ipv6: reallocate addrconf router for ipv6 address when lo device up
[linux/fpc-iii.git] / mm / hugetlb.c
blobefd682099a0aaabb03cdb73a1c8c4d9c5bb996a9
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 int seg_from;
277 int seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
451 * private mappings.
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
475 static void copy_gigantic_page(struct page *dst, struct page *src)
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
494 int i;
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 struct page *page;
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
582 static void update_and_free_page(struct hstate *h, struct page *page)
584 int i;
586 VM_BUG_ON(h->order >= MAX_ORDER);
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
602 struct hstate *size_to_hstate(unsigned long size)
604 struct hstate *h;
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
610 return NULL;
613 static void free_huge_page(struct page *page)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 set_page_count(p, 0);
664 p->first_page = page;
668 int PageHuge(struct page *page)
670 compound_page_dtor *dtor;
672 if (!PageCompound(page))
673 return 0;
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
678 return dtor == free_huge_page;
680 EXPORT_SYMBOL_GPL(PageHuge);
683 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
684 * normal or transparent huge pages.
686 int PageHeadHuge(struct page *page_head)
688 compound_page_dtor *dtor;
690 if (!PageHead(page_head))
691 return 0;
693 dtor = get_compound_page_dtor(page_head);
695 return dtor == free_huge_page;
697 EXPORT_SYMBOL_GPL(PageHeadHuge);
699 pgoff_t __basepage_index(struct page *page)
701 struct page *page_head = compound_head(page);
702 pgoff_t index = page_index(page_head);
703 unsigned long compound_idx;
705 if (!PageHuge(page_head))
706 return page_index(page);
708 if (compound_order(page_head) >= MAX_ORDER)
709 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
710 else
711 compound_idx = page - page_head;
713 return (index << compound_order(page_head)) + compound_idx;
716 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
718 struct page *page;
720 if (h->order >= MAX_ORDER)
721 return NULL;
723 page = alloc_pages_exact_node(nid,
724 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
725 __GFP_REPEAT|__GFP_NOWARN,
726 huge_page_order(h));
727 if (page) {
728 if (arch_prepare_hugepage(page)) {
729 __free_pages(page, huge_page_order(h));
730 return NULL;
732 prep_new_huge_page(h, page, nid);
735 return page;
739 * common helper functions for hstate_next_node_to_{alloc|free}.
740 * We may have allocated or freed a huge page based on a different
741 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
742 * be outside of *nodes_allowed. Ensure that we use an allowed
743 * node for alloc or free.
745 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
747 nid = next_node(nid, *nodes_allowed);
748 if (nid == MAX_NUMNODES)
749 nid = first_node(*nodes_allowed);
750 VM_BUG_ON(nid >= MAX_NUMNODES);
752 return nid;
755 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
757 if (!node_isset(nid, *nodes_allowed))
758 nid = next_node_allowed(nid, nodes_allowed);
759 return nid;
763 * returns the previously saved node ["this node"] from which to
764 * allocate a persistent huge page for the pool and advance the
765 * next node from which to allocate, handling wrap at end of node
766 * mask.
768 static int hstate_next_node_to_alloc(struct hstate *h,
769 nodemask_t *nodes_allowed)
771 int nid;
773 VM_BUG_ON(!nodes_allowed);
775 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
776 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
778 return nid;
781 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
783 struct page *page;
784 int start_nid;
785 int next_nid;
786 int ret = 0;
788 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
789 next_nid = start_nid;
791 do {
792 page = alloc_fresh_huge_page_node(h, next_nid);
793 if (page) {
794 ret = 1;
795 break;
797 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
798 } while (next_nid != start_nid);
800 if (ret)
801 count_vm_event(HTLB_BUDDY_PGALLOC);
802 else
803 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
805 return ret;
809 * helper for free_pool_huge_page() - return the previously saved
810 * node ["this node"] from which to free a huge page. Advance the
811 * next node id whether or not we find a free huge page to free so
812 * that the next attempt to free addresses the next node.
814 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
816 int nid;
818 VM_BUG_ON(!nodes_allowed);
820 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
821 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
823 return nid;
827 * Free huge page from pool from next node to free.
828 * Attempt to keep persistent huge pages more or less
829 * balanced over allowed nodes.
830 * Called with hugetlb_lock locked.
832 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
833 bool acct_surplus)
835 int start_nid;
836 int next_nid;
837 int ret = 0;
839 start_nid = hstate_next_node_to_free(h, nodes_allowed);
840 next_nid = start_nid;
842 do {
844 * If we're returning unused surplus pages, only examine
845 * nodes with surplus pages.
847 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
848 !list_empty(&h->hugepage_freelists[next_nid])) {
849 struct page *page =
850 list_entry(h->hugepage_freelists[next_nid].next,
851 struct page, lru);
852 list_del(&page->lru);
853 h->free_huge_pages--;
854 h->free_huge_pages_node[next_nid]--;
855 if (acct_surplus) {
856 h->surplus_huge_pages--;
857 h->surplus_huge_pages_node[next_nid]--;
859 update_and_free_page(h, page);
860 ret = 1;
861 break;
863 next_nid = hstate_next_node_to_free(h, nodes_allowed);
864 } while (next_nid != start_nid);
866 return ret;
869 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
871 struct page *page;
872 unsigned int r_nid;
874 if (h->order >= MAX_ORDER)
875 return NULL;
878 * Assume we will successfully allocate the surplus page to
879 * prevent racing processes from causing the surplus to exceed
880 * overcommit
882 * This however introduces a different race, where a process B
883 * tries to grow the static hugepage pool while alloc_pages() is
884 * called by process A. B will only examine the per-node
885 * counters in determining if surplus huge pages can be
886 * converted to normal huge pages in adjust_pool_surplus(). A
887 * won't be able to increment the per-node counter, until the
888 * lock is dropped by B, but B doesn't drop hugetlb_lock until
889 * no more huge pages can be converted from surplus to normal
890 * state (and doesn't try to convert again). Thus, we have a
891 * case where a surplus huge page exists, the pool is grown, and
892 * the surplus huge page still exists after, even though it
893 * should just have been converted to a normal huge page. This
894 * does not leak memory, though, as the hugepage will be freed
895 * once it is out of use. It also does not allow the counters to
896 * go out of whack in adjust_pool_surplus() as we don't modify
897 * the node values until we've gotten the hugepage and only the
898 * per-node value is checked there.
900 spin_lock(&hugetlb_lock);
901 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
902 spin_unlock(&hugetlb_lock);
903 return NULL;
904 } else {
905 h->nr_huge_pages++;
906 h->surplus_huge_pages++;
908 spin_unlock(&hugetlb_lock);
910 if (nid == NUMA_NO_NODE)
911 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
912 __GFP_REPEAT|__GFP_NOWARN,
913 huge_page_order(h));
914 else
915 page = alloc_pages_exact_node(nid,
916 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
917 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
919 if (page && arch_prepare_hugepage(page)) {
920 __free_pages(page, huge_page_order(h));
921 page = NULL;
924 spin_lock(&hugetlb_lock);
925 if (page) {
926 r_nid = page_to_nid(page);
927 set_compound_page_dtor(page, free_huge_page);
929 * We incremented the global counters already
931 h->nr_huge_pages_node[r_nid]++;
932 h->surplus_huge_pages_node[r_nid]++;
933 __count_vm_event(HTLB_BUDDY_PGALLOC);
934 } else {
935 h->nr_huge_pages--;
936 h->surplus_huge_pages--;
937 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
939 spin_unlock(&hugetlb_lock);
941 return page;
945 * This allocation function is useful in the context where vma is irrelevant.
946 * E.g. soft-offlining uses this function because it only cares physical
947 * address of error page.
949 struct page *alloc_huge_page_node(struct hstate *h, int nid)
951 struct page *page;
953 spin_lock(&hugetlb_lock);
954 page = dequeue_huge_page_node(h, nid);
955 spin_unlock(&hugetlb_lock);
957 if (!page)
958 page = alloc_buddy_huge_page(h, nid);
960 return page;
964 * Increase the hugetlb pool such that it can accommodate a reservation
965 * of size 'delta'.
967 static int gather_surplus_pages(struct hstate *h, int delta)
969 struct list_head surplus_list;
970 struct page *page, *tmp;
971 int ret, i;
972 int needed, allocated;
973 bool alloc_ok = true;
975 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976 if (needed <= 0) {
977 h->resv_huge_pages += delta;
978 return 0;
981 allocated = 0;
982 INIT_LIST_HEAD(&surplus_list);
984 ret = -ENOMEM;
985 retry:
986 spin_unlock(&hugetlb_lock);
987 for (i = 0; i < needed; i++) {
988 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
989 if (!page) {
990 alloc_ok = false;
991 break;
993 list_add(&page->lru, &surplus_list);
995 allocated += i;
998 * After retaking hugetlb_lock, we need to recalculate 'needed'
999 * because either resv_huge_pages or free_huge_pages may have changed.
