4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69 struct list_head vec
[TVN_SIZE
];
73 struct list_head vec
[TVR_SIZE
];
78 struct timer_list
*running_timer
;
79 unsigned long timer_jiffies
;
80 unsigned long next_timer
;
86 } ____cacheline_aligned
;
88 struct tvec_base boot_tvec_bases
;
89 EXPORT_SYMBOL(boot_tvec_bases
);
90 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
100 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
149 * Make sure j is still in the future. Otherwise return the
152 return time_is_after_jiffies(j
) ? j
: original
;
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j
, int cpu
)
177 return round_jiffies_common(j
, cpu
, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies
);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
203 unsigned long j0
= jiffies
;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j
)
227 return round_jiffies_common(j
, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies
);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j
)
248 return __round_jiffies_relative(j
, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
262 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
264 return round_jiffies_common(j
, cpu
, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
278 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
280 unsigned long j0
= jiffies
;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
296 unsigned long round_jiffies_up(unsigned long j
)
298 return round_jiffies_common(j
, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up
);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
311 unsigned long round_jiffies_up_relative(unsigned long j
)
313 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
318 * set_timer_slack - set the allowed slack for a timer
319 * @timer: the timer to be modified
320 * @slack_hz: the amount of time (in jiffies) allowed for rounding
322 * Set the amount of time, in jiffies, that a certain timer has
323 * in terms of slack. By setting this value, the timer subsystem
324 * will schedule the actual timer somewhere between
325 * the time mod_timer() asks for, and that time plus the slack.
327 * By setting the slack to -1, a percentage of the delay is used
330 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
332 timer
->slack
= slack_hz
;
334 EXPORT_SYMBOL_GPL(set_timer_slack
);
336 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
338 unsigned long expires
= timer
->expires
;
339 unsigned long idx
= expires
- base
->timer_jiffies
;
340 struct list_head
*vec
;
342 if (idx
< TVR_SIZE
) {
343 int i
= expires
& TVR_MASK
;
344 vec
= base
->tv1
.vec
+ i
;
345 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
346 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
347 vec
= base
->tv2
.vec
+ i
;
348 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
349 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
350 vec
= base
->tv3
.vec
+ i
;
351 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
352 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
353 vec
= base
->tv4
.vec
+ i
;
354 } else if ((signed long) idx
< 0) {
356 * Can happen if you add a timer with expires == jiffies,
357 * or you set a timer to go off in the past
359 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
362 /* If the timeout is larger than MAX_TVAL (on 64-bit
363 * architectures or with CONFIG_BASE_SMALL=1) then we
364 * use the maximum timeout.
366 if (idx
> MAX_TVAL
) {
368 expires
= idx
+ base
->timer_jiffies
;
370 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
371 vec
= base
->tv5
.vec
+ i
;
376 list_add_tail(&timer
->entry
, vec
);
379 #ifdef CONFIG_TIMER_STATS
380 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
382 if (timer
->start_site
)
385 timer
->start_site
= addr
;
386 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
387 timer
->start_pid
= current
->pid
;
390 static void timer_stats_account_timer(struct timer_list
*timer
)
392 unsigned int flag
= 0;
394 if (likely(!timer
->start_site
))
396 if (unlikely(tbase_get_deferrable(timer
->base
)))
397 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
399 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
400 timer
->function
, timer
->start_comm
, flag
);
404 static void timer_stats_account_timer(struct timer_list
*timer
) {}
407 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
409 static struct debug_obj_descr timer_debug_descr
;
411 static void *timer_debug_hint(void *addr
)
413 return ((struct timer_list
*) addr
)->function
;
417 * fixup_init is called when:
418 * - an active object is initialized
420 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
422 struct timer_list
*timer
= addr
;
425 case ODEBUG_STATE_ACTIVE
:
426 del_timer_sync(timer
);
427 debug_object_init(timer
, &timer_debug_descr
);
434 /* Stub timer callback for improperly used timers. */
435 static void stub_timer(unsigned long data
)
441 * fixup_activate is called when:
442 * - an active object is activated
443 * - an unknown object is activated (might be a statically initialized object)
445 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
447 struct timer_list
*timer
= addr
;
451 case ODEBUG_STATE_NOTAVAILABLE
:
453 * This is not really a fixup. The timer was
454 * statically initialized. We just make sure that it
455 * is tracked in the object tracker.
457 if (timer
->entry
.next
== NULL
&&
458 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
459 debug_object_init(timer
, &timer_debug_descr
);
460 debug_object_activate(timer
, &timer_debug_descr
);
463 setup_timer(timer
, stub_timer
, 0);
468 case ODEBUG_STATE_ACTIVE
:
477 * fixup_free is called when:
478 * - an active object is freed
480 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
482 struct timer_list
*timer
= addr
;
485 case ODEBUG_STATE_ACTIVE
:
486 del_timer_sync(timer
);
487 debug_object_free(timer
, &timer_debug_descr
);
495 * fixup_assert_init is called when:
496 * - an untracked/uninit-ed object is found
498 static int timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
500 struct timer_list
*timer
= addr
;
503 case ODEBUG_STATE_NOTAVAILABLE
:
504 if (timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
506 * This is not really a fixup. The timer was
507 * statically initialized. We just make sure that it
508 * is tracked in the object tracker.
