2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 * page_lock_anon_vma() VS put_anon_vma()
99 * mutex_trylock() atomic_dec_and_test()
101 * atomic_read() mutex_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
107 if (mutex_is_locked(&anon_vma
->root
->mutex
)) {
108 anon_vma_lock(anon_vma
);
109 anon_vma_unlock(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
125 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
126 struct anon_vma_chain
*avc
,
127 struct anon_vma
*anon_vma
)
130 avc
->anon_vma
= anon_vma
;
131 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
134 * It's critical to add new vmas to the tail of the anon_vma,
135 * see comment in huge_memory.c:__split_huge_page().
137 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
141 * anon_vma_prepare - attach an anon_vma to a memory region
142 * @vma: the memory region in question
144 * This makes sure the memory mapping described by 'vma' has
145 * an 'anon_vma' attached to it, so that we can associate the
146 * anonymous pages mapped into it with that anon_vma.
148 * The common case will be that we already have one, but if
149 * not we either need to find an adjacent mapping that we
150 * can re-use the anon_vma from (very common when the only
151 * reason for splitting a vma has been mprotect()), or we
152 * allocate a new one.
154 * Anon-vma allocations are very subtle, because we may have
155 * optimistically looked up an anon_vma in page_lock_anon_vma()
156 * and that may actually touch the spinlock even in the newly
157 * allocated vma (it depends on RCU to make sure that the
158 * anon_vma isn't actually destroyed).
160 * As a result, we need to do proper anon_vma locking even
161 * for the new allocation. At the same time, we do not want
162 * to do any locking for the common case of already having
165 * This must be called with the mmap_sem held for reading.
167 int anon_vma_prepare(struct vm_area_struct
*vma
)
169 struct anon_vma
*anon_vma
= vma
->anon_vma
;
170 struct anon_vma_chain
*avc
;
173 if (unlikely(!anon_vma
)) {
174 struct mm_struct
*mm
= vma
->vm_mm
;
175 struct anon_vma
*allocated
;
177 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
181 anon_vma
= find_mergeable_anon_vma(vma
);
184 anon_vma
= anon_vma_alloc();
185 if (unlikely(!anon_vma
))
186 goto out_enomem_free_avc
;
187 allocated
= anon_vma
;
190 anon_vma_lock(anon_vma
);
191 /* page_table_lock to protect against threads */
192 spin_lock(&mm
->page_table_lock
);
193 if (likely(!vma
->anon_vma
)) {
194 vma
->anon_vma
= anon_vma
;
195 anon_vma_chain_link(vma
, avc
, anon_vma
);
199 spin_unlock(&mm
->page_table_lock
);
200 anon_vma_unlock(anon_vma
);
202 if (unlikely(allocated
))
203 put_anon_vma(allocated
);
205 anon_vma_chain_free(avc
);
210 anon_vma_chain_free(avc
);
216 * This is a useful helper function for locking the anon_vma root as
217 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
220 * Such anon_vma's should have the same root, so you'd expect to see
221 * just a single mutex_lock for the whole traversal.
223 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
225 struct anon_vma
*new_root
= anon_vma
->root
;
226 if (new_root
!= root
) {
227 if (WARN_ON_ONCE(root
))
228 mutex_unlock(&root
->mutex
);
230 mutex_lock(&root
->mutex
);
235 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
238 mutex_unlock(&root
->mutex
);
242 * Attach the anon_vmas from src to dst.
243 * Returns 0 on success, -ENOMEM on failure.
245 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
247 struct anon_vma_chain
*avc
, *pavc
;
248 struct anon_vma
*root
= NULL
;
250 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
251 struct anon_vma
*anon_vma
;
253 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
254 if (unlikely(!avc
)) {
255 unlock_anon_vma_root(root
);
257 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
261 anon_vma
= pavc
->anon_vma
;
262 root
= lock_anon_vma_root(root
, anon_vma
);
263 anon_vma_chain_link(dst
, avc
, anon_vma
);
265 unlock_anon_vma_root(root
);
269 unlink_anon_vmas(dst
);
274 * Some rmap walk that needs to find all ptes/hugepmds without false
275 * negatives (like migrate and split_huge_page) running concurrent
276 * with operations that copy or move pagetables (like mremap() and
277 * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
278 * list to be in a certain order: the dst_vma must be placed after the
279 * src_vma in the list. This is always guaranteed by fork() but
280 * mremap() needs to call this function to enforce it in case the
281 * dst_vma isn't newly allocated and chained with the anon_vma_clone()
282 * function but just an extension of a pre-existing vma through
285 * NOTE: the same_anon_vma list can still be changed by other
286 * processes while mremap runs because mremap doesn't hold the
287 * anon_vma mutex to prevent modifications to the list while it
288 * runs. All we need to enforce is that the relative order of this
289 * process vmas isn't changing (we don't care about other vmas
290 * order). Each vma corresponds to an anon_vma_chain structure so
291 * there's no risk that other processes calling anon_vma_moveto_tail()
292 * and changing the same_anon_vma list under mremap() will screw with
293 * the relative order of this process vmas in the list, because we
294 * they can't alter the order of any vma that belongs to this
295 * process. And there can't be another anon_vma_moveto_tail() running
296 * concurrently with mremap() coming from this process because we hold
297 * the mmap_sem for the whole mremap(). fork() ordering dependency
298 * also shouldn't be affected because fork() only cares that the
299 * parent vmas are placed in the list before the child vmas and
300 * anon_vma_moveto_tail() won't reorder vmas from either the fork()
303 void anon_vma_moveto_tail(struct vm_area_struct
*dst
)
305 struct anon_vma_chain
*pavc
;
306 struct anon_vma
*root
= NULL
;
308 list_for_each_entry_reverse(pavc
, &dst
->anon_vma_chain
, same_vma
) {
309 struct anon_vma
*anon_vma
= pavc
->anon_vma
;
310 VM_BUG_ON(pavc
->vma
!= dst
);
311 root
= lock_anon_vma_root(root
, anon_vma
);
312 list_del(&pavc
->same_anon_vma
);
313 list_add_tail(&pavc
->same_anon_vma
, &anon_vma
->head
);
315 unlock_anon_vma_root(root
);
319 * Attach vma to its own anon_vma, as well as to the anon_vmas that
320 * the corresponding VMA in the parent process is attached to.
