Linux 5.7.6
[linux/fpc-iii.git] / arch / arm / mach-omap2 / omap-mpuss-lowpower.c
blob67fa28532a3a80c681265e915fa1db57006b575e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP MPUSS low power code
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
9 * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
10 * CPU0 and CPU1 LPRM modules.
11 * CPU0, CPU1 and MPUSS each have there own power domain and
12 * hence multiple low power combinations of MPUSS are possible.
14 * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
15 * because the mode is not supported by hw constraints of dormant
16 * mode. While waking up from the dormant mode, a reset signal
17 * to the Cortex-A9 processor must be asserted by the external
18 * power controller.
20 * With architectural inputs and hardware recommendations, only
21 * below modes are supported from power gain vs latency point of view.
23 * CPU0 CPU1 MPUSS
24 * ----------------------------------------------
25 * ON ON ON
26 * ON(Inactive) OFF ON(Inactive)
27 * OFF OFF CSWR
28 * OFF OFF OSWR
29 * OFF OFF OFF(Device OFF *TBD)
30 * ----------------------------------------------
32 * Note: CPU0 is the master core and it is the last CPU to go down
33 * and first to wake-up when MPUSS low power states are excercised
36 #include <linux/kernel.h>
37 #include <linux/io.h>
38 #include <linux/errno.h>
39 #include <linux/linkage.h>
40 #include <linux/smp.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlbflush.h>
44 #include <asm/smp_scu.h>
45 #include <asm/pgalloc.h>
46 #include <asm/suspend.h>
47 #include <asm/virt.h>
48 #include <asm/hardware/cache-l2x0.h>
50 #include "soc.h"
51 #include "common.h"
52 #include "omap44xx.h"
53 #include "omap4-sar-layout.h"
54 #include "pm.h"
55 #include "prcm_mpu44xx.h"
56 #include "prcm_mpu54xx.h"
57 #include "prminst44xx.h"
58 #include "prcm44xx.h"
59 #include "prm44xx.h"
60 #include "prm-regbits-44xx.h"
62 static void __iomem *sar_base;
63 static u32 old_cpu1_ns_pa_addr;
65 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
67 struct omap4_cpu_pm_info {
68 struct powerdomain *pwrdm;
69 void __iomem *scu_sar_addr;
70 void __iomem *wkup_sar_addr;
71 void __iomem *l2x0_sar_addr;
74 /**
75 * struct cpu_pm_ops - CPU pm operations
76 * @finish_suspend: CPU suspend finisher function pointer
77 * @resume: CPU resume function pointer
78 * @scu_prepare: CPU Snoop Control program function pointer
79 * @hotplug_restart: CPU restart function pointer
81 * Structure holds functions pointer for CPU low power operations like
82 * suspend, resume and scu programming.
84 struct cpu_pm_ops {
85 int (*finish_suspend)(unsigned long cpu_state);
86 void (*resume)(void);
87 void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
88 void (*hotplug_restart)(void);
91 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
92 static struct powerdomain *mpuss_pd;
93 static u32 cpu_context_offset;
95 static int default_finish_suspend(unsigned long cpu_state)
97 omap_do_wfi();
98 return 0;
101 static void dummy_cpu_resume(void)
104 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
107 static struct cpu_pm_ops omap_pm_ops = {
108 .finish_suspend = default_finish_suspend,
109 .resume = dummy_cpu_resume,
110 .scu_prepare = dummy_scu_prepare,
111 .hotplug_restart = dummy_cpu_resume,
115 * Program the wakeup routine address for the CPU0 and CPU1
116 * used for OFF or DORMANT wakeup.
118 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
120 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
122 if (pm_info->wkup_sar_addr)
123 writel_relaxed(addr, pm_info->wkup_sar_addr);
127 * Store the SCU power status value to scratchpad memory
129 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
131 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
132 u32 scu_pwr_st;
134 switch (cpu_state) {
135 case PWRDM_POWER_RET:
136 scu_pwr_st = SCU_PM_DORMANT;
137 break;
138 case PWRDM_POWER_OFF:
139 scu_pwr_st = SCU_PM_POWEROFF;
140 break;
141 case PWRDM_POWER_ON:
142 case PWRDM_POWER_INACTIVE:
143 default:
144 scu_pwr_st = SCU_PM_NORMAL;
145 break;
148 if (pm_info->scu_sar_addr)
149 writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
152 /* Helper functions for MPUSS OSWR */
153 static inline void mpuss_clear_prev_logic_pwrst(void)
155 u32 reg;
157 reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
158 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
159 omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
160 OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
163 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
165 u32 reg;
167 if (cpu_id) {
168 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
169 cpu_context_offset);
170 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
171 cpu_context_offset);
172 } else {
173 reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
174 cpu_context_offset);
175 omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
176 cpu_context_offset);
181 * Store the CPU cluster state for L2X0 low power operations.