510 debug_object_init(timer
, &timer_debug_descr
);
513 setup_timer(timer
, stub_timer
, 0);
521 static struct debug_obj_descr timer_debug_descr
= {
522 .name
= "timer_list",
523 .debug_hint
= timer_debug_hint
,
524 .fixup_init
= timer_fixup_init
,
525 .fixup_activate
= timer_fixup_activate
,
526 .fixup_free
= timer_fixup_free
,
527 .fixup_assert_init
= timer_fixup_assert_init
,
530 static inline void debug_timer_init(struct timer_list
*timer
)
532 debug_object_init(timer
, &timer_debug_descr
);
535 static inline void debug_timer_activate(struct timer_list
*timer
)
537 debug_object_activate(timer
, &timer_debug_descr
);
540 static inline void debug_timer_deactivate(struct timer_list
*timer
)
542 debug_object_deactivate(timer
, &timer_debug_descr
);
545 static inline void debug_timer_free(struct timer_list
*timer
)
547 debug_object_free(timer
, &timer_debug_descr
);
550 static inline void debug_timer_assert_init(struct timer_list
*timer
)
552 debug_object_assert_init(timer
, &timer_debug_descr
);
555 static void __init_timer(struct timer_list
*timer
,
557 struct lock_class_key
*key
);
559 void init_timer_on_stack_key(struct timer_list
*timer
,
561 struct lock_class_key
*key
)
563 debug_object_init_on_stack(timer
, &timer_debug_descr
);
564 __init_timer(timer
, name
, key
);
566 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
568 void destroy_timer_on_stack(struct timer_list
*timer
)
570 debug_object_free(timer
, &timer_debug_descr
);
572 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
575 static inline void debug_timer_init(struct timer_list
*timer
) { }
576 static inline void debug_timer_activate(struct timer_list
*timer
) { }
577 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
578 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
581 static inline void debug_init(struct timer_list
*timer
)
583 debug_timer_init(timer
);
584 trace_timer_init(timer
);
588 debug_activate(struct timer_list
*timer
, unsigned long expires
)
590 debug_timer_activate(timer
);
591 trace_timer_start(timer
, expires
);
594 static inline void debug_deactivate(struct timer_list
*timer
)
596 debug_timer_deactivate(timer
);
597 trace_timer_cancel(timer
);
600 static inline void debug_assert_init(struct timer_list
*timer
)
602 debug_timer_assert_init(timer
);
605 static void __init_timer(struct timer_list
*timer
,
607 struct lock_class_key
*key
)
609 timer
->entry
.next
= NULL
;
610 timer
->base
= __raw_get_cpu_var(tvec_bases
);
612 #ifdef CONFIG_TIMER_STATS
613 timer
->start_site
= NULL
;
614 timer
->start_pid
= -1;
615 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
617 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
620 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
622 struct lock_class_key
*key
,
623 void (*function
)(unsigned long),
626 timer
->function
= function
;
628 init_timer_on_stack_key(timer
, name
, key
);
629 timer_set_deferrable(timer
);
631 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
634 * init_timer_key - initialize a timer
635 * @timer: the timer to be initialized
636 * @name: name of the timer
637 * @key: lockdep class key of the fake lock used for tracking timer
638 * sync lock dependencies
640 * init_timer_key() must be done to a timer prior calling *any* of the
641 * other timer functions.
643 void init_timer_key(struct timer_list
*timer
,
645 struct lock_class_key
*key
)
648 __init_timer(timer
, name
, key
);
650 EXPORT_SYMBOL(init_timer_key
);
652 void init_timer_deferrable_key(struct timer_list
*timer
,
654 struct lock_class_key
*key
)
656 init_timer_key(timer
, name
, key
);
657 timer_set_deferrable(timer
);
659 EXPORT_SYMBOL(init_timer_deferrable_key
);
661 static inline void detach_timer(struct timer_list
*timer
,
664 struct list_head
*entry
= &timer
->entry
;
666 debug_deactivate(timer
);
668 __list_del(entry
->prev
, entry
->next
);
671 entry
->prev
= LIST_POISON2
;
675 * We are using hashed locking: holding per_cpu(tvec_bases).lock
676 * means that all timers which are tied to this base via timer->base are
677 * locked, and the base itself is locked too.
679 * So __run_timers/migrate_timers can safely modify all timers which could
680 * be found on ->tvX lists.
