2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache
*policy_cache
;
105 static struct kmem_cache
*sn_cache
;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone
= 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy
= {
115 .refcnt
= ATOMIC_INIT(1), /* never free it */
116 .mode
= MPOL_PREFERRED
,
117 .flags
= MPOL_F_LOCAL
,
120 static const struct mempolicy_operations
{
121 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
137 enum mpol_rebind_step step
);
138 } mpol_ops
[MPOL_MAX
];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t
*nodemask
)
145 for_each_node_mask(nd
, *nodemask
) {
148 for (k
= 0; k
<= policy_zone
; k
++) {
149 z
= &NODE_DATA(nd
)->node_zones
[k
];
150 if (z
->present_pages
> 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
160 return pol
->flags
& MPOL_MODE_FLAGS
;
163 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
164 const nodemask_t
*rel
)
167 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
168 nodes_onto(*ret
, tmp
, *rel
);
171 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
173 if (nodes_empty(*nodes
))
175 pol
->v
.nodes
= *nodes
;
179 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
182 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
183 else if (nodes_empty(*nodes
))
184 return -EINVAL
; /* no allowed nodes */
186 pol
->v
.preferred_node
= first_node(*nodes
);
190 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
192 if (!is_valid_nodemask(nodes
))
194 pol
->v
.nodes
= *nodes
;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy
*pol
,
208 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc
->mask1
,
217 cpuset_current_mems_allowed
, node_states
[N_HIGH_MEMORY
]);
220 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
221 nodes
= NULL
; /* explicit local allocation */
223 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
224 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
226 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
228 if (mpol_store_user_nodemask(pol
))
229 pol
->w
.user_nodemask
= *nodes
;
231 pol
->w
.cpuset_mems_allowed
=
232 cpuset_current_mems_allowed
;
236 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
238 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
249 struct mempolicy
*policy
;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : -1);
254 if (mode
== MPOL_DEFAULT
) {
255 if (nodes
&& !nodes_empty(*nodes
))
256 return ERR_PTR(-EINVAL
);
257 return NULL
; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode
== MPOL_PREFERRED
) {
267 if (nodes_empty(*nodes
)) {
268 if (((flags
& MPOL_F_STATIC_NODES
) ||
269 (flags
& MPOL_F_RELATIVE_NODES
)))
270 return ERR_PTR(-EINVAL
);
272 } else if (nodes_empty(*nodes
))
273 return ERR_PTR(-EINVAL
);
274 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
276 return ERR_PTR(-ENOMEM
);
277 atomic_set(&policy
->refcnt
, 1);
279 policy
->flags
= flags
;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy
*p
)
287 if (!atomic_dec_and_test(&p
->refcnt
))
289 kmem_cache_free(policy_cache
, p
);
292 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
293 enum mpol_rebind_step step
)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
304 enum mpol_rebind_step step
)
308 if (pol
->flags
& MPOL_F_STATIC_NODES
)
309 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
310 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
311 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
318 nodes_remap(tmp
, pol
->v
.nodes
,
319 pol
->w
.cpuset_mems_allowed
, *nodes
);
320 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
321 } else if (step
== MPOL_REBIND_STEP2
) {
322 tmp
= pol
->w
.cpuset_mems_allowed
;
323 pol
->w
.cpuset_mems_allowed
= *nodes
;
328 if (nodes_empty(tmp
))
331 if (step
== MPOL_REBIND_STEP1
)
332 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
333 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
338 if (!node_isset(current
->il_next
, tmp
)) {
339 current
->il_next
= next_node(current
->il_next
, tmp
);
340 if (current
->il_next
>= MAX_NUMNODES
)
341 current
->il_next
= first_node(tmp
);
342 if (current
->il_next
>= MAX_NUMNODES
)
343 current
->il_next
= numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy
*pol
,
348 const nodemask_t
*nodes
,
349 enum mpol_rebind_step step
)
353 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
354 int node
= first_node(pol
->w
.user_nodemask
);
356 if (node_isset(node
, *nodes
)) {
357 pol
->v
.preferred_node
= node
;
358 pol
->flags
&= ~MPOL_F_LOCAL
;
360 pol
->flags
|= MPOL_F_LOCAL
;
361 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
362 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
363 pol
->v
.preferred_node
= first_node(tmp
);
364 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
365 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
366 pol
->w
.cpuset_mems_allowed
,
368 pol
->w
.cpuset_mems_allowed
= *nodes
;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
389 enum mpol_rebind_step step
)
393 if (!mpol_store_user_nodemask(pol
) && step
== 0 &&
394 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
397 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
400 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
403 if (step
== MPOL_REBIND_STEP1
)
404 pol
->flags
|= MPOL_F_REBINDING
;
405 else if (step
== MPOL_REBIND_STEP2
)
406 pol
->flags
&= ~MPOL_F_REBINDING
;
407 else if (step
>= MPOL_REBIND_NSTEP
)
410 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
421 enum mpol_rebind_step step
)
423 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
434 struct vm_area_struct
*vma
;
436 down_write(&mm
->mmap_sem
);
437 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
438 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
439 up_write(&mm
->mmap_sem
);
442 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
444 .rebind
= mpol_rebind_default
,
446 [MPOL_INTERLEAVE
] = {
447 .create
= mpol_new_interleave
,
448 .rebind
= mpol_rebind_nodemask
,
451 .create
= mpol_new_preferred
,
452 .rebind
= mpol_rebind_preferred
,
455 .create
= mpol_new_bind
,
456 .rebind
= mpol_rebind_nodemask
,
460 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
461 unsigned long flags
);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
465 unsigned long addr
, unsigned long end
,
466 const nodemask_t
*nodes
, unsigned long flags
,
473 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
478 if (!pte_present(*pte
))
480 page
= vm_normal_page(vma
, addr
, *pte
);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page
) || PageKsm(page
))
490 nid
= page_to_nid(page
);
491 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
495 migrate_page_add(page
, private, flags
);
