ipv6: reallocate addrconf router for ipv6 address when lo device up
[linux/fpc-iii.git] / kernel / timer.c
blob87ff7b19d27f9ad8682023dd87818b1ff1d255f7
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
68 struct tvec {
69 struct list_head vec[TVN_SIZE];
72 struct tvec_root {
73 struct list_head vec[TVR_SIZE];
76 struct tvec_base {
77 spinlock_t lock;
78 struct timer_list *running_timer;
79 unsigned long timer_jiffies;
80 unsigned long next_timer;
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
86 } ____cacheline_aligned;
88 struct tvec_base boot_tvec_bases;
89 EXPORT_SYMBOL(boot_tvec_bases);
90 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
103 static inline void timer_set_deferrable(struct timer_list *timer)
105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
118 int rem;
119 unsigned long original = j;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
129 j += cpu * 3;
131 rem = j % HZ;
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
149 * Make sure j is still in the future. Otherwise return the
150 * unmodified value.
152 return time_is_after_jiffies(j) ? j : original;
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j, int cpu)
177 return round_jiffies_common(j, cpu, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203 unsigned long j0 = jiffies;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j + j0, cpu, false) - j0;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j)
227 return round_jiffies_common(j, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j)
248 return __round_jiffies_relative(j, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
260 * early.
262 unsigned long __round_jiffies_up(unsigned long j, int cpu)
264 return round_jiffies_common(j, cpu, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
278 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280 unsigned long j0 = jiffies;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j + j0, cpu, true) - j0;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
296 unsigned long round_jiffies_up(unsigned long j)
298 return round_jiffies_common(j, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
309 * early.
311 unsigned long round_jiffies_up_relative(unsigned long j)
313 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
318 * set_timer_slack - set the allowed slack for a timer
319 * @timer: the timer to be modified
320 * @slack_hz: the amount of time (in jiffies) allowed for rounding
322 * Set the amount of time, in jiffies, that a certain timer has
323 * in terms of slack. By setting this value, the timer subsystem
324 * will schedule the actual timer somewhere between
325 * the time mod_timer() asks for, and that time plus the slack.
327 * By setting the slack to -1, a percentage of the delay is used
328 * instead.
330 void set_timer_slack(struct timer_list *timer, int slack_hz)
332 timer->slack = slack_hz;
334 EXPORT_SYMBOL_GPL(set_timer_slack);
336 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
338 unsigned long expires = timer->expires;
339 unsigned long idx = expires - base->timer_jiffies;
340 struct list_head *vec;
342 if (idx < TVR_SIZE) {
343 int i = expires & TVR_MASK;
344 vec = base->tv1.vec + i;
345 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
346 int i = (expires >> TVR_BITS) & TVN_MASK;
347 vec = base->tv2.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
350 vec = base->tv3.vec + i;
351 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
352 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
353 vec = base->tv4.vec + i;
354 } else if ((signed long) idx < 0) {
356 * Can happen if you add a timer with expires == jiffies,
357 * or you set a timer to go off in the past
359 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
360 } else {
361 int i;
362 /* If the timeout is larger than MAX_TVAL (on 64-bit
363 * architectures or with CONFIG_BASE_SMALL=1) then we
364 * use the maximum timeout.
366 if (idx > MAX_TVAL) {
367 idx = MAX_TVAL;
368 expires = idx + base->timer_jiffies;
370 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
371 vec = base->tv5.vec + i;
374 * Timers are FIFO:
376 list_add_tail(&timer->entry, vec);
379 #ifdef CONFIG_TIMER_STATS
380 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
382 if (timer->start_site)
383 return;
385 timer->start_site = addr;
386 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
387 timer->start_pid = current->pid;
390 static void timer_stats_account_timer(struct timer_list *timer)
392 unsigned int flag = 0;
394 if (likely(!timer->start_site))
395 return;
396 if (unlikely(tbase_get_deferrable(timer->base)))
397 flag |= TIMER_STATS_FLAG_DEFERRABLE;
399 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
400 timer->function, timer->start_comm, flag);
403 #else
404 static void timer_stats_account_timer(struct timer_list *timer) {}
405 #endif
407 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
409 static struct debug_obj_descr timer_debug_descr;
411 static void *timer_debug_hint(void *addr)
413 return ((struct timer_list *) addr)->function;
417 * fixup_init is called when:
418 * - an active object is initialized
420 static int timer_fixup_init(void *addr, enum debug_obj_state state)
422 struct timer_list *timer = addr;
424 switch (state) {
425 case ODEBUG_STATE_ACTIVE:
426 del_timer_sync(timer);
427 debug_object_init(timer, &timer_debug_descr);
428 return 1;
429 default:
430 return 0;
434 /* Stub timer callback for improperly used timers. */
435 static void stub_timer(unsigned long data)
437 WARN_ON(1);
441 * fixup_activate is called when:
442 * - an active object is activated
443 * - an unknown object is activated (might be a statically initialized object)
445 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
447 struct timer_list *timer = addr;
449 switch (state) {
451 case ODEBUG_STATE_NOTAVAILABLE:
453 * This is not really a fixup. The timer was
454 * statically initialized. We just make sure that it
455 * is tracked in the object tracker.