682 * When the timer's base is locked, and the timer removed from list, it is
683 * possible to set timer->base = NULL and drop the lock: the timer remains
686 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
687 unsigned long *flags
)
688 __acquires(timer
->base
->lock
)
690 struct tvec_base
*base
;
693 struct tvec_base
*prelock_base
= timer
->base
;
694 base
= tbase_get_base(prelock_base
);
695 if (likely(base
!= NULL
)) {
696 spin_lock_irqsave(&base
->lock
, *flags
);
697 if (likely(prelock_base
== timer
->base
))
699 /* The timer has migrated to another CPU */
700 spin_unlock_irqrestore(&base
->lock
, *flags
);
707 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
708 bool pending_only
, int pinned
)
710 struct tvec_base
*base
, *new_base
;
714 timer_stats_timer_set_start_info(timer
);
715 BUG_ON(!timer
->function
);
717 base
= lock_timer_base(timer
, &flags
);
719 if (timer_pending(timer
)) {
720 detach_timer(timer
, 0);
721 if (timer
->expires
== base
->next_timer
&&
722 !tbase_get_deferrable(timer
->base
))
723 base
->next_timer
= base
->timer_jiffies
;
730 debug_activate(timer
, expires
);
732 cpu
= smp_processor_id();
734 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
735 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
736 cpu
= get_nohz_timer_target();
738 new_base
= per_cpu(tvec_bases
, cpu
);
740 if (base
!= new_base
) {
742 * We are trying to schedule the timer on the local CPU.
743 * However we can't change timer's base while it is running,
744 * otherwise del_timer_sync() can't detect that the timer's
745 * handler yet has not finished. This also guarantees that
746 * the timer is serialized wrt itself.
748 if (likely(base
->running_timer
!= timer
)) {
749 /* See the comment in lock_timer_base() */
750 timer_set_base(timer
, NULL
);
751 spin_unlock(&base
->lock
);
753 spin_lock(&base
->lock
);
754 timer_set_base(timer
, base
);
758 timer
->expires
= expires
;
759 if (time_before(timer
->expires
, base
->next_timer
) &&
760 !tbase_get_deferrable(timer
->base
))
761 base
->next_timer
= timer
->expires
;
762 internal_add_timer(base
, timer
);
765 spin_unlock_irqrestore(&base
->lock
, flags
);
771 * mod_timer_pending - modify a pending timer's timeout
772 * @timer: the pending timer to be modified
773 * @expires: new timeout in jiffies
775 * mod_timer_pending() is the same for pending timers as mod_timer(),
776 * but will not re-activate and modify already deleted timers.
778 * It is useful for unserialized use of timers.
780 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
782 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
784 EXPORT_SYMBOL(mod_timer_pending
);
787 * Decide where to put the timer while taking the slack into account
790 * 1) calculate the maximum (absolute) time
791 * 2) calculate the highest bit where the expires and new max are different
792 * 3) use this bit to make a mask
793 * 4) use the bitmask to round down the maximum time, so that all last
797 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
799 unsigned long expires_limit
, mask
;
802 if (timer
->slack
>= 0) {
803 expires_limit
= expires
+ timer
->slack
;
805 long delta
= expires
- jiffies
;
810 expires_limit
= expires
+ delta
/ 256;
812 mask
= expires
^ expires_limit
;
816 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
818 mask
= (1UL << bit
) - 1;
820 expires_limit
= expires_limit
& ~(mask
);
822 return expires_limit
;
826 * mod_timer - modify a timer's timeout
827 * @timer: the timer to be modified
828 * @expires: new timeout in jiffies
830 * mod_timer() is a more efficient way to update the expire field of an
831 * active timer (if the timer is inactive it will be activated)
833 * mod_timer(timer, expires) is equivalent to:
835 * del_timer(timer); timer->expires = expires; add_timer(timer);
837 * Note that if there are multiple unserialized concurrent users of the
838 * same timer, then mod_timer() is the only safe way to modify the timeout,
839 * since add_timer() cannot modify an already running timer.
841 * The function returns whether it has modified a pending timer or not.
842 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
843 * active timer returns 1.)
845 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
847 expires
= apply_slack(timer
, expires
);
850 * This is a common optimization triggered by the
851 * networking code - if the timer is re-modified
852 * to be the same thing then just return:
854 if (timer_pending(timer
) && timer
->expires
== expires
)
857 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
859 EXPORT_SYMBOL(mod_timer
);
862 * mod_timer_pinned - modify a timer's timeout
863 * @timer: the timer to be modified
864 * @expires: new timeout in jiffies
866 * mod_timer_pinned() is a way to update the expire field of an
867 * active timer (if the timer is inactive it will be activated)
868 * and not allow the timer to be migrated to a different CPU.