1001 spin_lock(&hugetlb_lock);
1002 needed = (h->resv_huge_pages + delta) -
1003 (h->free_huge_pages + allocated);
1004 if (needed > 0) {
1005 if (alloc_ok)
1006 goto retry;
1008 * We were not able to allocate enough pages to
1009 * satisfy the entire reservation so we free what
1010 * we've allocated so far.
1012 goto free;
1015 * The surplus_list now contains _at_least_ the number of extra pages
1016 * needed to accommodate the reservation. Add the appropriate number
1017 * of pages to the hugetlb pool and free the extras back to the buddy
1018 * allocator. Commit the entire reservation here to prevent another
1019 * process from stealing the pages as they are added to the pool but
1020 * before they are reserved.
1022 needed += allocated;
1023 h->resv_huge_pages += delta;
1024 ret = 0;
1026 /* Free the needed pages to the hugetlb pool */
1027 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1028 if ((--needed) < 0)
1029 break;
1030 list_del(&page->lru);
1032 * This page is now managed by the hugetlb allocator and has
1033 * no users -- drop the buddy allocator's reference.
1035 put_page_testzero(page);
1036 VM_BUG_ON(page_count(page));
1037 enqueue_huge_page(h, page);
1039 free:
1040 spin_unlock(&hugetlb_lock);
1042 /* Free unnecessary surplus pages to the buddy allocator */
1043 if (!list_empty(&surplus_list)) {
1044 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1045 list_del(&page->lru);
1046 put_page(page);
1049 spin_lock(&hugetlb_lock);
1051 return ret;
1055 * When releasing a hugetlb pool reservation, any surplus pages that were
1056 * allocated to satisfy the reservation must be explicitly freed if they were
1057 * never used.
1058 * Called with hugetlb_lock held.
1060 static void return_unused_surplus_pages(struct hstate *h,
1061 unsigned long unused_resv_pages)
1063 unsigned long nr_pages;
1065 /* Uncommit the reservation */
1066 h->resv_huge_pages -= unused_resv_pages;
1068 /* Cannot return gigantic pages currently */
1069 if (h->order >= MAX_ORDER)
1070 return;
1072 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1075 * We want to release as many surplus pages as possible, spread
1076 * evenly across all nodes with memory. Iterate across these nodes
1077 * until we can no longer free unreserved surplus pages. This occurs
1078 * when the nodes with surplus pages have no free pages.
1079 * free_pool_huge_page() will balance the the freed pages across the
1080 * on-line nodes with memory and will handle the hstate accounting.
1082 while (nr_pages--) {
1083 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1084 break;
1085 cond_resched_lock(&hugetlb_lock);
1090 * Determine if the huge page at addr within the vma has an associated
1091 * reservation. Where it does not we will need to logically increase
1092 * reservation and actually increase subpool usage before an allocation
1093 * can occur. Where any new reservation would be required the
1094 * reservation change is prepared, but not committed. Once the page
1095 * has been allocated from the subpool and instantiated the change should
1096 * be committed via vma_commit_reservation. No action is required on
1097 * failure.
1099 static long vma_needs_reservation(struct hstate *h,
1100 struct vm_area_struct *vma, unsigned long addr)
1102 struct address_space *mapping = vma->vm_file->f_mapping;
1103 struct inode *inode = mapping->host;
1105 if (vma->vm_flags & VM_MAYSHARE) {
1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 return region_chg(&inode->i_mapping->private_list,
1108 idx, idx + 1);
1110 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111 return 1;
1113 } else {
1114 long err;
1115 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1116 struct resv_map *reservations = vma_resv_map(vma);
1118 err = region_chg(&reservations->regions, idx, idx + 1);
1119 if (err < 0)
1120 return err;
1121 return 0;
1124 static void vma_commit_reservation(struct hstate *h,
1125 struct vm_area_struct *vma, unsigned long addr)
1127 struct address_space *mapping = vma->vm_file->f_mapping;
1128 struct inode *inode = mapping->host;
1130 if (vma->vm_flags & VM_MAYSHARE) {
1131 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1132 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1134 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1135 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1136 struct resv_map *reservations = vma_resv_map(vma);
1138 /* Mark this page used in the map. */
1139 region_add(&reservations->regions, idx, idx + 1);
1143 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1144 unsigned long addr, int avoid_reserve)
1146 struct hugepage_subpool *spool = subpool_vma(vma);
1147 struct hstate *h = hstate_vma(vma);
1148 struct page *page;
1149 long chg;
1152 * Processes that did not create the mapping will have no
1153 * reserves and will not have accounted against subpool
1154 * limit. Check that the subpool limit can be made before
1155 * satisfying the allocation MAP_NORESERVE mappings may also
1156 * need pages and subpool limit allocated allocated if no reserve
1157 * mapping overlaps.
1159 chg = vma_needs_reservation(h, vma, addr);
1160 if (chg < 0)
1161 return ERR_PTR(-VM_FAULT_OOM);
1162 if (chg)
1163 if (hugepage_subpool_get_pages(spool, chg))
1164 return ERR_PTR(-VM_FAULT_SIGBUS);
1166 spin_lock(&hugetlb_lock);
1167 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1168 spin_unlock(&hugetlb_lock);
1170 if (!page) {
1171 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1172 if (!page) {
1173 hugepage_subpool_put_pages(spool, chg);
1174 return ERR_PTR(-VM_FAULT_SIGBUS);
1178 set_page_private(page, (unsigned long)spool);
1180 vma_commit_reservation(h, vma, addr);
1182 return page;
1185 int __weak alloc_bootmem_huge_page(struct hstate *h)
1187 struct huge_bootmem_page *m;
1188 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1190 while (nr_nodes) {
1191 void *addr;
1193 addr = __alloc_bootmem_node_nopanic(
1194 NODE_DATA(hstate_next_node_to_alloc(h,
1195 &node_states[N_HIGH_MEMORY])),
1196 huge_page_size(h), huge_page_size(h), 0);
1198 if (addr) {
1200 * Use the beginning of the huge page to store the
1201 * huge_bootmem_page struct (until gather_bootmem
1202 * puts them into the mem_map).
1204 m = addr;
1205 goto found;
1207 nr_nodes--;
1209 return 0;
1211 found:
1212 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1213 /* Put them into a private list first because mem_map is not up yet */
1214 list_add(&m->list, &huge_boot_pages);
1215 m->hstate = h;
1216 return 1;
1219 static void prep_compound_huge_page(struct page *page, int order)
1221 if (unlikely(order > (MAX_ORDER - 1)))
1222 prep_compound_gigantic_page(page, order);
1223 else
1224 prep_compound_page(page, order);
1227 /* Put bootmem huge pages into the standard lists after mem_map is up */
1228 static void __init gather_bootmem_prealloc(void)
1230 struct huge_bootmem_page *m;
1232 list_for_each_entry(m, &huge_boot_pages, list) {
1233 struct hstate *h = m->hstate;
1234 struct page *page;
1236 #ifdef CONFIG_HIGHMEM
1237 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1238 free_bootmem_late((unsigned long)m,
1239 sizeof(struct huge_bootmem_page));
1240 #else
1241 page = virt_to_page(m);
1242 #endif
1243 __ClearPageReserved(page);
1244 WARN_ON(page_count(page) != 1);
1245 prep_compound_huge_page(page, h->order);
1246 prep_new_huge_page(h, page, page_to_nid(page));
1248 * If we had gigantic hugepages allocated at boot time, we need
1249 * to restore the 'stolen' pages to totalram_pages in order to
1250 * fix confusing memory reports from free(1) and another
1251 * side-effects, like CommitLimit going negative.