498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
499 pte_unmap_unlock(orig_pte
, ptl
);
503 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
504 unsigned long addr
, unsigned long end
,
505 const nodemask_t
*nodes
, unsigned long flags
,
511 pmd
= pmd_offset(pud
, addr
);
513 next
= pmd_addr_end(addr
, end
);
514 split_huge_page_pmd(vma
->vm_mm
, pmd
);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
517 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
520 } while (pmd
++, addr
= next
, addr
!= end
);
524 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
525 unsigned long addr
, unsigned long end
,
526 const nodemask_t
*nodes
, unsigned long flags
,
532 pud
= pud_offset(pgd
, addr
);
534 next
= pud_addr_end(addr
, end
);
535 if (pud_none_or_clear_bad(pud
))
537 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
540 } while (pud
++, addr
= next
, addr
!= end
);
544 static inline int check_pgd_range(struct vm_area_struct
*vma
,
545 unsigned long addr
, unsigned long end
,
546 const nodemask_t
*nodes
, unsigned long flags
,
552 pgd
= pgd_offset(vma
->vm_mm
, addr
);
554 next
= pgd_addr_end(addr
, end
);
555 if (pgd_none_or_clear_bad(pgd
))
557 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
560 } while (pgd
++, addr
= next
, addr
!= end
);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
570 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
571 const nodemask_t
*nodes
, unsigned long flags
, void *private)
574 struct vm_area_struct
*vma
, *prev
;
577 vma
= find_vma(mm
, start
);
581 for (; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
582 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
583 if (!vma
->vm_next
&& vma
->vm_end
< end
)
585 if (prev
&& prev
->vm_end
< vma
->vm_start
)
588 if (!is_vm_hugetlb_page(vma
) &&
589 ((flags
& MPOL_MF_STRICT
) ||
590 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
591 vma_migratable(vma
)))) {
592 unsigned long endvma
= vma
->vm_end
;
596 if (vma
->vm_start
> start
)
597 start
= vma
->vm_start
;
598 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
609 * Apply policy to a single VMA
610 * This must be called with the mmap_sem held for writing.
612 static int vma_replace_policy(struct vm_area_struct
*vma
,
613 struct mempolicy
*pol
)
616 struct mempolicy
*old
;
617 struct mempolicy
*new;
619 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
620 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
621 vma
->vm_ops
, vma
->vm_file
,
622 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
628 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
629 err
= vma
->vm_ops
->set_policy(vma
, new);
634 old
= vma
->vm_policy
;
635 vma
->vm_policy
= new; /* protected by mmap_sem */
644 /* Step 2: apply policy to a range and do splits. */
645 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
646 unsigned long end
, struct mempolicy
*new_pol
)
648 struct vm_area_struct
*next
;
649 struct vm_area_struct
*prev
;
650 struct vm_area_struct
*vma
;
653 unsigned long vmstart
;
656 vma
= find_vma(mm
, start
);
657 if (!vma
|| vma
->vm_start
> start
)
661 if (start
> vma
->vm_start
)
664 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
666 vmstart
= max(start
, vma
->vm_start
);
667 vmend
= min(end
, vma
->vm_end
);
669 if (mpol_equal(vma_policy(vma
), new_pol
))
672 pgoff
= vma
->vm_pgoff
+
673 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
674 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
675 vma
->anon_vma
, vma
->vm_file
, pgoff
,
682 if (vma
->vm_start
!= vmstart
) {
683 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
687 if (vma
->vm_end
!= vmend
) {
688 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
692 err
= vma_replace_policy(vma
, new_pol
);
702 * Update task->flags PF_MEMPOLICY bit: set iff non-default
703 * mempolicy. Allows more rapid checking of this (combined perhaps
704 * with other PF_* flag bits) on memory allocation hot code paths.
706 * If called from outside this file, the task 'p' should -only- be
707 * a newly forked child not yet visible on the task list, because
708 * manipulating the task flags of a visible task is not safe.
710 * The above limitation is why this routine has the funny name
711 * mpol_fix_fork_child_flag().
713 * It is also safe to call this with a task pointer of current,
714 * which the static wrapper mpol_set_task_struct_flag() does,
715 * for use within this file.
718 void mpol_fix_fork_child_flag(struct task_struct
*p
)
721 p
->flags
|= PF_MEMPOLICY
;
723 p
->flags
&= ~PF_MEMPOLICY
;
726 static void mpol_set_task_struct_flag(void)
728 mpol_fix_fork_child_flag(current
);
731 /* Set the process memory policy */
732 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
735 struct mempolicy
*new, *old
;
736 struct mm_struct
*mm
= current
->mm
;
737 NODEMASK_SCRATCH(scratch
);
743 new = mpol_new(mode
, flags
, nodes
);
749 * prevent changing our mempolicy while show_numa_maps()
751 * Note: do_set_mempolicy() can be called at init time
755 down_write(&mm
->mmap_sem
);
757 ret
= mpol_set_nodemask(new, nodes
, scratch
);
759 task_unlock(current
);
761 up_write(&mm
->mmap_sem
);
765 old
= current
->mempolicy
;
766 current
->mempolicy
= new;
767 mpol_set_task_struct_flag();
768 if (new && new->mode
== MPOL_INTERLEAVE
&&
769 nodes_weight(new->v
.nodes
))
770 current
->il_next
= first_node(new->v
.nodes
);
771 task_unlock(current
);
773 up_write(&mm
->mmap_sem
);
778 NODEMASK_SCRATCH_FREE(scratch
);
783 * Return nodemask for policy for get_mempolicy() query
785 * Called with task's alloc_lock held
787 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
790 if (p
== &default_policy
)
796 case MPOL_INTERLEAVE
:
800 if (!(p
->flags
& MPOL_F_LOCAL
))
801 node_set(p
->v
.preferred_node
, *nodes
);
802 /* else return empty node mask for local allocation */
809 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
814 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
816 err
= page_to_nid(p
);
822 /* Retrieve NUMA policy */
823 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
824 unsigned long addr
, unsigned long flags
)
827 struct mm_struct
*mm
= current
->mm
;
828 struct vm_area_struct
*vma
= NULL
;
829 struct mempolicy
*pol
= current
->mempolicy
;
832 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
835 if (flags
& MPOL_F_MEMS_ALLOWED
) {
836 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
838 *policy
= 0; /* just so it's initialized */
840 *nmask
= cpuset_current_mems_allowed
;
841 task_unlock(current
);
845 if (flags
& MPOL_F_ADDR
) {
847 * Do NOT fall back to task policy if the
848 * vma/shared policy at addr is NULL. We
849 * want to return MPOL_DEFAULT in this case.