870 * mod_timer_pinned(timer, expires) is equivalent to:
872 * del_timer(timer); timer->expires = expires; add_timer(timer);
874 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
876 if (timer
->expires
== expires
&& timer_pending(timer
))
879 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
881 EXPORT_SYMBOL(mod_timer_pinned
);
884 * add_timer - start a timer
885 * @timer: the timer to be added
887 * The kernel will do a ->function(->data) callback from the
888 * timer interrupt at the ->expires point in the future. The
889 * current time is 'jiffies'.
891 * The timer's ->expires, ->function (and if the handler uses it, ->data)
892 * fields must be set prior calling this function.
894 * Timers with an ->expires field in the past will be executed in the next
897 void add_timer(struct timer_list
*timer
)
899 BUG_ON(timer_pending(timer
));
900 mod_timer(timer
, timer
->expires
);
902 EXPORT_SYMBOL(add_timer
);
905 * add_timer_on - start a timer on a particular CPU
906 * @timer: the timer to be added
907 * @cpu: the CPU to start it on
909 * This is not very scalable on SMP. Double adds are not possible.
911 void add_timer_on(struct timer_list
*timer
, int cpu
)
913 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
916 timer_stats_timer_set_start_info(timer
);
917 BUG_ON(timer_pending(timer
) || !timer
->function
);
918 spin_lock_irqsave(&base
->lock
, flags
);
919 timer_set_base(timer
, base
);
920 debug_activate(timer
, timer
->expires
);
921 if (time_before(timer
->expires
, base
->next_timer
) &&
922 !tbase_get_deferrable(timer
->base
))
923 base
->next_timer
= timer
->expires
;
924 internal_add_timer(base
, timer
);
926 * Check whether the other CPU is idle and needs to be
927 * triggered to reevaluate the timer wheel when nohz is
928 * active. We are protected against the other CPU fiddling
929 * with the timer by holding the timer base lock. This also
930 * makes sure that a CPU on the way to idle can not evaluate
933 wake_up_idle_cpu(cpu
);
934 spin_unlock_irqrestore(&base
->lock
, flags
);
936 EXPORT_SYMBOL_GPL(add_timer_on
);
939 * del_timer - deactive a timer.
940 * @timer: the timer to be deactivated
942 * del_timer() deactivates a timer - this works on both active and inactive
945 * The function returns whether it has deactivated a pending timer or not.
946 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
947 * active timer returns 1.)
949 int del_timer(struct timer_list
*timer
)
951 struct tvec_base
*base
;
955 debug_assert_init(timer
);
957 timer_stats_timer_clear_start_info(timer
);
958 if (timer_pending(timer
)) {
959 base
= lock_timer_base(timer
, &flags
);
960 if (timer_pending(timer
)) {
961 detach_timer(timer
, 1);
962 if (timer
->expires
== base
->next_timer
&&
963 !tbase_get_deferrable(timer
->base
))
964 base
->next_timer
= base
->timer_jiffies
;
967 spin_unlock_irqrestore(&base
->lock
, flags
);
972 EXPORT_SYMBOL(del_timer
);
975 * try_to_del_timer_sync - Try to deactivate a timer
976 * @timer: timer do del
978 * This function tries to deactivate a timer. Upon successful (ret >= 0)
979 * exit the timer is not queued and the handler is not running on any CPU.
981 int try_to_del_timer_sync(struct timer_list
*timer
)
983 struct tvec_base
*base
;
987 debug_assert_init(timer
);
989 base
= lock_timer_base(timer
, &flags
);
991 if (base
->running_timer
== timer
)
994 timer_stats_timer_clear_start_info(timer
);
996 if (timer_pending(timer
)) {
997 detach_timer(timer
, 1);
998 if (timer
->expires
== base
->next_timer
&&
999 !tbase_get_deferrable(timer
->base
))
1000 base
->next_timer
= base
->timer_jiffies
;
1004 spin_unlock_irqrestore(&base
->lock
, flags
);
1008 EXPORT_SYMBOL(try_to_del_timer_sync
);
1012 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1013 * @timer: the timer to be deactivated
1015 * This function only differs from del_timer() on SMP: besides deactivating
1016 * the timer it also makes sure the handler has finished executing on other
1019 * Synchronization rules: Callers must prevent restarting of the timer,
1020 * otherwise this function is meaningless. It must not be called from
1021 * interrupt contexts. The caller must not hold locks which would prevent
1022 * completion of the timer's handler. The timer's handler must not call
1023 * add_timer_on(). Upon exit the timer is not queued and the handler is
1024 * not running on any CPU.
1026 * Note: You must not hold locks that are held in interrupt context
1027 * while calling this function. Even if the lock has nothing to do
1028 * with the timer in question. Here's why:
1034 * base->running_timer = mytimer;
1035 * spin_lock_irq(somelock);
1037 * spin_lock(somelock);
1038 * del_timer_sync(mytimer);
1039 * while (base->running_timer == mytimer);
1041 * Now del_timer_sync() will never return and never release somelock.
