Linux 5.7.6
[linux/fpc-iii.git] / arch / arm / kernel / smp.c
blob46e1be9e57a817b843903727340eabf6d85a2007
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/smp.c
5 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
56 * as from 2.5, kernels no longer have an init_tasks structure
57 * so we need some other way of telling a new secondary core
58 * where to place its SVC stack
60 struct secondary_data secondary_data;
62 enum ipi_msg_type {
63 IPI_WAKEUP,
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
68 IPI_IRQ_WORK,
69 IPI_COMPLETION,
71 * CPU_BACKTRACE is special and not included in NR_IPI
72 * or tracable with trace_ipi_*
74 IPI_CPU_BACKTRACE,
76 * SGI8-15 can be reserved by secure firmware, and thus may
77 * not be usable by the kernel. Please keep the above limited
78 * to at most 8 entries.
82 static DECLARE_COMPLETION(cpu_running);
84 static struct smp_operations smp_ops __ro_after_init;
86 void __init smp_set_ops(const struct smp_operations *ops)
88 if (ops)
89 smp_ops = *ops;
92 static unsigned long get_arch_pgd(pgd_t *pgd)
94 #ifdef CONFIG_ARM_LPAE
95 return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97 return virt_to_phys(pgd);
98 #endif
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
104 if (!cpu_vtable[cpu])
105 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
107 return cpu_vtable[cpu] ? 0 : -ENOMEM;
110 static void secondary_biglittle_init(void)
112 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
117 return 0;
120 static void secondary_biglittle_init(void)
123 #endif
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
127 int ret;
129 if (!smp_ops.smp_boot_secondary)
130 return -ENOSYS;
132 ret = secondary_biglittle_prepare(cpu);
133 if (ret)
134 return ret;
137 * We need to tell the secondary core where to find
138 * its stack and the page tables.
140 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142 secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
145 #ifdef CONFIG_MMU
146 secondary_data.pgdir = virt_to_phys(idmap_pgd);
147 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149 sync_cache_w(&secondary_data);
152 * Now bring the CPU into our world.
154 ret = smp_ops.smp_boot_secondary(cpu, idle);
155 if (ret == 0) {
157 * CPU was successfully started, wait for it
158 * to come online or time out.
160 wait_for_completion_timeout(&cpu_running,
161 msecs_to_jiffies(1000));
163 if (!cpu_online(cpu)) {
164 pr_crit("CPU%u: failed to come online\n", cpu);
165 ret = -EIO;
167 } else {
168 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
172 memset(&secondary_data, 0, sizeof(secondary_data));
173 return ret;
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
179 if (smp_ops.smp_init_cpus)
180 smp_ops.smp_init_cpus();
183 int platform_can_secondary_boot(void)
185 return !!smp_ops.smp_boot_secondary;
188 int platform_can_cpu_hotplug(void)
190 #ifdef CONFIG_HOTPLUG_CPU
191 if (smp_ops.cpu_kill)
192 return 1;
193 #endif
195 return 0;
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
201 if (smp_ops.cpu_kill)
202 return smp_ops.cpu_kill(cpu);
203 return 1;
206 static int platform_cpu_disable(unsigned int cpu)
208 if (smp_ops.cpu_disable)
209 return smp_ops.cpu_disable(cpu);
211 return 0;
214 int platform_can_hotplug_cpu(unsigned int cpu)
216 /* cpu_die must be specified to support hotplug */
217 if (!smp_ops.cpu_die)
218 return 0;
220 if (smp_ops.cpu_can_disable)
221 return smp_ops.cpu_can_disable(cpu);
224 * By default, allow disabling all CPUs except the first one,
225 * since this is special on a lot of platforms, e.g. because
226 * of clock tick interrupts.
228 return cpu != 0;
232 * __cpu_disable runs on the processor to be shutdown.
234 int __cpu_disable(void)
236 unsigned int cpu = smp_processor_id();
237 int ret;
239 ret = platform_cpu_disable(cpu);
240 if (ret)
241 return ret;
243 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
244 remove_cpu_topology(cpu);
245 #endif
248 * Take this CPU offline. Once we clear this, we can't return,
249 * and we must not schedule until we're ready to give up the cpu.
251 set_cpu_online(cpu, false);
254 * OK - migrate IRQs away from this CPU
256 irq_migrate_all_off_this_cpu();
259 * Flush user cache and TLB mappings, and then remove this CPU
260 * from the vm mask set of all processes.
262 * Caches are flushed to the Level of Unification Inner Shareable
263 * to write-back dirty lines to unified caches shared by all CPUs.
