ipv6: reallocate addrconf router for ipv6 address when lo device up
[linux/fpc-iii.git] / mm / memory-failure.c
blob97eec2174769fc1f49959179385e022a6419d32e
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
62 int sysctl_memory_failure_recovery __read_mostly = 1;
64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79 static int hwpoison_filter_dev(struct page *p)
81 struct address_space *mapping;
82 dev_t dev;
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
89 * page_mapping() does not accept slab pages.
91 if (PageSlab(p))
92 return -EINVAL;
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
106 return 0;
109 static int hwpoison_filter_flags(struct page *p)
111 if (!hwpoison_filter_flags_mask)
112 return 0;
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
131 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
140 if (!hwpoison_filter_memcg)
141 return 0;
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
158 return 0;
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
164 int hwpoison_filter(struct page *p)
166 if (!hwpoison_filter_enable)
167 return 0;
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
178 return 0;
180 #else
181 int hwpoison_filter(struct page *p)
183 return 0;
185 #endif
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
197 struct siginfo si;
198 int ret;
200 printk(KERN_ERR
201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
205 si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208 #endif
209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, current);
214 } else {
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
234 void shake_page(struct page *p, int access)
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
249 if (access) {
250 int nr;
251 do {
252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
256 nr = shrink_slab(&shrink, 1000, 1000);
257 if (page_count(p) == 1)
258 break;
259 } while (nr > 10);
262 EXPORT_SYMBOL_GPL(shake_page);
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
286 struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
290 char addr_valid;
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
308 struct to_kill *tk;
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
330 if (tk->addr == -EFAULT) {
331 pr_info("MCE: Unable to find user space address %lx in %s\n",
332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
341 * Kill the processes that have been collected earlier.
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 int fail, struct page *page, unsigned long pfn,
350 int flags)
352 struct to_kill *tk, *next;
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
355 if (forcekill) {
357 * In case something went wrong with munmapping
358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
380 put_task_struct(tk->tsk);
381 kfree(tk);
385 static int task_early_kill(struct task_struct *tsk, int force_early)
387 if (!tsk->mm)
388 return 0;
389 if (force_early)
390 return 1;
391 if (tsk->flags & PF_MCE_PROCESS)
392 return !!(tsk->flags & PF_MCE_EARLY);
393 return sysctl_memory_failure_early_kill;
397 * Collect processes when the error hit an anonymous page.
399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 struct to_kill **tkc, int force_early)
402 struct vm_area_struct *vma;
403 struct task_struct *tsk;
404 struct anon_vma *av;
406 av = page_lock_anon_vma(page);
407 if (av == NULL) /* Not actually mapped anymore */
408 return;
410 read_lock(&tasklist_lock);
411 for_each_process (tsk) {
412 struct anon_vma_chain *vmac;
414 if (!task_early_kill(tsk, force_early))
415 continue;
416 list_for_each_entry(vmac, &av->head, same_anon_vma) {
417 vma = vmac->vma;
418 if (!page_mapped_in_vma(page, vma))
419 continue;
420 if (vma->vm_mm == tsk->mm)
421 add_to_kill(tsk, page, vma, to_kill, tkc);
424 read_unlock(&tasklist_lock);
425 page_unlock_anon_vma(av);
429 * Collect processes when the error hit a file mapped page.
431 static void collect_procs_file(struct page *page, struct list_head *to_kill,
432 struct to_kill **tkc, int force_early)
434 struct vm_area_struct *vma;
435 struct task_struct *tsk;
436 struct prio_tree_iter iter;
437 struct address_space *mapping = page->mapping;
439 mutex_lock(&mapping->i_mmap_mutex);
440 read_lock(&tasklist_lock);
441 for_each_process(tsk) {
442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
444 if (!task_early_kill(tsk, force_early))
445 continue;
447 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
448 pgoff) {
450 * Send early kill signal to tasks where a vma covers
451 * the page but the corrupted page is not necessarily
452 * mapped it in its pte.
453 * Assume applications who requested early kill want
454 * to be informed of all such data corruptions.
456 if (vma->vm_mm == tsk->mm)
457 add_to_kill(tsk, page, vma, to_kill, tkc);
460 read_unlock(&tasklist_lock);
461 mutex_unlock(&mapping->i_mmap_mutex);
465 * Collect the processes who have the corrupted page mapped to kill.
466 * This is done in two steps for locking reasons.
467 * First preallocate one tokill structure outside the spin locks,
468 * so that we can kill at least one process reasonably reliable.