1042 * The interrupt on the other CPU is waiting to grab somelock but
1043 * it has interrupted the softirq that CPU0 is waiting to finish.
1045 * The function returns whether it has deactivated a pending timer or not.
1047 int del_timer_sync(struct timer_list
*timer
)
1049 #ifdef CONFIG_LOCKDEP
1050 unsigned long flags
;
1053 * If lockdep gives a backtrace here, please reference
1054 * the synchronization rules above.
1056 local_irq_save(flags
);
1057 lock_map_acquire(&timer
->lockdep_map
);
1058 lock_map_release(&timer
->lockdep_map
);
1059 local_irq_restore(flags
);
1062 * don't use it in hardirq context, because it
1063 * could lead to deadlock.
1067 int ret
= try_to_del_timer_sync(timer
);
1073 EXPORT_SYMBOL(del_timer_sync
);
1076 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1078 /* cascade all the timers from tv up one level */
1079 struct timer_list
*timer
, *tmp
;
1080 struct list_head tv_list
;
1082 list_replace_init(tv
->vec
+ index
, &tv_list
);
1085 * We are removing _all_ timers from the list, so we
1086 * don't have to detach them individually.
1088 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1089 BUG_ON(tbase_get_base(timer
->base
) != base
);
1090 internal_add_timer(base
, timer
);
1096 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1099 int preempt_count
= preempt_count();
1101 #ifdef CONFIG_LOCKDEP
1103 * It is permissible to free the timer from inside the
1104 * function that is called from it, this we need to take into
1105 * account for lockdep too. To avoid bogus "held lock freed"
1106 * warnings as well as problems when looking into
1107 * timer->lockdep_map, make a copy and use that here.
1109 struct lockdep_map lockdep_map
= timer
->lockdep_map
;
1112 * Couple the lock chain with the lock chain at
1113 * del_timer_sync() by acquiring the lock_map around the fn()
1114 * call here and in del_timer_sync().
1116 lock_map_acquire(&lockdep_map
);
1118 trace_timer_expire_entry(timer
);
1120 trace_timer_expire_exit(timer
);
1122 lock_map_release(&lockdep_map
);
1124 if (preempt_count
!= preempt_count()) {
1125 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1126 fn
, preempt_count
, preempt_count());
1128 * Restore the preempt count. That gives us a decent
1129 * chance to survive and extract information. If the
1130 * callback kept a lock held, bad luck, but not worse
1131 * than the BUG() we had.
1133 preempt_count() = preempt_count
;
1137 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1140 * __run_timers - run all expired timers (if any) on this CPU.
1141 * @base: the timer vector to be processed.
1143 * This function cascades all vectors and executes all expired timer
1146 static inline void __run_timers(struct tvec_base
*base
)
1148 struct timer_list
*timer
;
1150 spin_lock_irq(&base
->lock
);
1151 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1152 struct list_head work_list
;
1153 struct list_head
*head
= &work_list
;
1154 int index
= base
->timer_jiffies
& TVR_MASK
;
1160 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1161 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1162 !cascade(base
, &base
->tv4
, INDEX(2)))
1163 cascade(base
, &base
->tv5
, INDEX(3));
1164 ++base
->timer_jiffies
;
1165 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1166 while (!list_empty(head
)) {
1167 void (*fn
)(unsigned long);
1170 timer
= list_first_entry(head
, struct timer_list
,entry
);
1171 fn
= timer
->function
;
1174 timer_stats_account_timer(timer
);
1176 base
->running_timer
= timer
;
1177 detach_timer(timer
, 1);
1179 spin_unlock_irq(&base
->lock
);
1180 call_timer_fn(timer
, fn
, data
);
1181 spin_lock_irq(&base
->lock
);
1184 base
->running_timer
= NULL
;
1185 spin_unlock_irq(&base
->lock
);
1190 * Find out when the next timer event is due to happen. This
1191 * is used on S/390 to stop all activity when a CPU is idle.
1192 * This function needs to be called with interrupts disabled.
1194 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1196 unsigned long timer_jiffies
= base
->timer_jiffies
;
1197 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1198 int index
, slot
, array
, found
= 0;
1199 struct timer_list
*nte
;
1200 struct tvec
*varray
[4];
1202 /* Look for timer events in tv1. */
1203 index
= slot
= timer_jiffies
& TVR_MASK
;
1205 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1206 if (tbase_get_deferrable(nte
->base
))
1210 expires
= nte
->expires
;
1211 /* Look at the cascade bucket(s)? */
1212 if (!index
|| slot
< index
)
1216 slot
= (slot
+ 1) & TVR_MASK
;
1217 } while (slot
!= index
);
1220 /* Calculate the next cascade event */
1222 timer_jiffies
+= TVR_SIZE
- index
;
1223 timer_jiffies
>>= TVR_BITS
;
1225 /* Check tv2-tv5. */
1226 varray
[0] = &base
->tv2
;
1227 varray
[1] = &base
->tv3
;
1228 varray
[2] = &base
->tv4
;
1229 varray
[3] = &base
->tv5
;
1231 for (array
= 0; array
< 4; array
++) {
1232 struct tvec
*varp
= varray
[array
];
1234 index
= slot
= timer_jiffies
& TVN_MASK
;
1236 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1237 if (tbase_get_deferrable(nte
->base
))
1241 if (time_before(nte
->expires
, expires
))
1242 expires
= nte
->expires
;
1245 * Do we still search for the first timer or are
1246 * we looking up the cascade buckets ?
