1 // SPDX-License-Identifier: GPL-2.0-only
3 * Linux performance counter support for MIPS.
5 * Copyright (C) 2010 MIPS Technologies, Inc.
6 * Copyright (C) 2011 Cavium Networks, Inc.
7 * Author: Deng-Cheng Zhu
9 * This code is based on the implementation for ARM, which is in turn
10 * based on the sparc64 perf event code and the x86 code. Performance
11 * counter access is based on the MIPS Oprofile code. And the callchain
12 * support references the code of MIPS stacktrace.c.
15 #include <linux/cpumask.h>
16 #include <linux/interrupt.h>
17 #include <linux/smp.h>
18 #include <linux/kernel.h>
19 #include <linux/perf_event.h>
20 #include <linux/uaccess.h>
23 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
25 #include <asm/time.h> /* For perf_irq */
27 #define MIPS_MAX_HWEVENTS 4
28 #define MIPS_TCS_PER_COUNTER 2
29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
31 struct cpu_hw_events
{
32 /* Array of events on this cpu. */
33 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
36 * Set the bit (indexed by the counter number) when the counter
37 * is used for an event.
39 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
42 * Software copy of the control register for each performance counter.
43 * MIPS CPUs vary in performance counters. They use this differently,
44 * and even may not use it.
46 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
48 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
52 /* The description of MIPS performance events. */
53 struct mips_perf_event
{
54 unsigned int event_id
;
56 * MIPS performance counters are indexed starting from 0.
57 * CNTR_EVEN indicates the indexes of the counters to be used are
60 unsigned int cntr_mask
;
61 #define CNTR_EVEN 0x55555555
62 #define CNTR_ODD 0xaaaaaaaa
63 #define CNTR_ALL 0xffffffff
71 static struct mips_perf_event raw_event
;
72 static DEFINE_MUTEX(raw_event_mutex
);
74 #define C(x) PERF_COUNT_HW_CACHE_##x
82 u64 (*read_counter
)(unsigned int idx
);
83 void (*write_counter
)(unsigned int idx
, u64 val
);
84 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
85 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
86 const struct mips_perf_event (*cache_event_map
)
87 [PERF_COUNT_HW_CACHE_MAX
]
88 [PERF_COUNT_HW_CACHE_OP_MAX
]
89 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
90 unsigned int num_counters
;
93 static struct mips_pmu mipspmu
;
95 #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
97 #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
99 #ifdef CONFIG_CPU_BMIPS5000
100 #define M_PERFCTL_MT_EN(filter) 0
101 #else /* !CONFIG_CPU_BMIPS5000 */
102 #define M_PERFCTL_MT_EN(filter) (filter)
103 #endif /* CONFIG_CPU_BMIPS5000 */
105 #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
106 #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
107 #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
109 #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
115 #ifdef CONFIG_MIPS_MT_SMP
116 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
118 #define M_PERFCTL_CONFIG_MASK 0x1f
122 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
123 static DEFINE_RWLOCK(pmuint_rwlock
);
125 #if defined(CONFIG_CPU_BMIPS5000)
126 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
127 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
129 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
130 0 : cpu_vpe_id(¤t_cpu_data))
133 /* Copied from op_model_mipsxx.c */
134 static unsigned int vpe_shift(void)
136 if (num_possible_cpus() > 1)
142 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
144 return counters
>> vpe_shift();
147 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
150 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
152 static void resume_local_counters(void);
153 static void pause_local_counters(void);
154 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
155 static int mipsxx_pmu_handle_shared_irq(void);
157 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
164 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
166 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
171 * The counters are unsigned, we must cast to truncate
174 return (u32
)read_c0_perfcntr0();
176 return (u32
)read_c0_perfcntr1();
178 return (u32
)read_c0_perfcntr2();
180 return (u32
)read_c0_perfcntr3();
182 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
187 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
189 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
193 return read_c0_perfcntr0_64();
195 return read_c0_perfcntr1_64();
197 return read_c0_perfcntr2_64();
199 return read_c0_perfcntr3_64();
201 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
206 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
208 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
212 write_c0_perfcntr0(val
);
215 write_c0_perfcntr1(val
);
218 write_c0_perfcntr2(val
);
221 write_c0_perfcntr3(val
);
226 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
228 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
232 write_c0_perfcntr0_64(val
);
235 write_c0_perfcntr1_64(val
);
238 write_c0_perfcntr2_64(val
);
241 write_c0_perfcntr3_64(val
);
246 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
248 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
252 return read_c0_perfctrl0();
254 return read_c0_perfctrl1();
256 return read_c0_perfctrl2();
258 return read_c0_perfctrl3();
260 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
265 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
267 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
271 write_c0_perfctrl0(val
);
274 write_c0_perfctrl1(val
);
277 write_c0_perfctrl2(val
);
280 write_c0_perfctrl3(val
);
285 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
286 struct hw_perf_event
*hwc
)
291 * We only need to care the counter mask. The range has been
292 * checked definitely.