851 down_read(&mm
->mmap_sem
);
852 vma
= find_vma_intersection(mm
, addr
, addr
+1);
854 up_read(&mm
->mmap_sem
);
857 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
858 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
860 pol
= vma
->vm_policy
;
865 pol
= &default_policy
; /* indicates default behavior */
867 if (flags
& MPOL_F_NODE
) {
868 if (flags
& MPOL_F_ADDR
) {
869 err
= lookup_node(mm
, addr
);
873 } else if (pol
== current
->mempolicy
&&
874 pol
->mode
== MPOL_INTERLEAVE
) {
875 *policy
= current
->il_next
;
881 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
884 * Internal mempolicy flags must be masked off before exposing
885 * the policy to userspace.
887 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
891 up_read(¤t
->mm
->mmap_sem
);
897 if (mpol_store_user_nodemask(pol
)) {
898 *nmask
= pol
->w
.user_nodemask
;
901 get_policy_nodemask(pol
, nmask
);
902 task_unlock(current
);
909 up_read(¤t
->mm
->mmap_sem
);
913 #ifdef CONFIG_MIGRATION
917 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
921 * Avoid migrating a page that is shared with others.
923 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
924 if (!isolate_lru_page(page
)) {
925 list_add_tail(&page
->lru
, pagelist
);
926 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
927 page_is_file_cache(page
));
932 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
934 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
938 * Migrate pages from one node to a target node.
939 * Returns error or the number of pages not migrated.
941 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
949 node_set(source
, nmask
);
951 err
= check_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
952 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
956 if (!list_empty(&pagelist
)) {
957 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
958 false, MIGRATE_SYNC
);
960 putback_lru_pages(&pagelist
);
967 * Move pages between the two nodesets so as to preserve the physical
968 * layout as much as possible.
970 * Returns the number of page that could not be moved.
972 int do_migrate_pages(struct mm_struct
*mm
,
973 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
979 err
= migrate_prep();
983 down_read(&mm
->mmap_sem
);
985 err
= migrate_vmas(mm
, from_nodes
, to_nodes
, flags
);
990 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
991 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
992 * bit in 'tmp', and return that <source, dest> pair for migration.
993 * The pair of nodemasks 'to' and 'from' define the map.
995 * If no pair of bits is found that way, fallback to picking some
996 * pair of 'source' and 'dest' bits that are not the same. If the
997 * 'source' and 'dest' bits are the same, this represents a node
998 * that will be migrating to itself, so no pages need move.
1000 * If no bits are left in 'tmp', or if all remaining bits left
1001 * in 'tmp' correspond to the same bit in 'to', return false
1002 * (nothing left to migrate).
1004 * This lets us pick a pair of nodes to migrate between, such that
1005 * if possible the dest node is not already occupied by some other
1006 * source node, minimizing the risk of overloading the memory on a
1007 * node that would happen if we migrated incoming memory to a node
1008 * before migrating outgoing memory source that same node.
1010 * A single scan of tmp is sufficient. As we go, we remember the
1011 * most recent <s, d> pair that moved (s != d). If we find a pair
1012 * that not only moved, but what's better, moved to an empty slot
1013 * (d is not set in tmp), then we break out then, with that pair.
1014 * Otherwise when we finish scanning from_tmp, we at least have the
1015 * most recent <s, d> pair that moved. If we get all the way through
1016 * the scan of tmp without finding any node that moved, much less
1017 * moved to an empty node, then there is nothing left worth migrating.
1021 while (!nodes_empty(tmp
)) {
1026 for_each_node_mask(s
, tmp
) {
1027 d
= node_remap(s
, *from_nodes
, *to_nodes
);
1031 source
= s
; /* Node moved. Memorize */
1034 /* dest not in remaining from nodes? */
1035 if (!node_isset(dest
, tmp
))
1041 node_clear(source
, tmp
);
1042 err
= migrate_to_node(mm
, source
, dest
, flags
);
1049 up_read(&mm
->mmap_sem
);
1057 * Allocate a new page for page migration based on vma policy.
1058 * Start by assuming the page is mapped by the same vma as contains @start.
1059 * Search forward from there, if not. N.B., this assumes that the
1060 * list of pages handed to migrate_pages()--which is how we get here--
1061 * is in virtual address order.