470 static void collect_procs(struct page *page, struct list_head *tokill,
471 int force_early)
473 struct to_kill *tk;
475 if (!page->mapping)
476 return;
478 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
479 if (!tk)
480 return;
481 if (PageAnon(page))
482 collect_procs_anon(page, tokill, &tk, force_early);
483 else
484 collect_procs_file(page, tokill, &tk, force_early);
485 kfree(tk);
489 * Error handlers for various types of pages.
492 enum outcome {
493 IGNORED, /* Error: cannot be handled */
494 FAILED, /* Error: handling failed */
495 DELAYED, /* Will be handled later */
496 RECOVERED, /* Successfully recovered */
499 static const char *action_name[] = {
500 [IGNORED] = "Ignored",
501 [FAILED] = "Failed",
502 [DELAYED] = "Delayed",
503 [RECOVERED] = "Recovered",
507 * XXX: It is possible that a page is isolated from LRU cache,
508 * and then kept in swap cache or failed to remove from page cache.
509 * The page count will stop it from being freed by unpoison.
510 * Stress tests should be aware of this memory leak problem.
512 static int delete_from_lru_cache(struct page *p)
514 if (!isolate_lru_page(p)) {
516 * Clear sensible page flags, so that the buddy system won't
517 * complain when the page is unpoison-and-freed.
519 ClearPageActive(p);
520 ClearPageUnevictable(p);
522 * drop the page count elevated by isolate_lru_page()
524 page_cache_release(p);
525 return 0;
527 return -EIO;
531 * Error hit kernel page.
532 * Do nothing, try to be lucky and not touch this instead. For a few cases we
533 * could be more sophisticated.
535 static int me_kernel(struct page *p, unsigned long pfn)
537 return IGNORED;
541 * Page in unknown state. Do nothing.
543 static int me_unknown(struct page *p, unsigned long pfn)
545 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
546 return FAILED;
550 * Clean (or cleaned) page cache page.
552 static int me_pagecache_clean(struct page *p, unsigned long pfn)
554 int err;
555 int ret = FAILED;
556 struct address_space *mapping;
558 delete_from_lru_cache(p);
561 * For anonymous pages we're done the only reference left
562 * should be the one m_f() holds.
564 if (PageAnon(p))
565 return RECOVERED;
568 * Now truncate the page in the page cache. This is really
569 * more like a "temporary hole punch"
570 * Don't do this for block devices when someone else
571 * has a reference, because it could be file system metadata
572 * and that's not safe to truncate.
574 mapping = page_mapping(p);
575 if (!mapping) {
577 * Page has been teared down in the meanwhile
579 return FAILED;
583 * Truncation is a bit tricky. Enable it per file system for now.
585 * Open: to take i_mutex or not for this? Right now we don't.
587 if (mapping->a_ops->error_remove_page) {
588 err = mapping->a_ops->error_remove_page(mapping, p);
589 if (err != 0) {
590 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
591 pfn, err);
592 } else if (page_has_private(p) &&
593 !try_to_release_page(p, GFP_NOIO)) {
594 pr_info("MCE %#lx: failed to release buffers\n", pfn);
595 } else {
596 ret = RECOVERED;
598 } else {
600 * If the file system doesn't support it just invalidate
601 * This fails on dirty or anything with private pages
603 if (invalidate_inode_page(p))
604 ret = RECOVERED;
605 else
606 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
607 pfn);
609 return ret;
613 * Dirty cache page page
614 * Issues: when the error hit a hole page the error is not properly
615 * propagated.
617 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
619 struct address_space *mapping = page_mapping(p);
621 SetPageError(p);
622 /* TBD: print more information about the file. */
623 if (mapping) {
625 * IO error will be reported by write(), fsync(), etc.
626 * who check the mapping.
627 * This way the application knows that something went
628 * wrong with its dirty file data.
630 * There's one open issue:
632 * The EIO will be only reported on the next IO
633 * operation and then cleared through the IO map.
634 * Normally Linux has two mechanisms to pass IO error
635 * first through the AS_EIO flag in the address space
636 * and then through the PageError flag in the page.
637 * Since we drop pages on memory failure handling the
638 * only mechanism open to use is through AS_AIO.
640 * This has the disadvantage that it gets cleared on
641 * the first operation that returns an error, while
642 * the PageError bit is more sticky and only cleared
643 * when the page is reread or dropped. If an
644 * application assumes it will always get error on
645 * fsync, but does other operations on the fd before
646 * and the page is dropped between then the error
647 * will not be properly reported.