457 if (timer->entry.next == NULL &&
458 timer->entry.prev == TIMER_ENTRY_STATIC) {
459 debug_object_init(timer, &timer_debug_descr);
460 debug_object_activate(timer, &timer_debug_descr);
461 return 0;
462 } else {
463 setup_timer(timer, stub_timer, 0);
464 return 1;
466 return 0;
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
471 default:
472 return 0;
477 * fixup_free is called when:
478 * - an active object is freed
480 static int timer_fixup_free(void *addr, enum debug_obj_state state)
482 struct timer_list *timer = addr;
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
495 * fixup_assert_init is called when:
496 * - an untracked/uninit-ed object is found
498 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
500 struct timer_list *timer = addr;
502 switch (state) {
503 case ODEBUG_STATE_NOTAVAILABLE:
504 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
506 * This is not really a fixup. The timer was
507 * statically initialized. We just make sure that it
508 * is tracked in the object tracker.
510 debug_object_init(timer, &timer_debug_descr);
511 return 0;
512 } else {
513 setup_timer(timer, stub_timer, 0);
514 return 1;
516 default:
517 return 0;
521 static struct debug_obj_descr timer_debug_descr = {
522 .name = "timer_list",
523 .debug_hint = timer_debug_hint,
524 .fixup_init = timer_fixup_init,
525 .fixup_activate = timer_fixup_activate,
526 .fixup_free = timer_fixup_free,
527 .fixup_assert_init = timer_fixup_assert_init,
530 static inline void debug_timer_init(struct timer_list *timer)
532 debug_object_init(timer, &timer_debug_descr);
535 static inline void debug_timer_activate(struct timer_list *timer)
537 debug_object_activate(timer, &timer_debug_descr);
540 static inline void debug_timer_deactivate(struct timer_list *timer)
542 debug_object_deactivate(timer, &timer_debug_descr);
545 static inline void debug_timer_free(struct timer_list *timer)
547 debug_object_free(timer, &timer_debug_descr);
550 static inline void debug_timer_assert_init(struct timer_list *timer)
552 debug_object_assert_init(timer, &timer_debug_descr);
555 static void __init_timer(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key);
559 void init_timer_on_stack_key(struct timer_list *timer,
560 const char *name,
561 struct lock_class_key *key)
563 debug_object_init_on_stack(timer, &timer_debug_descr);
564 __init_timer(timer, name, key);
566 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
568 void destroy_timer_on_stack(struct timer_list *timer)
570 debug_object_free(timer, &timer_debug_descr);
572 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
574 #else
575 static inline void debug_timer_init(struct timer_list *timer) { }
576 static inline void debug_timer_activate(struct timer_list *timer) { }
577 static inline void debug_timer_deactivate(struct timer_list *timer) { }
578 static inline void debug_timer_assert_init(struct timer_list *timer) { }
579 #endif
581 static inline void debug_init(struct timer_list *timer)
583 debug_timer_init(timer);
584 trace_timer_init(timer);
587 static inline void
588 debug_activate(struct timer_list *timer, unsigned long expires)
590 debug_timer_activate(timer);
591 trace_timer_start(timer, expires);
594 static inline void debug_deactivate(struct timer_list *timer)
596 debug_timer_deactivate(timer);
597 trace_timer_cancel(timer);
600 static inline void debug_assert_init(struct timer_list *timer)
602 debug_timer_assert_init(timer);
605 static void __init_timer(struct timer_list *timer,
606 const char *name,
607 struct lock_class_key *key)
609 timer->entry.next = NULL;
610 timer->base = __raw_get_cpu_var(tvec_bases);
611 timer->slack = -1;
612 #ifdef CONFIG_TIMER_STATS
613 timer->start_site = NULL;
614 timer->start_pid = -1;
615 memset(timer->start_comm, 0, TASK_COMM_LEN);
616 #endif
617 lockdep_init_map(&timer->lockdep_map, name, key, 0);
620 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
621 const char *name,
622 struct lock_class_key *key,
623 void (*function)(unsigned long),
624 unsigned long data)
626 timer->function = function;
627 timer->data = data;
628 init_timer_on_stack_key(timer, name, key);
629 timer_set_deferrable(timer);
631 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
634 * init_timer_key - initialize a timer
635 * @timer: the timer to be initialized
636 * @name: name of the timer
637 * @key: lockdep class key of the fake lock used for tracking timer
638 * sync lock dependencies
640 * init_timer_key() must be done to a timer prior calling *any* of the
641 * other timer functions.
643 void init_timer_key(struct timer_list *timer,
644 const char *name,
645 struct lock_class_key *key)
647 debug_init(timer);
648 __init_timer(timer, name, key);
650 EXPORT_SYMBOL(init_timer_key);
652 void init_timer_deferrable_key(struct timer_list *timer,
653 const char *name,
654 struct lock_class_key *key)
656 init_timer_key(timer, name, key);
657 timer_set_deferrable(timer);
659 EXPORT_SYMBOL(init_timer_deferrable_key);
661 static inline void detach_timer(struct timer_list *timer,
662 int clear_pending)
664 struct list_head *entry = &timer->entry;
666 debug_deactivate(timer);
668 __list_del(entry->prev, entry->next);
669 if (clear_pending)
670 entry->next = NULL;
671 entry->prev = LIST_POISON2;
675 * We are using hashed locking: holding per_cpu(tvec_bases).lock
676 * means that all timers which are tied to this base via timer->base are
677 * locked, and the base itself is locked too.
679 * So __run_timers/migrate_timers can safely modify all timers which could
680 * be found on ->tvX lists.
682 * When the timer's base is locked, and the timer removed from list, it is
683 * possible to set timer->base = NULL and drop the lock: the timer remains
684 * locked.
