2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
21 #include <linux/memblock.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
30 #include <linux/kvm_host.h>
32 #include "interrupt.h"
35 #define CREATE_TRACE_POINTS
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries
[] = {
44 { "wait", VCPU_STAT(wait_exits
), KVM_STAT_VCPU
},
45 { "cache", VCPU_STAT(cache_exits
), KVM_STAT_VCPU
},
46 { "signal", VCPU_STAT(signal_exits
), KVM_STAT_VCPU
},
47 { "interrupt", VCPU_STAT(int_exits
), KVM_STAT_VCPU
},
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits
), KVM_STAT_VCPU
},
49 { "tlbmod", VCPU_STAT(tlbmod_exits
), KVM_STAT_VCPU
},
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits
), KVM_STAT_VCPU
},
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits
), KVM_STAT_VCPU
},
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits
), KVM_STAT_VCPU
},
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits
), KVM_STAT_VCPU
},
54 { "syscall", VCPU_STAT(syscall_exits
), KVM_STAT_VCPU
},
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits
), KVM_STAT_VCPU
},
56 { "break_inst", VCPU_STAT(break_inst_exits
), KVM_STAT_VCPU
},
57 { "trap_inst", VCPU_STAT(trap_inst_exits
), KVM_STAT_VCPU
},
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits
), KVM_STAT_VCPU
},
59 { "fpe", VCPU_STAT(fpe_exits
), KVM_STAT_VCPU
},
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits
), KVM_STAT_VCPU
},
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits
), KVM_STAT_VCPU
},
62 #ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits
), KVM_STAT_VCPU
},
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits
), KVM_STAT_VCPU
},
65 { "vz_hc", VCPU_STAT(vz_hc_exits
), KVM_STAT_VCPU
},
66 { "vz_grr", VCPU_STAT(vz_grr_exits
), KVM_STAT_VCPU
},
67 { "vz_gva", VCPU_STAT(vz_gva_exits
), KVM_STAT_VCPU
},
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits
), KVM_STAT_VCPU
},
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits
), KVM_STAT_VCPU
},
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits
), KVM_STAT_VCPU
},
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
), KVM_STAT_VCPU
},
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
), KVM_STAT_VCPU
},
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
), KVM_STAT_VCPU
},
75 { "halt_wakeup", VCPU_STAT(halt_wakeup
), KVM_STAT_VCPU
},
79 bool kvm_trace_guest_mode_change
;
81 int kvm_guest_mode_change_trace_reg(void)
83 kvm_trace_guest_mode_change
= 1;
87 void kvm_guest_mode_change_trace_unreg(void)
89 kvm_trace_guest_mode_change
= 0;
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
98 return !!(vcpu
->arch
.pending_exceptions
);
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
111 int kvm_arch_hardware_enable(void)
113 return kvm_mips_callbacks
->hardware_enable();
116 void kvm_arch_hardware_disable(void)
118 kvm_mips_callbacks
->hardware_disable();
121 int kvm_arch_hardware_setup(void *opaque
)
126 int kvm_arch_check_processor_compat(void *opaque
)
131 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
134 #ifdef CONFIG_KVM_MIPS_VZ
141 /* Unsupported KVM type */
145 /* Allocate page table to map GPA -> RPA */
146 kvm
->arch
.gpa_mm
.pgd
= kvm_pgd_alloc();
147 if (!kvm
->arch
.gpa_mm
.pgd
)
153 void kvm_mips_free_vcpus(struct kvm
*kvm
)
156 struct kvm_vcpu
*vcpu
;
158 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
159 kvm_vcpu_destroy(vcpu
);
162 mutex_lock(&kvm
->lock
);
164 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
165 kvm
->vcpus
[i
] = NULL
;
167 atomic_set(&kvm
->online_vcpus
, 0);
169 mutex_unlock(&kvm
->lock
);
172 static void kvm_mips_free_gpa_pt(struct kvm
*kvm
)
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm
, 0, ~0));
176 pgd_free(NULL
, kvm
->arch
.gpa_mm
.pgd
);
179 void kvm_arch_destroy_vm(struct kvm
*kvm
)
181 kvm_mips_free_vcpus(kvm
);
182 kvm_mips_free_gpa_pt(kvm
);
185 long kvm_arch_dev_ioctl(struct file
*filp
, unsigned int ioctl
,
191 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
193 /* Flush whole GPA */
194 kvm_mips_flush_gpa_pt(kvm
, 0, ~0);
196 /* Let implementation do the rest */
197 kvm_mips_callbacks
->flush_shadow_all(kvm
);
200 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
201 struct kvm_memory_slot
*slot
)
204 * The slot has been made invalid (ready for moving or deletion), so we
205 * need to ensure that it can no longer be accessed by any guest VCPUs.