1063 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1065 struct vm_area_struct
*vma
;
1066 unsigned long uninitialized_var(address
);
1068 vma
= find_vma(current
->mm
, start
);
1070 address
= page_address_in_vma(page
, vma
);
1071 if (address
!= -EFAULT
)
1077 * if !vma, alloc_page_vma() will use task or system default policy
1079 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1083 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1084 unsigned long flags
)
1088 int do_migrate_pages(struct mm_struct
*mm
,
1089 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
1094 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1100 static long do_mbind(unsigned long start
, unsigned long len
,
1101 unsigned short mode
, unsigned short mode_flags
,
1102 nodemask_t
*nmask
, unsigned long flags
)
1104 struct mm_struct
*mm
= current
->mm
;
1105 struct mempolicy
*new;
1108 LIST_HEAD(pagelist
);
1110 if (flags
& ~(unsigned long)(MPOL_MF_STRICT
|
1111 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
1113 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1116 if (start
& ~PAGE_MASK
)
1119 if (mode
== MPOL_DEFAULT
)
1120 flags
&= ~MPOL_MF_STRICT
;
1122 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1130 new = mpol_new(mode
, mode_flags
, nmask
);
1132 return PTR_ERR(new);
1135 * If we are using the default policy then operation
1136 * on discontinuous address spaces is okay after all
1139 flags
|= MPOL_MF_DISCONTIG_OK
;
1141 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1142 start
, start
+ len
, mode
, mode_flags
,
1143 nmask
? nodes_addr(*nmask
)[0] : -1);
1145 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1147 err
= migrate_prep();
1152 NODEMASK_SCRATCH(scratch
);
1154 down_write(&mm
->mmap_sem
);
1156 err
= mpol_set_nodemask(new, nmask
, scratch
);
1157 task_unlock(current
);
1159 up_write(&mm
->mmap_sem
);
1162 NODEMASK_SCRATCH_FREE(scratch
);
1167 err
= check_range(mm
, start
, end
, nmask
,
1168 flags
| MPOL_MF_INVERT
, &pagelist
);
1173 err
= mbind_range(mm
, start
, end
, new);
1175 if (!list_empty(&pagelist
)) {
1176 nr_failed
= migrate_pages(&pagelist
, new_page
,
1177 start
, false, true);
1179 putback_lru_pages(&pagelist
);
1182 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
1185 putback_lru_pages(&pagelist
);
1187 up_write(&mm
->mmap_sem
);
1194 * User space interface with variable sized bitmaps for nodelists.
1197 /* Copy a node mask from user space. */
1198 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1199 unsigned long maxnode
)
1202 unsigned long nlongs
;
1203 unsigned long endmask
;
1206 nodes_clear(*nodes
);
1207 if (maxnode
== 0 || !nmask
)
1209 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1212 nlongs
= BITS_TO_LONGS(maxnode
);
1213 if ((maxnode
% BITS_PER_LONG
) == 0)
1216 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1218 /* When the user specified more nodes than supported just check
1219 if the non supported part is all zero. */
1220 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1221 if (nlongs
> PAGE_SIZE
/sizeof(long))
1223 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1225 if (get_user(t
, nmask
+ k
))
1227 if (k
== nlongs
- 1) {
1233 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1237 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1239 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1243 /* Copy a kernel node mask to user space */
1244 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1247 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1248 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1250 if (copy
> nbytes
) {
1251 if (copy
> PAGE_SIZE
)
1253 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1257 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1260 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1261 unsigned long, mode
, unsigned long __user
*, nmask
,
1262 unsigned long, maxnode
, unsigned, flags
)
1266 unsigned short mode_flags
;
1268 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1269 mode
&= ~MPOL_MODE_FLAGS
;
1270 if (mode
>= MPOL_MAX
)
1272 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1273 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1275 err
= get_nodes(&nodes
, nmask
, maxnode
);
1278 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1281 /* Set the process memory policy */
1282 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1283 unsigned long, maxnode
)
1287 unsigned short flags
;
1289 flags
= mode
& MPOL_MODE_FLAGS
;
1290 mode
&= ~MPOL_MODE_FLAGS
;
1291 if ((unsigned int)mode
>= MPOL_MAX
)
1293 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1295 err
= get_nodes(&nodes
, nmask
, maxnode
);
1298 return do_set_mempolicy(mode
, flags
, &nodes
);
1301 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1302 const unsigned long __user
*, old_nodes
,
1303 const unsigned long __user
*, new_nodes
)
1305 const struct cred
*cred
= current_cred(), *tcred
;
1306 struct mm_struct
*mm
= NULL
;
1307 struct task_struct
*task
;
1308 nodemask_t task_nodes
;
1312 NODEMASK_SCRATCH(scratch
);
1317 old
= &scratch
->mask1
;
1318 new = &scratch
->mask2
;
1320 err
= get_nodes(old
, old_nodes
, maxnode
);
1324 err
= get_nodes(new, new_nodes
, maxnode
);
1328 /* Find the mm_struct */
1330 task
= pid
? find_task_by_vpid(pid
) : current
;
1336 get_task_struct(task
);
1341 * Check if this process has the right to modify the specified
1342 * process. The right exists if the process has administrative
1343 * capabilities, superuser privileges or the same
1344 * userid as the target process.
1346 tcred
= __task_cred(task
);
1347 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1348 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1349 !capable(CAP_SYS_NICE
)) {
1356 task_nodes
= cpuset_mems_allowed(task
);
1357 /* Is the user allowed to access the target nodes? */
1358 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1363 if (!nodes_subset(*new, node_states
[N_HIGH_MEMORY
])) {
1368 err
= security_task_movememory(task
);
1372 mm
= get_task_mm(task
);
1373 put_task_struct(task
);
1380 err
= do_migrate_pages(mm
, old
, new,
1381 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1385 NODEMASK_SCRATCH_FREE(scratch
);
1390 put_task_struct(task
);
1396 /* Retrieve NUMA policy */
1397 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1398 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1399 unsigned long, addr
, unsigned long, flags
)
1402 int uninitialized_var(pval
);
1405 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1408 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1413 if (policy
&& put_user(pval
, policy
))
1417 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1422 #ifdef CONFIG_COMPAT
1424 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1425 compat_ulong_t __user
*nmask
,
1426 compat_ulong_t maxnode
,
1427 compat_ulong_t addr
, compat_ulong_t flags
)
1430 unsigned long __user
*nm
= NULL
;
1431 unsigned long nr_bits
, alloc_size
;
1432 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1434 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1435 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1438 nm
= compat_alloc_user_space(alloc_size
);
1440 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1442 if (!err
&& nmask
) {
1443 unsigned long copy_size
;
1444 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1445 err
= copy_from_user(bm
, nm
, copy_size
);
1446 /* ensure entire bitmap is zeroed */
1447 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1448 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1454 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1455 compat_ulong_t maxnode
)
1458 unsigned long __user
*nm
= NULL
;
1459 unsigned long nr_bits
, alloc_size
;
1460 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1462 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1463 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1466 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1467 nm
= compat_alloc_user_space(alloc_size
);
1468 err
|= copy_to_user(nm
, bm
, alloc_size
);
1474 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1477 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1478 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1479 compat_ulong_t maxnode
, compat_ulong_t flags
)
1482 unsigned long __user
*nm
= NULL
;
1483 unsigned long nr_bits
, alloc_size
;
1486 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1487 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1490 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1491 nm
= compat_alloc_user_space(alloc_size
);
1492 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1498 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1504 * get_vma_policy(@task, @vma, @addr)
1505 * @task - task for fallback if vma policy == default
1506 * @vma - virtual memory area whose policy is sought
1507 * @addr - address in @vma for shared policy lookup
1509 * Returns effective policy for a VMA at specified address.