686 static struct tvec_base *lock_timer_base(struct timer_list *timer,
687 unsigned long *flags)
688 __acquires(timer->base->lock)
690 struct tvec_base *base;
692 for (;;) {
693 struct tvec_base *prelock_base = timer->base;
694 base = tbase_get_base(prelock_base);
695 if (likely(base != NULL)) {
696 spin_lock_irqsave(&base->lock, *flags);
697 if (likely(prelock_base == timer->base))
698 return base;
699 /* The timer has migrated to another CPU */
700 spin_unlock_irqrestore(&base->lock, *flags);
702 cpu_relax();
706 static inline int
707 __mod_timer(struct timer_list *timer, unsigned long expires,
708 bool pending_only, int pinned)
710 struct tvec_base *base, *new_base;
711 unsigned long flags;
712 int ret = 0 , cpu;
714 timer_stats_timer_set_start_info(timer);
715 BUG_ON(!timer->function);
717 base = lock_timer_base(timer, &flags);
719 if (timer_pending(timer)) {
720 detach_timer(timer, 0);
721 if (timer->expires == base->next_timer &&
722 !tbase_get_deferrable(timer->base))
723 base->next_timer = base->timer_jiffies;
724 ret = 1;
725 } else {
726 if (pending_only)
727 goto out_unlock;
730 debug_activate(timer, expires);
732 cpu = smp_processor_id();
734 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
735 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
736 cpu = get_nohz_timer_target();
737 #endif
738 new_base = per_cpu(tvec_bases, cpu);
740 if (base != new_base) {
742 * We are trying to schedule the timer on the local CPU.
743 * However we can't change timer's base while it is running,
744 * otherwise del_timer_sync() can't detect that the timer's
745 * handler yet has not finished. This also guarantees that
746 * the timer is serialized wrt itself.
748 if (likely(base->running_timer != timer)) {
749 /* See the comment in lock_timer_base() */
750 timer_set_base(timer, NULL);
751 spin_unlock(&base->lock);
752 base = new_base;
753 spin_lock(&base->lock);
754 timer_set_base(timer, base);
758 timer->expires = expires;
759 if (time_before(timer->expires, base->next_timer) &&
760 !tbase_get_deferrable(timer->base))
761 base->next_timer = timer->expires;
762 internal_add_timer(base, timer);
764 out_unlock:
765 spin_unlock_irqrestore(&base->lock, flags);
767 return ret;
771 * mod_timer_pending - modify a pending timer's timeout
772 * @timer: the pending timer to be modified
773 * @expires: new timeout in jiffies
775 * mod_timer_pending() is the same for pending timers as mod_timer(),
776 * but will not re-activate and modify already deleted timers.
778 * It is useful for unserialized use of timers.
780 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
782 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
784 EXPORT_SYMBOL(mod_timer_pending);
787 * Decide where to put the timer while taking the slack into account
789 * Algorithm:
790 * 1) calculate the maximum (absolute) time
791 * 2) calculate the highest bit where the expires and new max are different
792 * 3) use this bit to make a mask
793 * 4) use the bitmask to round down the maximum time, so that all last
794 * bits are zeros
796 static inline
797 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
799 unsigned long expires_limit, mask;
800 int bit;
802 if (timer->slack >= 0) {
803 expires_limit = expires + timer->slack;
804 } else {
805 long delta = expires - jiffies;
807 if (delta < 256)
808 return expires;
810 expires_limit = expires + delta / 256;
812 mask = expires ^ expires_limit;
813 if (mask == 0)
814 return expires;
816 bit = find_last_bit(&mask, BITS_PER_LONG);
818 mask = (1UL << bit) - 1;
820 expires_limit = expires_limit & ~(mask);
822 return expires_limit;
826 * mod_timer - modify a timer's timeout
827 * @timer: the timer to be modified
828 * @expires: new timeout in jiffies
830 * mod_timer() is a more efficient way to update the expire field of an
831 * active timer (if the timer is inactive it will be activated)
833 * mod_timer(timer, expires) is equivalent to:
835 * del_timer(timer); timer->expires = expires; add_timer(timer);
837 * Note that if there are multiple unserialized concurrent users of the
838 * same timer, then mod_timer() is the only safe way to modify the timeout,
839 * since add_timer() cannot modify an already running timer.
841 * The function returns whether it has modified a pending timer or not.
842 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
843 * active timer returns 1.)
845 int mod_timer(struct timer_list *timer, unsigned long expires)
847 expires = apply_slack(timer, expires);
850 * This is a common optimization triggered by the
851 * networking code - if the timer is re-modified
852 * to be the same thing then just return:
854 if (timer_pending(timer) && timer->expires == expires)
855 return 1;
857 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
859 EXPORT_SYMBOL(mod_timer);
862 * mod_timer_pinned - modify a timer's timeout
863 * @timer: the timer to be modified
864 * @expires: new timeout in jiffies
866 * mod_timer_pinned() is a way to update the expire field of an
867 * active timer (if the timer is inactive it will be activated)
868 * and not allow the timer to be migrated to a different CPU.
870 * mod_timer_pinned(timer, expires) is equivalent to:
872 * del_timer(timer); timer->expires = expires; add_timer(timer);
874 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
876 if (timer->expires == expires && timer_pending(timer))
877 return 1;
879 return __mod_timer(timer, expires, false, TIMER_PINNED);
881 EXPORT_SYMBOL(mod_timer_pinned);
884 * add_timer - start a timer
885 * @timer: the timer to be added
887 * The kernel will do a ->function(->data) callback from the
888 * timer interrupt at the ->expires point in the future. The
889 * current time is 'jiffies'.