649 * This can already happen even without hwpoisoned
650 * pages: first on metadata IO errors (which only
651 * report through AS_EIO) or when the page is dropped
652 * at the wrong time.
654 * So right now we assume that the application DTRT on
655 * the first EIO, but we're not worse than other parts
656 * of the kernel.
658 mapping_set_error(mapping, EIO);
661 return me_pagecache_clean(p, pfn);
665 * Clean and dirty swap cache.
667 * Dirty swap cache page is tricky to handle. The page could live both in page
668 * cache and swap cache(ie. page is freshly swapped in). So it could be
669 * referenced concurrently by 2 types of PTEs:
670 * normal PTEs and swap PTEs. We try to handle them consistently by calling
671 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
672 * and then
673 * - clear dirty bit to prevent IO
674 * - remove from LRU
675 * - but keep in the swap cache, so that when we return to it on
676 * a later page fault, we know the application is accessing
677 * corrupted data and shall be killed (we installed simple
678 * interception code in do_swap_page to catch it).
680 * Clean swap cache pages can be directly isolated. A later page fault will
681 * bring in the known good data from disk.
683 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
685 ClearPageDirty(p);
686 /* Trigger EIO in shmem: */
687 ClearPageUptodate(p);
689 if (!delete_from_lru_cache(p))
690 return DELAYED;
691 else
692 return FAILED;
695 static int me_swapcache_clean(struct page *p, unsigned long pfn)
697 delete_from_swap_cache(p);
699 if (!delete_from_lru_cache(p))
700 return RECOVERED;
701 else
702 return FAILED;
706 * Huge pages. Needs work.
707 * Issues:
708 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
709 * To narrow down kill region to one page, we need to break up pmd.
711 static int me_huge_page(struct page *p, unsigned long pfn)
713 int res = 0;
714 struct page *hpage = compound_head(p);
716 * We can safely recover from error on free or reserved (i.e.
717 * not in-use) hugepage by dequeuing it from freelist.
718 * To check whether a hugepage is in-use or not, we can't use
719 * page->lru because it can be used in other hugepage operations,
720 * such as __unmap_hugepage_range() and gather_surplus_pages().
721 * So instead we use page_mapping() and PageAnon().
722 * We assume that this function is called with page lock held,
723 * so there is no race between isolation and mapping/unmapping.
725 if (!(page_mapping(hpage) || PageAnon(hpage))) {
726 res = dequeue_hwpoisoned_huge_page(hpage);
727 if (!res)
728 return RECOVERED;
730 return DELAYED;
734 * Various page states we can handle.
736 * A page state is defined by its current page->flags bits.
737 * The table matches them in order and calls the right handler.
739 * This is quite tricky because we can access page at any time
740 * in its live cycle, so all accesses have to be extremely careful.
742 * This is not complete. More states could be added.
743 * For any missing state don't attempt recovery.
746 #define dirty (1UL << PG_dirty)
747 #define sc (1UL << PG_swapcache)
748 #define unevict (1UL << PG_unevictable)
749 #define mlock (1UL << PG_mlocked)
750 #define writeback (1UL << PG_writeback)
751 #define lru (1UL << PG_lru)
752 #define swapbacked (1UL << PG_swapbacked)
753 #define head (1UL << PG_head)
754 #define tail (1UL << PG_tail)
755 #define compound (1UL << PG_compound)
756 #define slab (1UL << PG_slab)
757 #define reserved (1UL << PG_reserved)
759 static struct page_state {
760 unsigned long mask;
761 unsigned long res;
762 char *msg;
763 int (*action)(struct page *p, unsigned long pfn);
764 } error_states[] = {
765 { reserved, reserved, "reserved kernel", me_kernel },
767 * free pages are specially detected outside this table:
768 * PG_buddy pages only make a small fraction of all free pages.
772 * Could in theory check if slab page is free or if we can drop
773 * currently unused objects without touching them. But just
774 * treat it as standard kernel for now.
776 { slab, slab, "kernel slab", me_kernel },
778 #ifdef CONFIG_PAGEFLAGS_EXTENDED
779 { head, head, "huge", me_huge_page },
780 { tail, tail, "huge", me_huge_page },
781 #else
782 { compound, compound, "huge", me_huge_page },
783 #endif
785 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
786 { sc|dirty, sc, "swapcache", me_swapcache_clean },
788 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
789 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
791 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
792 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
794 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
795 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
798 * Catchall entry: must be at end.