321 * Returns 0 on success, non-zero on failure.
323 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
325 struct anon_vma_chain
*avc
;
326 struct anon_vma
*anon_vma
;
328 /* Don't bother if the parent process has no anon_vma here. */
333 * First, attach the new VMA to the parent VMA's anon_vmas,
334 * so rmap can find non-COWed pages in child processes.
336 if (anon_vma_clone(vma
, pvma
))
339 /* Then add our own anon_vma. */
340 anon_vma
= anon_vma_alloc();
343 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
345 goto out_error_free_anon_vma
;
348 * The root anon_vma's spinlock is the lock actually used when we
349 * lock any of the anon_vmas in this anon_vma tree.
351 anon_vma
->root
= pvma
->anon_vma
->root
;
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
357 get_anon_vma(anon_vma
->root
);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma
->anon_vma
= anon_vma
;
360 anon_vma_lock(anon_vma
);
361 anon_vma_chain_link(vma
, avc
, anon_vma
);
362 anon_vma_unlock(anon_vma
);
366 out_error_free_anon_vma
:
367 put_anon_vma(anon_vma
);
369 unlink_anon_vmas(vma
);
373 void unlink_anon_vmas(struct vm_area_struct
*vma
)
375 struct anon_vma_chain
*avc
, *next
;
376 struct anon_vma
*root
= NULL
;
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
383 struct anon_vma
*anon_vma
= avc
->anon_vma
;
385 root
= lock_anon_vma_root(root
, anon_vma
);
386 list_del(&avc
->same_anon_vma
);
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
392 if (list_empty(&anon_vma
->head
))
395 list_del(&avc
->same_vma
);
396 anon_vma_chain_free(avc
);
398 unlock_anon_vma_root(root
);
401 * Iterate the list once more, it now only contains empty and unlinked
402 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
403 * needing to acquire the anon_vma->root->mutex.
405 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
406 struct anon_vma
*anon_vma
= avc
->anon_vma
;
408 put_anon_vma(anon_vma
);
410 list_del(&avc
->same_vma
);
411 anon_vma_chain_free(avc
);
415 static void anon_vma_ctor(void *data
)
417 struct anon_vma
*anon_vma
= data
;
419 mutex_init(&anon_vma
->mutex
);
420 atomic_set(&anon_vma
->refcount
, 0);
421 INIT_LIST_HEAD(&anon_vma
->head
);
424 void __init
anon_vma_init(void)
426 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
427 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
428 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
432 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
434 * Since there is no serialization what so ever against page_remove_rmap()
435 * the best this function can do is return a locked anon_vma that might
436 * have been relevant to this page.
438 * The page might have been remapped to a different anon_vma or the anon_vma
439 * returned may already be freed (and even reused).
441 * In case it was remapped to a different anon_vma, the new anon_vma will be a
442 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
443 * ensure that any anon_vma obtained from the page will still be valid for as
444 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
446 * All users of this function must be very careful when walking the anon_vma
447 * chain and verify that the page in question is indeed mapped in it
448 * [ something equivalent to page_mapped_in_vma() ].
450 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
451 * that the anon_vma pointer from page->mapping is valid if there is a
452 * mapcount, we can dereference the anon_vma after observing those.
454 struct anon_vma
*page_get_anon_vma(struct page
*page
)
456 struct anon_vma
*anon_vma
= NULL
;
457 unsigned long anon_mapping
;
460 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
461 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
463 if (!page_mapped(page
))
466 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
467 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
473 * If this page is still mapped, then its anon_vma cannot have been
474 * freed. But if it has been unmapped, we have no security against the
475 * anon_vma structure being freed and reused (for another anon_vma:
476 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
477 * above cannot corrupt).
479 if (!page_mapped(page
)) {
481 put_anon_vma(anon_vma
);
491 * Similar to page_get_anon_vma() except it locks the anon_vma.
493 * Its a little more complex as it tries to keep the fast path to a single
494 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
495 * reference like with page_get_anon_vma() and then block on the mutex.
497 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
499 struct anon_vma
*anon_vma
= NULL
;
500 struct anon_vma
*root_anon_vma
;
501 unsigned long anon_mapping
;
504 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
505 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
507 if (!page_mapped(page
))
510 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
511 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
512 if (mutex_trylock(&root_anon_vma
->mutex
)) {
514 * If the page is still mapped, then this anon_vma is still
515 * its anon_vma, and holding the mutex ensures that it will
516 * not go away, see anon_vma_free().
