ppc440spe_chan
);
4614 tasklet_kill(&ppc440spe_chan
->irq_tasklet
);
4615 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4616 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->pdest
,
4617 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4618 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->qdest
,
4619 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4620 __free_page(ppc440spe_chan
->pdest_page
);
4621 __free_page(ppc440spe_chan
->qdest_page
);
4623 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
,
4625 if (ppc440spe_chan
==
4626 to_ppc440spe_adma_chan(ref
->chan
)) {
4627 list_del(&ref
->node
);
4631 list_del(&chan
->device_node
);
4632 kfree(ppc440spe_chan
);
4635 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4636 adev
->dma_desc_pool_virt
, adev
->dma_desc_pool
);
4637 if (adev
->id
== PPC440SPE_XOR_ID
)
4638 iounmap(adev
->xor_reg
);
4640 iounmap(adev
->dma_reg
);
4641 of_address_to_resource(np
, 0, &res
);
4642 release_mem_region(res
.start
, resource_size(&res
));
4648 * /sys driver interface to enable h/w RAID-6 capabilities
4649 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4650 * directory are "devices", "enable" and "poly".
4651 * "devices" shows available engines.
4652 * "enable" is used to enable RAID-6 capabilities or to check
4653 * whether these has been activated.
4654 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4657 static ssize_t
show_ppc440spe_devices(struct device_driver
*dev
, char *buf
)
4662 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++) {
4663 if (ppc440spe_adma_devices
[i
] == -1)
4665 size
+= snprintf(buf
+ size
, PAGE_SIZE
- size
,
4666 "PPC440SP(E)-ADMA.%d: %s\n", i
,
4667 ppc_adma_errors
[ppc440spe_adma_devices
[i
]]);
4672 static ssize_t
show_ppc440spe_r6enable(struct device_driver
*dev
, char *buf
)
4674 return snprintf(buf
, PAGE_SIZE
,
4675 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4676 ppc440spe_r6_enabled
? "EN" : "DIS");
4679 static ssize_t
store_ppc440spe_r6enable(struct device_driver
*dev
,
4680 const char *buf
, size_t count
)
4684 if (!count
|| count
> 11)
4687 if (!ppc440spe_r6_tchan
)
4691 sscanf(buf
, "%lx", &val
);
4692 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_XORBA
, val
);
4695 /* Verify whether it really works now */
4696 if (ppc440spe_test_raid6(ppc440spe_r6_tchan
) == 0) {
4697 pr_info("PPC440SP(e) RAID-6 has been activated "
4699 ppc440spe_r6_enabled
= 1;
4701 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4703 ppc440spe_r6_enabled
= 0;
4708 static ssize_t
show_ppc440spe_r6poly(struct device_driver
*dev
, char *buf
)
4714 /* 440SP has fixed polynomial */
4717 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4718 reg
>>= MQ0_CFBHL_POLY
;
4722 size
= snprintf(buf
, PAGE_SIZE
, "PPC440SP(e) RAID-6 driver "
4723 "uses 0x1%02x polynomial.\n", reg
);
4727 static ssize_t
store_ppc440spe_r6poly(struct device_driver
*dev
,
4728 const char *buf
, size_t count
)
4730 unsigned long reg
, val
;
4733 /* 440SP uses default 0x14D polynomial only */
4737 if (!count
|| count
> 6)
4740 /* e.g., 0x14D or 0x11D */
4741 sscanf(buf
, "%lx", &val
);
4747 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4748 reg
&= ~(0xFF << MQ0_CFBHL_POLY
);
4749 reg
|= val
<< MQ0_CFBHL_POLY
;
4750 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
, reg
);
4755 static DRIVER_ATTR(devices
, S_IRUGO
, show_ppc440spe_devices
, NULL
);
4756 static DRIVER_ATTR(enable
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6enable
,
4757 store_ppc440spe_r6enable
);
4758 static DRIVER_ATTR(poly
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6poly
,
4759 store_ppc440spe_r6poly
);
4762 * Common initialisation for RAID engines; allocate memory for
4763 * DMAx FIFOs, perform configuration common for all DMA engines.
4764 * Further DMA engine specific configuration is done at probe time.
4766 static int ppc440spe_configure_raid_devices(void)
4768 struct device_node
*np
;
4769 struct resource i2o_res
;
4770 struct i2o_regs __iomem
*i2o_reg
;
4771 dcr_host_t i2o_dcr_host
;
4772 unsigned int dcr_base
, dcr_len
;
4775 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4777 pr_err("%s: can't find I2O device tree node\n",
4782 if (of_address_to_resource(np
, 0, &i2o_res
)) {
4787 i2o_reg
= of_iomap(np
, 0);
4789 pr_err("%s: failed to map I2O registers\n", __func__
);
4794 /* Get I2O DCRs base */
4795 dcr_base
= dcr_resource_start(np
, 0);
4796 dcr_len
= dcr_resource_len(np
, 0);
4797 if (!dcr_base
&& !dcr_len
) {
4798 pr_err("%s: can't get DCR registers base/len!\n",
4805 i2o_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4806 if (!DCR_MAP_OK(i2o_dcr_host
)) {
4807 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4814 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4815 * the base address of FIFO memory space.