800 { 0, 0, "unknown page state", me_unknown },
803 #undef dirty
804 #undef sc
805 #undef unevict
806 #undef mlock
807 #undef writeback
808 #undef lru
809 #undef swapbacked
810 #undef head
811 #undef tail
812 #undef compound
813 #undef slab
814 #undef reserved
816 static void action_result(unsigned long pfn, char *msg, int result)
818 struct page *page = pfn_to_page(pfn);
820 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
821 pfn,
822 PageDirty(page) ? "dirty " : "",
823 msg, action_name[result]);
826 static int page_action(struct page_state *ps, struct page *p,
827 unsigned long pfn)
829 int result;
830 int count;
832 result = ps->action(p, pfn);
833 action_result(pfn, ps->msg, result);
835 count = page_count(p) - 1;
836 if (ps->action == me_swapcache_dirty && result == DELAYED)
837 count--;
838 if (count != 0) {
839 printk(KERN_ERR
840 "MCE %#lx: %s page still referenced by %d users\n",
841 pfn, ps->msg, count);
842 result = FAILED;
845 /* Could do more checks here if page looks ok */
847 * Could adjust zone counters here to correct for the missing page.
850 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
854 * Do all that is necessary to remove user space mappings. Unmap
855 * the pages and send SIGBUS to the processes if the data was dirty.
857 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
858 int trapno, int flags)
860 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
861 struct address_space *mapping;
862 LIST_HEAD(tokill);
863 int ret;
864 int kill = 1, forcekill;
865 struct page *hpage = compound_head(p);
866 struct page *ppage;
868 if (PageReserved(p) || PageSlab(p))
869 return SWAP_SUCCESS;
872 * This check implies we don't kill processes if their pages
873 * are in the swap cache early. Those are always late kills.
875 if (!page_mapped(hpage))
876 return SWAP_SUCCESS;
878 if (PageKsm(p))
879 return SWAP_FAIL;
881 if (PageSwapCache(p)) {
882 printk(KERN_ERR
883 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
884 ttu |= TTU_IGNORE_HWPOISON;
888 * Propagate the dirty bit from PTEs to struct page first, because we
889 * need this to decide if we should kill or just drop the page.
890 * XXX: the dirty test could be racy: set_page_dirty() may not always
891 * be called inside page lock (it's recommended but not enforced).
893 mapping = page_mapping(hpage);
894 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
895 mapping_cap_writeback_dirty(mapping)) {
896 if (page_mkclean(hpage)) {
897 SetPageDirty(hpage);
898 } else {
899 kill = 0;
900 ttu |= TTU_IGNORE_HWPOISON;
901 printk(KERN_INFO
902 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
903 pfn);
908 * ppage: poisoned page
909 * if p is regular page(4k page)
910 * ppage == real poisoned page;
911 * else p is hugetlb or THP, ppage == head page.
913 ppage = hpage;
915 if (PageTransHuge(hpage)) {
917 * Verify that this isn't a hugetlbfs head page, the check for
918 * PageAnon is just for avoid tripping a split_huge_page
919 * internal debug check, as split_huge_page refuses to deal with
920 * anything that isn't an anon page. PageAnon can't go away fro
921 * under us because we hold a refcount on the hpage, without a
922 * refcount on the hpage. split_huge_page can't be safely called
923 * in the first place, having a refcount on the tail isn't
924 * enough * to be safe.
926 if (!PageHuge(hpage) && PageAnon(hpage)) {
927 if (unlikely(split_huge_page(hpage))) {
929 * FIXME: if splitting THP is failed, it is
930 * better to stop the following operation rather
931 * than causing panic by unmapping. System might
932 * survive if the page is freed later.
934 printk(KERN_INFO
935 "MCE %#lx: failed to split THP\n", pfn);
937 BUG_ON(!PageHWPoison(p));
938 return SWAP_FAIL;
940 /* THP is split, so ppage should be the real poisoned page. */
941 ppage = p;
946 * First collect all the processes that have the page
947 * mapped in dirty form. This has to be done before try_to_unmap,
948 * because ttu takes the rmap data structures down.
950 * Error handling: We ignore errors here because
951 * there's nothing that can be done.
953 if (kill)
954 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
956 if (hpage != ppage)
957 lock_page(ppage);
959 ret = try_to_unmap(ppage, ttu);
960 if (ret != SWAP_SUCCESS)
961 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
962 pfn, page_mapcount(ppage));
964 if (hpage != ppage)
965 unlock_page(ppage);
968 * Now that the dirty bit has been propagated to the
969 * struct page and all unmaps done we can decide if
970 * killing is needed or not. Only kill when the page
971 * was dirty or the process is not restartable,
972 * otherwise the tokill list is merely
973 * freed. When there was a problem unmapping earlier
974 * use a more force-full uncatchable kill to prevent
975 * any accesses to the poisoned memory.