518 if (!page_mapped(page
)) {
519 mutex_unlock(&root_anon_vma
->mutex
);
525 /* trylock failed, we got to sleep */
526 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
531 if (!page_mapped(page
)) {
533 put_anon_vma(anon_vma
);
537 /* we pinned the anon_vma, its safe to sleep */
539 anon_vma_lock(anon_vma
);
541 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
543 * Oops, we held the last refcount, release the lock
544 * and bail -- can't simply use put_anon_vma() because
545 * we'll deadlock on the anon_vma_lock() recursion.
547 anon_vma_unlock(anon_vma
);
548 __put_anon_vma(anon_vma
);
559 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
561 anon_vma_unlock(anon_vma
);
565 * At what user virtual address is page expected in @vma?
566 * Returns virtual address or -EFAULT if page's index/offset is not
567 * within the range mapped the @vma.
570 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
572 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
573 unsigned long address
;
575 if (unlikely(is_vm_hugetlb_page(vma
)))
576 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
577 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
578 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
579 /* page should be within @vma mapping range */
586 * At what user virtual address is page expected in vma?
587 * Caller should check the page is actually part of the vma.
589 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
591 if (PageAnon(page
)) {
592 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
597 if (!vma
->anon_vma
|| !page__anon_vma
||
598 vma
->anon_vma
->root
!= page__anon_vma
->root
)
600 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
602 vma
->vm_file
->f_mapping
!= page
->mapping
)
606 return vma_address(page
, vma
);
610 * Check that @page is mapped at @address into @mm.
612 * If @sync is false, page_check_address may perform a racy check to avoid
613 * the page table lock when the pte is not present (helpful when reclaiming
614 * highly shared pages).
616 * On success returns with pte mapped and locked.
618 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
619 unsigned long address
, spinlock_t
**ptlp
, int sync
)
627 if (unlikely(PageHuge(page
))) {
628 /* when pud is not present, pte will be NULL */
629 pte
= huge_pte_offset(mm
, address
);
633 ptl
= &mm
->page_table_lock
;
637 pgd
= pgd_offset(mm
, address
);
638 if (!pgd_present(*pgd
))
641 pud
= pud_offset(pgd
, address
);
642 if (!pud_present(*pud
))
645 pmd
= pmd_offset(pud
, address
);
646 if (!pmd_present(*pmd
))
648 if (pmd_trans_huge(*pmd
))
651 pte
= pte_offset_map(pmd
, address
);
652 /* Make a quick check before getting the lock */
653 if (!sync
&& !pte_present(*pte
)) {
658 ptl
= pte_lockptr(mm
, pmd
);
661 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
665 pte_unmap_unlock(pte
, ptl
);
670 * page_mapped_in_vma - check whether a page is really mapped in a VMA
671 * @page: the page to test
672 * @vma: the VMA to test
674 * Returns 1 if the page is mapped into the page tables of the VMA, 0
675 * if the page is not mapped into the page tables of this VMA. Only
676 * valid for normal file or anonymous VMAs.
678 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
680 unsigned long address
;
684 address
= vma_address(page
, vma
);
685 if (address
== -EFAULT
) /* out of vma range */
687 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
688 if (!pte
) /* the page is not in this mm */
690 pte_unmap_unlock(pte
, ptl
);
696 * Subfunctions of page_referenced: page_referenced_one called
697 * repeatedly from either page_referenced_anon or page_referenced_file.
699 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
700 unsigned long address
, unsigned int *mapcount
,
701 unsigned long *vm_flags
)
703 struct mm_struct
*mm
= vma
->vm_mm
;
706 if (unlikely(PageTransHuge(page
))) {
709 spin_lock(&mm
->page_table_lock
);
711 * rmap might return false positives; we must filter
712 * these out using page_check_address_pmd().
714 pmd
= page_check_address_pmd(page
, mm
, address
,
715 PAGE_CHECK_ADDRESS_PMD_FLAG
);
717 spin_unlock(&mm
->page_table_lock
);
721 if (vma
->vm_flags
& VM_LOCKED
) {
722 spin_unlock(&mm
->page_table_lock
);
723 *mapcount
= 0; /* break early from loop */
724 *vm_flags
|= VM_LOCKED
;
728 /* go ahead even if the pmd is pmd_trans_splitting() */
729 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
731 spin_unlock(&mm
->page_table_lock
);
737 * rmap might return false positives; we must filter
738 * these out using page_check_address().
740 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
744 if (vma
->vm_flags
& VM_LOCKED
) {
745 pte_unmap_unlock(pte
, ptl
);
746 *mapcount
= 0; /* break early from loop */
747 *vm_flags
|= VM_LOCKED
;
751 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
753 * Don't treat a reference through a sequentially read
754 * mapping as such. If the page has been used in
755 * another mapping, we will catch it; if this other
756 * mapping is already gone, the unmap path will have
757 * set PG_referenced or activated the page.
759 if (likely(!VM_SequentialReadHint(vma
)))
762 pte_unmap_unlock(pte
, ptl
);
765 /* Pretend the page is referenced if the task has the
766 swap token and is in the middle of a page fault. */
767 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
768 rwsem_is_locked(&mm
->mmap_sem
))
774 *vm_flags
|= vma
->vm_flags
;
779 static int page_referenced_anon(struct page
*page
,
780 struct mem_cgroup
*memcg
,
781 unsigned long *vm_flags
)
783 unsigned int mapcount
;
784 struct anon_vma
*anon_vma
;
785 struct anon_vma_chain
*avc
;
788 anon_vma
= page_lock_anon_vma(page
);
792 mapcount
= page_mapcount(page
);
793 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
794 struct vm_area_struct
*vma
= avc
->vma
;
795 unsigned long address
= vma_address(page
, vma
);
796 if (address
== -EFAULT
)
799 * If we are reclaiming on behalf of a cgroup, skip
800 * counting on behalf of references from different
803 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
805 referenced
+= page_referenced_one(page
, vma
, address
,
806 &mapcount
, vm_flags
);
811 page_unlock_anon_vma(anon_vma
);
816 * page_referenced_file - referenced check for object-based rmap
817 * @page: the page we're checking references on.