1510 * Falls back to @task or system default policy, as necessary.
1511 * Current or other task's task mempolicy and non-shared vma policies
1512 * are protected by the task's mmap_sem, which must be held for read by
1514 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1515 * count--added by the get_policy() vm_op, as appropriate--to protect against
1516 * freeing by another task. It is the caller's responsibility to free the
1517 * extra reference for shared policies.
1519 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1520 struct vm_area_struct
*vma
, unsigned long addr
)
1522 struct mempolicy
*pol
= task
->mempolicy
;
1525 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1526 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1530 } else if (vma
->vm_policy
) {
1531 pol
= vma
->vm_policy
;
1534 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1535 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1536 * count on these policies which will be dropped by
1537 * mpol_cond_put() later
1539 if (mpol_needs_cond_ref(pol
))
1544 pol
= &default_policy
;
1549 * Return a nodemask representing a mempolicy for filtering nodes for
1552 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1554 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1555 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1556 gfp_zone(gfp
) >= policy_zone
&&
1557 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1558 return &policy
->v
.nodes
;
1563 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1564 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1567 switch (policy
->mode
) {
1568 case MPOL_PREFERRED
:
1569 if (!(policy
->flags
& MPOL_F_LOCAL
))
1570 nd
= policy
->v
.preferred_node
;
1574 * Normally, MPOL_BIND allocations are node-local within the
1575 * allowed nodemask. However, if __GFP_THISNODE is set and the
1576 * current node isn't part of the mask, we use the zonelist for
1577 * the first node in the mask instead.
1579 if (unlikely(gfp
& __GFP_THISNODE
) &&
1580 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1581 nd
= first_node(policy
->v
.nodes
);
1586 return node_zonelist(nd
, gfp
);
1589 /* Do dynamic interleaving for a process */
1590 static unsigned interleave_nodes(struct mempolicy
*policy
)
1593 struct task_struct
*me
= current
;
1596 next
= next_node(nid
, policy
->v
.nodes
);
1597 if (next
>= MAX_NUMNODES
)
1598 next
= first_node(policy
->v
.nodes
);
1599 if (next
< MAX_NUMNODES
)
1605 * Depending on the memory policy provide a node from which to allocate the
1607 * @policy must be protected by freeing by the caller. If @policy is
1608 * the current task's mempolicy, this protection is implicit, as only the
1609 * task can change it's policy. The system default policy requires no
1612 unsigned slab_node(struct mempolicy
*policy
)
1614 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1615 return numa_node_id();
1617 switch (policy
->mode
) {
1618 case MPOL_PREFERRED
:
1620 * handled MPOL_F_LOCAL above
1622 return policy
->v
.preferred_node
;
1624 case MPOL_INTERLEAVE
:
1625 return interleave_nodes(policy
);
1629 * Follow bind policy behavior and start allocation at the
1632 struct zonelist
*zonelist
;
1634 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1635 zonelist
= &NODE_DATA(numa_node_id())->node_zonelists
[0];
1636 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1639 return zone
? zone
->node
: numa_node_id();
1647 /* Do static interleaving for a VMA with known offset. */
1648 static unsigned offset_il_node(struct mempolicy
*pol
,
1649 struct vm_area_struct
*vma
, unsigned long off
)
1651 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1657 return numa_node_id();
1658 target
= (unsigned int)off
% nnodes
;
1661 nid
= next_node(nid
, pol
->v
.nodes
);
1663 } while (c
<= target
);
1667 /* Determine a node number for interleave */
1668 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1669 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1675 * for small pages, there is no difference between
1676 * shift and PAGE_SHIFT, so the bit-shift is safe.
1677 * for huge pages, since vm_pgoff is in units of small
1678 * pages, we need to shift off the always 0 bits to get
1681 BUG_ON(shift
< PAGE_SHIFT
);
1682 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1683 off
+= (addr
- vma
->vm_start
) >> shift
;
1684 return offset_il_node(pol
, vma
, off
);
1686 return interleave_nodes(pol
);
1690 * Return the bit number of a random bit set in the nodemask.
1691 * (returns -1 if nodemask is empty)
1693 int node_random(const nodemask_t
*maskp
)
1697 w
= nodes_weight(*maskp
);
1699 bit
= bitmap_ord_to_pos(maskp
->bits
,
1700 get_random_int() % w
, MAX_NUMNODES
);
1704 #ifdef CONFIG_HUGETLBFS
1706 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1707 * @vma = virtual memory area whose policy is sought
1708 * @addr = address in @vma for shared policy lookup and interleave policy
1709 * @gfp_flags = for requested zone
1710 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1711 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1713 * Returns a zonelist suitable for a huge page allocation and a pointer
1714 * to the struct mempolicy for conditional unref after allocation.
1715 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1716 * @nodemask for filtering the zonelist.