1253 if (h->order > (MAX_ORDER - 1))
1254 totalram_pages += 1 << h->order;
1258 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1260 unsigned long i;
1262 for (i = 0; i < h->max_huge_pages; ++i) {
1263 if (h->order >= MAX_ORDER) {
1264 if (!alloc_bootmem_huge_page(h))
1265 break;
1266 } else if (!alloc_fresh_huge_page(h,
1267 &node_states[N_HIGH_MEMORY]))
1268 break;
1270 h->max_huge_pages = i;
1273 static void __init hugetlb_init_hstates(void)
1275 struct hstate *h;
1277 for_each_hstate(h) {
1278 /* oversize hugepages were init'ed in early boot */
1279 if (h->order < MAX_ORDER)
1280 hugetlb_hstate_alloc_pages(h);
1284 static char * __init memfmt(char *buf, unsigned long n)
1286 if (n >= (1UL << 30))
1287 sprintf(buf, "%lu GB", n >> 30);
1288 else if (n >= (1UL << 20))
1289 sprintf(buf, "%lu MB", n >> 20);
1290 else
1291 sprintf(buf, "%lu KB", n >> 10);
1292 return buf;
1295 static void __init report_hugepages(void)
1297 struct hstate *h;
1299 for_each_hstate(h) {
1300 char buf[32];
1301 printk(KERN_INFO "HugeTLB registered %s page size, "
1302 "pre-allocated %ld pages\n",
1303 memfmt(buf, huge_page_size(h)),
1304 h->free_huge_pages);
1308 #ifdef CONFIG_HIGHMEM
1309 static void try_to_free_low(struct hstate *h, unsigned long count,
1310 nodemask_t *nodes_allowed)
1312 int i;
1314 if (h->order >= MAX_ORDER)
1315 return;
1317 for_each_node_mask(i, *nodes_allowed) {
1318 struct page *page, *next;
1319 struct list_head *freel = &h->hugepage_freelists[i];
1320 list_for_each_entry_safe(page, next, freel, lru) {
1321 if (count >= h->nr_huge_pages)
1322 return;
1323 if (PageHighMem(page))
1324 continue;
1325 list_del(&page->lru);
1326 update_and_free_page(h, page);
1327 h->free_huge_pages--;
1328 h->free_huge_pages_node[page_to_nid(page)]--;
1332 #else
1333 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1334 nodemask_t *nodes_allowed)
1337 #endif
1340 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1341 * balanced by operating on them in a round-robin fashion.
1342 * Returns 1 if an adjustment was made.
1344 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1345 int delta)
1347 int start_nid, next_nid;
1348 int ret = 0;
1350 VM_BUG_ON(delta != -1 && delta != 1);
1352 if (delta < 0)
1353 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1354 else
1355 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1356 next_nid = start_nid;
1358 do {
1359 int nid = next_nid;
1360 if (delta < 0) {
1362 * To shrink on this node, there must be a surplus page
1364 if (!h->surplus_huge_pages_node[nid]) {
1365 next_nid = hstate_next_node_to_alloc(h,
1366 nodes_allowed);
1367 continue;
1370 if (delta > 0) {
1372 * Surplus cannot exceed the total number of pages
1374 if (h->surplus_huge_pages_node[nid] >=
1375 h->nr_huge_pages_node[nid]) {
1376 next_nid = hstate_next_node_to_free(h,
1377 nodes_allowed);
1378 continue;
1382 h->surplus_huge_pages += delta;
1383 h->surplus_huge_pages_node[nid] += delta;
1384 ret = 1;
1385 break;
1386 } while (next_nid != start_nid);
1388 return ret;
1391 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1392 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1393 nodemask_t *nodes_allowed)
1395 unsigned long min_count, ret;
1397 if (h->order >= MAX_ORDER)
1398 return h->max_huge_pages;
1401 * Increase the pool size
1402 * First take pages out of surplus state. Then make up the
1403 * remaining difference by allocating fresh huge pages.
1405 * We might race with alloc_buddy_huge_page() here and be unable
1406 * to convert a surplus huge page to a normal huge page. That is
1407 * not critical, though, it just means the overall size of the
1408 * pool might be one hugepage larger than it needs to be, but
1409 * within all the constraints specified by the sysctls.
1411 spin_lock(&hugetlb_lock);
1412 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1413 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1414 break;
1417 while (count > persistent_huge_pages(h)) {
1419 * If this allocation races such that we no longer need the
1420 * page, free_huge_page will handle it by freeing the page
1421 * and reducing the surplus.
1423 spin_unlock(&hugetlb_lock);
1424 ret = alloc_fresh_huge_page(h, nodes_allowed);
1425 spin_lock(&hugetlb_lock);
1426 if (!ret)
1427 goto out;
1429 /* Bail for signals. Probably ctrl-c from user */
1430 if (signal_pending(current))
1431 goto out;
1435 * Decrease the pool size
1436 * First return free pages to the buddy allocator (being careful
1437 * to keep enough around to satisfy reservations). Then place
1438 * pages into surplus state as needed so the pool will shrink
1439 * to the desired size as pages become free.
1441 * By placing pages into the surplus state independent of the
1442 * overcommit value, we are allowing the surplus pool size to
1443 * exceed overcommit. There are few sane options here. Since
1444 * alloc_buddy_huge_page() is checking the global counter,
1445 * though, we'll note that we're not allowed to exceed surplus
1446 * and won't grow the pool anywhere else. Not until one of the
1447 * sysctls are changed, or the surplus pages go out of use.
1449 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1450 min_count = max(count, min_count);
1451 try_to_free_low(h, min_count, nodes_allowed);
1452 while (min_count < persistent_huge_pages(h)) {
1453 if (!free_pool_huge_page(h, nodes_allowed, 0))
1454 break;
1455 cond_resched_lock(&hugetlb_lock);
1457 while (count < persistent_huge_pages(h)) {
1458 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1459 break;
1461 out:
1462 ret = persistent_huge_pages(h);
1463 spin_unlock(&hugetlb_lock);
1464 return ret;
1467 #define HSTATE_ATTR_RO(_name) \
1468 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1470 #define HSTATE_ATTR(_name) \
1471 static struct kobj_attribute _name##_attr = \
1472 __ATTR(_name, 0644, _name##_show, _name##_store)
1474 static struct kobject *hugepages_kobj;
1475 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1477 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1479 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1481 int i;
1483 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1484 if (hstate_kobjs[i] == kobj) {
1485 if (nidp)
1486 *nidp = NUMA_NO_NODE;
1487 return &hstates[i];
1490 return kobj_to_node_hstate(kobj, nidp);
1493 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1494 struct kobj_attribute *attr, char *buf)
1496 struct hstate *h;
1497 unsigned long nr_huge_pages;
1498 int nid;
1500 h = kobj_to_hstate(kobj, &nid);
1501 if (nid == NUMA_NO_NODE)
1502 nr_huge_pages = h->nr_huge_pages;
1503 else
1504 nr_huge_pages = h->nr_huge_pages_node[nid];
1506 return sprintf(buf, "%lu\n", nr_huge_pages);
1509 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1510 struct kobject *kobj, struct kobj_attribute *attr,
1511 const char *buf, size_t len)
1513 int err;
1514 int nid;
1515 unsigned long count;
1516 struct hstate *h;
1517 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1519 err = strict_strtoul(buf, 10, &count);
1520 if (err)
1521 goto out;
1523 h = kobj_to_hstate(kobj, &nid);
1524 if (h->order >= MAX_ORDER) {
1525 err = -EINVAL;
1526 goto out;
1529 if (nid == NUMA_NO_NODE) {
1531 * global hstate attribute
1533 if (!(obey_mempolicy &&
1534 init_nodemask_of_mempolicy(nodes_allowed))) {
1535 NODEMASK_FREE(nodes_allowed);
1536 nodes_allowed = &node_states[N_HIGH_MEMORY];
1538 } else if (nodes_allowed) {
1540 * per node hstate attribute: adjust count to global,
1541 * but restrict alloc/free to the specified node.
1543 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1544 init_nodemask_of_node(nodes_allowed, nid);
1545 } else
1546 nodes_allowed = &node_states[N_HIGH_MEMORY];
1548 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1550 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1551 NODEMASK_FREE(nodes_allowed);
1553 return len;
1554 out:
1555 NODEMASK_FREE(nodes_allowed);
1556 return err;
1559 static ssize_t nr_hugepages_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1562 return nr_hugepages_show_common(kobj, attr, buf);
1565 static ssize_t nr_hugepages_store(struct kobject *kobj,
1566 struct kobj_attribute *attr, const char *buf, size_t len)
1568 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1570 HSTATE_ATTR(nr_hugepages);
1572 #ifdef CONFIG_NUMA
1575 * hstate attribute for optionally mempolicy-based constraint on persistent
1576 * huge page alloc/free.