818 * @memcg: target memory control group
819 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
821 * For an object-based mapped page, find all the places it is mapped and
822 * check/clear the referenced flag. This is done by following the page->mapping
823 * pointer, then walking the chain of vmas it holds. It returns the number
824 * of references it found.
826 * This function is only called from page_referenced for object-based pages.
828 static int page_referenced_file(struct page
*page
,
829 struct mem_cgroup
*memcg
,
830 unsigned long *vm_flags
)
832 unsigned int mapcount
;
833 struct address_space
*mapping
= page
->mapping
;
834 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
835 struct vm_area_struct
*vma
;
836 struct prio_tree_iter iter
;
840 * The caller's checks on page->mapping and !PageAnon have made
841 * sure that this is a file page: the check for page->mapping
842 * excludes the case just before it gets set on an anon page.
844 BUG_ON(PageAnon(page
));
847 * The page lock not only makes sure that page->mapping cannot
848 * suddenly be NULLified by truncation, it makes sure that the
849 * structure at mapping cannot be freed and reused yet,
850 * so we can safely take mapping->i_mmap_mutex.
852 BUG_ON(!PageLocked(page
));
854 mutex_lock(&mapping
->i_mmap_mutex
);
857 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
858 * is more likely to be accurate if we note it after spinning.
860 mapcount
= page_mapcount(page
);
862 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
863 unsigned long address
= vma_address(page
, vma
);
864 if (address
== -EFAULT
)
867 * If we are reclaiming on behalf of a cgroup, skip
868 * counting on behalf of references from different
871 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
873 referenced
+= page_referenced_one(page
, vma
, address
,
874 &mapcount
, vm_flags
);
879 mutex_unlock(&mapping
->i_mmap_mutex
);
884 * page_referenced - test if the page was referenced
885 * @page: the page to test
886 * @is_locked: caller holds lock on the page
887 * @memcg: target memory cgroup
888 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
890 * Quick test_and_clear_referenced for all mappings to a page,
891 * returns the number of ptes which referenced the page.
893 int page_referenced(struct page
*page
,
895 struct mem_cgroup
*memcg
,
896 unsigned long *vm_flags
)
902 if (page_mapped(page
) && page_rmapping(page
)) {
903 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
904 we_locked
= trylock_page(page
);
910 if (unlikely(PageKsm(page
)))
911 referenced
+= page_referenced_ksm(page
, memcg
,
913 else if (PageAnon(page
))
914 referenced
+= page_referenced_anon(page
, memcg
,
916 else if (page
->mapping
)
917 referenced
+= page_referenced_file(page
, memcg
,
922 if (page_test_and_clear_young(page_to_pfn(page
)))
929 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
930 unsigned long address
)
932 struct mm_struct
*mm
= vma
->vm_mm
;
937 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
941 if (pte_dirty(*pte
) || pte_write(*pte
)) {
944 flush_cache_page(vma
, address
, pte_pfn(*pte
));
945 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
946 entry
= pte_wrprotect(entry
);
947 entry
= pte_mkclean(entry
);
948 set_pte_at(mm
, address
, pte
, entry
);
952 pte_unmap_unlock(pte
, ptl
);
957 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
959 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
960 struct vm_area_struct
*vma
;
961 struct prio_tree_iter iter
;
964 BUG_ON(PageAnon(page
));
966 mutex_lock(&mapping
->i_mmap_mutex
);
967 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
968 if (vma
->vm_flags
& VM_SHARED
) {
969 unsigned long address
= vma_address(page
, vma
);
970 if (address
== -EFAULT
)
972 ret
+= page_mkclean_one(page
, vma
, address
);
975 mutex_unlock(&mapping
->i_mmap_mutex
);
979 int page_mkclean(struct page
*page
)
983 BUG_ON(!PageLocked(page
));
985 if (page_mapped(page
)) {
986 struct address_space
*mapping
= page_mapping(page
);
988 ret
= page_mkclean_file(mapping
, page
);
993 EXPORT_SYMBOL_GPL(page_mkclean
);
996 * page_move_anon_rmap - move a page to our anon_vma
997 * @page: the page to move to our anon_vma
998 * @vma: the vma the page belongs to
999 * @address: the user virtual address mapped
1001 * When a page belongs exclusively to one process after a COW event,
1002 * that page can be moved into the anon_vma that belongs to just that
1003 * process, so the rmap code will not search the parent or sibling
1006 void page_move_anon_rmap(struct page
*page
,
1007 struct vm_area_struct
*vma
, unsigned long address
)
1009 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1011 VM_BUG_ON(!PageLocked(page
));
1012 VM_BUG_ON(!anon_vma
);
1013 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1015 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1016 page
->mapping
= (struct address_space
*) anon_vma
;
1020 * __page_set_anon_rmap - set up new anonymous rmap
1021 * @page: Page to add to rmap
1022 * @vma: VM area to add page to.