1718 * Must be protected by get_mems_allowed()
1720 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1721 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1722 nodemask_t
**nodemask
)
1724 struct zonelist
*zl
;
1726 *mpol
= get_vma_policy(current
, vma
, addr
);
1727 *nodemask
= NULL
; /* assume !MPOL_BIND */
1729 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1730 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1731 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1733 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1734 if ((*mpol
)->mode
== MPOL_BIND
)
1735 *nodemask
= &(*mpol
)->v
.nodes
;
1741 * init_nodemask_of_mempolicy
1743 * If the current task's mempolicy is "default" [NULL], return 'false'
1744 * to indicate default policy. Otherwise, extract the policy nodemask
1745 * for 'bind' or 'interleave' policy into the argument nodemask, or
1746 * initialize the argument nodemask to contain the single node for
1747 * 'preferred' or 'local' policy and return 'true' to indicate presence
1748 * of non-default mempolicy.
1750 * We don't bother with reference counting the mempolicy [mpol_get/put]
1751 * because the current task is examining it's own mempolicy and a task's
1752 * mempolicy is only ever changed by the task itself.
1754 * N.B., it is the caller's responsibility to free a returned nodemask.
1756 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1758 struct mempolicy
*mempolicy
;
1761 if (!(mask
&& current
->mempolicy
))
1765 mempolicy
= current
->mempolicy
;
1766 switch (mempolicy
->mode
) {
1767 case MPOL_PREFERRED
:
1768 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1769 nid
= numa_node_id();
1771 nid
= mempolicy
->v
.preferred_node
;
1772 init_nodemask_of_node(mask
, nid
);
1777 case MPOL_INTERLEAVE
:
1778 *mask
= mempolicy
->v
.nodes
;
1784 task_unlock(current
);
1791 * mempolicy_nodemask_intersects
1793 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1794 * policy. Otherwise, check for intersection between mask and the policy
1795 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1796 * policy, always return true since it may allocate elsewhere on fallback.
1798 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1800 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1801 const nodemask_t
*mask
)
1803 struct mempolicy
*mempolicy
;
1809 mempolicy
= tsk
->mempolicy
;
1813 switch (mempolicy
->mode
) {
1814 case MPOL_PREFERRED
:
1816 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1817 * allocate from, they may fallback to other nodes when oom.
1818 * Thus, it's possible for tsk to have allocated memory from
1823 case MPOL_INTERLEAVE
:
1824 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1834 /* Allocate a page in interleaved policy.
1835 Own path because it needs to do special accounting. */
1836 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1839 struct zonelist
*zl
;
1842 zl
= node_zonelist(nid
, gfp
);
1843 page
= __alloc_pages(gfp
, order
, zl
);
1844 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1845 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1850 * alloc_pages_vma - Allocate a page for a VMA.
1853 * %GFP_USER user allocation.
1854 * %GFP_KERNEL kernel allocations,
1855 * %GFP_HIGHMEM highmem/user allocations,
1856 * %GFP_FS allocation should not call back into a file system.
1857 * %GFP_ATOMIC don't sleep.
1859 * @order:Order of the GFP allocation.
1860 * @vma: Pointer to VMA or NULL if not available.
1861 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1863 * This function allocates a page from the kernel page pool and applies
1864 * a NUMA policy associated with the VMA or the current process.
1865 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1866 * mm_struct of the VMA to prevent it from going away. Should be used for
1867 * all allocations for pages that will be mapped into
1868 * user space. Returns NULL when no page can be allocated.
1870 * Should be called with the mm_sem of the vma hold.
1873 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1874 unsigned long addr
, int node
)
1876 struct mempolicy
*pol
;
1877 struct zonelist
*zl
;
1879 unsigned int cpuset_mems_cookie
;
1882 pol
= get_vma_policy(current
, vma
, addr
);
1883 cpuset_mems_cookie
= get_mems_allowed();
1885 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
1888 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1890 page
= alloc_page_interleave(gfp
, order
, nid
);
1891 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1896 zl
= policy_zonelist(gfp
, pol
, node
);
1897 if (unlikely(mpol_needs_cond_ref(pol
))) {
1899 * slow path: ref counted shared policy
1901 struct page
*page
= __alloc_pages_nodemask(gfp
, order
,
1902 zl
, policy_nodemask(gfp
, pol
));
1904 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1909 * fast path: default or task policy
1911 page
= __alloc_pages_nodemask(gfp
, order
, zl
,
1912 policy_nodemask(gfp
, pol
));
1913 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1919 * alloc_pages_current - Allocate pages.
1922 * %GFP_USER user allocation,
1923 * %GFP_KERNEL kernel allocation,
1924 * %GFP_HIGHMEM highmem allocation,
1925 * %GFP_FS don't call back into a file system.
1926 * %GFP_ATOMIC don't sleep.
1927 * @order: Power of two of allocation size in pages. 0 is a single page.
1929 * Allocate a page from the kernel page pool. When not in
1930 * interrupt context and apply the current process NUMA policy.
1931 * Returns NULL when no page can be allocated.
1933 * Don't call cpuset_update_task_memory_state() unless
1934 * 1) it's ok to take cpuset_sem (can WAIT), and
1935 * 2) allocating for current task (not interrupt).
1937 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1939 struct mempolicy
*pol
= current
->mempolicy
;
1941 unsigned int cpuset_mems_cookie
;
1943 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1944 pol
= &default_policy
;
1947 cpuset_mems_cookie
= get_mems_allowed();
1950 * No reference counting needed for current->mempolicy
1951 * nor system default_policy
1953 if (pol
->mode
== MPOL_INTERLEAVE
)
1954 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1956 page
= __alloc_pages_nodemask(gfp
, order
,
1957 policy_zonelist(gfp
, pol
, numa_node_id()),
1958 policy_nodemask(gfp
, pol
));
1960 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1965 EXPORT_SYMBOL(alloc_pages_current
);
1968 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1969 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1970 * with the mems_allowed returned by cpuset_mems_allowed(). This
1971 * keeps mempolicies cpuset relative after its cpuset moves. See
1972 * further kernel/cpuset.c update_nodemask().
1974 * current's mempolicy may be rebinded by the other task(the task that changes
1975 * cpuset's mems), so we needn't do rebind work for current task.