208 spin_lock(&kvm
->mmu_lock
);
209 /* Flush slot from GPA */
210 kvm_mips_flush_gpa_pt(kvm
, slot
->base_gfn
,
211 slot
->base_gfn
+ slot
->npages
- 1);
212 /* Let implementation do the rest */
213 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, slot
);
214 spin_unlock(&kvm
->mmu_lock
);
217 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
218 struct kvm_memory_slot
*memslot
,
219 const struct kvm_userspace_memory_region
*mem
,
220 enum kvm_mr_change change
)
225 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
226 const struct kvm_userspace_memory_region
*mem
,
227 struct kvm_memory_slot
*old
,
228 const struct kvm_memory_slot
*new,
229 enum kvm_mr_change change
)
233 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
234 __func__
, kvm
, mem
->slot
, mem
->guest_phys_addr
,
235 mem
->memory_size
, mem
->userspace_addr
);
238 * If dirty page logging is enabled, write protect all pages in the slot
239 * ready for dirty logging.
241 * There is no need to do this in any of the following cases:
242 * CREATE: No dirty mappings will already exist.
243 * MOVE/DELETE: The old mappings will already have been cleaned up by
244 * kvm_arch_flush_shadow_memslot()
246 if (change
== KVM_MR_FLAGS_ONLY
&&
247 (!(old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
248 new->flags
& KVM_MEM_LOG_DIRTY_PAGES
)) {
249 spin_lock(&kvm
->mmu_lock
);
250 /* Write protect GPA page table entries */
251 needs_flush
= kvm_mips_mkclean_gpa_pt(kvm
, new->base_gfn
,
252 new->base_gfn
+ new->npages
- 1);
253 /* Let implementation do the rest */
255 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, new);
256 spin_unlock(&kvm
->mmu_lock
);
260 static inline void dump_handler(const char *symbol
, void *start
, void *end
)
264 pr_debug("LEAF(%s)\n", symbol
);
266 pr_debug("\t.set push\n");
267 pr_debug("\t.set noreorder\n");
269 for (p
= start
; p
< (u32
*)end
; ++p
)
270 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p
, p
);
272 pr_debug("\t.set\tpop\n");
274 pr_debug("\tEND(%s)\n", symbol
);
277 /* low level hrtimer wake routine */
278 static enum hrtimer_restart
kvm_mips_comparecount_wakeup(struct hrtimer
*timer
)
280 struct kvm_vcpu
*vcpu
;
282 vcpu
= container_of(timer
, struct kvm_vcpu
, arch
.comparecount_timer
);
284 kvm_mips_callbacks
->queue_timer_int(vcpu
);
287 if (swq_has_sleeper(&vcpu
->wq
))
288 swake_up_one(&vcpu
->wq
);
290 return kvm_mips_count_timeout(vcpu
);
293 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
298 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
301 void *gebase
, *p
, *handler
, *refill_start
, *refill_end
;
304 kvm_debug("kvm @ %p: create cpu %d at %p\n",
305 vcpu
->kvm
, vcpu
->vcpu_id
, vcpu
);
307 err
= kvm_mips_callbacks
->vcpu_init(vcpu
);
311 hrtimer_init(&vcpu
->arch
.comparecount_timer
, CLOCK_MONOTONIC
,
313 vcpu
->arch
.comparecount_timer
.function
= kvm_mips_comparecount_wakeup
;
316 * Allocate space for host mode exception handlers that handle
319 if (cpu_has_veic
|| cpu_has_vint
)
320 size
= 0x200 + VECTORSPACING
* 64;
324 gebase
= kzalloc(ALIGN(size
, PAGE_SIZE
), GFP_KERNEL
);
328 goto out_uninit_vcpu
;
330 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
331 ALIGN(size
, PAGE_SIZE
), gebase
);
334 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
335 * limits us to the low 512MB of physical address space. If the memory
336 * we allocate is out of range, just give up now.