977 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
978 kill_procs(&tokill, forcekill, trapno,
979 ret != SWAP_SUCCESS, p, pfn, flags);
981 return ret;
984 static void set_page_hwpoison_huge_page(struct page *hpage)
986 int i;
987 int nr_pages = 1 << compound_trans_order(hpage);
988 for (i = 0; i < nr_pages; i++)
989 SetPageHWPoison(hpage + i);
992 static void clear_page_hwpoison_huge_page(struct page *hpage)
994 int i;
995 int nr_pages = 1 << compound_trans_order(hpage);
996 for (i = 0; i < nr_pages; i++)
997 ClearPageHWPoison(hpage + i);
1001 * memory_failure - Handle memory failure of a page.
1002 * @pfn: Page Number of the corrupted page
1003 * @trapno: Trap number reported in the signal to user space.
1004 * @flags: fine tune action taken
1006 * This function is called by the low level machine check code
1007 * of an architecture when it detects hardware memory corruption
1008 * of a page. It tries its best to recover, which includes
1009 * dropping pages, killing processes etc.
1011 * The function is primarily of use for corruptions that
1012 * happen outside the current execution context (e.g. when
1013 * detected by a background scrubber)
1015 * Must run in process context (e.g. a work queue) with interrupts
1016 * enabled and no spinlocks hold.
1018 int memory_failure(unsigned long pfn, int trapno, int flags)
1020 struct page_state *ps;
1021 struct page *p;
1022 struct page *hpage;
1023 int res;
1024 unsigned int nr_pages;
1026 if (!sysctl_memory_failure_recovery)
1027 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1029 if (!pfn_valid(pfn)) {
1030 printk(KERN_ERR
1031 "MCE %#lx: memory outside kernel control\n",
1032 pfn);
1033 return -ENXIO;
1036 p = pfn_to_page(pfn);
1037 hpage = compound_head(p);
1038 if (TestSetPageHWPoison(p)) {
1039 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1040 return 0;
1043 nr_pages = 1 << compound_trans_order(hpage);
1044 atomic_long_add(nr_pages, &mce_bad_pages);
1047 * We need/can do nothing about count=0 pages.
1048 * 1) it's a free page, and therefore in safe hand:
1049 * prep_new_page() will be the gate keeper.
1050 * 2) it's a free hugepage, which is also safe:
1051 * an affected hugepage will be dequeued from hugepage freelist,
1052 * so there's no concern about reusing it ever after.
1053 * 3) it's part of a non-compound high order page.
1054 * Implies some kernel user: cannot stop them from
1055 * R/W the page; let's pray that the page has been
1056 * used and will be freed some time later.
1057 * In fact it's dangerous to directly bump up page count from 0,
1058 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1060 if (!(flags & MF_COUNT_INCREASED) &&
1061 !get_page_unless_zero(hpage)) {
1062 if (is_free_buddy_page(p)) {
1063 action_result(pfn, "free buddy", DELAYED);
1064 return 0;
1065 } else if (PageHuge(hpage)) {
1067 * Check "filter hit" and "race with other subpage."
1069 lock_page(hpage);
1070 if (PageHWPoison(hpage)) {
1071 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1072 || (p != hpage && TestSetPageHWPoison(hpage))) {
1073 atomic_long_sub(nr_pages, &mce_bad_pages);
1074 unlock_page(hpage);
1075 return 0;
1078 set_page_hwpoison_huge_page(hpage);
1079 res = dequeue_hwpoisoned_huge_page(hpage);
1080 action_result(pfn, "free huge",
1081 res ? IGNORED : DELAYED);
1082 unlock_page(hpage);
1083 return res;
1084 } else {
1085 action_result(pfn, "high order kernel", IGNORED);
1086 return -EBUSY;
1091 * We ignore non-LRU pages for good reasons.
1092 * - PG_locked is only well defined for LRU pages and a few others
1093 * - to avoid races with __set_page_locked()
1094 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1095 * The check (unnecessarily) ignores LRU pages being isolated and
1096 * walked by the page reclaim code, however that's not a big loss.
