Linux 5.7.6
[linux/fpc-iii.git] / arch / alpha / lib / ev6-clear_user.S
blob7e644f83cdf2905807b15b6cd788770c1be732d4
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-clear_user.S
4  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
5  *
6  * Zero user space, handling exceptions as we go.
7  *
8  * We have to make sure that $0 is always up-to-date and contains the
9  * right "bytes left to zero" value (and that it is updated only _after_
10  * a successful copy).  There is also some rather minor exception setup
11  * stuff.
12  *
13  * Much of the information about 21264 scheduling/coding comes from:
14  *      Compiler Writer's Guide for the Alpha 21264
15  *      abbreviated as 'CWG' in other comments here
16  *      ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
17  * Scheduling notation:
18  *      E       - either cluster
19  *      U       - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
20  *      L       - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
21  * Try not to change the actual algorithm if possible for consistency.
22  * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
23  * From perusing the source code context where this routine is called, it is
24  * a fair assumption that significant fractions of entire pages are zeroed, so
25  * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
26  * ASSUMPTION:
27  *      The believed purpose of only updating $0 after a store is that a signal
28  *      may come along during the execution of this chunk of code, and we don't
29  *      want to leave a hole (and we also want to avoid repeating lots of work)
30  */
32 #include <asm/export.h>
33 /* Allow an exception for an insn; exit if we get one.  */
34 #define EX(x,y...)                      \
35         99: x,##y;                      \
36         .section __ex_table,"a";        \
37         .long 99b - .;                  \
38         lda $31, $exception-99b($31);   \
39         .previous
41         .set noat
42         .set noreorder
43         .align 4
45         .globl __clear_user
46         .ent __clear_user
47         .frame  $30, 0, $26
48         .prologue 0
50                                 # Pipeline info : Slotting & Comments
51 __clear_user:
52         and     $17, $17, $0
53         and     $16, 7, $4      # .. E  .. ..   : find dest head misalignment
54         beq     $0, $zerolength # U  .. .. ..   :  U L U L
56         addq    $0, $4, $1      # .. .. .. E    : bias counter
57         and     $1, 7, $2       # .. .. E  ..   : number of misaligned bytes in tail
58 # Note - we never actually use $2, so this is a moot computation
59 # and we can rewrite this later...
60         srl     $1, 3, $1       # .. E  .. ..   : number of quadwords to clear
61         beq     $4, $headalign  # U  .. .. ..   : U L U L
64  * Head is not aligned.  Write (8 - $4) bytes to head of destination
65  * This means $16 is known to be misaligned
66  */
67         EX( ldq_u $5, 0($16) )  # .. .. .. L    : load dst word to mask back in
68         beq     $1, $onebyte    # .. .. U  ..   : sub-word store?
69         mskql   $5, $16, $5     # .. U  .. ..   : take care of misaligned head
70         addq    $16, 8, $16     # E  .. .. ..   : L U U L
72         EX( stq_u $5, -8($16) ) # .. .. .. L    :
73         subq    $1, 1, $1       # .. .. E  ..   :
74         addq    $0, $4, $0      # .. E  .. ..   : bytes left -= 8 - misalignment
75         subq    $0, 8, $0       # E  .. .. ..   : U L U L
77         .align  4
79  * (The .align directive ought to be a moot point)
80  * values upon initial entry to the loop
81  * $1 is number of quadwords to clear (zero is a valid value)
82  * $2 is number of trailing bytes (0..7) ($2 never used...)
83  * $16 is known to be aligned 0mod8
84  */
85 $headalign:
86         subq    $1, 16, $4      # .. .. .. E    : If < 16, we can not use the huge loop
87         and     $16, 0x3f, $2   # .. .. E  ..   : Forward work for huge loop
88         subq    $2, 0x40, $3    # .. E  .. ..   : bias counter (huge loop)
89         blt     $4, $trailquad  # U  .. .. ..   : U L U L
92  * We know that we're going to do at least 16 quads, which means we are
93  * going to be able to use the large block clear loop at least once.
94  * Figure out how many quads we need to clear before we are 0mod64 aligned
95  * so we can use the wh64 instruction.
96  */
98         nop                     # .. .. .. E
99         nop                     # .. .. E  ..
100         nop                     # .. E  .. ..
101         beq     $3, $bigalign   # U  .. .. ..   : U L U L : Aligned 0mod64
103 $alignmod64:
104         EX( stq_u $31, 0($16) ) # .. .. .. L
105         addq    $3, 8, $3       # .. .. E  ..
106         subq    $0, 8, $0       # .. E  .. ..