1023 * @address: User virtual address of the mapping
1024 * @exclusive: the page is exclusively owned by the current process
1026 static void __page_set_anon_rmap(struct page
*page
,
1027 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1029 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1037 * If the page isn't exclusively mapped into this vma,
1038 * we must use the _oldest_ possible anon_vma for the
1042 anon_vma
= anon_vma
->root
;
1044 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1045 page
->mapping
= (struct address_space
*) anon_vma
;
1046 page
->index
= linear_page_index(vma
, address
);
1050 * __page_check_anon_rmap - sanity check anonymous rmap addition
1051 * @page: the page to add the mapping to
1052 * @vma: the vm area in which the mapping is added
1053 * @address: the user virtual address mapped
1055 static void __page_check_anon_rmap(struct page
*page
,
1056 struct vm_area_struct
*vma
, unsigned long address
)
1058 #ifdef CONFIG_DEBUG_VM
1060 * The page's anon-rmap details (mapping and index) are guaranteed to
1061 * be set up correctly at this point.
1063 * We have exclusion against page_add_anon_rmap because the caller
1064 * always holds the page locked, except if called from page_dup_rmap,
1065 * in which case the page is already known to be setup.
1067 * We have exclusion against page_add_new_anon_rmap because those pages
1068 * are initially only visible via the pagetables, and the pte is locked
1069 * over the call to page_add_new_anon_rmap.
1071 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1072 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1077 * page_add_anon_rmap - add pte mapping to an anonymous page
1078 * @page: the page to add the mapping to
1079 * @vma: the vm area in which the mapping is added
1080 * @address: the user virtual address mapped
1082 * The caller needs to hold the pte lock, and the page must be locked in
1083 * the anon_vma case: to serialize mapping,index checking after setting,
1084 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085 * (but PageKsm is never downgraded to PageAnon).
1087 void page_add_anon_rmap(struct page
*page
,
1088 struct vm_area_struct
*vma
, unsigned long address
)
1090 do_page_add_anon_rmap(page
, vma
, address
, 0);
1094 * Special version of the above for do_swap_page, which often runs
1095 * into pages that are exclusively owned by the current process.
1096 * Everybody else should continue to use page_add_anon_rmap above.
1098 void do_page_add_anon_rmap(struct page
*page
,
1099 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1101 int first
= atomic_inc_and_test(&page
->_mapcount
);
1103 if (!PageTransHuge(page
))
1104 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1106 __inc_zone_page_state(page
,
1107 NR_ANON_TRANSPARENT_HUGEPAGES
);
1109 if (unlikely(PageKsm(page
)))
1112 VM_BUG_ON(!PageLocked(page
));
1113 /* address might be in next vma when migration races vma_adjust */
1115 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1117 __page_check_anon_rmap(page
, vma
, address
);
1121 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1122 * @page: the page to add the mapping to
1123 * @vma: the vm area in which the mapping is added
1124 * @address: the user virtual address mapped
1126 * Same as page_add_anon_rmap but must only be called on *new* pages.
1127 * This means the inc-and-test can be bypassed.
1128 * Page does not have to be locked.
1130 void page_add_new_anon_rmap(struct page
*page
,
1131 struct vm_area_struct
*vma
, unsigned long address
)
1133 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1134 SetPageSwapBacked(page
);
1135 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1136 if (!PageTransHuge(page
))
1137 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1139 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1140 __page_set_anon_rmap(page
, vma
, address
, 1);
1141 if (page_evictable(page
, vma
))
1142 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
1144 add_page_to_unevictable_list(page
);
1148 * page_add_file_rmap - add pte mapping to a file page
1149 * @page: the page to add the mapping to
1151 * The caller needs to hold the pte lock.
1153 void page_add_file_rmap(struct page
*page
)
1156 unsigned long flags
;
1158 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1159 if (atomic_inc_and_test(&page
->_mapcount
)) {
1160 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1161 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1163 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1167 * page_remove_rmap - take down pte mapping from a page
1168 * @page: page to remove mapping from
1170 * The caller needs to hold the pte lock.
1172 void page_remove_rmap(struct page
*page
)
1174 struct address_space
*mapping
= page_mapping(page
);
1175 bool anon
= PageAnon(page
);
1177 unsigned long flags
;
1180 * The anon case has no mem_cgroup page_stat to update; but may
1181 * uncharge_page() below, where the lock ordering can deadlock if
1182 * we hold the lock against page_stat move: so avoid it on anon.
1185 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1187 /* page still mapped by someone else? */
1188 if (!atomic_add_negative(-1, &page
->_mapcount
))
1192 * Now that the last pte has gone, s390 must transfer dirty
1193 * flag from storage key to struct page. We can usually skip
1194 * this if the page is anon, so about to be freed; but perhaps
1195 * not if it's in swapcache - there might be another pte slot
1196 * containing the swap entry, but page not yet written to swap.
1198 * And we can skip it on file pages, so long as the filesystem
1199 * participates in dirty tracking; but need to catch shm and tmpfs
1200 * and ramfs pages which have been modified since creation by read
1203 * Note that mapping must be decided above, before decrementing
1204 * mapcount (which luckily provides a barrier): once page is unmapped,
1205 * it could be truncated and page->mapping reset to NULL at any moment.
1206 * Note also that we are relying on page_mapping(page) to set mapping
1207 * to &swapper_space when PageSwapCache(page).
1209 if (mapping
&& !mapping_cap_account_dirty(mapping
) &&
1210 page_test_and_clear_dirty(page_to_pfn(page
), 1))
1211 set_page_dirty(page
);
1213 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1214 * and not charged by memcg for now.