891 * The timer's ->expires, ->function (and if the handler uses it, ->data)
892 * fields must be set prior calling this function.
894 * Timers with an ->expires field in the past will be executed in the next
895 * timer tick.
897 void add_timer(struct timer_list *timer)
899 BUG_ON(timer_pending(timer));
900 mod_timer(timer, timer->expires);
902 EXPORT_SYMBOL(add_timer);
905 * add_timer_on - start a timer on a particular CPU
906 * @timer: the timer to be added
907 * @cpu: the CPU to start it on
909 * This is not very scalable on SMP. Double adds are not possible.
911 void add_timer_on(struct timer_list *timer, int cpu)
913 struct tvec_base *base = per_cpu(tvec_bases, cpu);
914 unsigned long flags;
916 timer_stats_timer_set_start_info(timer);
917 BUG_ON(timer_pending(timer) || !timer->function);
918 spin_lock_irqsave(&base->lock, flags);
919 timer_set_base(timer, base);
920 debug_activate(timer, timer->expires);
921 if (time_before(timer->expires, base->next_timer) &&
922 !tbase_get_deferrable(timer->base))
923 base->next_timer = timer->expires;
924 internal_add_timer(base, timer);
926 * Check whether the other CPU is idle and needs to be
927 * triggered to reevaluate the timer wheel when nohz is
928 * active. We are protected against the other CPU fiddling
929 * with the timer by holding the timer base lock. This also
930 * makes sure that a CPU on the way to idle can not evaluate
931 * the timer wheel.
933 wake_up_idle_cpu(cpu);
934 spin_unlock_irqrestore(&base->lock, flags);
936 EXPORT_SYMBOL_GPL(add_timer_on);
939 * del_timer - deactive a timer.
940 * @timer: the timer to be deactivated
942 * del_timer() deactivates a timer - this works on both active and inactive
943 * timers.
945 * The function returns whether it has deactivated a pending timer or not.
946 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
947 * active timer returns 1.)
949 int del_timer(struct timer_list *timer)
951 struct tvec_base *base;
952 unsigned long flags;
953 int ret = 0;
955 debug_assert_init(timer);
957 timer_stats_timer_clear_start_info(timer);
958 if (timer_pending(timer)) {
959 base = lock_timer_base(timer, &flags);
960 if (timer_pending(timer)) {
961 detach_timer(timer, 1);
962 if (timer->expires == base->next_timer &&
963 !tbase_get_deferrable(timer->base))
964 base->next_timer = base->timer_jiffies;
965 ret = 1;
967 spin_unlock_irqrestore(&base->lock, flags);
970 return ret;
972 EXPORT_SYMBOL(del_timer);
975 * try_to_del_timer_sync - Try to deactivate a timer
976 * @timer: timer do del
978 * This function tries to deactivate a timer. Upon successful (ret >= 0)
979 * exit the timer is not queued and the handler is not running on any CPU.
981 int try_to_del_timer_sync(struct timer_list *timer)
983 struct tvec_base *base;
984 unsigned long flags;
985 int ret = -1;
987 debug_assert_init(timer);
989 base = lock_timer_base(timer, &flags);
991 if (base->running_timer == timer)
992 goto out;
994 timer_stats_timer_clear_start_info(timer);
995 ret = 0;
996 if (timer_pending(timer)) {
997 detach_timer(timer, 1);
998 if (timer->expires == base->next_timer &&
999 !tbase_get_deferrable(timer->base))
1000 base->next_timer = base->timer_jiffies;
1001 ret = 1;
1003 out:
1004 spin_unlock_irqrestore(&base->lock, flags);
1006 return ret;
1008 EXPORT_SYMBOL(try_to_del_timer_sync);
1010 #ifdef CONFIG_SMP
1012 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1013 * @timer: the timer to be deactivated
1015 * This function only differs from del_timer() on SMP: besides deactivating
1016 * the timer it also makes sure the handler has finished executing on other
1017 * CPUs.
1019 * Synchronization rules: Callers must prevent restarting of the timer,
1020 * otherwise this function is meaningless. It must not be called from
1021 * interrupt contexts. The caller must not hold locks which would prevent
1022 * completion of the timer's handler. The timer's handler must not call
1023 * add_timer_on(). Upon exit the timer is not queued and the handler is
1024 * not running on any CPU.
1026 * Note: You must not hold locks that are held in interrupt context
1027 * while calling this function. Even if the lock has nothing to do
1028 * with the timer in question. Here's why:
1030 * CPU0 CPU1
1031 * ---- ----
1032 * <SOFTIRQ>
1033 * call_timer_fn();
1034 * base->running_timer = mytimer;
1035 * spin_lock_irq(somelock);
1036 * <IRQ>
1037 * spin_lock(somelock);
1038 * del_timer_sync(mytimer);
1039 * while (base->running_timer == mytimer);
1041 * Now del_timer_sync() will never return and never release somelock.
1042 * The interrupt on the other CPU is waiting to grab somelock but
1043 * it has interrupted the softirq that CPU0 is waiting to finish.
1045 * The function returns whether it has deactivated a pending timer or not.
1047 int del_timer_sync(struct timer_list *timer)
1049 #ifdef CONFIG_LOCKDEP
1050 unsigned long flags;
1053 * If lockdep gives a backtrace here, please reference
1054 * the synchronization rules above.
1056 local_irq_save(flags);
1057 lock_map_acquire(&timer->lockdep_map);
1058 lock_map_release(&timer->lockdep_map);
1059 local_irq_restore(flags);
1060 #endif
1062 * don't use it in hardirq context, because it
1063 * could lead to deadlock.