1578 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1579 struct kobj_attribute *attr, char *buf)
1581 return nr_hugepages_show_common(kobj, attr, buf);
1584 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1585 struct kobj_attribute *attr, const char *buf, size_t len)
1587 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1589 HSTATE_ATTR(nr_hugepages_mempolicy);
1590 #endif
1593 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1594 struct kobj_attribute *attr, char *buf)
1596 struct hstate *h = kobj_to_hstate(kobj, NULL);
1597 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1600 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1601 struct kobj_attribute *attr, const char *buf, size_t count)
1603 int err;
1604 unsigned long input;
1605 struct hstate *h = kobj_to_hstate(kobj, NULL);
1607 if (h->order >= MAX_ORDER)
1608 return -EINVAL;
1610 err = strict_strtoul(buf, 10, &input);
1611 if (err)
1612 return err;
1614 spin_lock(&hugetlb_lock);
1615 h->nr_overcommit_huge_pages = input;
1616 spin_unlock(&hugetlb_lock);
1618 return count;
1620 HSTATE_ATTR(nr_overcommit_hugepages);
1622 static ssize_t free_hugepages_show(struct kobject *kobj,
1623 struct kobj_attribute *attr, char *buf)
1625 struct hstate *h;
1626 unsigned long free_huge_pages;
1627 int nid;
1629 h = kobj_to_hstate(kobj, &nid);
1630 if (nid == NUMA_NO_NODE)
1631 free_huge_pages = h->free_huge_pages;
1632 else
1633 free_huge_pages = h->free_huge_pages_node[nid];
1635 return sprintf(buf, "%lu\n", free_huge_pages);
1637 HSTATE_ATTR_RO(free_hugepages);
1639 static ssize_t resv_hugepages_show(struct kobject *kobj,
1640 struct kobj_attribute *attr, char *buf)
1642 struct hstate *h = kobj_to_hstate(kobj, NULL);
1643 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1645 HSTATE_ATTR_RO(resv_hugepages);
1647 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1648 struct kobj_attribute *attr, char *buf)
1650 struct hstate *h;
1651 unsigned long surplus_huge_pages;
1652 int nid;
1654 h = kobj_to_hstate(kobj, &nid);
1655 if (nid == NUMA_NO_NODE)
1656 surplus_huge_pages = h->surplus_huge_pages;
1657 else
1658 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1660 return sprintf(buf, "%lu\n", surplus_huge_pages);
1662 HSTATE_ATTR_RO(surplus_hugepages);
1664 static struct attribute *hstate_attrs[] = {
1665 &nr_hugepages_attr.attr,
1666 &nr_overcommit_hugepages_attr.attr,
1667 &free_hugepages_attr.attr,
1668 &resv_hugepages_attr.attr,
1669 &surplus_hugepages_attr.attr,
1670 #ifdef CONFIG_NUMA
1671 &nr_hugepages_mempolicy_attr.attr,
1672 #endif
1673 NULL,
1676 static struct attribute_group hstate_attr_group = {
1677 .attrs = hstate_attrs,
1680 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1681 struct kobject **hstate_kobjs,
1682 struct attribute_group *hstate_attr_group)
1684 int retval;
1685 int hi = h - hstates;
1687 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1688 if (!hstate_kobjs[hi])
1689 return -ENOMEM;
1691 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1692 if (retval)
1693 kobject_put(hstate_kobjs[hi]);
1695 return retval;
1698 static void __init hugetlb_sysfs_init(void)
1700 struct hstate *h;
1701 int err;
1703 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1704 if (!hugepages_kobj)
1705 return;
1707 for_each_hstate(h) {
1708 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1709 hstate_kobjs, &hstate_attr_group);
1710 if (err)
1711 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1712 h->name);
1716 #ifdef CONFIG_NUMA
1719 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1720 * with node devices in node_devices[] using a parallel array. The array
1721 * index of a node device or _hstate == node id.
1722 * This is here to avoid any static dependency of the node device driver, in
1723 * the base kernel, on the hugetlb module.
1725 struct node_hstate {
1726 struct kobject *hugepages_kobj;
1727 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1729 struct node_hstate node_hstates[MAX_NUMNODES];
1732 * A subset of global hstate attributes for node devices
1734 static struct attribute *per_node_hstate_attrs[] = {
1735 &nr_hugepages_attr.attr,
1736 &free_hugepages_attr.attr,
1737 &surplus_hugepages_attr.attr,
1738 NULL,
1741 static struct attribute_group per_node_hstate_attr_group = {
1742 .attrs = per_node_hstate_attrs,
1746 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1747 * Returns node id via non-NULL nidp.
1749 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1751 int nid;
1753 for (nid = 0; nid < nr_node_ids; nid++) {
1754 struct node_hstate *nhs = &node_hstates[nid];
1755 int i;
1756 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1757 if (nhs->hstate_kobjs[i] == kobj) {
1758 if (nidp)
1759 *nidp = nid;
1760 return &hstates[i];
1764 BUG();
1765 return NULL;
1769 * Unregister hstate attributes from a single node device.
1770 * No-op if no hstate attributes attached.
1772 void hugetlb_unregister_node(struct node *node)
1774 struct hstate *h;
1775 struct node_hstate *nhs = &node_hstates[node->dev.id];
1777 if (!nhs->hugepages_kobj)
1778 return; /* no hstate attributes */
1780 for_each_hstate(h)
1781 if (nhs->hstate_kobjs[h - hstates]) {
1782 kobject_put(nhs->hstate_kobjs[h - hstates]);
1783 nhs->hstate_kobjs[h - hstates] = NULL;
1786 kobject_put(nhs->hugepages_kobj);
1787 nhs->hugepages_kobj = NULL;
1791 * hugetlb module exit: unregister hstate attributes from node devices
1792 * that have them.
1794 static void hugetlb_unregister_all_nodes(void)
1796 int nid;
1799 * disable node device registrations.
1801 register_hugetlbfs_with_node(NULL, NULL);
1804 * remove hstate attributes from any nodes that have them.
1806 for (nid = 0; nid < nr_node_ids; nid++)
1807 hugetlb_unregister_node(&node_devices[nid]);
1811 * Register hstate attributes for a single node device.
1812 * No-op if attributes already registered.
1814 void hugetlb_register_node(struct node *node)
1816 struct hstate *h;
1817 struct node_hstate *nhs = &node_hstates[node->dev.id];
1818 int err;
1820 if (nhs->hugepages_kobj)
1821 return; /* already allocated */
1823 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1824 &node->dev.kobj);
1825 if (!nhs->hugepages_kobj)
1826 return;
1828 for_each_hstate(h) {
1829 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1830 nhs->hstate_kobjs,
1831 &per_node_hstate_attr_group);
1832 if (err) {
1833 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1834 " for node %d\n",
1835 h->name, node->dev.id);
1836 hugetlb_unregister_node(node);
1837 break;
1843 * hugetlb init time: register hstate attributes for all registered node
1844 * devices of nodes that have memory. All on-line nodes should have
1845 * registered their associated device by this time.
1847 static void hugetlb_register_all_nodes(void)
1849 int nid;
1851 for_each_node_state(nid, N_HIGH_MEMORY) {
1852 struct node *node = &node_devices[nid];
1853 if (node->dev.id == nid)
1854 hugetlb_register_node(node);
1858 * Let the node device driver know we're here so it can
1859 * [un]register hstate attributes on node hotplug.
1861 register_hugetlbfs_with_node(hugetlb_register_node,
1862 hugetlb_unregister_node);
1864 #else /* !CONFIG_NUMA */
1866 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1868 BUG();
1869 if (nidp)
1870 *nidp = -1;
1871 return NULL;
1874 static void hugetlb_unregister_all_nodes(void) { }
1876 static void hugetlb_register_all_nodes(void) { }
1878 #endif
1880 static void __exit hugetlb_exit(void)
1882 struct hstate *h;
1884 hugetlb_unregister_all_nodes();
1886 for_each_hstate(h) {
1887 kobject_put(hstate_kobjs[h - hstates]);
1890 kobject_put(hugepages_kobj);
1892 module_exit(hugetlb_exit);
1894 static int __init hugetlb_init(void)
1896 /* Some platform decide whether they support huge pages at boot
1897 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1898 * there is no such support
1900 if (HPAGE_SHIFT == 0)
1901 return 0;
1903 if (!size_to_hstate(default_hstate_size)) {
1904 default_hstate_size = HPAGE_SIZE;
1905 if (!size_to_hstate(default_hstate_size))
1906 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1908 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1909 if (default_hstate_max_huge_pages)
1910 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1912 hugetlb_init_hstates();
1914 gather_bootmem_prealloc();
1916 report_hugepages();
1918 hugetlb_sysfs_init();
1920 hugetlb_register_all_nodes();
1922 return 0;
1924 module_init(hugetlb_init);
1926 /* Should be called on processing a hugepagesz=... option */
1927 void __init hugetlb_add_hstate(unsigned order)
1929 struct hstate *h;
1930 unsigned long i;
1932 if (size_to_hstate(PAGE_SIZE << order)) {
1933 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1934 return;
1936 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1937 BUG_ON(order == 0);
1938 h = &hstates[max_hstate++];
1939 h->order = order;
1940 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1941 h->nr_huge_pages = 0;
1942 h->free_huge_pages = 0;
1943 for (i = 0; i < MAX_NUMNODES; ++i)
1944 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1945 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1946 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1947 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1948 huge_page_size(h)/1024);
1950 parsed_hstate = h;
1953 static int __init hugetlb_nrpages_setup(char *s)
1955 unsigned long *mhp;
1956 static unsigned long *last_mhp;
1959 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960 * so this hugepages= parameter goes to the "default hstate".
1962 if (!max_hstate)
1963 mhp = &default_hstate_max_huge_pages;
1964 else
1965 mhp = &parsed_hstate->max_huge_pages;
1967 if (mhp == last_mhp) {
1968 printk(KERN_WARNING "hugepages= specified twice without "
1969 "interleaving hugepagesz=, ignoring\n");
1970 return 1;
1973 if (sscanf(s, "%lu", mhp) <= 0)
1974 *mhp = 0;
1977 * Global state is always initialized later in hugetlb_init.