294 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
296 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
298 * Note that some MIPS perf events can be counted by both
299 * even and odd counters, wheresas many other are only by
300 * even _or_ odd counters. This introduces an issue that
301 * when the former kind of event takes the counter the
302 * latter kind of event wants to use, then the "counter
303 * allocation" for the latter event will fail. In fact if
304 * they can be dynamically swapped, they both feel happy.
305 * But here we leave this issue alone for now.
307 if (test_bit(i
, &cntr_mask
) &&
308 !test_and_set_bit(i
, cpuc
->used_mask
))
315 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
317 struct perf_event
*event
= container_of(evt
, struct perf_event
, hw
);
318 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
319 unsigned int range
= evt
->event_base
>> 24;
321 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
323 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
324 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
325 /* Make sure interrupt enabled. */
328 if (IS_ENABLED(CONFIG_CPU_BMIPS5000
)) {
329 /* enable the counter for the calling thread */
330 cpuc
->saved_ctrl
[idx
] |=
331 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC
;
332 } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP
) && range
> V
) {
333 /* The counter is processor wide. Set it up to count all TCs. */
334 pr_debug("Enabling perf counter for all TCs\n");
335 cpuc
->saved_ctrl
[idx
] |= M_TC_EN_ALL
;
337 unsigned int cpu
, ctrl
;
340 * Set up the counter for a particular CPU when event->cpu is
341 * a valid CPU number. Otherwise set up the counter for the CPU
342 * scheduling this thread.
344 cpu
= (event
->cpu
>= 0) ? event
->cpu
: smp_processor_id();
346 ctrl
= M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data
[cpu
]));
348 cpuc
->saved_ctrl
[idx
] |= ctrl
;
349 pr_debug("Enabling perf counter for CPU%d\n", cpu
);
352 * We do not actually let the counter run. Leave it until start().
356 static void mipsxx_pmu_disable_event(int idx
)
358 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
361 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
363 local_irq_save(flags
);
364 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
365 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
366 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
367 local_irq_restore(flags
);
370 static int mipspmu_event_set_period(struct perf_event
*event
,
371 struct hw_perf_event
*hwc
,
374 u64 left
= local64_read(&hwc
->period_left
);
375 u64 period
= hwc
->sample_period
;
378 if (unlikely((left
+ period
) & (1ULL << 63))) {
379 /* left underflowed by more than period. */
381 local64_set(&hwc
->period_left
, left
);
382 hwc
->last_period
= period
;
384 } else if (unlikely((left
+ period
) <= period
)) {
385 /* left underflowed by less than period. */
387 local64_set(&hwc
->period_left
, left
);
388 hwc
->last_period
= period
;
392 if (left
> mipspmu
.max_period
) {
393 left
= mipspmu
.max_period
;
394 local64_set(&hwc
->period_left
, left
);
397 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
399 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
401 perf_event_update_userpage(event
);
406 static void mipspmu_event_update(struct perf_event
*event
,
407 struct hw_perf_event
*hwc
,
410 u64 prev_raw_count
, new_raw_count
;
414 prev_raw_count
= local64_read(&hwc
->prev_count
);
415 new_raw_count
= mipspmu
.read_counter(idx
);
417 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
418 new_raw_count
) != prev_raw_count
)
421 delta
= new_raw_count
- prev_raw_count
;
423 local64_add(delta
, &event
->count
);
424 local64_sub(delta
, &hwc
->period_left
);
427 static void mipspmu_start(struct perf_event
*event
, int flags
)
429 struct hw_perf_event
*hwc
= &event
->hw
;
431 if (flags
& PERF_EF_RELOAD
)
432 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
436 /* Set the period for the event. */
437 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
439 /* Enable the event. */
440 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
443 static void mipspmu_stop(struct perf_event
*event
, int flags
)
445 struct hw_perf_event
*hwc
= &event
->hw
;
447 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
448 /* We are working on a local event. */
449 mipsxx_pmu_disable_event(hwc
->idx
);
451 mipspmu_event_update(event
, hwc
, hwc
->idx
);
452 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
456 static int mipspmu_add(struct perf_event
*event
, int flags
)
458 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
459 struct hw_perf_event
*hwc
= &event
->hw
;
463 perf_pmu_disable(event
->pmu
);
465 /* To look for a free counter for this event. */
466 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
473 * If there is an event in the counter we are going to use then
474 * make sure it is disabled.