265 flush_cache_louis();
266 local_flush_tlb_all();
268 return 0;
272 * called on the thread which is asking for a CPU to be shutdown -
273 * waits until shutdown has completed, or it is timed out.
275 void __cpu_die(unsigned int cpu)
277 if (!cpu_wait_death(cpu, 5)) {
278 pr_err("CPU%u: cpu didn't die\n", cpu);
279 return;
281 pr_debug("CPU%u: shutdown\n", cpu);
283 clear_tasks_mm_cpumask(cpu);
285 * platform_cpu_kill() is generally expected to do the powering off
286 * and/or cutting of clocks to the dying CPU. Optionally, this may
287 * be done by the CPU which is dying in preference to supporting
288 * this call, but that means there is _no_ synchronisation between
289 * the requesting CPU and the dying CPU actually losing power.
291 if (!platform_cpu_kill(cpu))
292 pr_err("CPU%u: unable to kill\n", cpu);
296 * Called from the idle thread for the CPU which has been shutdown.
298 * Note that we disable IRQs here, but do not re-enable them
299 * before returning to the caller. This is also the behaviour
300 * of the other hotplug-cpu capable cores, so presumably coming
301 * out of idle fixes this.
303 void arch_cpu_idle_dead(void)
305 unsigned int cpu = smp_processor_id();
307 idle_task_exit();
309 local_irq_disable();
312 * Flush the data out of the L1 cache for this CPU. This must be
313 * before the completion to ensure that data is safely written out
314 * before platform_cpu_kill() gets called - which may disable
315 * *this* CPU and power down its cache.
317 flush_cache_louis();
320 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
321 * this returns, power and/or clocks can be removed at any point
322 * from this CPU and its cache by platform_cpu_kill().
324 (void)cpu_report_death();
327 * Ensure that the cache lines associated with that completion are
328 * written out. This covers the case where _this_ CPU is doing the
329 * powering down, to ensure that the completion is visible to the
330 * CPU waiting for this one.
332 flush_cache_louis();
335 * The actual CPU shutdown procedure is at least platform (if not
336 * CPU) specific. This may remove power, or it may simply spin.
338 * Platforms are generally expected *NOT* to return from this call,
339 * although there are some which do because they have no way to
340 * power down the CPU. These platforms are the _only_ reason we
341 * have a return path which uses the fragment of assembly below.
343 * The return path should not be used for platforms which can
344 * power off the CPU.
346 if (smp_ops.cpu_die)
347 smp_ops.cpu_die(cpu);
349 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
350 cpu);
353 * Do not return to the idle loop - jump back to the secondary
354 * cpu initialisation. There's some initialisation which needs
355 * to be repeated to undo the effects of taking the CPU offline.
357 __asm__("mov sp, %0\n"
358 " mov fp, #0\n"
359 " b secondary_start_kernel"
361 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
363 #endif /* CONFIG_HOTPLUG_CPU */
366 * Called by both boot and secondaries to move global data into
367 * per-processor storage.
369 static void smp_store_cpu_info(unsigned int cpuid)
371 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
373 cpu_info->loops_per_jiffy = loops_per_jiffy;
374 cpu_info->cpuid = read_cpuid_id();
376 store_cpu_topology(cpuid);
377 check_cpu_icache_size(cpuid);
381 * This is the secondary CPU boot entry. We're using this CPUs
382 * idle thread stack, but a set of temporary page tables.
384 asmlinkage void secondary_start_kernel(void)
386 struct mm_struct *mm = &init_mm;
387 unsigned int cpu;
389 secondary_biglittle_init();
392 * The identity mapping is uncached (strongly ordered), so
393 * switch away from it before attempting any exclusive accesses.
395 cpu_switch_mm(mm->pgd, mm);
396 local_flush_bp_all();
397 enter_lazy_tlb(mm, current);
398 local_flush_tlb_all();
401 * All kernel threads share the same mm context; grab a
402 * reference and switch to it.
404 cpu = smp_processor_id();
405 mmgrab(mm);
406 current->active_mm = mm;
407 cpumask_set_cpu(cpu, mm_cpumask(mm));
409 cpu_init();
411 #ifndef CONFIG_MMU
412 setup_vectors_base();
413 #endif
414 pr_debug("CPU%u: Booted secondary processor\n", cpu);
416 preempt_disable();
417 trace_hardirqs_off();
420 * Give the platform a chance to do its own initialisation.
422 if (smp_ops.smp_secondary_init)
423 smp_ops.smp_secondary_init(cpu);
425 notify_cpu_starting(cpu);
427 calibrate_delay();
429 smp_store_cpu_info(cpu);
432 * OK, now it's safe to let the boot CPU continue. Wait for
433 * the CPU migration code to notice that the CPU is online
434 * before we continue - which happens after __cpu_up returns.