1098 if (!PageHuge(p) && !PageTransTail(p)) {
1099 if (!PageLRU(p))
1100 shake_page(p, 0);
1101 if (!PageLRU(p)) {
1103 * shake_page could have turned it free.
1105 if (is_free_buddy_page(p)) {
1106 action_result(pfn, "free buddy, 2nd try",
1107 DELAYED);
1108 return 0;
1110 action_result(pfn, "non LRU", IGNORED);
1111 put_page(p);
1112 return -EBUSY;
1117 * Lock the page and wait for writeback to finish.
1118 * It's very difficult to mess with pages currently under IO
1119 * and in many cases impossible, so we just avoid it here.
1121 lock_page(hpage);
1124 * unpoison always clear PG_hwpoison inside page lock
1126 if (!PageHWPoison(p)) {
1127 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1128 atomic_long_sub(nr_pages, &mce_bad_pages);
1129 put_page(hpage);
1130 res = 0;
1131 goto out;
1133 if (hwpoison_filter(p)) {
1134 if (TestClearPageHWPoison(p))
1135 atomic_long_sub(nr_pages, &mce_bad_pages);
1136 unlock_page(hpage);
1137 put_page(hpage);
1138 return 0;
1142 * For error on the tail page, we should set PG_hwpoison
1143 * on the head page to show that the hugepage is hwpoisoned
1145 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1146 action_result(pfn, "hugepage already hardware poisoned",
1147 IGNORED);
1148 unlock_page(hpage);
1149 put_page(hpage);
1150 return 0;
1153 * Set PG_hwpoison on all pages in an error hugepage,
1154 * because containment is done in hugepage unit for now.
1155 * Since we have done TestSetPageHWPoison() for the head page with
1156 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1158 if (PageHuge(p))
1159 set_page_hwpoison_huge_page(hpage);
1161 wait_on_page_writeback(p);
1164 * Now take care of user space mappings.
1165 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1167 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1168 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1169 res = -EBUSY;
1170 goto out;
1174 * Torn down by someone else?
1176 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1177 action_result(pfn, "already truncated LRU", IGNORED);
1178 res = -EBUSY;
1179 goto out;
1182 res = -EBUSY;
1183 for (ps = error_states;; ps++) {
1184 if ((p->flags & ps->mask) == ps->res) {
1185 res = page_action(ps, p, pfn);
1186 break;
1189 out:
1190 unlock_page(hpage);
1191 return res;
1193 EXPORT_SYMBOL_GPL(memory_failure);
1195 #define MEMORY_FAILURE_FIFO_ORDER 4
1196 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1198 struct memory_failure_entry {
1199 unsigned long pfn;
1200 int trapno;
1201 int flags;
1204 struct memory_failure_cpu {
1205 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1206 MEMORY_FAILURE_FIFO_SIZE);
1207 spinlock_t lock;
1208 struct work_struct work;
1211 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1214 * memory_failure_queue - Schedule handling memory failure of a page.
1215 * @pfn: Page Number of the corrupted page
1216 * @trapno: Trap number reported in the signal to user space.
1217 * @flags: Flags for memory failure handling
1219 * This function is called by the low level hardware error handler
1220 * when it detects hardware memory corruption of a page. It schedules
1221 * the recovering of error page, including dropping pages, killing
1222 * processes etc.
1224 * The function is primarily of use for corruptions that
1225 * happen outside the current execution context (e.g. when
1226 * detected by a background scrubber)
1228 * Can run in IRQ context.
1230 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1232 struct memory_failure_cpu *mf_cpu;
1233 unsigned long proc_flags;
1234 struct memory_failure_entry entry = {
1235 .pfn = pfn,
1236 .trapno = trapno,
1237 .flags = flags,
1240 mf_cpu = &get_cpu_var(memory_failure_cpu);
1241 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1242 if (kfifo_put(&mf_cpu->fifo, &entry))
1243 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1244 else
1245 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1246 pfn);
1247 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1248 put_cpu_var(memory_failure_cpu);
1250 EXPORT_SYMBOL_GPL(memory_failure_queue);
1252 static void memory_failure_work_func(struct work_struct *work)
1254 struct memory_failure_cpu *mf_cpu;
1255 struct memory_failure_entry entry = { 0, };
1256 unsigned long proc_flags;
1257 int gotten;
1259 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1260 for (;;) {
1261 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1262 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1263 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1264 if (!gotten)
1265 break;
1266 memory_failure(entry.pfn, entry.trapno, entry.flags);
1270 static int __init memory_failure_init(void)
1272 struct memory_failure_cpu *mf_cpu;
1273 int cpu;
1275 for_each_possible_cpu(cpu) {
1276 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1277 spin_lock_init(&mf_cpu->lock);
1278 INIT_KFIFO(mf_cpu->fifo);
1279 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1282 return 0;
1284 core_initcall(memory_failure_init);
1287 * unpoison_memory - Unpoison a previously poisoned page
1288 * @pfn: Page number of the to be unpoisoned page
1290 * Software-unpoison a page that has been poisoned by
1291 * memory_failure() earlier.