1978 /* Slow path of a mempolicy duplicate */
1979 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
1981 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1984 return ERR_PTR(-ENOMEM
);
1986 /* task's mempolicy is protected by alloc_lock */
1987 if (old
== current
->mempolicy
) {
1990 task_unlock(current
);
1994 if (current_cpuset_is_being_rebound()) {
1995 nodemask_t mems
= cpuset_mems_allowed(current
);
1996 if (new->flags
& MPOL_F_REBINDING
)
1997 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
1999 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2001 atomic_set(&new->refcnt
, 1);
2005 /* Slow path of a mempolicy comparison */
2006 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2010 if (a
->mode
!= b
->mode
)
2012 if (a
->flags
!= b
->flags
)
2014 if (mpol_store_user_nodemask(a
))
2015 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2021 case MPOL_INTERLEAVE
:
2022 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2023 case MPOL_PREFERRED
:
2024 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2032 * Shared memory backing store policy support.
2034 * Remember policies even when nobody has shared memory mapped.
2035 * The policies are kept in Red-Black tree linked from the inode.
2036 * They are protected by the sp->lock spinlock, which should be held
2037 * for any accesses to the tree.
2040 /* lookup first element intersecting start-end */
2041 /* Caller holds sp->mutex */
2042 static struct sp_node
*
2043 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2045 struct rb_node
*n
= sp
->root
.rb_node
;
2048 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2050 if (start
>= p
->end
)
2052 else if (end
<= p
->start
)
2060 struct sp_node
*w
= NULL
;
2061 struct rb_node
*prev
= rb_prev(n
);
2064 w
= rb_entry(prev
, struct sp_node
, nd
);
2065 if (w
->end
<= start
)
2069 return rb_entry(n
, struct sp_node
, nd
);
2072 /* Insert a new shared policy into the list. */
2073 /* Caller holds sp->lock */
2074 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2076 struct rb_node
**p
= &sp
->root
.rb_node
;
2077 struct rb_node
*parent
= NULL
;
2082 nd
= rb_entry(parent
, struct sp_node
, nd
);
2083 if (new->start
< nd
->start
)
2085 else if (new->end
> nd
->end
)
2086 p
= &(*p
)->rb_right
;
2090 rb_link_node(&new->nd
, parent
, p
);
2091 rb_insert_color(&new->nd
, &sp
->root
);
2092 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2093 new->policy
? new->policy
->mode
: 0);
2096 /* Find shared policy intersecting idx */
2098 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2100 struct mempolicy
*pol
= NULL
;
2103 if (!sp
->root
.rb_node
)
2105 mutex_lock(&sp
->mutex
);
2106 sn
= sp_lookup(sp
, idx
, idx
+1);
2108 mpol_get(sn
->policy
);
2111 mutex_unlock(&sp
->mutex
);
2115 static void sp_free(struct sp_node
*n
)
2117 mpol_put(n
->policy
);
2118 kmem_cache_free(sn_cache
, n
);
2121 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2123 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2124 rb_erase(&n
->nd
, &sp
->root
);
2128 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2129 struct mempolicy
*pol
)
2132 struct mempolicy
*newpol
;
2134 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2138 newpol
= mpol_dup(pol
);
2139 if (IS_ERR(newpol
)) {
2140 kmem_cache_free(sn_cache
, n
);
2143 newpol
->flags
|= MPOL_F_SHARED
;
2152 /* Replace a policy range. */
2153 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2154 unsigned long end
, struct sp_node
*new)
2159 mutex_lock(&sp
->mutex
);
2160 n
= sp_lookup(sp
, start
, end
);
2161 /* Take care of old policies in the same range. */
2162 while (n
&& n
->start
< end
) {
2163 struct rb_node
*next
= rb_next(&n
->nd
);
2164 if (n
->start
>= start
) {
2170 /* Old policy spanning whole new range. */
2172 struct sp_node
*new2
;
2173 new2
= sp_alloc(end
, n
->end
, n
->policy
);
2179 sp_insert(sp
, new2
);
2186 n
= rb_entry(next
, struct sp_node
, nd
);
2191 mutex_unlock(&sp
->mutex
);
2196 * mpol_shared_policy_init - initialize shared policy for inode
2197 * @sp: pointer to inode shared policy
2198 * @mpol: struct mempolicy to install
2200 * Install non-NULL @mpol in inode's shared policy rb-tree.
2201 * On entry, the current task has a reference on a non-NULL @mpol.
2202 * This must be released on exit.
2203 * This is called at get_inode() calls and we can use GFP_KERNEL.
2205 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2209 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2210 mutex_init(&sp
->mutex
);
2213 struct vm_area_struct pvma
;
2214 struct mempolicy
*new;
2215 NODEMASK_SCRATCH(scratch
);
2219 /* contextualize the tmpfs mount point mempolicy */
2220 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2222 goto free_scratch
; /* no valid nodemask intersection */
2225 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2226 task_unlock(current
);
2230 /* Create pseudo-vma that contains just the policy */
2231 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2232 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2233 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2236 mpol_put(new); /* drop initial ref */
2238 NODEMASK_SCRATCH_FREE(scratch
);
2240 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2244 int mpol_set_shared_policy(struct shared_policy
*info
,
2245 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2248 struct sp_node
*new = NULL
;
2249 unsigned long sz
= vma_pages(vma
);
2251 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2253 sz
, npol
? npol
->mode
: -1,
2254 npol
? npol
->flags
: -1,
2255 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
2258 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2262 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2268 /* Free a backing policy store on inode delete. */
2269 void mpol_free_shared_policy(struct shared_policy
*p
)
2272 struct rb_node
*next
;
2274 if (!p
->root
.rb_node
)
2276 mutex_lock(&p
->mutex
);
2277 next
= rb_first(&p
->root
);
2279 n
= rb_entry(next
, struct sp_node
, nd
);
2280 next
= rb_next(&n
->nd
);
2283 mutex_unlock(&p
->mutex
);
2286 /* assumes fs == KERNEL_DS */
2287 void __init
numa_policy_init(void)
2289 nodemask_t interleave_nodes
;
2290 unsigned long largest
= 0;
2291 int nid
, prefer
= 0;
2293 policy_cache
= kmem_cache_create("numa_policy",
2294 sizeof(struct mempolicy
),
2295 0, SLAB_PANIC
, NULL
);
2297 sn_cache
= kmem_cache_create("shared_policy_node",
2298 sizeof(struct sp_node
),
2299 0, SLAB_PANIC
, NULL
);
2302 * Set interleaving policy for system init. Interleaving is only
2303 * enabled across suitably sized nodes (default is >= 16MB), or
2304 * fall back to the largest node if they're all smaller.