1978 * But we need to allocate >= MAX_ORDER hstates here early to still
1979 * use the bootmem allocator.
1981 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1982 hugetlb_hstate_alloc_pages(parsed_hstate);
1984 last_mhp = mhp;
1986 return 1;
1988 __setup("hugepages=", hugetlb_nrpages_setup);
1990 static int __init hugetlb_default_setup(char *s)
1992 default_hstate_size = memparse(s, &s);
1993 return 1;
1995 __setup("default_hugepagesz=", hugetlb_default_setup);
1997 static unsigned int cpuset_mems_nr(unsigned int *array)
1999 int node;
2000 unsigned int nr = 0;
2002 for_each_node_mask(node, cpuset_current_mems_allowed)
2003 nr += array[node];
2005 return nr;
2008 #ifdef CONFIG_SYSCTL
2009 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2010 struct ctl_table *table, int write,
2011 void __user *buffer, size_t *length, loff_t *ppos)
2013 struct hstate *h = &default_hstate;
2014 unsigned long tmp;
2015 int ret;
2017 tmp = h->max_huge_pages;
2019 if (write && h->order >= MAX_ORDER)
2020 return -EINVAL;
2022 table->data = &tmp;
2023 table->maxlen = sizeof(unsigned long);
2024 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025 if (ret)
2026 goto out;
2028 if (write) {
2029 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2030 GFP_KERNEL | __GFP_NORETRY);
2031 if (!(obey_mempolicy &&
2032 init_nodemask_of_mempolicy(nodes_allowed))) {
2033 NODEMASK_FREE(nodes_allowed);
2034 nodes_allowed = &node_states[N_HIGH_MEMORY];
2036 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2038 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2039 NODEMASK_FREE(nodes_allowed);
2041 out:
2042 return ret;
2045 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2046 void __user *buffer, size_t *length, loff_t *ppos)
2049 return hugetlb_sysctl_handler_common(false, table, write,
2050 buffer, length, ppos);
2053 #ifdef CONFIG_NUMA
2054 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2055 void __user *buffer, size_t *length, loff_t *ppos)
2057 return hugetlb_sysctl_handler_common(true, table, write,
2058 buffer, length, ppos);
2060 #endif /* CONFIG_NUMA */
2062 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063 void __user *buffer,
2064 size_t *length, loff_t *ppos)
2066 proc_dointvec(table, write, buffer, length, ppos);
2067 if (hugepages_treat_as_movable)
2068 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2069 else
2070 htlb_alloc_mask = GFP_HIGHUSER;
2071 return 0;
2074 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075 void __user *buffer,
2076 size_t *length, loff_t *ppos)
2078 struct hstate *h = &default_hstate;
2079 unsigned long tmp;
2080 int ret;
2082 tmp = h->nr_overcommit_huge_pages;
2084 if (write && h->order >= MAX_ORDER)
2085 return -EINVAL;
2087 table->data = &tmp;
2088 table->maxlen = sizeof(unsigned long);
2089 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090 if (ret)
2091 goto out;
2093 if (write) {
2094 spin_lock(&hugetlb_lock);
2095 h->nr_overcommit_huge_pages = tmp;
2096 spin_unlock(&hugetlb_lock);
2098 out:
2099 return ret;
2102 #endif /* CONFIG_SYSCTL */
2104 void hugetlb_report_meminfo(struct seq_file *m)
2106 struct hstate *h = &default_hstate;
2107 seq_printf(m,
2108 "HugePages_Total: %5lu\n"
2109 "HugePages_Free: %5lu\n"
2110 "HugePages_Rsvd: %5lu\n"
2111 "HugePages_Surp: %5lu\n"
2112 "Hugepagesize: %8lu kB\n",
2113 h->nr_huge_pages,
2114 h->free_huge_pages,
2115 h->resv_huge_pages,
2116 h->surplus_huge_pages,
2117 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2120 int hugetlb_report_node_meminfo(int nid, char *buf)
2122 struct hstate *h = &default_hstate;
2123 return sprintf(buf,
2124 "Node %d HugePages_Total: %5u\n"
2125 "Node %d HugePages_Free: %5u\n"
2126 "Node %d HugePages_Surp: %5u\n",
2127 nid, h->nr_huge_pages_node[nid],
2128 nid, h->free_huge_pages_node[nid],
2129 nid, h->surplus_huge_pages_node[nid]);
2132 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2133 unsigned long hugetlb_total_pages(void)
2135 struct hstate *h;
2136 unsigned long nr_total_pages = 0;
2138 for_each_hstate(h)
2139 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2140 return nr_total_pages;
2143 static int hugetlb_acct_memory(struct hstate *h, long delta)
2145 int ret = -ENOMEM;
2147 spin_lock(&hugetlb_lock);
2149 * When cpuset is configured, it breaks the strict hugetlb page
2150 * reservation as the accounting is done on a global variable. Such
2151 * reservation is completely rubbish in the presence of cpuset because
2152 * the reservation is not checked against page availability for the
2153 * current cpuset. Application can still potentially OOM'ed by kernel
2154 * with lack of free htlb page in cpuset that the task is in.
2155 * Attempt to enforce strict accounting with cpuset is almost
2156 * impossible (or too ugly) because cpuset is too fluid that
2157 * task or memory node can be dynamically moved between cpusets.
2159 * The change of semantics for shared hugetlb mapping with cpuset is
2160 * undesirable. However, in order to preserve some of the semantics,
2161 * we fall back to check against current free page availability as
2162 * a best attempt and hopefully to minimize the impact of changing
2163 * semantics that cpuset has.
2165 if (delta > 0) {
2166 if (gather_surplus_pages(h, delta) < 0)
2167 goto out;
2169 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170 return_unused_surplus_pages(h, delta);
2171 goto out;
2175 ret = 0;
2176 if (delta < 0)
2177 return_unused_surplus_pages(h, (unsigned long) -delta);
2179 out:
2180 spin_unlock(&hugetlb_lock);
2181 return ret;
2184 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2186 struct resv_map *reservations = vma_resv_map(vma);
2189 * This new VMA should share its siblings reservation map if present.
2190 * The VMA will only ever have a valid reservation map pointer where
2191 * it is being copied for another still existing VMA. As that VMA
2192 * has a reference to the reservation map it cannot disappear until
2193 * after this open call completes. It is therefore safe to take a
2194 * new reference here without additional locking.
2196 if (reservations)
2197 kref_get(&reservations->refs);
2200 static void resv_map_put(struct vm_area_struct *vma)
2202 struct resv_map *reservations = vma_resv_map(vma);
2204 if (!reservations)
2205 return;
2206 kref_put(&reservations->refs, resv_map_release);
2209 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2211 struct hstate *h = hstate_vma(vma);
2212 struct resv_map *reservations = vma_resv_map(vma);
2213 struct hugepage_subpool *spool = subpool_vma(vma);
2214 unsigned long reserve;
2215 unsigned long start;
2216 unsigned long end;
2218 if (reservations) {
2219 start = vma_hugecache_offset(h, vma, vma->vm_start);
2220 end = vma_hugecache_offset(h, vma, vma->vm_end);
2222 reserve = (end - start) -
2223 region_count(&reservations->regions, start, end);
2225 resv_map_put(vma);
2227 if (reserve) {
2228 hugetlb_acct_memory(h, -reserve);
2229 hugepage_subpool_put_pages(spool, reserve);
2235 * We cannot handle pagefaults against hugetlb pages at all. They cause
2236 * handle_mm_fault() to try to instantiate regular-sized pages in the
2237 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2238 * this far.
2240 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2242 BUG();
2243 return 0;
2246 const struct vm_operations_struct hugetlb_vm_ops = {
2247 .fault = hugetlb_vm_op_fault,
2248 .open = hugetlb_vm_op_open,
2249 .close = hugetlb_vm_op_close,
2252 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253 int writable)
2255 pte_t entry;
2257 if (writable) {
2258 entry =
2259 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2260 } else {
2261 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2263 entry = pte_mkyoung(entry);
2264 entry = pte_mkhuge(entry);
2266 return entry;
2269 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2270 unsigned long address, pte_t *ptep)
2272 pte_t entry;
2274 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2275 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2276 update_mmu_cache(vma, address, ptep);
2279 static int is_hugetlb_entry_migration(pte_t pte)
2281 swp_entry_t swp;
2283 if (huge_pte_none(pte) || pte_present(pte))
2284 return 0;
2285 swp = pte_to_swp_entry(pte);
2286 if (non_swap_entry(swp) && is_migration_entry(swp))
2287 return 1;
2288 else
2289 return 0;
2292 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2294 swp_entry_t swp;
2296 if (huge_pte_none(pte) || pte_present(pte))
2297 return 0;
2298 swp = pte_to_swp_entry(pte);
2299 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2300 return 1;
2301 else
2302 return 0;
2305 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2306 struct vm_area_struct *vma)
2308 pte_t *src_pte, *dst_pte, entry;
2309 struct page *ptepage;
2310 unsigned long addr;
2311 int cow;
2312 struct hstate *h = hstate_vma(vma);
2313 unsigned long sz = huge_page_size(h);
2315 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2317 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2318 src_pte = huge_pte_offset(src, addr);
2319 if (!src_pte)
2320 continue;
2321 dst_pte = huge_pte_alloc(dst, addr, sz);
2322 if (!dst_pte)
2323 goto nomem;
2325 /* If the pagetables are shared don't copy or take references */
2326 if (dst_pte == src_pte)
2327 continue;
2329 spin_lock(&dst->page_table_lock);
2330 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2331 entry = huge_ptep_get(src_pte);
2332 if (huge_pte_none(entry)) { /* skip none entry */
2334 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2335 is_hugetlb_entry_hwpoisoned(entry))) {
2336 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2338 if (is_write_migration_entry(swp_entry) && cow) {
2340 * COW mappings require pages in both
2341 * parent and child to be set to read.