477 mipsxx_pmu_disable_event(idx
);
478 cpuc
->events
[idx
] = event
;
480 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
481 if (flags
& PERF_EF_START
)
482 mipspmu_start(event
, PERF_EF_RELOAD
);
484 /* Propagate our changes to the userspace mapping. */
485 perf_event_update_userpage(event
);
488 perf_pmu_enable(event
->pmu
);
492 static void mipspmu_del(struct perf_event
*event
, int flags
)
494 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
495 struct hw_perf_event
*hwc
= &event
->hw
;
498 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
500 mipspmu_stop(event
, PERF_EF_UPDATE
);
501 cpuc
->events
[idx
] = NULL
;
502 clear_bit(idx
, cpuc
->used_mask
);
504 perf_event_update_userpage(event
);
507 static void mipspmu_read(struct perf_event
*event
)
509 struct hw_perf_event
*hwc
= &event
->hw
;
511 /* Don't read disabled counters! */
515 mipspmu_event_update(event
, hwc
, hwc
->idx
);
518 static void mipspmu_enable(struct pmu
*pmu
)
520 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
521 write_unlock(&pmuint_rwlock
);
523 resume_local_counters();
527 * MIPS performance counters can be per-TC. The control registers can
528 * not be directly accessed across CPUs. Hence if we want to do global
529 * control, we need cross CPU calls. on_each_cpu() can help us, but we
530 * can not make sure this function is called with interrupts enabled. So
531 * here we pause local counters and then grab a rwlock and leave the
532 * counters on other CPUs alone. If any counter interrupt raises while
533 * we own the write lock, simply pause local counters on that CPU and
534 * spin in the handler. Also we know we won't be switched to another
535 * CPU after pausing local counters and before grabbing the lock.
537 static void mipspmu_disable(struct pmu
*pmu
)
539 pause_local_counters();
540 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
541 write_lock(&pmuint_rwlock
);
545 static atomic_t active_events
= ATOMIC_INIT(0);
546 static DEFINE_MUTEX(pmu_reserve_mutex
);
547 static int (*save_perf_irq
)(void);
549 static int mipspmu_get_irq(void)
553 if (mipspmu
.irq
>= 0) {
554 /* Request my own irq handler. */
555 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
556 IRQF_PERCPU
| IRQF_NOBALANCING
|
557 IRQF_NO_THREAD
| IRQF_NO_SUSPEND
|
559 "mips_perf_pmu", &mipspmu
);
561 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
564 } else if (cp0_perfcount_irq
< 0) {
566 * We are sharing the irq number with the timer interrupt.
568 save_perf_irq
= perf_irq
;
569 perf_irq
= mipsxx_pmu_handle_shared_irq
;
572 pr_warn("The platform hasn't properly defined its interrupt controller\n");
579 static void mipspmu_free_irq(void)
581 if (mipspmu
.irq
>= 0)
582 free_irq(mipspmu
.irq
, &mipspmu
);
583 else if (cp0_perfcount_irq
< 0)
584 perf_irq
= save_perf_irq
;
588 * mipsxx/rm9000/loongson2 have different performance counters, they have
589 * specific low-level init routines.
591 static void reset_counters(void *arg
);
592 static int __hw_perf_event_init(struct perf_event
*event
);
594 static void hw_perf_event_destroy(struct perf_event
*event
)
596 if (atomic_dec_and_mutex_lock(&active_events
,
597 &pmu_reserve_mutex
)) {
599 * We must not call the destroy function with interrupts
602 on_each_cpu(reset_counters
,
603 (void *)(long)mipspmu
.num_counters
, 1);
605 mutex_unlock(&pmu_reserve_mutex
);
609 static int mipspmu_event_init(struct perf_event
*event
)
613 /* does not support taken branch sampling */
614 if (has_branch_stack(event
))
617 switch (event
->attr
.type
) {
619 case PERF_TYPE_HARDWARE
:
620 case PERF_TYPE_HW_CACHE
:
627 if (event
->cpu
>= 0 && !cpu_online(event
->cpu
))
630 if (!atomic_inc_not_zero(&active_events
)) {
631 mutex_lock(&pmu_reserve_mutex
);
632 if (atomic_read(&active_events
) == 0)
633 err
= mipspmu_get_irq();
636 atomic_inc(&active_events
);
637 mutex_unlock(&pmu_reserve_mutex
);
643 return __hw_perf_event_init(event
);
646 static struct pmu pmu
= {
647 .pmu_enable
= mipspmu_enable
,
648 .pmu_disable
= mipspmu_disable
,
649 .event_init
= mipspmu_event_init
,
652 .start
= mipspmu_start
,
653 .stop
= mipspmu_stop
,
654 .read
= mipspmu_read
,
657 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
660 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
663 #ifdef CONFIG_MIPS_MT_SMP
664 if (num_possible_cpus() > 1)
665 return ((unsigned int)pev
->range
<< 24) |
666 (pev
->cntr_mask
& 0xffff00) |
667 (pev
->event_id
& 0xff);
669 #endif /* CONFIG_MIPS_MT_SMP */
670 return ((pev
->cntr_mask
& 0xffff00) |
671 (pev
->event_id
& 0xff));
674 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
677 if ((*mipspmu
.general_event_map
)[idx
].cntr_mask
== 0)
678 return ERR_PTR(-EOPNOTSUPP
);
679 return &(*mipspmu
.general_event_map
)[idx
];
682 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
684 unsigned int cache_type
, cache_op
, cache_result
;
685 const struct mips_perf_event
*pev
;
687 cache_type
= (config
>> 0) & 0xff;
688 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
689 return ERR_PTR(-EINVAL
);
691 cache_op
= (config
>> 8) & 0xff;
692 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
693 return ERR_PTR(-EINVAL
);
695 cache_result
= (config
>> 16) & 0xff;