1216 if (unlikely(PageHuge(page
)))
1219 mem_cgroup_uncharge_page(page
);
1220 if (!PageTransHuge(page
))
1221 __dec_zone_page_state(page
, NR_ANON_PAGES
);
1223 __dec_zone_page_state(page
,
1224 NR_ANON_TRANSPARENT_HUGEPAGES
);
1226 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1227 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1230 * It would be tidy to reset the PageAnon mapping here,
1231 * but that might overwrite a racing page_add_anon_rmap
1232 * which increments mapcount after us but sets mapping
1233 * before us: so leave the reset to free_hot_cold_page,
1234 * and remember that it's only reliable while mapped.
1235 * Leaving it set also helps swapoff to reinstate ptes
1236 * faster for those pages still in swapcache.
1240 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1244 * Subfunctions of try_to_unmap: try_to_unmap_one called
1245 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1247 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1248 unsigned long address
, enum ttu_flags flags
)
1250 struct mm_struct
*mm
= vma
->vm_mm
;
1254 int ret
= SWAP_AGAIN
;
1256 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1261 * If the page is mlock()d, we cannot swap it out.
1262 * If it's recently referenced (perhaps page_referenced
1263 * skipped over this mm) then we should reactivate it.
1265 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1266 if (vma
->vm_flags
& VM_LOCKED
)
1269 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1272 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1273 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1279 /* Nuke the page table entry. */
1280 flush_cache_page(vma
, address
, page_to_pfn(page
));
1281 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1283 /* Move the dirty bit to the physical page now the pte is gone. */
1284 if (pte_dirty(pteval
))
1285 set_page_dirty(page
);
1287 /* Update high watermark before we lower rss */
1288 update_hiwater_rss(mm
);
1290 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1292 dec_mm_counter(mm
, MM_ANONPAGES
);
1294 dec_mm_counter(mm
, MM_FILEPAGES
);
1295 set_pte_at(mm
, address
, pte
,
1296 swp_entry_to_pte(make_hwpoison_entry(page
)));
1297 } else if (PageAnon(page
)) {
1298 swp_entry_t entry
= { .val
= page_private(page
) };
1300 if (PageSwapCache(page
)) {
1302 * Store the swap location in the pte.
1303 * See handle_pte_fault() ...
1305 if (swap_duplicate(entry
) < 0) {
1306 set_pte_at(mm
, address
, pte
, pteval
);
1310 if (list_empty(&mm
->mmlist
)) {
1311 spin_lock(&mmlist_lock
);
1312 if (list_empty(&mm
->mmlist
))
1313 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1314 spin_unlock(&mmlist_lock
);
1316 dec_mm_counter(mm
, MM_ANONPAGES
);
1317 inc_mm_counter(mm
, MM_SWAPENTS
);
1318 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1320 * Store the pfn of the page in a special migration
1321 * pte. do_swap_page() will wait until the migration
1322 * pte is removed and then restart fault handling.
1324 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1325 entry
= make_migration_entry(page
, pte_write(pteval
));
1327 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1328 BUG_ON(pte_file(*pte
));
1329 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1330 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1331 /* Establish migration entry for a file page */
1333 entry
= make_migration_entry(page
, pte_write(pteval
));
1334 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1336 dec_mm_counter(mm
, MM_FILEPAGES
);
1338 page_remove_rmap(page
);
1339 page_cache_release(page
);
1342 pte_unmap_unlock(pte
, ptl
);
1347 pte_unmap_unlock(pte
, ptl
);
1351 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1352 * unstable result and race. Plus, We can't wait here because
1353 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1354 * if trylock failed, the page remain in evictable lru and later
1355 * vmscan could retry to move the page to unevictable lru if the
1356 * page is actually mlocked.
1358 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1359 if (vma
->vm_flags
& VM_LOCKED
) {
1360 mlock_vma_page(page
);
1363 up_read(&vma
->vm_mm
->mmap_sem
);
1369 * objrmap doesn't work for nonlinear VMAs because the assumption that
1370 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1371 * Consequently, given a particular page and its ->index, we cannot locate the
1372 * ptes which are mapping that page without an exhaustive linear search.
1374 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1375 * maps the file to which the target page belongs. The ->vm_private_data field
1376 * holds the current cursor into that scan. Successive searches will circulate
1377 * around the vma's virtual address space.
1379 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1380 * more scanning pressure is placed against them as well. Eventually pages
1381 * will become fully unmapped and are eligible for eviction.
1383 * For very sparsely populated VMAs this is a little inefficient - chances are
1384 * there there won't be many ptes located within the scan cluster. In this case
1385 * maybe we could scan further - to the end of the pte page, perhaps.
1387 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1388 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1389 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1390 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1392 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1393 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1395 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1396 struct vm_area_struct
*vma
, struct page
*check_page
)
1398 struct mm_struct
*mm
= vma
->vm_mm
;
1406 unsigned long address
;
1408 int ret
= SWAP_AGAIN
;
1411 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1412 end
= address
+ CLUSTER_SIZE
;
1413 if (address
< vma
->vm_start
)
1414 address
= vma
->vm_start
;
1415 if (end
> vma
->vm_end
)
1418 pgd
= pgd_offset(mm
, address
);
1419 if (!pgd_present(*pgd
))
1422 pud
= pud_offset(pgd
, address
);
1423 if (!pud_present(*pud
))
1426 pmd
= pmd_offset(pud
, address
);
1427 if (!pmd_present(*pmd
))
1431 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1432 * keep the sem while scanning the cluster for mlocking pages.