1249 /* Look at the cascade bucket(s)? */
1250 if (!index
|| slot
< index
)
1254 slot
= (slot
+ 1) & TVN_MASK
;
1255 } while (slot
!= index
);
1258 timer_jiffies
+= TVN_SIZE
- index
;
1259 timer_jiffies
>>= TVN_BITS
;
1265 * Check, if the next hrtimer event is before the next timer wheel
1268 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1269 unsigned long expires
)
1271 ktime_t hr_delta
= hrtimer_get_next_event();
1272 struct timespec tsdelta
;
1273 unsigned long delta
;
1275 if (hr_delta
.tv64
== KTIME_MAX
)
1279 * Expired timer available, let it expire in the next tick
1281 if (hr_delta
.tv64
<= 0)
1284 tsdelta
= ktime_to_timespec(hr_delta
);
1285 delta
= timespec_to_jiffies(&tsdelta
);
1288 * Limit the delta to the max value, which is checked in
1289 * tick_nohz_stop_sched_tick():
1291 if (delta
> NEXT_TIMER_MAX_DELTA
)
1292 delta
= NEXT_TIMER_MAX_DELTA
;
1295 * Take rounding errors in to account and make sure, that it
1296 * expires in the next tick. Otherwise we go into an endless
1297 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1303 if (time_before(now
, expires
))
1309 * get_next_timer_interrupt - return the jiffy of the next pending timer
1310 * @now: current time (in jiffies)
1312 unsigned long get_next_timer_interrupt(unsigned long now
)
1314 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1315 unsigned long expires
;
1318 * Pretend that there is no timer pending if the cpu is offline.
1319 * Possible pending timers will be migrated later to an active cpu.
1321 if (cpu_is_offline(smp_processor_id()))
1322 return now
+ NEXT_TIMER_MAX_DELTA
;
1323 spin_lock(&base
->lock
);
1324 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1325 base
->next_timer
= __next_timer_interrupt(base
);
1326 expires
= base
->next_timer
;
1327 spin_unlock(&base
->lock
);
1329 if (time_before_eq(expires
, now
))
1332 return cmp_next_hrtimer_event(now
, expires
);
1337 * Called from the timer interrupt handler to charge one tick to the current
1338 * process. user_tick is 1 if the tick is user time, 0 for system.
1340 void update_process_times(int user_tick
)
1342 struct task_struct
*p
= current
;
1343 int cpu
= smp_processor_id();
1345 /* Note: this timer irq context must be accounted for as well. */
1346 account_process_tick(p
, user_tick
);
1348 rcu_check_callbacks(cpu
, user_tick
);
1350 #ifdef CONFIG_IRQ_WORK
1355 run_posix_cpu_timers(p
);
1359 * This function runs timers and the timer-tq in bottom half context.
1361 static void run_timer_softirq(struct softirq_action
*h
)
1363 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1365 hrtimer_run_pending();
1367 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1372 * Called by the local, per-CPU timer interrupt on SMP.
1374 void run_local_timers(void)
1376 hrtimer_run_queues();
1377 raise_softirq(TIMER_SOFTIRQ
);
1380 #ifdef __ARCH_WANT_SYS_ALARM
1383 * For backwards compatibility? This can be done in libc so Alpha
1384 * and all newer ports shouldn't need it.
1386 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1388 return alarm_setitimer(seconds
);
1396 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1397 * should be moved into arch/i386 instead?
1401 * sys_getpid - return the thread group id of the current process
1403 * Note, despite the name, this returns the tgid not the pid. The tgid and
1404 * the pid are identical unless CLONE_THREAD was specified on clone() in
1405 * which case the tgid is the same in all threads of the same group.
1407 * This is SMP safe as current->tgid does not change.
1409 SYSCALL_DEFINE0(getpid
)
1411 return task_tgid_vnr(current
);
1415 * Accessing ->real_parent is not SMP-safe, it could
1416 * change from under us. However, we can use a stale
1417 * value of ->real_parent under rcu_read_lock(), see
1418 * release_task()->call_rcu(delayed_put_task_struct).