107         nop                     # E  .. .. ..   : U L U L
109         nop                     # .. .. .. E
110         subq    $1, 1, $1       # .. .. E  ..
111         addq    $16, 8, $16     # .. E  .. ..
112         blt     $3, $alignmod64 # U  .. .. ..   : U L U L
114 $bigalign:
116  * $0 is the number of bytes left
117  * $1 is the number of quads left
118  * $16 is aligned 0mod64
119  * we know that we'll be taking a minimum of one trip through
120  * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
121  * We are _not_ going to update $0 after every single store.  That
122  * would be silly, because there will be cross-cluster dependencies
123  * no matter how the code is scheduled.  By doing it in slightly
124  * staggered fashion, we can still do this loop in 5 fetches
125  * The worse case will be doing two extra quads in some future execution,
126  * in the event of an interrupted clear.
127  * Assumes the wh64 needs to be for 2 trips through the loop in the future
128  * The wh64 is issued on for the starting destination address for trip +2
129  * through the loop, and if there are less than two trips left, the target
130  * address will be for the current trip.
131  */
132         nop                     # E :
133         nop                     # E :
134         nop                     # E :
135         bis     $16,$16,$3      # E : U L U L : Initial wh64 address is dest
136         /* This might actually help for the current trip... */
138 $do_wh64:
139         wh64    ($3)            # .. .. .. L1   : memory subsystem hint
140         subq    $1, 16, $4      # .. .. E  ..   : Forward calculation - repeat the loop?
141         EX( stq_u $31, 0($16) ) # .. L  .. ..
142         subq    $0, 8, $0       # E  .. .. ..   : U L U L
144         addq    $16, 128, $3    # E : Target address of wh64
145         EX( stq_u $31, 8($16) ) # L :
146         EX( stq_u $31, 16($16) )        # L :
147         subq    $0, 16, $0      # E : U L L U
149         nop                     # E :
150         EX( stq_u $31, 24($16) )        # L :
151         EX( stq_u $31, 32($16) )        # L :
152         subq    $0, 168, $5     # E : U L L U : two trips through the loop left?
153         /* 168 = 192 - 24, since we've already completed some stores */
155         subq    $0, 16, $0      # E :
156         EX( stq_u $31, 40($16) )        # L :
157         EX( stq_u $31, 48($16) )        # L :
158         cmovlt  $5, $16, $3     # E : U L L U : Latency 2, extra mapping cycle
160         subq    $1, 8, $1       # E :
161         subq    $0, 16, $0      # E :
162         EX( stq_u $31, 56($16) )        # L :
163         nop                     # E : U L U L
165         nop                     # E :
166         subq    $0, 8, $0       # E :
167         addq    $16, 64, $16    # E :
168         bge     $4, $do_wh64    # U : U L U L
170 $trailquad:
171         # zero to 16 quadwords left to store, plus any trailing bytes
172         # $1 is the number of quadwords left to go.
173         # 
174         nop                     # .. .. .. E
175         nop                     # .. .. E  ..
176         nop                     # .. E  .. ..
177         beq     $1, $trailbytes # U  .. .. ..   : U L U L : Only 0..7 bytes to go
179 $onequad:
180         EX( stq_u $31, 0($16) ) # .. .. .. L
181         subq    $1, 1, $1       # .. .. E  ..
182         subq    $0, 8, $0       # .. E  .. ..
183         nop                     # E  .. .. ..   : U L U L
185         nop                     # .. .. .. E
186         nop                     # .. .. E  ..
187         addq    $16, 8, $16     # .. E  .. ..
188         bgt     $1, $onequad    # U  .. .. ..   : U L U L
190         # We have an unknown number of bytes left to go.
191 $trailbytes:
192         nop                     # .. .. .. E
193         nop                     # .. .. E  ..
194         nop                     # .. E  .. ..
195         beq     $0, $zerolength # U  .. .. ..   : U L U L
197         # $0 contains the number of bytes left to copy (0..31)
198         # so we will use $0 as the loop counter
199         # We know for a fact that $0 > 0 zero due to previous context
200 $onebyte:
201         EX( stb $31, 0($16) )   # .. .. .. L
202         subq    $0, 1, $0       # .. .. E  ..   :
203         addq    $16, 1, $16     # .. E  .. ..   :
204         bgt     $0, $onebyte    # U  .. .. ..   : U L U L
206 $zerolength:
207 $exception:                     # Destination for exception recovery(?)
208         nop                     # .. .. .. E    :
209         nop                     # .. .. E  ..   :
210         nop                     # .. E  .. ..   :
211         ret     $31, ($26), 1   # L0 .. .. ..   : L U L U
212         .end __clear_user
213         EXPORT_SYMBOL(__clear_user)