1434 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1435 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1437 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1440 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1442 /* Update high watermark before we lower rss */
1443 update_hiwater_rss(mm
);
1445 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1446 if (!pte_present(*pte
))
1448 page
= vm_normal_page(vma
, address
, *pte
);
1449 BUG_ON(!page
|| PageAnon(page
));
1452 if (page
== check_page
) {
1453 /* we know we have check_page locked */
1454 mlock_vma_page(page
);
1456 } else if (trylock_page(page
)) {
1458 * If we can lock the page, perform mlock.
1459 * Otherwise leave the page alone, it will be
1460 * eventually encountered again later.
1462 mlock_vma_page(page
);
1465 continue; /* don't unmap */
1468 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1471 /* Nuke the page table entry. */
1472 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1473 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1475 /* If nonlinear, store the file page offset in the pte. */
1476 if (page
->index
!= linear_page_index(vma
, address
))
1477 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1479 /* Move the dirty bit to the physical page now the pte is gone. */
1480 if (pte_dirty(pteval
))
1481 set_page_dirty(page
);
1483 page_remove_rmap(page
);
1484 page_cache_release(page
);
1485 dec_mm_counter(mm
, MM_FILEPAGES
);
1488 pte_unmap_unlock(pte
- 1, ptl
);
1490 up_read(&vma
->vm_mm
->mmap_sem
);
1494 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1496 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1501 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1502 VM_STACK_INCOMPLETE_SETUP
)
1509 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1511 * @page: the page to unmap/unlock
1512 * @flags: action and flags
1514 * Find all the mappings of a page using the mapping pointer and the vma chains
1515 * contained in the anon_vma struct it points to.
1517 * This function is only called from try_to_unmap/try_to_munlock for
1519 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1520 * where the page was found will be held for write. So, we won't recheck
1521 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1524 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1526 struct anon_vma
*anon_vma
;
1527 struct anon_vma_chain
*avc
;
1528 int ret
= SWAP_AGAIN
;
1530 anon_vma
= page_lock_anon_vma(page
);
1534 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1535 struct vm_area_struct
*vma
= avc
->vma
;
1536 unsigned long address
;
1539 * During exec, a temporary VMA is setup and later moved.
1540 * The VMA is moved under the anon_vma lock but not the
1541 * page tables leading to a race where migration cannot
1542 * find the migration ptes. Rather than increasing the
1543 * locking requirements of exec(), migration skips
1544 * temporary VMAs until after exec() completes.
1546 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1547 is_vma_temporary_stack(vma
))
1550 address
= vma_address(page
, vma
);
1551 if (address
== -EFAULT
)
1553 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1554 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1558 page_unlock_anon_vma(anon_vma
);
1563 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1564 * @page: the page to unmap/unlock
1565 * @flags: action and flags
1567 * Find all the mappings of a page using the mapping pointer and the vma chains
1568 * contained in the address_space struct it points to.
1570 * This function is only called from try_to_unmap/try_to_munlock for
1571 * object-based pages.
1572 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1573 * where the page was found will be held for write. So, we won't recheck
1574 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1577 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1579 struct address_space
*mapping
= page
->mapping
;
1580 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1581 struct vm_area_struct
*vma
;
1582 struct prio_tree_iter iter
;
1583 int ret
= SWAP_AGAIN
;
1584 unsigned long cursor
;
1585 unsigned long max_nl_cursor
= 0;
1586 unsigned long max_nl_size
= 0;
1587 unsigned int mapcount
;
1589 mutex_lock(&mapping
->i_mmap_mutex
);
1590 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1591 unsigned long address
= vma_address(page
, vma
);
1592 if (address
== -EFAULT
)
1594 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1595 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1599 if (list_empty(&mapping
->i_mmap_nonlinear
))
1603 * We don't bother to try to find the munlocked page in nonlinears.
1604 * It's costly. Instead, later, page reclaim logic may call
1605 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1607 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1610 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1611 shared
.vm_set
.list
) {
1612 cursor
= (unsigned long) vma
->vm_private_data
;
1613 if (cursor
> max_nl_cursor
)
1614 max_nl_cursor
= cursor
;
1615 cursor
= vma
->vm_end
- vma
->vm_start
;
1616 if (cursor
> max_nl_size
)
1617 max_nl_size
= cursor
;
1620 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1626 * We don't try to search for this page in the nonlinear vmas,
1627 * and page_referenced wouldn't have found it anyway. Instead
1628 * just walk the nonlinear vmas trying to age and unmap some.
1629 * The mapcount of the page we came in with is irrelevant,
1630 * but even so use it as a guide to how hard we should try?
1632 mapcount
= page_mapcount(page
);
1637 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1638 if (max_nl_cursor
== 0)
1639 max_nl_cursor
= CLUSTER_SIZE
;
1642 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1643 shared
.vm_set
.list
) {
1644 cursor
= (unsigned long) vma
->vm_private_data
;
1645 while ( cursor
< max_nl_cursor
&&
1646 cursor
< vma
->vm_end
- vma
->vm_start
) {
1647 if (try_to_unmap_cluster(cursor
, &mapcount
,
1648 vma
, page
) == SWAP_MLOCK
)
1650 cursor
+= CLUSTER_SIZE
;
1651 vma
->vm_private_data
= (void *) cursor
;
1652 if ((int)mapcount
<= 0)
1655 vma
->vm_private_data
= (void *) max_nl_cursor
;
1658 max_nl_cursor
+= CLUSTER_SIZE
;
1659 } while (max_nl_cursor
<= max_nl_size
);
1662 * Don't loop forever (perhaps all the remaining pages are
1663 * in locked vmas). Reset cursor on all unreserved nonlinear
1664 * vmas, now forgetting on which ones it had fallen behind.