1065 WARN_ON(in_irq());
1066 for (;;) {
1067 int ret = try_to_del_timer_sync(timer);
1068 if (ret >= 0)
1069 return ret;
1070 cpu_relax();
1073 EXPORT_SYMBOL(del_timer_sync);
1074 #endif
1076 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1078 /* cascade all the timers from tv up one level */
1079 struct timer_list *timer, *tmp;
1080 struct list_head tv_list;
1082 list_replace_init(tv->vec + index, &tv_list);
1085 * We are removing _all_ timers from the list, so we
1086 * don't have to detach them individually.
1088 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1089 BUG_ON(tbase_get_base(timer->base) != base);
1090 internal_add_timer(base, timer);
1093 return index;
1096 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1097 unsigned long data)
1099 int preempt_count = preempt_count();
1101 #ifdef CONFIG_LOCKDEP
1103 * It is permissible to free the timer from inside the
1104 * function that is called from it, this we need to take into
1105 * account for lockdep too. To avoid bogus "held lock freed"
1106 * warnings as well as problems when looking into
1107 * timer->lockdep_map, make a copy and use that here.
1109 struct lockdep_map lockdep_map = timer->lockdep_map;
1110 #endif
1112 * Couple the lock chain with the lock chain at
1113 * del_timer_sync() by acquiring the lock_map around the fn()
1114 * call here and in del_timer_sync().
1116 lock_map_acquire(&lockdep_map);
1118 trace_timer_expire_entry(timer);
1119 fn(data);
1120 trace_timer_expire_exit(timer);
1122 lock_map_release(&lockdep_map);
1124 if (preempt_count != preempt_count()) {
1125 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1126 fn, preempt_count, preempt_count());
1128 * Restore the preempt count. That gives us a decent
1129 * chance to survive and extract information. If the
1130 * callback kept a lock held, bad luck, but not worse
1131 * than the BUG() we had.
1133 preempt_count() = preempt_count;
1137 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1140 * __run_timers - run all expired timers (if any) on this CPU.
1141 * @base: the timer vector to be processed.
1143 * This function cascades all vectors and executes all expired timer
1144 * vectors.
1146 static inline void __run_timers(struct tvec_base *base)
1148 struct timer_list *timer;
1150 spin_lock_irq(&base->lock);
1151 while (time_after_eq(jiffies, base->timer_jiffies)) {
1152 struct list_head work_list;
1153 struct list_head *head = &work_list;
1154 int index = base->timer_jiffies & TVR_MASK;
1157 * Cascade timers:
1159 if (!index &&
1160 (!cascade(base, &base->tv2, INDEX(0))) &&
1161 (!cascade(base, &base->tv3, INDEX(1))) &&
1162 !cascade(base, &base->tv4, INDEX(2)))
1163 cascade(base, &base->tv5, INDEX(3));
1164 ++base->timer_jiffies;
1165 list_replace_init(base->tv1.vec + index, &work_list);
1166 while (!list_empty(head)) {
1167 void (*fn)(unsigned long);
1168 unsigned long data;
1170 timer = list_first_entry(head, struct timer_list,entry);
1171 fn = timer->function;
1172 data = timer->data;
1174 timer_stats_account_timer(timer);
1176 base->running_timer = timer;
1177 detach_timer(timer, 1);
1179 spin_unlock_irq(&base->lock);
1180 call_timer_fn(timer, fn, data);
1181 spin_lock_irq(&base->lock);
1184 base->running_timer = NULL;
1185 spin_unlock_irq(&base->lock);
1188 #ifdef CONFIG_NO_HZ
1190 * Find out when the next timer event is due to happen. This
1191 * is used on S/390 to stop all activity when a CPU is idle.
1192 * This function needs to be called with interrupts disabled.
1194 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1196 unsigned long timer_jiffies = base->timer_jiffies;
1197 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1198 int index, slot, array, found = 0;
1199 struct timer_list *nte;
1200 struct tvec *varray[4];
1202 /* Look for timer events in tv1. */
1203 index = slot = timer_jiffies & TVR_MASK;
1204 do {
1205 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1206 if (tbase_get_deferrable(nte->base))
1207 continue;
1209 found = 1;
1210 expires = nte->expires;
1211 /* Look at the cascade bucket(s)? */
1212 if (!index || slot < index)
1213 goto cascade;
1214 return expires;
1216 slot = (slot + 1) & TVR_MASK;
1217 } while (slot != index);
1219 cascade:
1220 /* Calculate the next cascade event */
1221 if (index)
1222 timer_jiffies += TVR_SIZE - index;
1223 timer_jiffies >>= TVR_BITS;
1225 /* Check tv2-tv5. */
1226 varray[0] = &base->tv2;
1227 varray[1] = &base->tv3;
1228 varray[2] = &base->tv4;
1229 varray[3] = &base->tv5;
1231 for (array = 0; array < 4; array++) {
1232 struct tvec *varp = varray[array];
1234 index = slot = timer_jiffies & TVN_MASK;
1235 do {
1236 list_for_each_entry(nte, varp->vec + slot, entry) {
1237 if (tbase_get_deferrable(nte->base))
1238 continue;
1240 found = 1;
1241 if (time_before(nte->expires, expires))
1242 expires = nte->expires;
1245 * Do we still search for the first timer or are
1246 * we looking up the cascade buckets ?