696 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
697 return ERR_PTR(-EINVAL
);
699 pev
= &((*mipspmu
.cache_event_map
)
704 if (pev
->cntr_mask
== 0)
705 return ERR_PTR(-EOPNOTSUPP
);
711 static int validate_group(struct perf_event
*event
)
713 struct perf_event
*sibling
, *leader
= event
->group_leader
;
714 struct cpu_hw_events fake_cpuc
;
716 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
718 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
721 for_each_sibling_event(sibling
, leader
) {
722 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
726 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
732 /* This is needed by specific irq handlers in perf_event_*.c */
733 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
734 int idx
, struct perf_sample_data
*data
,
735 struct pt_regs
*regs
)
737 struct perf_event
*event
= cpuc
->events
[idx
];
738 struct hw_perf_event
*hwc
= &event
->hw
;
740 mipspmu_event_update(event
, hwc
, idx
);
741 data
->period
= event
->hw
.last_period
;
742 if (!mipspmu_event_set_period(event
, hwc
, idx
))
745 if (perf_event_overflow(event
, data
, regs
))
746 mipsxx_pmu_disable_event(idx
);
750 static int __n_counters(void)
754 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M
))
756 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M
))
758 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M
))
764 static int n_counters(void)
768 switch (current_cpu_type()) {
780 counters
= __n_counters();
786 static void reset_counters(void *arg
)
788 int counters
= (int)(long)arg
;
791 mipsxx_pmu_write_control(3, 0);
792 mipspmu
.write_counter(3, 0);
795 mipsxx_pmu_write_control(2, 0);
796 mipspmu
.write_counter(2, 0);
799 mipsxx_pmu_write_control(1, 0);
800 mipspmu
.write_counter(1, 0);
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu
.write_counter(0, 0);
809 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
810 static const struct mips_perf_event mipsxxcore_event_map
811 [PERF_COUNT_HW_MAX
] = {
812 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
813 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
814 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
815 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
818 /* 74K/proAptiv core has different branch event code. */
819 static const struct mips_perf_event mipsxxcore_event_map2
820 [PERF_COUNT_HW_MAX
] = {
821 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
822 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
823 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
824 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
827 static const struct mips_perf_event i6x00_event_map
[PERF_COUNT_HW_MAX
] = {
828 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
},
829 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
},
830 /* These only count dcache, not icache */
831 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x45, CNTR_EVEN
| CNTR_ODD
},
832 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x48, CNTR_EVEN
| CNTR_ODD
},
833 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
834 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
837 static const struct mips_perf_event loongson3_event_map
[PERF_COUNT_HW_MAX
] = {
838 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
},
839 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, CNTR_ODD
},
840 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
},
841 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x01, CNTR_ODD
},
844 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
845 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
846 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
847 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
848 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
849 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
850 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
851 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
854 static const struct mips_perf_event bmips5000_event_map
855 [PERF_COUNT_HW_MAX
] = {
856 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, T
},
857 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
858 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
861 static const struct mips_perf_event xlp_event_map
[PERF_COUNT_HW_MAX
] = {
862 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
863 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x18, CNTR_ALL
}, /* PAPI_TOT_INS */
864 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
865 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
866 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x1b, CNTR_ALL
}, /* PAPI_BR_CN */
867 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x1c, CNTR_ALL
}, /* PAPI_BR_MSP */
870 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
871 static const struct mips_perf_event mipsxxcore_cache_map
872 [PERF_COUNT_HW_CACHE_MAX
]
873 [PERF_COUNT_HW_CACHE_OP_MAX
]
874 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
877 * Like some other architectures (e.g. ARM), the performance
878 * counters don't differentiate between read and write
879 * accesses/misses, so this isn't strictly correct, but it's the
880 * best we can do. Writes and reads get combined.