436 set_cpu_online(cpu, true);
438 check_other_bugs();
440 complete(&cpu_running);
442 local_irq_enable();
443 local_fiq_enable();
444 local_abt_enable();
447 * OK, it's off to the idle thread for us
449 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
452 void __init smp_cpus_done(unsigned int max_cpus)
454 int cpu;
455 unsigned long bogosum = 0;
457 for_each_online_cpu(cpu)
458 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
460 printk(KERN_INFO "SMP: Total of %d processors activated "
461 "(%lu.%02lu BogoMIPS).\n",
462 num_online_cpus(),
463 bogosum / (500000/HZ),
464 (bogosum / (5000/HZ)) % 100);
466 hyp_mode_check();
469 void __init smp_prepare_boot_cpu(void)
471 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
474 void __init smp_prepare_cpus(unsigned int max_cpus)
476 unsigned int ncores = num_possible_cpus();
478 init_cpu_topology();
480 smp_store_cpu_info(smp_processor_id());
483 * are we trying to boot more cores than exist?
485 if (max_cpus > ncores)
486 max_cpus = ncores;
487 if (ncores > 1 && max_cpus) {
489 * Initialise the present map, which describes the set of CPUs
490 * actually populated at the present time. A platform should
491 * re-initialize the map in the platforms smp_prepare_cpus()
492 * if present != possible (e.g. physical hotplug).
494 init_cpu_present(cpu_possible_mask);
497 * Initialise the SCU if there are more than one CPU
498 * and let them know where to start.
500 if (smp_ops.smp_prepare_cpus)
501 smp_ops.smp_prepare_cpus(max_cpus);
505 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
507 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
509 if (!__smp_cross_call)
510 __smp_cross_call = fn;
513 static const char *ipi_types[NR_IPI] __tracepoint_string = {
514 #define S(x,s) [x] = s
515 S(IPI_WAKEUP, "CPU wakeup interrupts"),
516 S(IPI_TIMER, "Timer broadcast interrupts"),
517 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
518 S(IPI_CALL_FUNC, "Function call interrupts"),
519 S(IPI_CPU_STOP, "CPU stop interrupts"),
520 S(IPI_IRQ_WORK, "IRQ work interrupts"),
521 S(IPI_COMPLETION, "completion interrupts"),
524 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
526 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
527 __smp_cross_call(target, ipinr);
530 void show_ipi_list(struct seq_file *p, int prec)
532 unsigned int cpu, i;
534 for (i = 0; i < NR_IPI; i++) {
535 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
537 for_each_online_cpu(cpu)
538 seq_printf(p, "%10u ",
539 __get_irq_stat(cpu, ipi_irqs[i]));
541 seq_printf(p, " %s\n", ipi_types[i]);
545 u64 smp_irq_stat_cpu(unsigned int cpu)
547 u64 sum = 0;
548 int i;
550 for (i = 0; i < NR_IPI; i++)
551 sum += __get_irq_stat(cpu, ipi_irqs[i]);
553 return sum;
556 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
558 smp_cross_call(mask, IPI_CALL_FUNC);
561 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
563 smp_cross_call(mask, IPI_WAKEUP);
566 void arch_send_call_function_single_ipi(int cpu)
568 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
571 #ifdef CONFIG_IRQ_WORK
572 void arch_irq_work_raise(void)
574 if (arch_irq_work_has_interrupt())
575 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
577 #endif
579 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
580 void tick_broadcast(const struct cpumask *mask)
582 smp_cross_call(mask, IPI_TIMER);
584 #endif
586 static DEFINE_RAW_SPINLOCK(stop_lock);
589 * ipi_cpu_stop - handle IPI from smp_send_stop()
591 static void ipi_cpu_stop(unsigned int cpu)
593 if (system_state <= SYSTEM_RUNNING) {
594 raw_spin_lock(&stop_lock);
595 pr_crit("CPU%u: stopping\n", cpu);
596 dump_stack();
597 raw_spin_unlock(&stop_lock);
600 set_cpu_online(cpu, false);
602 local_fiq_disable();
603 local_irq_disable();
605 while (1) {
606 cpu_relax();
607 wfe();
611 static DEFINE_PER_CPU(struct completion *, cpu_completion);
613 int register_ipi_completion(struct completion *completion, int cpu)
615 per_cpu(cpu_completion, cpu) = completion;
616 return IPI_COMPLETION;
619 static void ipi_complete(unsigned int cpu)
621 complete(per_cpu(cpu_completion, cpu));
625 * Main handler for inter-processor interrupts
627 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
629 handle_IPI(ipinr, regs);