1293 * This is only done on the software-level, so it only works
1294 * for linux injected failures, not real hardware failures
1296 * Returns 0 for success, otherwise -errno.
1298 int unpoison_memory(unsigned long pfn)
1300 struct page *page;
1301 struct page *p;
1302 int freeit = 0;
1303 unsigned int nr_pages;
1305 if (!pfn_valid(pfn))
1306 return -ENXIO;
1308 p = pfn_to_page(pfn);
1309 page = compound_head(p);
1311 if (!PageHWPoison(p)) {
1312 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1313 return 0;
1316 nr_pages = 1 << compound_trans_order(page);
1318 if (!get_page_unless_zero(page)) {
1320 * Since HWPoisoned hugepage should have non-zero refcount,
1321 * race between memory failure and unpoison seems to happen.
1322 * In such case unpoison fails and memory failure runs
1323 * to the end.
1325 if (PageHuge(page)) {
1326 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1327 return 0;
1329 if (TestClearPageHWPoison(p))
1330 atomic_long_sub(nr_pages, &mce_bad_pages);
1331 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1332 return 0;
1335 lock_page(page);
1337 * This test is racy because PG_hwpoison is set outside of page lock.
1338 * That's acceptable because that won't trigger kernel panic. Instead,
1339 * the PG_hwpoison page will be caught and isolated on the entrance to
1340 * the free buddy page pool.
1342 if (TestClearPageHWPoison(page)) {
1343 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1344 atomic_long_sub(nr_pages, &mce_bad_pages);
1345 freeit = 1;
1346 if (PageHuge(page))
1347 clear_page_hwpoison_huge_page(page);
1349 unlock_page(page);
1351 put_page(page);
1352 if (freeit)
1353 put_page(page);
1355 return 0;
1357 EXPORT_SYMBOL(unpoison_memory);
1359 static struct page *new_page(struct page *p, unsigned long private, int **x)
1361 int nid = page_to_nid(p);
1362 if (PageHuge(p))
1363 return alloc_huge_page_node(page_hstate(compound_head(p)),
1364 nid);
1365 else
1366 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1370 * Safely get reference count of an arbitrary page.
1371 * Returns 0 for a free page, -EIO for a zero refcount page
1372 * that is not free, and 1 for any other page type.
1373 * For 1 the page is returned with increased page count, otherwise not.
1375 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1377 int ret;
1379 if (flags & MF_COUNT_INCREASED)
1380 return 1;
1383 * The lock_memory_hotplug prevents a race with memory hotplug.
1384 * This is a big hammer, a better would be nicer.
1386 lock_memory_hotplug();
1389 * Isolate the page, so that it doesn't get reallocated if it
1390 * was free.
1392 set_migratetype_isolate(p);
1394 * When the target page is a free hugepage, just remove it
1395 * from free hugepage list.
1397 if (!get_page_unless_zero(compound_head(p))) {
1398 if (PageHuge(p)) {
1399 pr_info("get_any_page: %#lx free huge page\n", pfn);
1400 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1401 } else if (is_free_buddy_page(p)) {
1402 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1403 /* Set hwpoison bit while page is still isolated */
1404 SetPageHWPoison(p);
1405 ret = 0;
1406 } else {
1407 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1408 pfn, p->flags);
1409 ret = -EIO;
1411 } else {
1412 /* Not a free page */
1413 ret = 1;
1415 unset_migratetype_isolate(p);
1416 unlock_memory_hotplug();
1417 return ret;
1420 static int soft_offline_huge_page(struct page *page, int flags)
1422 int ret;
1423 unsigned long pfn = page_to_pfn(page);
1424 struct page *hpage = compound_head(page);
1425 LIST_HEAD(pagelist);
1427 ret = get_any_page(page, pfn, flags);
1428 if (ret < 0)
1429 return ret;
1430 if (ret == 0)
1431 goto done;
1433 if (PageHWPoison(hpage)) {
1434 put_page(hpage);
1435 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1436 return -EBUSY;
1439 /* Keep page count to indicate a given hugepage is isolated. */
1441 list_add(&hpage->lru, &pagelist);
1442 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
1443 MIGRATE_SYNC);
1444 if (ret) {
1445 struct page *page1, *page2;
1446 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1447 put_page(page1);
1449 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1450 pfn, ret, page->flags);
1451 if (ret > 0)
1452 ret = -EIO;
1453 return ret;
1455 done:
1456 /* overcommit hugetlb page will be freed to buddy */
1457 if (PageHuge(hpage)) {
1458 if (!PageHWPoison(hpage))
1459 atomic_long_add(1 << compound_trans_order(hpage),
1460 &mce_bad_pages);
1461 set_page_hwpoison_huge_page(hpage);
1462 dequeue_hwpoisoned_huge_page(hpage);
1463 } else {
1464 SetPageHWPoison(page);
1465 atomic_long_inc(&mce_bad_pages);
1468 /* keep elevated page count for bad page */
1469 return ret;
1473 * soft_offline_page - Soft offline a page.