1248 if (found) {
1249 /* Look at the cascade bucket(s)? */
1250 if (!index || slot < index)
1251 break;
1252 return expires;
1254 slot = (slot + 1) & TVN_MASK;
1255 } while (slot != index);
1257 if (index)
1258 timer_jiffies += TVN_SIZE - index;
1259 timer_jiffies >>= TVN_BITS;
1261 return expires;
1265 * Check, if the next hrtimer event is before the next timer wheel
1266 * event:
1268 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1269 unsigned long expires)
1271 ktime_t hr_delta = hrtimer_get_next_event();
1272 struct timespec tsdelta;
1273 unsigned long delta;
1275 if (hr_delta.tv64 == KTIME_MAX)
1276 return expires;
1279 * Expired timer available, let it expire in the next tick
1281 if (hr_delta.tv64 <= 0)
1282 return now + 1;
1284 tsdelta = ktime_to_timespec(hr_delta);
1285 delta = timespec_to_jiffies(&tsdelta);
1288 * Limit the delta to the max value, which is checked in
1289 * tick_nohz_stop_sched_tick():
1291 if (delta > NEXT_TIMER_MAX_DELTA)
1292 delta = NEXT_TIMER_MAX_DELTA;
1295 * Take rounding errors in to account and make sure, that it
1296 * expires in the next tick. Otherwise we go into an endless
1297 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1298 * the timer softirq
1300 if (delta < 1)
1301 delta = 1;
1302 now += delta;
1303 if (time_before(now, expires))
1304 return now;
1305 return expires;
1309 * get_next_timer_interrupt - return the jiffy of the next pending timer
1310 * @now: current time (in jiffies)
1312 unsigned long get_next_timer_interrupt(unsigned long now)
1314 struct tvec_base *base = __this_cpu_read(tvec_bases);
1315 unsigned long expires;
1318 * Pretend that there is no timer pending if the cpu is offline.
1319 * Possible pending timers will be migrated later to an active cpu.
1321 if (cpu_is_offline(smp_processor_id()))
1322 return now + NEXT_TIMER_MAX_DELTA;
1323 spin_lock(&base->lock);
1324 if (time_before_eq(base->next_timer, base->timer_jiffies))
1325 base->next_timer = __next_timer_interrupt(base);
1326 expires = base->next_timer;
1327 spin_unlock(&base->lock);
1329 if (time_before_eq(expires, now))
1330 return now;
1332 return cmp_next_hrtimer_event(now, expires);
1334 #endif
1337 * Called from the timer interrupt handler to charge one tick to the current
1338 * process. user_tick is 1 if the tick is user time, 0 for system.
1340 void update_process_times(int user_tick)
1342 struct task_struct *p = current;
1343 int cpu = smp_processor_id();
1345 /* Note: this timer irq context must be accounted for as well. */
1346 account_process_tick(p, user_tick);
1347 run_local_timers();
1348 rcu_check_callbacks(cpu, user_tick);
1349 printk_tick();
1350 #ifdef CONFIG_IRQ_WORK
1351 if (in_irq())
1352 irq_work_run();
1353 #endif
1354 scheduler_tick();
1355 run_posix_cpu_timers(p);
1359 * This function runs timers and the timer-tq in bottom half context.
1361 static void run_timer_softirq(struct softirq_action *h)
1363 struct tvec_base *base = __this_cpu_read(tvec_bases);
1365 hrtimer_run_pending();
1367 if (time_after_eq(jiffies, base->timer_jiffies))
1368 __run_timers(base);
1372 * Called by the local, per-CPU timer interrupt on SMP.
1374 void run_local_timers(void)
1376 hrtimer_run_queues();
1377 raise_softirq(TIMER_SOFTIRQ);
1380 #ifdef __ARCH_WANT_SYS_ALARM
1383 * For backwards compatibility? This can be done in libc so Alpha
1384 * and all newer ports shouldn't need it.
1386 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1388 return alarm_setitimer(seconds);
1391 #endif
1393 #ifndef __alpha__
1396 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1397 * should be moved into arch/i386 instead?
1401 * sys_getpid - return the thread group id of the current process
1403 * Note, despite the name, this returns the tgid not the pid. The tgid and
1404 * the pid are identical unless CLONE_THREAD was specified on clone() in
1405 * which case the tgid is the same in all threads of the same group.
1407 * This is SMP safe as current->tgid does not change.
1409 SYSCALL_DEFINE0(getpid)
1411 return task_tgid_vnr(current);
1415 * Accessing ->real_parent is not SMP-safe, it could
1416 * change from under us. However, we can use a stale
1417 * value of ->real_parent under rcu_read_lock(), see
1418 * release_task()->call_rcu(delayed_put_task_struct).
1420 SYSCALL_DEFINE0(getppid)
1422 int pid;
1424 rcu_read_lock();
1425 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1426 rcu_read_unlock();
1428 return pid;
1431 SYSCALL_DEFINE0(getuid)
1433 /* Only we change this so SMP safe */
1434 return current_uid();
1437 SYSCALL_DEFINE0(geteuid)
1439 /* Only we change this so SMP safe */
1440 return current_euid();
1443 SYSCALL_DEFINE0(getgid)
1445 /* Only we change this so SMP safe */
1446 return current_gid();
1449 SYSCALL_DEFINE0(getegid)
1451 /* Only we change this so SMP safe */
1452 return current_egid();
1455 #endif
1457 static void process_timeout(unsigned long __data)
1459 wake_up_process((struct task_struct *)__data);
1463 * schedule_timeout - sleep until timeout
1464 * @timeout: timeout value in jiffies
1466 * Make the current task sleep until @timeout jiffies have
1467 * elapsed. The routine will return immediately unless
1468 * the current task state has been set (see set_current_state()).