883 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
884 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
887 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
888 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
893 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
894 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
897 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
898 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
901 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
903 * Note that MIPS has only "hit" events countable for
904 * the prefetch operation.
910 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
911 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
914 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
915 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
920 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
921 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
924 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
925 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
930 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
931 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
934 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
935 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
939 /* Using the same code for *HW_BRANCH* */
941 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
942 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
945 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
946 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
951 /* 74K/proAptiv core has completely different cache event map. */
952 static const struct mips_perf_event mipsxxcore_cache_map2
953 [PERF_COUNT_HW_CACHE_MAX
]
954 [PERF_COUNT_HW_CACHE_OP_MAX
]
955 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
958 * Like some other architectures (e.g. ARM), the performance
959 * counters don't differentiate between read and write
960 * accesses/misses, so this isn't strictly correct, but it's the
961 * best we can do. Writes and reads get combined.
964 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
965 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
968 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
969 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
974 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
975 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
978 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
979 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
982 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
984 * Note that MIPS has only "hit" events countable for
985 * the prefetch operation.
991 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
992 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
995 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
996 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
1000 * 74K core does not have specific DTLB events. proAptiv core has
1001 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1002 * not included here. One can use raw events if really needed.
1006 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1007 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1010 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1011 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1015 /* Using the same code for *HW_BRANCH* */
1017 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1018 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1021 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1022 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1027 static const struct mips_perf_event i6x00_cache_map
1028 [PERF_COUNT_HW_CACHE_MAX
]
1029 [PERF_COUNT_HW_CACHE_OP_MAX
]
1030 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1033 [C(RESULT_ACCESS
)] = { 0x46, CNTR_EVEN
| CNTR_ODD
},
1034 [C(RESULT_MISS
)] = { 0x49, CNTR_EVEN
| CNTR_ODD
},
1037 [C(RESULT_ACCESS
)] = { 0x47, CNTR_EVEN
| CNTR_ODD
},
1038 [C(RESULT_MISS
)] = { 0x4a, CNTR_EVEN
| CNTR_ODD
},
1043 [C(RESULT_ACCESS
)] = { 0x84, CNTR_EVEN
| CNTR_ODD
},
1044 [C(RESULT_MISS
)] = { 0x85, CNTR_EVEN
| CNTR_ODD
},
1048 /* Can't distinguish read & write */
1050 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1051 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1054 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1055 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1059 /* Conditional branches / mispredicted */
1061 [C(RESULT_ACCESS
)] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
1062 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
1067 static const struct mips_perf_event loongson3_cache_map
1068 [PERF_COUNT_HW_CACHE_MAX
]
1069 [PERF_COUNT_HW_CACHE_OP_MAX
]
1070 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1073 * Like some other architectures (e.g. ARM), the performance
1074 * counters don't differentiate between read and write
1075 * accesses/misses, so this isn't strictly correct, but it's the
1076 * best we can do. Writes and reads get combined.
1079 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1082 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1087 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1090 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1095 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1098 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1103 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1106 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1110 /* Using the same code for *HW_BRANCH* */
1112 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1113 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1116 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1117 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1123 static const struct mips_perf_event bmips5000_cache_map
1124 [PERF_COUNT_HW_CACHE_MAX
]
1125 [PERF_COUNT_HW_CACHE_OP_MAX
]
1126 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1129 * Like some other architectures (e.g. ARM), the performance
1130 * counters don't differentiate between read and write
1131 * accesses/misses, so this isn't strictly correct, but it's the
1132 * best we can do. Writes and reads get combined.
1135 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1136 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1139 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1140 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1145 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1146 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1149 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1150 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1152 [C(OP_PREFETCH
)] = {
1153 [C(RESULT_ACCESS
)] = { 23, CNTR_EVEN
, T
},
1155 * Note that MIPS has only "hit" events countable for
1156 * the prefetch operation.