1420 SYSCALL_DEFINE0(getppid
)
1425 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1431 SYSCALL_DEFINE0(getuid
)
1433 /* Only we change this so SMP safe */
1434 return current_uid();
1437 SYSCALL_DEFINE0(geteuid
)
1439 /* Only we change this so SMP safe */
1440 return current_euid();
1443 SYSCALL_DEFINE0(getgid
)
1445 /* Only we change this so SMP safe */
1446 return current_gid();
1449 SYSCALL_DEFINE0(getegid
)
1451 /* Only we change this so SMP safe */
1452 return current_egid();
1457 static void process_timeout(unsigned long __data
)
1459 wake_up_process((struct task_struct
*)__data
);
1463 * schedule_timeout - sleep until timeout
1464 * @timeout: timeout value in jiffies
1466 * Make the current task sleep until @timeout jiffies have
1467 * elapsed. The routine will return immediately unless
1468 * the current task state has been set (see set_current_state()).
1470 * You can set the task state as follows -
1472 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1473 * pass before the routine returns. The routine will return 0
1475 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1476 * delivered to the current task. In this case the remaining time
1477 * in jiffies will be returned, or 0 if the timer expired in time
1479 * The current task state is guaranteed to be TASK_RUNNING when this
1482 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1483 * the CPU away without a bound on the timeout. In this case the return
1484 * value will be %MAX_SCHEDULE_TIMEOUT.
1486 * In all cases the return value is guaranteed to be non-negative.
1488 signed long __sched
schedule_timeout(signed long timeout
)
1490 struct timer_list timer
;
1491 unsigned long expire
;
1495 case MAX_SCHEDULE_TIMEOUT
:
1497 * These two special cases are useful to be comfortable
1498 * in the caller. Nothing more. We could take
1499 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1500 * but I' d like to return a valid offset (>=0) to allow
1501 * the caller to do everything it want with the retval.
1507 * Another bit of PARANOID. Note that the retval will be
1508 * 0 since no piece of kernel is supposed to do a check
1509 * for a negative retval of schedule_timeout() (since it
1510 * should never happens anyway). You just have the printk()
1511 * that will tell you if something is gone wrong and where.
1514 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1515 "value %lx\n", timeout
);
1517 current
->state
= TASK_RUNNING
;
1522 expire
= timeout
+ jiffies
;
1524 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1525 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1527 del_singleshot_timer_sync(&timer
);
1529 /* Remove the timer from the object tracker */
1530 destroy_timer_on_stack(&timer
);
1532 timeout
= expire
- jiffies
;
1535 return timeout
< 0 ? 0 : timeout
;
1537 EXPORT_SYMBOL(schedule_timeout
);
1540 * We can use __set_current_state() here because schedule_timeout() calls
1541 * schedule() unconditionally.
1543 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1545 __set_current_state(TASK_INTERRUPTIBLE
);
1546 return schedule_timeout(timeout
);
1548 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1550 signed long __sched
schedule_timeout_killable(signed long timeout
)
1552 __set_current_state(TASK_KILLABLE
);
1553 return schedule_timeout(timeout
);
1555 EXPORT_SYMBOL(schedule_timeout_killable
);
1557 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1559 __set_current_state(TASK_UNINTERRUPTIBLE
);
1560 return schedule_timeout(timeout
);
1562 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1564 /* Thread ID - the internal kernel "pid" */
1565 SYSCALL_DEFINE0(gettid
)
1567 return task_pid_vnr(current
);
1571 * do_sysinfo - fill in sysinfo struct
1572 * @info: pointer to buffer to fill
1574 int do_sysinfo(struct sysinfo
*info
)
1576 unsigned long mem_total
, sav_total
;
1577 unsigned int mem_unit
, bitcount
;
1580 memset(info
, 0, sizeof(struct sysinfo
));
1583 monotonic_to_bootbased(&tp
);
1584 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1586 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1588 info
->procs
= nr_threads
;
1594 * If the sum of all the available memory (i.e. ram + swap)
1595 * is less than can be stored in a 32 bit unsigned long then
1596 * we can be binary compatible with 2.2.x kernels. If not,
1597 * well, in that case 2.2.x was broken anyways...
1599 * -Erik Andersen <andersee@debian.org>
1602 mem_total
= info
->totalram
+ info
->totalswap
;
1603 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1606 mem_unit
= info
->mem_unit
;
1607 while (mem_unit
> 1) {
1610 sav_total
= mem_total
;
1612 if (mem_total
< sav_total
)
1617 * If mem_total did not overflow, multiply all memory values by
1618 * info->mem_unit and set it to 1. This leaves things compatible
1619 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1624 info
->totalram
<<= bitcount
;
1625 info
->freeram
<<= bitcount
;
1626 info
->sharedram
<<= bitcount
;
1627 info
->bufferram
<<= bitcount
;
1628 info
->totalswap
<<= bitcount
;
1629 info
->freeswap
<<= bitcount
;
1630 info
->totalhigh
<<= bitcount
;
1631 info
->freehigh
<<= bitcount
;
1637 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1643 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1649 static int __cpuinit
init_timers_cpu(int cpu
)
1652 struct tvec_base
*base
;
1653 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1655 if (!tvec_base_done
[cpu
]) {
1656 static char boot_done
;
1660 * The APs use this path later in boot
1662 base
= kmalloc_node(sizeof(*base
),
1663 GFP_KERNEL
| __GFP_ZERO
,
1668 /* Make sure that tvec_base is 2 byte aligned */
1669 if (tbase_get_deferrable(base
)) {
1674 per_cpu(tvec_bases
, cpu
) = base
;
1677 * This is for the boot CPU - we use compile-time
1678 * static initialisation because per-cpu memory isn't
1679 * ready yet and because the memory allocators are not
1680 * initialised either.