183 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
185 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
187 if (pm_info->l2x0_sar_addr)
188 writel_relaxed(save_state, pm_info->l2x0_sar_addr);
192 * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
193 * in every restore MPUSS OFF path.
195 #ifdef CONFIG_CACHE_L2X0
196 static void __init save_l2x0_context(void)
198 void __iomem *l2x0_base = omap4_get_l2cache_base();
200 if (l2x0_base && sar_base) {
201 writel_relaxed(l2x0_saved_regs.aux_ctrl,
202 sar_base + L2X0_AUXCTRL_OFFSET);
203 writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
204 sar_base + L2X0_PREFETCH_CTRL_OFFSET);
207 #else
208 static void __init save_l2x0_context(void)
210 #endif
213 * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
214 * The purpose of this function is to manage low power programming
215 * of OMAP4 MPUSS subsystem
216 * @cpu : CPU ID
217 * @power_state: Low power state.
219 * MPUSS states for the context save:
220 * save_state =
221 * 0 - Nothing lost and no need to save: MPUSS INACTIVE
222 * 1 - CPUx L1 and logic lost: MPUSS CSWR
223 * 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
224 * 3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
226 int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
228 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
229 unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
231 if (omap_rev() == OMAP4430_REV_ES1_0)
232 return -ENXIO;
234 switch (power_state) {
235 case PWRDM_POWER_ON:
236 case PWRDM_POWER_INACTIVE:
237 save_state = 0;
238 break;
239 case PWRDM_POWER_OFF:
240 cpu_logic_state = PWRDM_POWER_OFF;
241 save_state = 1;
242 break;
243 case PWRDM_POWER_RET:
244 if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
245 save_state = 0;
246 break;
247 default:
249 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
250 * doesn't make much scense, since logic is lost and $L1
251 * needs to be cleaned because of coherency. This makes
252 * CPUx OSWR equivalent to CPUX OFF and hence not supported
254 WARN_ON(1);
255 return -ENXIO;
258 pwrdm_pre_transition(NULL);
261 * Check MPUSS next state and save interrupt controller if needed.
262 * In MPUSS OSWR or device OFF, interrupt controller contest is lost.
264 mpuss_clear_prev_logic_pwrst();
265 if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
266 (pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
267 save_state = 2;
269 cpu_clear_prev_logic_pwrst(cpu);
270 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
271 pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
272 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
273 omap_pm_ops.scu_prepare(cpu, power_state);
274 l2x0_pwrst_prepare(cpu, save_state);
277 * Call low level function with targeted low power state.
279 if (save_state)
280 cpu_suspend(save_state, omap_pm_ops.finish_suspend);
281 else
282 omap_pm_ops.finish_suspend(save_state);
284 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
285 gic_dist_enable();
288 * Restore the CPUx power state to ON otherwise CPUx
289 * power domain can transitions to programmed low power
290 * state while doing WFI outside the low powe code. On
291 * secure devices, CPUx does WFI which can result in
292 * domain transition
294 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
296 pwrdm_post_transition(NULL);
298 return 0;
302 * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
303 * @cpu : CPU ID
304 * @power_state: CPU low power state.
306 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
308 struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
309 unsigned int cpu_state = 0;
311 if (omap_rev() == OMAP4430_REV_ES1_0)
312 return -ENXIO;
314 /* Use the achievable power state for the domain */
315 power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
316 false, power_state);
318 if (power_state == PWRDM_POWER_OFF)
319 cpu_state = 1;
321 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
322 pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
323 set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
324 omap_pm_ops.scu_prepare(cpu, power_state);
327 * CPU never retuns back if targeted power state is OFF mode.
328 * CPU ONLINE follows normal CPU ONLINE ptah via
329 * omap4_secondary_startup().