2306 nodes_clear(interleave_nodes
);
2307 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2308 unsigned long total_pages
= node_present_pages(nid
);
2310 /* Preserve the largest node */
2311 if (largest
< total_pages
) {
2312 largest
= total_pages
;
2316 /* Interleave this node? */
2317 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2318 node_set(nid
, interleave_nodes
);
2321 /* All too small, use the largest */
2322 if (unlikely(nodes_empty(interleave_nodes
)))
2323 node_set(prefer
, interleave_nodes
);
2325 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2326 printk("numa_policy_init: interleaving failed\n");
2329 /* Reset policy of current process to default */
2330 void numa_default_policy(void)
2332 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2336 * Parse and format mempolicy from/to strings
2340 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2342 #define MPOL_LOCAL MPOL_MAX
2343 static const char * const policy_modes
[] =
2345 [MPOL_DEFAULT
] = "default",
2346 [MPOL_PREFERRED
] = "prefer",
2347 [MPOL_BIND
] = "bind",
2348 [MPOL_INTERLEAVE
] = "interleave",
2349 [MPOL_LOCAL
] = "local"
2355 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2356 * @str: string containing mempolicy to parse
2357 * @mpol: pointer to struct mempolicy pointer, returned on success.
2358 * @unused: redundant argument, to be removed later.
2361 * <mode>[=<flags>][:<nodelist>]
2363 * On success, returns 0, else 1
2365 int mpol_parse_str(char *str
, struct mempolicy
**mpol
, int unused
)
2367 struct mempolicy
*new = NULL
;
2368 unsigned short mode
;
2369 unsigned short mode_flags
;
2371 char *nodelist
= strchr(str
, ':');
2372 char *flags
= strchr(str
, '=');
2376 /* NUL-terminate mode or flags string */
2378 if (nodelist_parse(nodelist
, nodes
))
2380 if (!nodes_subset(nodes
, node_states
[N_HIGH_MEMORY
]))
2386 *flags
++ = '\0'; /* terminate mode string */
2388 for (mode
= 0; mode
<= MPOL_LOCAL
; mode
++) {
2389 if (!strcmp(str
, policy_modes
[mode
])) {
2393 if (mode
> MPOL_LOCAL
)
2397 case MPOL_PREFERRED
:
2399 * Insist on a nodelist of one node only
2402 char *rest
= nodelist
;
2403 while (isdigit(*rest
))
2409 case MPOL_INTERLEAVE
:
2411 * Default to online nodes with memory if no nodelist
2414 nodes
= node_states
[N_HIGH_MEMORY
];
2418 * Don't allow a nodelist; mpol_new() checks flags
2422 mode
= MPOL_PREFERRED
;
2426 * Insist on a empty nodelist
2433 * Insist on a nodelist
2442 * Currently, we only support two mutually exclusive
2445 if (!strcmp(flags
, "static"))
2446 mode_flags
|= MPOL_F_STATIC_NODES
;
2447 else if (!strcmp(flags
, "relative"))
2448 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2453 new = mpol_new(mode
, mode_flags
, &nodes
);
2458 * Save nodes for mpol_to_str() to show the tmpfs mount options
2459 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2461 if (mode
!= MPOL_PREFERRED
)
2462 new->v
.nodes
= nodes
;
2464 new->v
.preferred_node
= first_node(nodes
);
2466 new->flags
|= MPOL_F_LOCAL
;
2469 * Save nodes for contextualization: this will be used to "clone"
2470 * the mempolicy in a specific context [cpuset] at a later time.
2472 new->w
.user_nodemask
= nodes
;
2477 /* Restore string for error message */
2486 #endif /* CONFIG_TMPFS */
2489 * mpol_to_str - format a mempolicy structure for printing
2490 * @buffer: to contain formatted mempolicy string
2491 * @maxlen: length of @buffer
2492 * @pol: pointer to mempolicy to be formatted
2493 * @unused: redundant argument, to be removed later.
2495 * Convert a mempolicy into a string.
2496 * Returns the number of characters in buffer (if positive)
2497 * or an error (negative)
2499 int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
, int unused
)
2504 unsigned short mode
;
2505 unsigned short flags
= pol
? pol
->flags
: 0;
2508 * Sanity check: room for longest mode, flag and some nodes
2510 VM_BUG_ON(maxlen
< strlen("interleave") + strlen("relative") + 16);
2512 if (!pol
|| pol
== &default_policy
)
2513 mode
= MPOL_DEFAULT
;
2522 case MPOL_PREFERRED
:
2524 if (flags
& MPOL_F_LOCAL
)
2527 node_set(pol
->v
.preferred_node
, nodes
);
2532 case MPOL_INTERLEAVE
:
2533 nodes
= pol
->v
.nodes
;
2540 l
= strlen(policy_modes
[mode
]);
2541 if (buffer
+ maxlen
< p
+ l
+ 1)
2544 strcpy(p
, policy_modes
[mode
]);
2547 if (flags
& MPOL_MODE_FLAGS
) {
2548 if (buffer
+ maxlen
< p
+ 2)
2553 * Currently, the only defined flags are mutually exclusive
2555 if (flags
& MPOL_F_STATIC_NODES
)
2556 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2557 else if (flags
& MPOL_F_RELATIVE_NODES
)
2558 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2561 if (!nodes_empty(nodes
)) {
2562 if (buffer
+ maxlen
< p
+ 2)
2565 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);