4816 * Actually we need twice more physical memory than programmed in the
4817 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4819 ppc440spe_dma_fifo_buf
= kmalloc((DMA0_FIFO_SIZE
+ DMA1_FIFO_SIZE
) << 1,
4821 if (!ppc440spe_dma_fifo_buf
) {
4822 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__
);
4824 dcr_unmap(i2o_dcr_host
, dcr_len
);
4832 mtdcri(SDR0
, DCRN_SDR0_SRST
, DCRN_SDR0_SRST_I2ODMA
);
4833 mtdcri(SDR0
, DCRN_SDR0_SRST
, 0);
4835 /* Setup the base address of mmaped registers */
4836 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAH
, (u32
)(i2o_res
.start
>> 32));
4837 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAL
, (u32
)(i2o_res
.start
) |
4839 dcr_unmap(i2o_dcr_host
, dcr_len
);
4841 /* Setup FIFO memory space base address */
4842 iowrite32(0, &i2o_reg
->ifbah
);
4843 iowrite32(((u32
)__pa(ppc440spe_dma_fifo_buf
)), &i2o_reg
->ifbal
);
4845 /* set zero FIFO size for I2O, so the whole
4846 * ppc440spe_dma_fifo_buf is used by DMAs.
4847 * DMAx_FIFOs will be configured while probe.
4849 iowrite32(0, &i2o_reg
->ifsiz
);
4852 /* To prepare WXOR/RXOR functionality we need access to
4853 * Memory Queue Module DCRs (finally it will be enabled
4854 * via /sys interface of the ppc440spe ADMA driver).
4856 np
= of_find_compatible_node(NULL
, NULL
, "ibm,mq-440spe");
4858 pr_err("%s: can't find MQ device tree node\n",
4864 /* Get MQ DCRs base */
4865 dcr_base
= dcr_resource_start(np
, 0);
4866 dcr_len
= dcr_resource_len(np
, 0);
4867 if (!dcr_base
&& !dcr_len
) {
4868 pr_err("%s: can't get DCR registers base/len!\n",
4874 ppc440spe_mq_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4875 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host
)) {
4876 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4881 ppc440spe_mq_dcr_len
= dcr_len
;
4884 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_BAUH
, DMA_CUED_XOR_HB
);
4887 * - LL transaction passing limit to 1;
4888 * - Memory controller cycle limit to 1;
4889 * - Galois Polynomial to 0x14d (default)
4891 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
,
4892 (1 << MQ0_CFBHL_TPLM
) | (1 << MQ0_CFBHL_HBCL
) |
4893 (PPC440SPE_DEFAULT_POLY
<< MQ0_CFBHL_POLY
));
4895 atomic_set(&ppc440spe_adma_err_irq_ref
, 0);
4896 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++)
4897 ppc440spe_adma_devices
[i
] = -1;
4904 kfree(ppc440spe_dma_fifo_buf
);
4908 static const struct of_device_id ppc440spe_adma_of_match
[] __devinitconst
= {
4909 { .compatible
= "ibm,dma-440spe", },
4910 { .compatible
= "amcc,xor-accelerator", },
4913 MODULE_DEVICE_TABLE(of
, ppc440spe_adma_of_match
);
4915 static struct platform_driver ppc440spe_adma_driver
= {
4916 .probe
= ppc440spe_adma_probe
,
4917 .remove
= __devexit_p(ppc440spe_adma_remove
),
4919 .name
= "PPC440SP(E)-ADMA",
4920 .owner
= THIS_MODULE
,
4921 .of_match_table
= ppc440spe_adma_of_match
,
4925 static __init
int ppc440spe_adma_init(void)
4929 ret
= ppc440spe_configure_raid_devices();
4933 ret
= platform_driver_register(&ppc440spe_adma_driver
);
4935 pr_err("%s: failed to register platform driver\n",
4940 /* Initialization status */
4941 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4942 &driver_attr_devices
);
4946 /* RAID-6 h/w enable entry */
4947 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4948 &driver_attr_enable
);
4952 /* GF polynomial to use */
4953 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4958 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4959 &driver_attr_enable
);
4961 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4962 &driver_attr_devices
);
4964 /* User will not be able to enable h/w RAID-6 */
4965 pr_err("%s: failed to create RAID-6 driver interface\n",
4967 platform_driver_unregister(&ppc440spe_adma_driver
);
4969 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4970 kfree(ppc440spe_dma_fifo_buf
);
4974 static void __exit
ppc440spe_adma_exit(void)
4976 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4978 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4979 &driver_attr_enable
);
4980 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4981 &driver_attr_devices
);
4982 platform_driver_unregister(&ppc440spe_adma_driver
);
4983 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4984 kfree(ppc440spe_dma_fifo_buf
);
4987 arch_initcall(ppc440spe_adma_init
);
4988 module_exit(ppc440spe_adma_exit
);
4990 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4991 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4992 MODULE_LICENSE("GPL");