1683 base
= &boot_tvec_bases
;
1685 spin_lock_init(&base
->lock
);
1686 tvec_base_done
[cpu
] = 1;
1688 base
= per_cpu(tvec_bases
, cpu
);
1692 for (j
= 0; j
< TVN_SIZE
; j
++) {
1693 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1694 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1695 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1696 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1698 for (j
= 0; j
< TVR_SIZE
; j
++)
1699 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1701 base
->timer_jiffies
= jiffies
;
1702 base
->next_timer
= base
->timer_jiffies
;
1706 #ifdef CONFIG_HOTPLUG_CPU
1707 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1709 struct timer_list
*timer
;
1711 while (!list_empty(head
)) {
1712 timer
= list_first_entry(head
, struct timer_list
, entry
);
1713 detach_timer(timer
, 0);
1714 timer_set_base(timer
, new_base
);
1715 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1716 !tbase_get_deferrable(timer
->base
))
1717 new_base
->next_timer
= timer
->expires
;
1718 internal_add_timer(new_base
, timer
);
1722 static void __cpuinit
migrate_timers(int cpu
)
1724 struct tvec_base
*old_base
;
1725 struct tvec_base
*new_base
;
1728 BUG_ON(cpu_online(cpu
));
1729 old_base
= per_cpu(tvec_bases
, cpu
);
1730 new_base
= get_cpu_var(tvec_bases
);
1732 * The caller is globally serialized and nobody else
1733 * takes two locks at once, deadlock is not possible.
1735 spin_lock_irq(&new_base
->lock
);
1736 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1738 BUG_ON(old_base
->running_timer
);
1740 for (i
= 0; i
< TVR_SIZE
; i
++)
1741 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1742 for (i
= 0; i
< TVN_SIZE
; i
++) {
1743 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1744 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1745 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1746 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1749 spin_unlock(&old_base
->lock
);
1750 spin_unlock_irq(&new_base
->lock
);
1751 put_cpu_var(tvec_bases
);
1753 #endif /* CONFIG_HOTPLUG_CPU */
1755 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1756 unsigned long action
, void *hcpu
)
1758 long cpu
= (long)hcpu
;
1762 case CPU_UP_PREPARE
:
1763 case CPU_UP_PREPARE_FROZEN
:
1764 err
= init_timers_cpu(cpu
);
1766 return notifier_from_errno(err
);
1768 #ifdef CONFIG_HOTPLUG_CPU
1770 case CPU_DEAD_FROZEN
:
1771 migrate_timers(cpu
);
1780 static struct notifier_block __cpuinitdata timers_nb
= {
1781 .notifier_call
= timer_cpu_notify
,
1785 void __init
init_timers(void)
1787 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1788 (void *)(long)smp_processor_id());
1792 BUG_ON(err
!= NOTIFY_OK
);
1793 register_cpu_notifier(&timers_nb
);
1794 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1798 * msleep - sleep safely even with waitqueue interruptions
1799 * @msecs: Time in milliseconds to sleep for
1801 void msleep(unsigned int msecs
)
1803 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1806 timeout
= schedule_timeout_uninterruptible(timeout
);
1809 EXPORT_SYMBOL(msleep
);
1812 * msleep_interruptible - sleep waiting for signals
1813 * @msecs: Time in milliseconds to sleep for
1815 unsigned long msleep_interruptible(unsigned int msecs
)
1817 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1819 while (timeout
&& !signal_pending(current
))
1820 timeout
= schedule_timeout_interruptible(timeout
);
1821 return jiffies_to_msecs(timeout
);
1824 EXPORT_SYMBOL(msleep_interruptible
);
1826 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1829 unsigned long delta
;
1831 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1832 delta
= (max
- min
) * NSEC_PER_USEC
;
1833 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1837 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1838 * @min: Minimum time in usecs to sleep
1839 * @max: Maximum time in usecs to sleep
1841 void usleep_range(unsigned long min
, unsigned long max
)
1843 __set_current_state(TASK_UNINTERRUPTIBLE
);
1844 do_usleep_range(min
, max
);
1846 EXPORT_SYMBOL(usleep_range
);