1666 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1667 vma
->vm_private_data
= NULL
;
1669 mutex_unlock(&mapping
->i_mmap_mutex
);
1674 * try_to_unmap - try to remove all page table mappings to a page
1675 * @page: the page to get unmapped
1676 * @flags: action and flags
1678 * Tries to remove all the page table entries which are mapping this
1679 * page, used in the pageout path. Caller must hold the page lock.
1680 * Return values are:
1682 * SWAP_SUCCESS - we succeeded in removing all mappings
1683 * SWAP_AGAIN - we missed a mapping, try again later
1684 * SWAP_FAIL - the page is unswappable
1685 * SWAP_MLOCK - page is mlocked.
1687 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1691 BUG_ON(!PageLocked(page
));
1692 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1694 if (unlikely(PageKsm(page
)))
1695 ret
= try_to_unmap_ksm(page
, flags
);
1696 else if (PageAnon(page
))
1697 ret
= try_to_unmap_anon(page
, flags
);
1699 ret
= try_to_unmap_file(page
, flags
);
1700 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1706 * try_to_munlock - try to munlock a page
1707 * @page: the page to be munlocked
1709 * Called from munlock code. Checks all of the VMAs mapping the page
1710 * to make sure nobody else has this page mlocked. The page will be
1711 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1713 * Return values are:
1715 * SWAP_AGAIN - no vma is holding page mlocked, or,
1716 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1717 * SWAP_FAIL - page cannot be located at present
1718 * SWAP_MLOCK - page is now mlocked.
1720 int try_to_munlock(struct page
*page
)
1722 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1724 if (unlikely(PageKsm(page
)))
1725 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1726 else if (PageAnon(page
))
1727 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1729 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1732 void __put_anon_vma(struct anon_vma
*anon_vma
)
1734 struct anon_vma
*root
= anon_vma
->root
;
1736 anon_vma_free(anon_vma
);
1737 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1738 anon_vma_free(root
);
1741 #ifdef CONFIG_MIGRATION
1743 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1744 * Called by migrate.c to remove migration ptes, but might be used more later.
1746 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1747 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1749 struct anon_vma
*anon_vma
;
1750 struct anon_vma_chain
*avc
;
1751 int ret
= SWAP_AGAIN
;
1754 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1755 * because that depends on page_mapped(); but not all its usages
1756 * are holding mmap_sem. Users without mmap_sem are required to
1757 * take a reference count to prevent the anon_vma disappearing
1759 anon_vma
= page_anon_vma(page
);
1762 anon_vma_lock(anon_vma
);
1763 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1764 struct vm_area_struct
*vma
= avc
->vma
;
1765 unsigned long address
= vma_address(page
, vma
);
1766 if (address
== -EFAULT
)
1768 ret
= rmap_one(page
, vma
, address
, arg
);
1769 if (ret
!= SWAP_AGAIN
)
1772 anon_vma_unlock(anon_vma
);
1776 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1777 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1779 struct address_space
*mapping
= page
->mapping
;
1780 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1781 struct vm_area_struct
*vma
;
1782 struct prio_tree_iter iter
;
1783 int ret
= SWAP_AGAIN
;
1787 mutex_lock(&mapping
->i_mmap_mutex
);
1788 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1789 unsigned long address
= vma_address(page
, vma
);
1790 if (address
== -EFAULT
)
1792 ret
= rmap_one(page
, vma
, address
, arg
);
1793 if (ret
!= SWAP_AGAIN
)
1797 * No nonlinear handling: being always shared, nonlinear vmas
1798 * never contain migration ptes. Decide what to do about this
1799 * limitation to linear when we need rmap_walk() on nonlinear.
1801 mutex_unlock(&mapping
->i_mmap_mutex
);
1805 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1806 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1808 VM_BUG_ON(!PageLocked(page
));
1810 if (unlikely(PageKsm(page
)))
1811 return rmap_walk_ksm(page
, rmap_one
, arg
);
1812 else if (PageAnon(page
))
1813 return rmap_walk_anon(page
, rmap_one
, arg
);
1815 return rmap_walk_file(page
, rmap_one
, arg
);
1817 #endif /* CONFIG_MIGRATION */
1819 #ifdef CONFIG_HUGETLB_PAGE
1821 * The following three functions are for anonymous (private mapped) hugepages.
1822 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1823 * and no lru code, because we handle hugepages differently from common pages.
1825 static void __hugepage_set_anon_rmap(struct page
*page
,
1826 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1828 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1835 anon_vma
= anon_vma
->root
;
1837 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1838 page
->mapping
= (struct address_space
*) anon_vma
;
1839 page
->index
= linear_page_index(vma
, address
);
1842 void hugepage_add_anon_rmap(struct page
*page
,
1843 struct vm_area_struct
*vma
, unsigned long address
)
1845 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1848 BUG_ON(!PageLocked(page
));
1850 /* address might be in next vma when migration races vma_adjust */
1851 first
= atomic_inc_and_test(&page
->_mapcount
);
1853 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1856 void hugepage_add_new_anon_rmap(struct page
*page
,
1857 struct vm_area_struct
*vma
, unsigned long address
)
1859 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1860 atomic_set(&page
->_mapcount
, 0);
1861 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1863 #endif /* CONFIG_HUGETLB_PAGE */