2343 make_migration_entry_read(&swp_entry);
2344 entry = swp_entry_to_pte(swp_entry);
2345 set_huge_pte_at(src, addr, src_pte, entry);
2347 set_huge_pte_at(dst, addr, dst_pte, entry);
2348 } else {
2349 if (cow)
2350 huge_ptep_set_wrprotect(src, addr, src_pte);
2351 entry = huge_ptep_get(src_pte);
2352 ptepage = pte_page(entry);
2353 get_page(ptepage);
2354 page_dup_rmap(ptepage);
2355 set_huge_pte_at(dst, addr, dst_pte, entry);
2357 spin_unlock(&src->page_table_lock);
2358 spin_unlock(&dst->page_table_lock);
2360 return 0;
2362 nomem:
2363 return -ENOMEM;
2366 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2367 unsigned long end, struct page *ref_page)
2369 struct mm_struct *mm = vma->vm_mm;
2370 unsigned long address;
2371 pte_t *ptep;
2372 pte_t pte;
2373 struct page *page;
2374 struct page *tmp;
2375 struct hstate *h = hstate_vma(vma);
2376 unsigned long sz = huge_page_size(h);
2379 * A page gathering list, protected by per file i_mmap_mutex. The
2380 * lock is used to avoid list corruption from multiple unmapping
2381 * of the same page since we are using page->lru.
2383 LIST_HEAD(page_list);
2385 WARN_ON(!is_vm_hugetlb_page(vma));
2386 BUG_ON(start & ~huge_page_mask(h));
2387 BUG_ON(end & ~huge_page_mask(h));
2389 mmu_notifier_invalidate_range_start(mm, start, end);
2390 spin_lock(&mm->page_table_lock);
2391 for (address = start; address < end; address += sz) {
2392 ptep = huge_pte_offset(mm, address);
2393 if (!ptep)
2394 continue;
2396 if (huge_pmd_unshare(mm, &address, ptep))
2397 continue;
2399 pte = huge_ptep_get(ptep);
2400 if (huge_pte_none(pte))
2401 continue;
2404 * HWPoisoned hugepage is already unmapped and dropped reference
2406 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2407 continue;
2409 page = pte_page(pte);
2411 * If a reference page is supplied, it is because a specific
2412 * page is being unmapped, not a range. Ensure the page we
2413 * are about to unmap is the actual page of interest.
2415 if (ref_page) {
2416 if (page != ref_page)
2417 continue;
2420 * Mark the VMA as having unmapped its page so that
2421 * future faults in this VMA will fail rather than
2422 * looking like data was lost
2424 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2427 pte = huge_ptep_get_and_clear(mm, address, ptep);
2428 if (pte_dirty(pte))
2429 set_page_dirty(page);
2430 list_add(&page->lru, &page_list);
2432 /* Bail out after unmapping reference page if supplied */
2433 if (ref_page)
2434 break;
2436 flush_tlb_range(vma, start, end);
2437 spin_unlock(&mm->page_table_lock);
2438 mmu_notifier_invalidate_range_end(mm, start, end);
2439 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2440 page_remove_rmap(page);
2441 list_del(&page->lru);
2442 put_page(page);
2446 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2447 unsigned long end, struct page *ref_page)
2449 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2450 __unmap_hugepage_range(vma, start, end, ref_page);
2452 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2453 * test will fail on a vma being torn down, and not grab a page table
2454 * on its way out. We're lucky that the flag has such an appropriate
2455 * name, and can in fact be safely cleared here. We could clear it
2456 * before the __unmap_hugepage_range above, but all that's necessary
2457 * is to clear it before releasing the i_mmap_mutex below.
2459 * This works because in the contexts this is called, the VMA is
2460 * going to be destroyed. It is not vunerable to madvise(DONTNEED)
2461 * because madvise is not supported on hugetlbfs. The same applies
2462 * for direct IO. unmap_hugepage_range() is only being called just
2463 * before free_pgtables() so clearing VM_MAYSHARE will not cause
2464 * surprises later.
2466 vma->vm_flags &= ~VM_MAYSHARE;
2467 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2471 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2472 * mappping it owns the reserve page for. The intention is to unmap the page
2473 * from other VMAs and let the children be SIGKILLed if they are faulting the
2474 * same region.
2476 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2477 struct page *page, unsigned long address)
2479 struct hstate *h = hstate_vma(vma);
2480 struct vm_area_struct *iter_vma;
2481 struct address_space *mapping;
2482 struct prio_tree_iter iter;
2483 pgoff_t pgoff;
2486 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2487 * from page cache lookup which is in HPAGE_SIZE units.
2489 address = address & huge_page_mask(h);
2490 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2491 vma->vm_pgoff;
2492 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2495 * Take the mapping lock for the duration of the table walk. As
2496 * this mapping should be shared between all the VMAs,
2497 * __unmap_hugepage_range() is called as the lock is already held
2499 mutex_lock(&mapping->i_mmap_mutex);
2500 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2501 /* Do not unmap the current VMA */
2502 if (iter_vma == vma)
2503 continue;
2506 * Unmap the page from other VMAs without their own reserves.
2507 * They get marked to be SIGKILLed if they fault in these
2508 * areas. This is because a future no-page fault on this VMA
2509 * could insert a zeroed page instead of the data existing
2510 * from the time of fork. This would look like data corruption
2512 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2513 __unmap_hugepage_range(iter_vma,
2514 address, address + huge_page_size(h),
2515 page);
2517 mutex_unlock(&mapping->i_mmap_mutex);
2519 return 1;
2523 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2524 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2525 * cannot race with other handlers or page migration.
2526 * Keep the pte_same checks anyway to make transition from the mutex easier.
2528 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2529 unsigned long address, pte_t *ptep, pte_t pte,
2530 struct page *pagecache_page)
2532 struct hstate *h = hstate_vma(vma);
2533 struct page *old_page, *new_page;
2534 int avoidcopy;
2535 int outside_reserve = 0;
2537 old_page = pte_page(pte);
2539 retry_avoidcopy:
2540 /* If no-one else is actually using this page, avoid the copy
2541 * and just make the page writable */
2542 avoidcopy = (page_mapcount(old_page) == 1);
2543 if (avoidcopy) {
2544 if (PageAnon(old_page))
2545 page_move_anon_rmap(old_page, vma, address);
2546 set_huge_ptep_writable(vma, address, ptep);
2547 return 0;
2551 * If the process that created a MAP_PRIVATE mapping is about to
2552 * perform a COW due to a shared page count, attempt to satisfy
2553 * the allocation without using the existing reserves. The pagecache
2554 * page is used to determine if the reserve at this address was
2555 * consumed or not. If reserves were used, a partial faulted mapping
2556 * at the time of fork() could consume its reserves on COW instead
2557 * of the full address range.
2559 if (!(vma->vm_flags & VM_MAYSHARE) &&
2560 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2561 old_page != pagecache_page)
2562 outside_reserve = 1;
2564 page_cache_get(old_page);
2566 /* Drop page_table_lock as buddy allocator may be called */
2567 spin_unlock(&mm->page_table_lock);
2568 new_page = alloc_huge_page(vma, address, outside_reserve);
2570 if (IS_ERR(new_page)) {
2571 page_cache_release(old_page);
2574 * If a process owning a MAP_PRIVATE mapping fails to COW,
2575 * it is due to references held by a child and an insufficient
2576 * huge page pool. To guarantee the original mappers
2577 * reliability, unmap the page from child processes. The child
2578 * may get SIGKILLed if it later faults.
2580 if (outside_reserve) {
2581 BUG_ON(huge_pte_none(pte));
2582 if (unmap_ref_private(mm, vma, old_page, address)) {
2583 BUG_ON(huge_pte_none(pte));
2584 spin_lock(&mm->page_table_lock);
2585 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2586 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2587 goto retry_avoidcopy;
2589 * race occurs while re-acquiring page_table_lock, and
2590 * our job is done.