1474 * @page: page to offline
1475 * @flags: flags. Same as memory_failure().
1477 * Returns 0 on success, otherwise negated errno.
1479 * Soft offline a page, by migration or invalidation,
1480 * without killing anything. This is for the case when
1481 * a page is not corrupted yet (so it's still valid to access),
1482 * but has had a number of corrected errors and is better taken
1483 * out.
1485 * The actual policy on when to do that is maintained by
1486 * user space.
1488 * This should never impact any application or cause data loss,
1489 * however it might take some time.
1491 * This is not a 100% solution for all memory, but tries to be
1492 * ``good enough'' for the majority of memory.
1494 int soft_offline_page(struct page *page, int flags)
1496 int ret;
1497 unsigned long pfn = page_to_pfn(page);
1498 struct page *hpage = compound_trans_head(page);
1500 if (PageHuge(page))
1501 return soft_offline_huge_page(page, flags);
1502 if (PageTransHuge(hpage)) {
1503 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1504 pr_info("soft offline: %#lx: failed to split THP\n",
1505 pfn);
1506 return -EBUSY;
1510 ret = get_any_page(page, pfn, flags);
1511 if (ret < 0)
1512 return ret;
1513 if (ret == 0)
1514 goto done;
1517 * Page cache page we can handle?
1519 if (!PageLRU(page)) {
1521 * Try to free it.
1523 put_page(page);
1524 shake_page(page, 1);
1527 * Did it turn free?
1529 ret = get_any_page(page, pfn, 0);
1530 if (ret < 0)
1531 return ret;
1532 if (ret == 0)
1533 goto done;
1535 if (!PageLRU(page)) {
1536 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1537 pfn, page->flags);
1538 return -EIO;
1541 lock_page(page);
1542 wait_on_page_writeback(page);
1545 * Synchronized using the page lock with memory_failure()
1547 if (PageHWPoison(page)) {
1548 unlock_page(page);
1549 put_page(page);
1550 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1551 return -EBUSY;
1555 * Try to invalidate first. This should work for
1556 * non dirty unmapped page cache pages.
1558 ret = invalidate_inode_page(page);
1559 unlock_page(page);
1561 * RED-PEN would be better to keep it isolated here, but we
1562 * would need to fix isolation locking first.
1564 if (ret == 1) {
1565 put_page(page);
1566 ret = 0;
1567 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1568 goto done;
1572 * Simple invalidation didn't work.
1573 * Try to migrate to a new page instead. migrate.c
1574 * handles a large number of cases for us.
1576 ret = isolate_lru_page(page);
1578 * Drop page reference which is came from get_any_page()
1579 * successful isolate_lru_page() already took another one.
1581 put_page(page);
1582 if (!ret) {
1583 LIST_HEAD(pagelist);
1584 inc_zone_page_state(page, NR_ISOLATED_ANON +
1585 page_is_file_cache(page));
1586 list_add(&page->lru, &pagelist);
1587 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1588 false, MIGRATE_SYNC);
1589 if (ret) {
1590 putback_lru_pages(&pagelist);
1591 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1592 pfn, ret, page->flags);
1593 if (ret > 0)
1594 ret = -EIO;
1596 } else {
1597 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1598 pfn, ret, page_count(page), page->flags);
1600 if (ret)
1601 return ret;
1603 done:
1604 atomic_long_add(1, &mce_bad_pages);
1605 SetPageHWPoison(page);
1606 /* keep elevated page count for bad page */
1607 return ret;