1162 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1163 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1166 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1167 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1171 /* Using the same code for *HW_BRANCH* */
1173 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1176 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1182 static const struct mips_perf_event octeon_cache_map
1183 [PERF_COUNT_HW_CACHE_MAX
]
1184 [PERF_COUNT_HW_CACHE_OP_MAX
]
1185 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1188 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1189 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1192 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1197 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1199 [C(OP_PREFETCH
)] = {
1200 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1205 * Only general DTLB misses are counted use the same event for
1209 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1212 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1217 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1222 static const struct mips_perf_event xlp_cache_map
1223 [PERF_COUNT_HW_CACHE_MAX
]
1224 [PERF_COUNT_HW_CACHE_OP_MAX
]
1225 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1228 [C(RESULT_ACCESS
)] = { 0x31, CNTR_ALL
}, /* PAPI_L1_DCR */
1229 [C(RESULT_MISS
)] = { 0x30, CNTR_ALL
}, /* PAPI_L1_LDM */
1232 [C(RESULT_ACCESS
)] = { 0x2f, CNTR_ALL
}, /* PAPI_L1_DCW */
1233 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
}, /* PAPI_L1_STM */
1238 [C(RESULT_ACCESS
)] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
1239 [C(RESULT_MISS
)] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
1244 [C(RESULT_ACCESS
)] = { 0x35, CNTR_ALL
}, /* PAPI_L2_DCR */
1245 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
}, /* PAPI_L2_LDM */
1248 [C(RESULT_ACCESS
)] = { 0x34, CNTR_ALL
}, /* PAPI_L2_DCA */
1249 [C(RESULT_MISS
)] = { 0x36, CNTR_ALL
}, /* PAPI_L2_DCM */
1254 * Only general DTLB misses are counted use the same event for
1258 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1261 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1266 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1269 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1274 [C(RESULT_MISS
)] = { 0x25, CNTR_ALL
},
1279 static int __hw_perf_event_init(struct perf_event
*event
)
1281 struct perf_event_attr
*attr
= &event
->attr
;
1282 struct hw_perf_event
*hwc
= &event
->hw
;
1283 const struct mips_perf_event
*pev
;
1286 /* Returning MIPS event descriptor for generic perf event. */
1287 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1288 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1290 pev
= mipspmu_map_general_event(event
->attr
.config
);
1291 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1292 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1293 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1294 /* We are working on the global raw event. */
1295 mutex_lock(&raw_event_mutex
);
1296 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1298 /* The event type is not (yet) supported. */
1303 if (PERF_TYPE_RAW
== event
->attr
.type
)
1304 mutex_unlock(&raw_event_mutex
);
1305 return PTR_ERR(pev
);
1309 * We allow max flexibility on how each individual counter shared
1310 * by the single CPU operates (the mode exclusion and the range).
1312 hwc
->config_base
= MIPS_PERFCTRL_IE
;
1314 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1315 if (PERF_TYPE_RAW
== event
->attr
.type
)
1316 mutex_unlock(&raw_event_mutex
);
1318 if (!attr
->exclude_user
)
1319 hwc
->config_base
|= MIPS_PERFCTRL_U
;
1320 if (!attr
->exclude_kernel
) {
1321 hwc
->config_base
|= MIPS_PERFCTRL_K
;
1322 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1323 hwc
->config_base
|= MIPS_PERFCTRL_EXL
;
1325 if (!attr
->exclude_hv
)
1326 hwc
->config_base
|= MIPS_PERFCTRL_S
;
1328 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1330 * The event can belong to another cpu. We do not assign a local
1331 * counter for it for now.
1336 if (!hwc
->sample_period
) {
1337 hwc
->sample_period
= mipspmu
.max_period
;
1338 hwc
->last_period
= hwc
->sample_period
;
1339 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1343 if (event
->group_leader
!= event
)
1344 err
= validate_group(event
);
1346 event
->destroy
= hw_perf_event_destroy
;
1349 event
->destroy(event
);
1354 static void pause_local_counters(void)
1356 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1357 int ctr
= mipspmu
.num_counters
;
1358 unsigned long flags
;
1360 local_irq_save(flags
);
1363 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1364 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1365 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1367 local_irq_restore(flags
);
1370 static void resume_local_counters(void)
1372 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1373 int ctr
= mipspmu
.num_counters
;
1377 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1381 static int mipsxx_pmu_handle_shared_irq(void)
1383 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1384 struct perf_sample_data data
;
1385 unsigned int counters
= mipspmu
.num_counters
;
1387 int n
, handled
= IRQ_NONE
;
1388 struct pt_regs
*regs
;
1390 if (cpu_has_perf_cntr_intr_bit
&& !(read_c0_cause() & CAUSEF_PCI
))
1393 * First we pause the local counters, so that when we are locked
1394 * here, the counters are all paused. When it gets locked due to
1395 * perf_disable(), the timer interrupt handler will be delayed.
1397 * See also mipsxx_pmu_start().