2592 return 0;
2594 WARN_ON_ONCE(1);
2597 /* Caller expects lock to be held */
2598 spin_lock(&mm->page_table_lock);
2599 return -PTR_ERR(new_page);
2603 * When the original hugepage is shared one, it does not have
2604 * anon_vma prepared.
2606 if (unlikely(anon_vma_prepare(vma))) {
2607 page_cache_release(new_page);
2608 page_cache_release(old_page);
2609 /* Caller expects lock to be held */
2610 spin_lock(&mm->page_table_lock);
2611 return VM_FAULT_OOM;
2614 copy_user_huge_page(new_page, old_page, address, vma,
2615 pages_per_huge_page(h));
2616 __SetPageUptodate(new_page);
2619 * Retake the page_table_lock to check for racing updates
2620 * before the page tables are altered
2622 spin_lock(&mm->page_table_lock);
2623 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2624 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2625 /* Break COW */
2626 mmu_notifier_invalidate_range_start(mm,
2627 address & huge_page_mask(h),
2628 (address & huge_page_mask(h)) + huge_page_size(h));
2629 huge_ptep_clear_flush(vma, address, ptep);
2630 set_huge_pte_at(mm, address, ptep,
2631 make_huge_pte(vma, new_page, 1));
2632 page_remove_rmap(old_page);
2633 hugepage_add_new_anon_rmap(new_page, vma, address);
2634 /* Make the old page be freed below */
2635 new_page = old_page;
2636 mmu_notifier_invalidate_range_end(mm,
2637 address & huge_page_mask(h),
2638 (address & huge_page_mask(h)) + huge_page_size(h));
2640 page_cache_release(new_page);
2641 page_cache_release(old_page);
2642 return 0;
2645 /* Return the pagecache page at a given address within a VMA */
2646 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2647 struct vm_area_struct *vma, unsigned long address)
2649 struct address_space *mapping;
2650 pgoff_t idx;
2652 mapping = vma->vm_file->f_mapping;
2653 idx = vma_hugecache_offset(h, vma, address);
2655 return find_lock_page(mapping, idx);
2659 * Return whether there is a pagecache page to back given address within VMA.
2660 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2662 static bool hugetlbfs_pagecache_present(struct hstate *h,
2663 struct vm_area_struct *vma, unsigned long address)
2665 struct address_space *mapping;
2666 pgoff_t idx;
2667 struct page *page;
2669 mapping = vma->vm_file->f_mapping;
2670 idx = vma_hugecache_offset(h, vma, address);
2672 page = find_get_page(mapping, idx);
2673 if (page)
2674 put_page(page);
2675 return page != NULL;
2678 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2679 unsigned long address, pte_t *ptep, unsigned int flags)
2681 struct hstate *h = hstate_vma(vma);
2682 int ret = VM_FAULT_SIGBUS;
2683 int anon_rmap = 0;
2684 pgoff_t idx;
2685 unsigned long size;
2686 struct page *page;
2687 struct address_space *mapping;
2688 pte_t new_pte;
2691 * Currently, we are forced to kill the process in the event the
2692 * original mapper has unmapped pages from the child due to a failed
2693 * COW. Warn that such a situation has occurred as it may not be obvious
2695 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2696 printk(KERN_WARNING
2697 "PID %d killed due to inadequate hugepage pool\n",
2698 current->pid);
2699 return ret;
2702 mapping = vma->vm_file->f_mapping;
2703 idx = vma_hugecache_offset(h, vma, address);
2706 * Use page lock to guard against racing truncation
2707 * before we get page_table_lock.
2709 retry:
2710 page = find_lock_page(mapping, idx);
2711 if (!page) {
2712 size = i_size_read(mapping->host) >> huge_page_shift(h);
2713 if (idx >= size)
2714 goto out;
2715 page = alloc_huge_page(vma, address, 0);
2716 if (IS_ERR(page)) {
2717 ret = -PTR_ERR(page);
2718 goto out;
2720 clear_huge_page(page, address, pages_per_huge_page(h));
2721 __SetPageUptodate(page);
2723 if (vma->vm_flags & VM_MAYSHARE) {
2724 int err;
2725 struct inode *inode = mapping->host;
2727 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728 if (err) {
2729 put_page(page);
2730 if (err == -EEXIST)
2731 goto retry;
2732 goto out;
2735 spin_lock(&inode->i_lock);
2736 inode->i_blocks += blocks_per_huge_page(h);
2737 spin_unlock(&inode->i_lock);
2738 } else {
2739 lock_page(page);
2740 if (unlikely(anon_vma_prepare(vma))) {
2741 ret = VM_FAULT_OOM;
2742 goto backout_unlocked;
2744 anon_rmap = 1;
2746 } else {
2748 * If memory error occurs between mmap() and fault, some process
2749 * don't have hwpoisoned swap entry for errored virtual address.
2750 * So we need to block hugepage fault by PG_hwpoison bit check.
2752 if (unlikely(PageHWPoison(page))) {
2753 ret = VM_FAULT_HWPOISON |
2754 VM_FAULT_SET_HINDEX(h - hstates);
2755 goto backout_unlocked;
2760 * If we are going to COW a private mapping later, we examine the
2761 * pending reservations for this page now. This will ensure that
2762 * any allocations necessary to record that reservation occur outside
2763 * the spinlock.
2765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766 if (vma_needs_reservation(h, vma, address) < 0) {
2767 ret = VM_FAULT_OOM;
2768 goto backout_unlocked;
2771 spin_lock(&mm->page_table_lock);
2772 size = i_size_read(mapping->host) >> huge_page_shift(h);
2773 if (idx >= size)
2774 goto backout;
2776 ret = 0;
2777 if (!huge_pte_none(huge_ptep_get(ptep)))
2778 goto backout;
2780 if (anon_rmap)
2781 hugepage_add_new_anon_rmap(page, vma, address);
2782 else
2783 page_dup_rmap(page);
2784 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785 && (vma->vm_flags & VM_SHARED)));
2786 set_huge_pte_at(mm, address, ptep, new_pte);
2788 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789 /* Optimization, do the COW without a second fault */
2790 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2793 spin_unlock(&mm->page_table_lock);
2794 unlock_page(page);
2795 out:
2796 return ret;
2798 backout:
2799 spin_unlock(&mm->page_table_lock);
2800 backout_unlocked:
2801 unlock_page(page);
2802 put_page(page);
2803 goto out;
2806 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807 unsigned long address, unsigned int flags)
2809 pte_t *ptep;
2810 pte_t entry;
2811 int ret;
2812 struct page *page = NULL;
2813 struct page *pagecache_page = NULL;
2814 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815 struct hstate *h = hstate_vma(vma);
2817 address &= huge_page_mask(h);
2819 ptep = huge_pte_offset(mm, address);
2820 if (ptep) {
2821 entry = huge_ptep_get(ptep);
2822 if (unlikely(is_hugetlb_entry_migration(entry))) {
2823 migration_entry_wait_huge(mm, ptep);
2824 return 0;
2825 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826 return VM_FAULT_HWPOISON_LARGE |
2827 VM_FAULT_SET_HINDEX(h - hstates);
2830 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831 if (!ptep)
2832 return VM_FAULT_OOM;
2835 * Serialize hugepage allocation and instantiation, so that we don't
2836 * get spurious allocation failures if two CPUs race to instantiate
2837 * the same page in the page cache.
2839 mutex_lock(&hugetlb_instantiation_mutex);
2840 entry = huge_ptep_get(ptep);
2841 if (huge_pte_none(entry)) {
2842 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843 goto out_mutex;
2846 ret = 0;
2849 * If we are going to COW the mapping later, we examine the pending
2850 * reservations for this page now. This will ensure that any
2851 * allocations necessary to record that reservation occur outside the
2852 * spinlock. For private mappings, we also lookup the pagecache
2853 * page now as it is used to determine if a reservation has been
2854 * consumed.
2856 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857 if (vma_needs_reservation(h, vma, address) < 0) {
2858 ret = VM_FAULT_OOM;
2859 goto out_mutex;
2862 if (!(vma->vm_flags & VM_MAYSHARE))
2863 pagecache_page = hugetlbfs_pagecache_page(h,
2864 vma, address);
2868 * hugetlb_cow() requires page locks of pte_page(entry) and
2869 * pagecache_page, so here we need take the former one
2870 * when page != pagecache_page or !pagecache_page.
2871 * Note that locking order is always pagecache_page -> page,
2872 * so no worry about deadlock.