1470 * You can set the task state as follows -
1472 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1473 * pass before the routine returns. The routine will return 0
1475 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1476 * delivered to the current task. In this case the remaining time
1477 * in jiffies will be returned, or 0 if the timer expired in time
1479 * The current task state is guaranteed to be TASK_RUNNING when this
1480 * routine returns.
1482 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1483 * the CPU away without a bound on the timeout. In this case the return
1484 * value will be %MAX_SCHEDULE_TIMEOUT.
1486 * In all cases the return value is guaranteed to be non-negative.
1488 signed long __sched schedule_timeout(signed long timeout)
1490 struct timer_list timer;
1491 unsigned long expire;
1493 switch (timeout)
1495 case MAX_SCHEDULE_TIMEOUT:
1497 * These two special cases are useful to be comfortable
1498 * in the caller. Nothing more. We could take
1499 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1500 * but I' d like to return a valid offset (>=0) to allow
1501 * the caller to do everything it want with the retval.
1503 schedule();
1504 goto out;
1505 default:
1507 * Another bit of PARANOID. Note that the retval will be
1508 * 0 since no piece of kernel is supposed to do a check
1509 * for a negative retval of schedule_timeout() (since it
1510 * should never happens anyway). You just have the printk()
1511 * that will tell you if something is gone wrong and where.
1513 if (timeout < 0) {
1514 printk(KERN_ERR "schedule_timeout: wrong timeout "
1515 "value %lx\n", timeout);
1516 dump_stack();
1517 current->state = TASK_RUNNING;
1518 goto out;
1522 expire = timeout + jiffies;
1524 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1525 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1526 schedule();
1527 del_singleshot_timer_sync(&timer);
1529 /* Remove the timer from the object tracker */
1530 destroy_timer_on_stack(&timer);
1532 timeout = expire - jiffies;
1534 out:
1535 return timeout < 0 ? 0 : timeout;
1537 EXPORT_SYMBOL(schedule_timeout);
1540 * We can use __set_current_state() here because schedule_timeout() calls
1541 * schedule() unconditionally.
1543 signed long __sched schedule_timeout_interruptible(signed long timeout)
1545 __set_current_state(TASK_INTERRUPTIBLE);
1546 return schedule_timeout(timeout);
1548 EXPORT_SYMBOL(schedule_timeout_interruptible);
1550 signed long __sched schedule_timeout_killable(signed long timeout)
1552 __set_current_state(TASK_KILLABLE);
1553 return schedule_timeout(timeout);
1555 EXPORT_SYMBOL(schedule_timeout_killable);
1557 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1559 __set_current_state(TASK_UNINTERRUPTIBLE);
1560 return schedule_timeout(timeout);
1562 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1564 /* Thread ID - the internal kernel "pid" */
1565 SYSCALL_DEFINE0(gettid)
1567 return task_pid_vnr(current);
1571 * do_sysinfo - fill in sysinfo struct
1572 * @info: pointer to buffer to fill
1574 int do_sysinfo(struct sysinfo *info)
1576 unsigned long mem_total, sav_total;
1577 unsigned int mem_unit, bitcount;
1578 struct timespec tp;
1580 memset(info, 0, sizeof(struct sysinfo));
1582 ktime_get_ts(&tp);
1583 monotonic_to_bootbased(&tp);
1584 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1586 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1588 info->procs = nr_threads;
1590 si_meminfo(info);
1591 si_swapinfo(info);
1594 * If the sum of all the available memory (i.e. ram + swap)
1595 * is less than can be stored in a 32 bit unsigned long then
1596 * we can be binary compatible with 2.2.x kernels. If not,
1597 * well, in that case 2.2.x was broken anyways...
1599 * -Erik Andersen <andersee@debian.org>
1602 mem_total = info->totalram + info->totalswap;
1603 if (mem_total < info->totalram || mem_total < info->totalswap)
1604 goto out;
1605 bitcount = 0;
1606 mem_unit = info->mem_unit;
1607 while (mem_unit > 1) {
1608 bitcount++;
1609 mem_unit >>= 1;
1610 sav_total = mem_total;
1611 mem_total <<= 1;
1612 if (mem_total < sav_total)
1613 goto out;
1617 * If mem_total did not overflow, multiply all memory values by
1618 * info->mem_unit and set it to 1. This leaves things compatible
1619 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1620 * kernels...
1623 info->mem_unit = 1;
1624 info->totalram <<= bitcount;
1625 info->freeram <<= bitcount;
1626 info->sharedram <<= bitcount;
1627 info->bufferram <<= bitcount;
1628 info->totalswap <<= bitcount;
1629 info->freeswap <<= bitcount;
1630 info->totalhigh <<= bitcount;
1631 info->freehigh <<= bitcount;
1633 out:
1634 return 0;
1637 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1639 struct sysinfo val;
1641 do_sysinfo(&val);
1643 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1644 return -EFAULT;
1646 return 0;
1649 static int __cpuinit init_timers_cpu(int cpu)
1651 int j;
1652 struct tvec_base *base;
1653 static char __cpuinitdata tvec_base_done[NR_CPUS];
1655 if (!tvec_base_done[cpu]) {
1656 static char boot_done;
1658 if (boot_done) {
1660 * The APs use this path later in boot
1662 base = kmalloc_node(sizeof(*base),
1663 GFP_KERNEL | __GFP_ZERO,
1664 cpu_to_node(cpu));
1665 if (!base)
1666 return -ENOMEM;
1668 /* Make sure that tvec_base is 2 byte aligned */
1669 if (tbase_get_deferrable(base)) {
1670 WARN_ON(1);
1671 kfree(base);
1672 return -ENOMEM;
1674 per_cpu(tvec_bases, cpu) = base;
1675 } else {
1677 * This is for the boot CPU - we use compile-time
1678 * static initialisation because per-cpu memory isn't
1679 * ready yet and because the memory allocators are not
1680 * initialised either.