632 void handle_IPI(int ipinr, struct pt_regs *regs)
634 unsigned int cpu = smp_processor_id();
635 struct pt_regs *old_regs = set_irq_regs(regs);
637 if ((unsigned)ipinr < NR_IPI) {
638 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
639 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
642 switch (ipinr) {
643 case IPI_WAKEUP:
644 break;
646 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
647 case IPI_TIMER:
648 irq_enter();
649 tick_receive_broadcast();
650 irq_exit();
651 break;
652 #endif
654 case IPI_RESCHEDULE:
655 scheduler_ipi();
656 break;
658 case IPI_CALL_FUNC:
659 irq_enter();
660 generic_smp_call_function_interrupt();
661 irq_exit();
662 break;
664 case IPI_CPU_STOP:
665 irq_enter();
666 ipi_cpu_stop(cpu);
667 irq_exit();
668 break;
670 #ifdef CONFIG_IRQ_WORK
671 case IPI_IRQ_WORK:
672 irq_enter();
673 irq_work_run();
674 irq_exit();
675 break;
676 #endif
678 case IPI_COMPLETION:
679 irq_enter();
680 ipi_complete(cpu);
681 irq_exit();
682 break;
684 case IPI_CPU_BACKTRACE:
685 printk_nmi_enter();
686 irq_enter();
687 nmi_cpu_backtrace(regs);
688 irq_exit();
689 printk_nmi_exit();
690 break;
692 default:
693 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
694 cpu, ipinr);
695 break;
698 if ((unsigned)ipinr < NR_IPI)
699 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
700 set_irq_regs(old_regs);
703 void smp_send_reschedule(int cpu)
705 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
708 void smp_send_stop(void)
710 unsigned long timeout;
711 struct cpumask mask;
713 cpumask_copy(&mask, cpu_online_mask);
714 cpumask_clear_cpu(smp_processor_id(), &mask);
715 if (!cpumask_empty(&mask))
716 smp_cross_call(&mask, IPI_CPU_STOP);
718 /* Wait up to one second for other CPUs to stop */
719 timeout = USEC_PER_SEC;
720 while (num_online_cpus() > 1 && timeout--)
721 udelay(1);
723 if (num_online_cpus() > 1)
724 pr_warn("SMP: failed to stop secondary CPUs\n");
727 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
728 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
729 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
730 * kdump fails. So split out the panic_smp_self_stop() and add
731 * set_cpu_online(smp_processor_id(), false).
733 void panic_smp_self_stop(void)
735 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
736 smp_processor_id());
737 set_cpu_online(smp_processor_id(), false);
738 while (1)
739 cpu_relax();
743 * not supported here
745 int setup_profiling_timer(unsigned int multiplier)
747 return -EINVAL;
750 #ifdef CONFIG_CPU_FREQ
752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
754 static unsigned long global_l_p_j_ref;
755 static unsigned long global_l_p_j_ref_freq;
757 static int cpufreq_callback(struct notifier_block *nb,
758 unsigned long val, void *data)
760 struct cpufreq_freqs *freq = data;
761 struct cpumask *cpus = freq->policy->cpus;
762 int cpu, first = cpumask_first(cpus);
763 unsigned int lpj;
765 if (freq->flags & CPUFREQ_CONST_LOOPS)
766 return NOTIFY_OK;
768 if (!per_cpu(l_p_j_ref, first)) {
769 for_each_cpu(cpu, cpus) {
770 per_cpu(l_p_j_ref, cpu) =
771 per_cpu(cpu_data, cpu).loops_per_jiffy;
772 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
775 if (!global_l_p_j_ref) {
776 global_l_p_j_ref = loops_per_jiffy;
777 global_l_p_j_ref_freq = freq->old;
781 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
782 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
783 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
784 global_l_p_j_ref_freq,
785 freq->new);
787 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
788 per_cpu(l_p_j_ref_freq, first), freq->new);
789 for_each_cpu(cpu, cpus)
790 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
792 return NOTIFY_OK;
795 static struct notifier_block cpufreq_notifier = {
796 .notifier_call = cpufreq_callback,
799 static int __init register_cpufreq_notifier(void)
801 return cpufreq_register_notifier(&cpufreq_notifier,
802 CPUFREQ_TRANSITION_NOTIFIER);
804 core_initcall(register_cpufreq_notifier);
806 #endif
808 static void raise_nmi(cpumask_t *mask)
810 __smp_cross_call(mask, IPI_CPU_BACKTRACE);
813 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
815 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);