2874 page = pte_page(entry);
2875 get_page(page);
2876 if (page != pagecache_page)
2877 lock_page(page);
2879 spin_lock(&mm->page_table_lock);
2880 /* Check for a racing update before calling hugetlb_cow */
2881 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882 goto out_page_table_lock;
2885 if (flags & FAULT_FLAG_WRITE) {
2886 if (!pte_write(entry)) {
2887 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888 pagecache_page);
2889 goto out_page_table_lock;
2891 entry = pte_mkdirty(entry);
2893 entry = pte_mkyoung(entry);
2894 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895 flags & FAULT_FLAG_WRITE))
2896 update_mmu_cache(vma, address, ptep);
2898 out_page_table_lock:
2899 spin_unlock(&mm->page_table_lock);
2901 if (pagecache_page) {
2902 unlock_page(pagecache_page);
2903 put_page(pagecache_page);
2905 if (page != pagecache_page)
2906 unlock_page(page);
2907 put_page(page);
2909 out_mutex:
2910 mutex_unlock(&hugetlb_instantiation_mutex);
2912 return ret;
2915 /* Can be overriden by architectures */
2916 __attribute__((weak)) struct page *
2917 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918 pud_t *pud, int write)
2920 BUG();
2921 return NULL;
2924 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925 struct page **pages, struct vm_area_struct **vmas,
2926 unsigned long *position, int *length, int i,
2927 unsigned int flags)
2929 unsigned long pfn_offset;
2930 unsigned long vaddr = *position;
2931 int remainder = *length;
2932 struct hstate *h = hstate_vma(vma);
2934 spin_lock(&mm->page_table_lock);
2935 while (vaddr < vma->vm_end && remainder) {
2936 pte_t *pte;
2937 int absent;
2938 struct page *page;
2941 * Some archs (sparc64, sh*) have multiple pte_ts to
2942 * each hugepage. We have to make sure we get the
2943 * first, for the page indexing below to work.
2945 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2946 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2949 * When coredumping, it suits get_dump_page if we just return
2950 * an error where there's an empty slot with no huge pagecache
2951 * to back it. This way, we avoid allocating a hugepage, and
2952 * the sparse dumpfile avoids allocating disk blocks, but its
2953 * huge holes still show up with zeroes where they need to be.
2955 if (absent && (flags & FOLL_DUMP) &&
2956 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2957 remainder = 0;
2958 break;
2962 * We need call hugetlb_fault for both hugepages under migration
2963 * (in which case hugetlb_fault waits for the migration,) and
2964 * hwpoisoned hugepages (in which case we need to prevent the
2965 * caller from accessing to them.) In order to do this, we use
2966 * here is_swap_pte instead of is_hugetlb_entry_migration and
2967 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2968 * both cases, and because we can't follow correct pages
2969 * directly from any kind of swap entries.
2971 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2972 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2973 int ret;
2975 spin_unlock(&mm->page_table_lock);
2976 ret = hugetlb_fault(mm, vma, vaddr,
2977 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2978 spin_lock(&mm->page_table_lock);
2979 if (!(ret & VM_FAULT_ERROR))
2980 continue;
2982 remainder = 0;
2983 break;
2986 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2987 page = pte_page(huge_ptep_get(pte));
2988 same_page:
2989 if (pages) {
2990 pages[i] = mem_map_offset(page, pfn_offset);
2991 get_page(pages[i]);
2994 if (vmas)
2995 vmas[i] = vma;
2997 vaddr += PAGE_SIZE;
2998 ++pfn_offset;
2999 --remainder;
3000 ++i;
3001 if (vaddr < vma->vm_end && remainder &&
3002 pfn_offset < pages_per_huge_page(h)) {
3004 * We use pfn_offset to avoid touching the pageframes
3005 * of this compound page.
3007 goto same_page;
3010 spin_unlock(&mm->page_table_lock);
3011 *length = remainder;
3012 *position = vaddr;
3014 return i ? i : -EFAULT;
3017 void hugetlb_change_protection(struct vm_area_struct *vma,
3018 unsigned long address, unsigned long end, pgprot_t newprot)
3020 struct mm_struct *mm = vma->vm_mm;
3021 unsigned long start = address;
3022 pte_t *ptep;
3023 pte_t pte;
3024 struct hstate *h = hstate_vma(vma);
3026 BUG_ON(address >= end);
3027 flush_cache_range(vma, address, end);
3029 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3030 spin_lock(&mm->page_table_lock);
3031 for (; address < end; address += huge_page_size(h)) {
3032 ptep = huge_pte_offset(mm, address);
3033 if (!ptep)
3034 continue;
3035 if (huge_pmd_unshare(mm, &address, ptep))
3036 continue;
3037 if (!huge_pte_none(huge_ptep_get(ptep))) {
3038 pte = huge_ptep_get_and_clear(mm, address, ptep);
3039 pte = pte_mkhuge(pte_modify(pte, newprot));
3040 set_huge_pte_at(mm, address, ptep, pte);
3043 spin_unlock(&mm->page_table_lock);
3045 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3046 * may have cleared our pud entry and done put_page on the page table:
3047 * once we release i_mmap_mutex, another task can do the final put_page
3048 * and that page table be reused and filled with junk.
3050 flush_tlb_range(vma, start, end);
3051 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3054 int hugetlb_reserve_pages(struct inode *inode,
3055 long from, long to,
3056 struct vm_area_struct *vma,
3057 vm_flags_t vm_flags)
3059 long ret, chg;
3060 struct hstate *h = hstate_inode(inode);
3061 struct hugepage_subpool *spool = subpool_inode(inode);
3064 * Only apply hugepage reservation if asked. At fault time, an
3065 * attempt will be made for VM_NORESERVE to allocate a page
3066 * without using reserves
3068 if (vm_flags & VM_NORESERVE)
3069 return 0;
3072 * Shared mappings base their reservation on the number of pages that
3073 * are already allocated on behalf of the file. Private mappings need
3074 * to reserve the full area even if read-only as mprotect() may be
3075 * called to make the mapping read-write. Assume !vma is a shm mapping
3077 if (!vma || vma->vm_flags & VM_MAYSHARE)
3078 chg = region_chg(&inode->i_mapping->private_list, from, to);
3079 else {
3080 struct resv_map *resv_map = resv_map_alloc();
3081 if (!resv_map)
3082 return -ENOMEM;
3084 chg = to - from;
3086 set_vma_resv_map(vma, resv_map);
3087 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3090 if (chg < 0) {
3091 ret = chg;
3092 goto out_err;
3095 /* There must be enough pages in the subpool for the mapping */
3096 if (hugepage_subpool_get_pages(spool, chg)) {
3097 ret = -ENOSPC;
3098 goto out_err;
3102 * Check enough hugepages are available for the reservation.
3103 * Hand the pages back to the subpool if there are not
3105 ret = hugetlb_acct_memory(h, chg);
3106 if (ret < 0) {
3107 hugepage_subpool_put_pages(spool, chg);
3108 goto out_err;
3112 * Account for the reservations made. Shared mappings record regions
3113 * that have reservations as they are shared by multiple VMAs.
3114 * When the last VMA disappears, the region map says how much
3115 * the reservation was and the page cache tells how much of
3116 * the reservation was consumed. Private mappings are per-VMA and
3117 * only the consumed reservations are tracked. When the VMA
3118 * disappears, the original reservation is the VMA size and the
3119 * consumed reservations are stored in the map. Hence, nothing
3120 * else has to be done for private mappings here
3122 if (!vma || vma->vm_flags & VM_MAYSHARE)
3123 region_add(&inode->i_mapping->private_list, from, to);
3124 return 0;
3125 out_err:
3126 if (vma)
3127 resv_map_put(vma);
3128 return ret;
3131 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3133 struct hstate *h = hstate_inode(inode);
3134 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3135 struct hugepage_subpool *spool = subpool_inode(inode);
3137 spin_lock(&inode->i_lock);
3138 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3139 spin_unlock(&inode->i_lock);
3141 hugepage_subpool_put_pages(spool, (chg - freed));
3142 hugetlb_acct_memory(h, -(chg - freed));
3145 #ifdef CONFIG_MEMORY_FAILURE
3147 /* Should be called in hugetlb_lock */
3148 static int is_hugepage_on_freelist(struct page *hpage)
3150 struct page *page;
3151 struct page *tmp;
3152 struct hstate *h = page_hstate(hpage);
3153 int nid = page_to_nid(hpage);
3155 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3156 if (page == hpage)
3157 return 1;
3158 return 0;
3162 * This function is called from memory failure code.
3163 * Assume the caller holds page lock of the head page.
3165 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3167 struct hstate *h = page_hstate(hpage);
3168 int nid = page_to_nid(hpage);
3169 int ret = -EBUSY;
3171 spin_lock(&hugetlb_lock);
3172 if (is_hugepage_on_freelist(hpage)) {
3173 list_del(&hpage->lru);
3174 set_page_refcounted(hpage);
3175 h->free_huge_pages--;
3176 h->free_huge_pages_node[nid]--;
3177 ret = 0;
3179 spin_unlock(&hugetlb_lock);
3180 return ret;
3182 #endif