331 omap_pm_ops.finish_suspend(cpu_state);
333 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
334 return 0;
339 * Enable Mercury Fast HG retention mode by default.
341 static void enable_mercury_retention_mode(void)
343 u32 reg;
345 reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
346 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
347 /* Enable HG_EN, HG_RAMPUP = fast mode */
348 reg |= BIT(24) | BIT(25);
349 omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
350 OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
354 * Initialise OMAP4 MPUSS
356 int __init omap4_mpuss_init(void)
358 struct omap4_cpu_pm_info *pm_info;
360 if (omap_rev() == OMAP4430_REV_ES1_0) {
361 WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
362 return -ENODEV;
365 /* Initilaise per CPU PM information */
366 pm_info = &per_cpu(omap4_pm_info, 0x0);
367 if (sar_base) {
368 pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
369 if (cpu_is_omap44xx())
370 pm_info->wkup_sar_addr = sar_base +
371 CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
372 else
373 pm_info->wkup_sar_addr = sar_base +
374 OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
375 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
377 pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
378 if (!pm_info->pwrdm) {
379 pr_err("Lookup failed for CPU0 pwrdm\n");
380 return -ENODEV;
383 /* Clear CPU previous power domain state */
384 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
385 cpu_clear_prev_logic_pwrst(0);
387 /* Initialise CPU0 power domain state to ON */
388 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
390 pm_info = &per_cpu(omap4_pm_info, 0x1);
391 if (sar_base) {
392 pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
393 if (cpu_is_omap44xx())
394 pm_info->wkup_sar_addr = sar_base +
395 CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
396 else
397 pm_info->wkup_sar_addr = sar_base +
398 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
399 pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
402 pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
403 if (!pm_info->pwrdm) {
404 pr_err("Lookup failed for CPU1 pwrdm\n");
405 return -ENODEV;
408 /* Clear CPU previous power domain state */
409 pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
410 cpu_clear_prev_logic_pwrst(1);
412 /* Initialise CPU1 power domain state to ON */
413 pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
415 mpuss_pd = pwrdm_lookup("mpu_pwrdm");
416 if (!mpuss_pd) {
417 pr_err("Failed to lookup MPUSS power domain\n");
418 return -ENODEV;
420 pwrdm_clear_all_prev_pwrst(mpuss_pd);
421 mpuss_clear_prev_logic_pwrst();
423 if (sar_base) {
424 /* Save device type on scratchpad for low level code to use */
425 writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
426 sar_base + OMAP_TYPE_OFFSET);
427 save_l2x0_context();
430 if (cpu_is_omap44xx()) {
431 omap_pm_ops.finish_suspend = omap4_finish_suspend;
432 omap_pm_ops.resume = omap4_cpu_resume;
433 omap_pm_ops.scu_prepare = scu_pwrst_prepare;
434 omap_pm_ops.hotplug_restart = omap4_secondary_startup;
435 cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
436 } else if (soc_is_omap54xx() || soc_is_dra7xx()) {
437 cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
438 enable_mercury_retention_mode();
441 if (cpu_is_omap446x())
442 omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
444 return 0;
447 #endif
449 u32 omap4_get_cpu1_ns_pa_addr(void)
451 return old_cpu1_ns_pa_addr;
455 * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
456 * current kernel's secondary_startup() early before
457 * clockdomains_init(). Otherwise clockdomain_init() can
458 * wake CPU1 and cause a hang.
460 void __init omap4_mpuss_early_init(void)
462 unsigned long startup_pa;
463 void __iomem *ns_pa_addr;
465 if (!(soc_is_omap44xx() || soc_is_omap54xx()))
466 return;
468 sar_base = omap4_get_sar_ram_base();
470 /* Save old NS_PA_ADDR for validity checks later on */
471 if (soc_is_omap44xx())
472 ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
473 else
474 ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
475 old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
477 if (soc_is_omap443x())
478 startup_pa = __pa_symbol(omap4_secondary_startup);
479 else if (soc_is_omap446x())
480 startup_pa = __pa_symbol(omap4460_secondary_startup);
481 else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
482 startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
483 else
484 startup_pa = __pa_symbol(omap5_secondary_startup);
486 if (soc_is_omap44xx())
487 writel_relaxed(startup_pa, sar_base +
488 CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
489 else
490 writel_relaxed(startup_pa, sar_base +
491 OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);