1682 boot_done = 1;
1683 base = &boot_tvec_bases;
1685 spin_lock_init(&base->lock);
1686 tvec_base_done[cpu] = 1;
1687 } else {
1688 base = per_cpu(tvec_bases, cpu);
1692 for (j = 0; j < TVN_SIZE; j++) {
1693 INIT_LIST_HEAD(base->tv5.vec + j);
1694 INIT_LIST_HEAD(base->tv4.vec + j);
1695 INIT_LIST_HEAD(base->tv3.vec + j);
1696 INIT_LIST_HEAD(base->tv2.vec + j);
1698 for (j = 0; j < TVR_SIZE; j++)
1699 INIT_LIST_HEAD(base->tv1.vec + j);
1701 base->timer_jiffies = jiffies;
1702 base->next_timer = base->timer_jiffies;
1703 return 0;
1706 #ifdef CONFIG_HOTPLUG_CPU
1707 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1709 struct timer_list *timer;
1711 while (!list_empty(head)) {
1712 timer = list_first_entry(head, struct timer_list, entry);
1713 detach_timer(timer, 0);
1714 timer_set_base(timer, new_base);
1715 if (time_before(timer->expires, new_base->next_timer) &&
1716 !tbase_get_deferrable(timer->base))
1717 new_base->next_timer = timer->expires;
1718 internal_add_timer(new_base, timer);
1722 static void __cpuinit migrate_timers(int cpu)
1724 struct tvec_base *old_base;
1725 struct tvec_base *new_base;
1726 int i;
1728 BUG_ON(cpu_online(cpu));
1729 old_base = per_cpu(tvec_bases, cpu);
1730 new_base = get_cpu_var(tvec_bases);
1732 * The caller is globally serialized and nobody else
1733 * takes two locks at once, deadlock is not possible.
1735 spin_lock_irq(&new_base->lock);
1736 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1738 BUG_ON(old_base->running_timer);
1740 for (i = 0; i < TVR_SIZE; i++)
1741 migrate_timer_list(new_base, old_base->tv1.vec + i);
1742 for (i = 0; i < TVN_SIZE; i++) {
1743 migrate_timer_list(new_base, old_base->tv2.vec + i);
1744 migrate_timer_list(new_base, old_base->tv3.vec + i);
1745 migrate_timer_list(new_base, old_base->tv4.vec + i);
1746 migrate_timer_list(new_base, old_base->tv5.vec + i);
1749 spin_unlock(&old_base->lock);
1750 spin_unlock_irq(&new_base->lock);
1751 put_cpu_var(tvec_bases);
1753 #endif /* CONFIG_HOTPLUG_CPU */
1755 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1756 unsigned long action, void *hcpu)
1758 long cpu = (long)hcpu;
1759 int err;
1761 switch(action) {
1762 case CPU_UP_PREPARE:
1763 case CPU_UP_PREPARE_FROZEN:
1764 err = init_timers_cpu(cpu);
1765 if (err < 0)
1766 return notifier_from_errno(err);
1767 break;
1768 #ifdef CONFIG_HOTPLUG_CPU
1769 case CPU_DEAD:
1770 case CPU_DEAD_FROZEN:
1771 migrate_timers(cpu);
1772 break;
1773 #endif
1774 default:
1775 break;
1777 return NOTIFY_OK;
1780 static struct notifier_block __cpuinitdata timers_nb = {
1781 .notifier_call = timer_cpu_notify,
1785 void __init init_timers(void)
1787 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
1790 init_timer_stats();
1792 BUG_ON(err != NOTIFY_OK);
1793 register_cpu_notifier(&timers_nb);
1794 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1798 * msleep - sleep safely even with waitqueue interruptions
1799 * @msecs: Time in milliseconds to sleep for
1801 void msleep(unsigned int msecs)
1803 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1805 while (timeout)
1806 timeout = schedule_timeout_uninterruptible(timeout);
1809 EXPORT_SYMBOL(msleep);
1812 * msleep_interruptible - sleep waiting for signals
1813 * @msecs: Time in milliseconds to sleep for
1815 unsigned long msleep_interruptible(unsigned int msecs)
1817 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1819 while (timeout && !signal_pending(current))
1820 timeout = schedule_timeout_interruptible(timeout);
1821 return jiffies_to_msecs(timeout);
1824 EXPORT_SYMBOL(msleep_interruptible);
1826 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1828 ktime_t kmin;
1829 unsigned long delta;
1831 kmin = ktime_set(0, min * NSEC_PER_USEC);
1832 delta = (max - min) * NSEC_PER_USEC;
1833 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1837 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1838 * @min: Minimum time in usecs to sleep
1839 * @max: Maximum time in usecs to sleep
1841 void usleep_range(unsigned long min, unsigned long max)
1843 __set_current_state(TASK_UNINTERRUPTIBLE);
1844 do_usleep_range(min, max);
1846 EXPORT_SYMBOL(usleep_range);