1399 pause_local_counters();
1400 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1401 read_lock(&pmuint_rwlock
);
1404 regs
= get_irq_regs();
1406 perf_sample_data_init(&data
, 0, 0);
1408 for (n
= counters
- 1; n
>= 0; n
--) {
1409 if (!test_bit(n
, cpuc
->used_mask
))
1412 counter
= mipspmu
.read_counter(n
);
1413 if (!(counter
& mipspmu
.overflow
))
1416 handle_associated_event(cpuc
, n
, &data
, regs
);
1417 handled
= IRQ_HANDLED
;
1420 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1421 read_unlock(&pmuint_rwlock
);
1423 resume_local_counters();
1426 * Do all the work for the pending perf events. We can do this
1427 * in here because the performance counter interrupt is a regular
1428 * interrupt, not NMI.
1430 if (handled
== IRQ_HANDLED
)
1436 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1438 return mipsxx_pmu_handle_shared_irq();
1442 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1443 ((b) == 0 || (b) == 1 || (b) == 11)
1446 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1447 ((b) == 0 || (b) == 1 || (b) == 11)
1448 #ifdef CONFIG_MIPS_MT_SMP
1449 #define IS_RANGE_P_34K_EVENT(r, b) \
1450 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1451 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1452 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1453 ((b) >= 64 && (b) <= 67))
1454 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1458 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1459 ((b) == 0 || (b) == 1)
1462 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1463 ((b) == 0 || (b) == 1)
1465 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1466 ((b) == 0 || (b) == 1)
1469 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1470 ((b) == 0 || (b) == 1 || (b) == 11)
1471 #ifdef CONFIG_MIPS_MT_SMP
1472 #define IS_RANGE_P_1004K_EVENT(r, b) \
1473 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1474 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1475 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1476 (r) == 188 || (b) == 61 || (b) == 62 || \
1477 ((b) >= 64 && (b) <= 67))
1478 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1482 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1483 ((b) == 0 || (b) == 1 || (b) == 11)
1484 #ifdef CONFIG_MIPS_MT_SMP
1485 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1486 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1487 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1488 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1489 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1490 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1491 ((b) >= 64 && (b) <= 67))
1492 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1496 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1497 ((b) == 0 || (b) == 1)
1501 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1502 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1503 * indicate the even/odd bank selector. So, for example, when user wants to take
1504 * the Event Num of 15 for odd counters (by referring to the user manual), then
1505 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1508 * Some newer cores have even more events, in which case the user can use raw
1509 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1510 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1512 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1514 /* currently most cores have 7-bit event numbers */
1515 unsigned int raw_id
= config
& 0xff;
1516 unsigned int base_id
= raw_id
& 0x7f;
1518 switch (current_cpu_type()) {
1520 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1521 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1523 raw_event
.cntr_mask
=
1524 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1525 #ifdef CONFIG_MIPS_MT_SMP
1527 * This is actually doing nothing. Non-multithreading
1528 * CPUs will not check and calculate the range.
1530 raw_event
.range
= P
;
1534 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1535 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1537 raw_event
.cntr_mask
=
1538 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1539 #ifdef CONFIG_MIPS_MT_SMP
1540 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1541 raw_event
.range
= P
;
1542 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1543 raw_event
.range
= V
;
1545 raw_event
.range
= T
;
1550 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1551 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1553 raw_event
.cntr_mask
=
1554 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1555 #ifdef CONFIG_MIPS_MT_SMP
1556 raw_event
.range
= P
;
1560 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id
))
1561 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1563 raw_event
.cntr_mask
=
1564 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1565 #ifdef CONFIG_MIPS_MT_SMP
1566 raw_event
.range
= P
;
1571 /* 8-bit event numbers */
1572 raw_id
= config
& 0x1ff;
1573 base_id
= raw_id
& 0xff;
1574 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id
))
1575 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1577 raw_event
.cntr_mask
=
1578 raw_id
> 255 ? CNTR_ODD
: CNTR_EVEN
;
1579 #ifdef CONFIG_MIPS_MT_SMP
1580 raw_event
.range
= P
;
1585 /* 8-bit event numbers */
1586 base_id
= config
& 0xff;
1587 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1590 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1591 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1593 raw_event
.cntr_mask
=
1594 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1595 #ifdef CONFIG_MIPS_MT_SMP
1596 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1597 raw_event
.range
= P
;
1598 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1599 raw_event
.range
= V
;
1601 raw_event
.range
= T
;
1604 case CPU_INTERAPTIV
:
1605 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id
))
1606 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1608 raw_event
.cntr_mask
=
1609 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1610 #ifdef CONFIG_MIPS_MT_SMP
1611 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id
, base_id
))
1612 raw_event
.range
= P
;
1613 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id
)))
1614 raw_event
.range
= V
;
1616 raw_event
.range
= T
;
1620 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id
))
1621 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1623 raw_event
.cntr_mask
=
1624 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1626 case CPU_LOONGSON64
:
1627 raw_event
.cntr_mask
= raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1631 raw_event
.event_id
= base_id
;
1636 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1638 unsigned int raw_id
= config
& 0xff;
1639 unsigned int base_id
= raw_id
& 0x7f;
1642 raw_event
.cntr_mask
= CNTR_ALL
;
1643 raw_event
.event_id
= base_id
;
1645 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1647 return ERR_PTR(-EOPNOTSUPP
);
1650 return ERR_PTR(-EOPNOTSUPP
);
1661 return ERR_PTR(-EOPNOTSUPP
);
1669 static const struct mips_perf_event
*xlp_pmu_map_raw_event(u64 config
)
1671 unsigned int raw_id
= config
& 0xff;
1673 /* Only 1-63 are defined */
1674 if ((raw_id
< 0x01) || (raw_id
> 0x3f))
1675 return ERR_PTR(-EOPNOTSUPP
);
1677 raw_event
.cntr_mask
= CNTR_ALL
;
1678 raw_event
.event_id
= raw_id
;
1684 init_hw_perf_events(void)
1689 pr_info("Performance counters: ");
1691 counters
= n_counters();
1692 if (counters
== 0) {
1693 pr_cont("No available PMU.\n");
1697 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1698 if (!cpu_has_mipsmt_pertccounters
)
1699 counters
= counters_total_to_per_cpu(counters
);
1702 if (get_c0_perfcount_int
)
1703 irq
= get_c0_perfcount_int();
1704 else if (cp0_perfcount_irq
>= 0)
1705 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1709 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1711 switch (current_cpu_type()) {
1713 mipspmu
.name
= "mips/24K";
1714 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1715 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1718 mipspmu
.name
= "mips/34K";
1719 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1720 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1723 mipspmu
.name
= "mips/74K";
1724 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1725 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1728 mipspmu
.name
= "mips/proAptiv";
1729 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1730 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1733 mipspmu
.name
= "mips/P5600";
1734 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1735 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1738 mipspmu
.name
= "mips/P6600";
1739 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1740 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1743 mipspmu
.name
= "mips/I6400";
1744 mipspmu
.general_event_map
= &i6x00_event_map
;
1745 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1748 mipspmu
.name
= "mips/I6500";
1749 mipspmu
.general_event_map
= &i6x00_event_map
;
1750 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1753 mipspmu
.name
= "mips/1004K";
1754 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1755 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1758 mipspmu
.name
= "mips/1074K";
1759 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1760 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1762 case CPU_INTERAPTIV
:
1763 mipspmu
.name
= "mips/interAptiv";
1764 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1765 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1767 case CPU_LOONGSON32
:
1768 mipspmu
.name
= "mips/loongson1";
1769 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1770 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1772 case CPU_LOONGSON64
:
1773 mipspmu
.name
= "mips/loongson3";
1774 mipspmu
.general_event_map
= &loongson3_event_map
;
1775 mipspmu
.cache_event_map
= &loongson3_cache_map
;
1777 case CPU_CAVIUM_OCTEON
:
1778 case CPU_CAVIUM_OCTEON_PLUS
:
1779 case CPU_CAVIUM_OCTEON2
:
1780 mipspmu
.name
= "octeon";
1781 mipspmu
.general_event_map
= &octeon_event_map
;
1782 mipspmu
.cache_event_map
= &octeon_cache_map
;
1783 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1786 mipspmu
.name
= "BMIPS5000";
1787 mipspmu
.general_event_map
= &bmips5000_event_map
;
1788 mipspmu
.cache_event_map
= &bmips5000_cache_map
;
1791 mipspmu
.name
= "xlp";
1792 mipspmu
.general_event_map
= &xlp_event_map
;
1793 mipspmu
.cache_event_map
= &xlp_cache_map
;
1794 mipspmu
.map_raw_event
= xlp_pmu_map_raw_event
;
1797 pr_cont("Either hardware does not support performance "
1798 "counters, or not yet implemented.\n");
1802 mipspmu
.num_counters
= counters
;
1805 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W
) {
1806 mipspmu
.max_period
= (1ULL << 63) - 1;
1807 mipspmu
.valid_count
= (1ULL << 63) - 1;
1808 mipspmu
.overflow
= 1ULL << 63;
1809 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1810 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1813 mipspmu
.max_period
= (1ULL << 31) - 1;
1814 mipspmu
.valid_count
= (1ULL << 31) - 1;
1815 mipspmu
.overflow
= 1ULL << 31;
1816 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1817 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1821 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1823 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1824 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1825 irq
< 0 ? " (share with timer interrupt)" : "");
1827 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1831 early_initcall(init_hw_perf_events
);