338 if (!cpu_has_ebase_wg
&& virt_to_phys(gebase
) >= 0x20000000) {
339 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
342 goto out_free_gebase
;
346 vcpu
->arch
.guest_ebase
= gebase
;
348 /* Build guest exception vectors dynamically in unmapped memory */
349 handler
= gebase
+ 0x2000;
351 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
352 refill_start
= gebase
;
353 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
) && IS_ENABLED(CONFIG_64BIT
))
354 refill_start
+= 0x080;
355 refill_end
= kvm_mips_build_tlb_refill_exception(refill_start
, handler
);
357 /* General Exception Entry point */
358 kvm_mips_build_exception(gebase
+ 0x180, handler
);
360 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
361 for (i
= 0; i
< 8; i
++) {
362 kvm_debug("L1 Vectored handler @ %p\n",
363 gebase
+ 0x200 + (i
* VECTORSPACING
));
364 kvm_mips_build_exception(gebase
+ 0x200 + i
* VECTORSPACING
,
368 /* General exit handler */
370 p
= kvm_mips_build_exit(p
);
372 /* Guest entry routine */
373 vcpu
->arch
.vcpu_run
= p
;
374 p
= kvm_mips_build_vcpu_run(p
);
376 /* Dump the generated code */
377 pr_debug("#include <asm/asm.h>\n");
378 pr_debug("#include <asm/regdef.h>\n");
380 dump_handler("kvm_vcpu_run", vcpu
->arch
.vcpu_run
, p
);
381 dump_handler("kvm_tlb_refill", refill_start
, refill_end
);
382 dump_handler("kvm_gen_exc", gebase
+ 0x180, gebase
+ 0x200);
383 dump_handler("kvm_exit", gebase
+ 0x2000, vcpu
->arch
.vcpu_run
);
385 /* Invalidate the icache for these ranges */
386 flush_icache_range((unsigned long)gebase
,
387 (unsigned long)gebase
+ ALIGN(size
, PAGE_SIZE
));
390 * Allocate comm page for guest kernel, a TLB will be reserved for
391 * mapping GVA @ 0xFFFF8000 to this page
393 vcpu
->arch
.kseg0_commpage
= kzalloc(PAGE_SIZE
<< 1, GFP_KERNEL
);
395 if (!vcpu
->arch
.kseg0_commpage
) {
397 goto out_free_gebase
;
400 kvm_debug("Allocated COMM page @ %p\n", vcpu
->arch
.kseg0_commpage
);
401 kvm_mips_commpage_init(vcpu
);
404 vcpu
->arch
.last_sched_cpu
= -1;
405 vcpu
->arch
.last_exec_cpu
= -1;
407 /* Initial guest state */
408 err
= kvm_mips_callbacks
->vcpu_setup(vcpu
);
410 goto out_free_commpage
;
415 kfree(vcpu
->arch
.kseg0_commpage
);
419 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
423 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
425 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
427 kvm_mips_dump_stats(vcpu
);
429 kvm_mmu_free_memory_caches(vcpu
);
430 kfree(vcpu
->arch
.guest_ebase
);
431 kfree(vcpu
->arch
.kseg0_commpage
);
433 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
436 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
437 struct kvm_guest_debug
*dbg
)
442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
448 kvm_sigset_activate(vcpu
);
450 if (vcpu
->mmio_needed
) {
451 if (!vcpu
->mmio_is_write
)
452 kvm_mips_complete_mmio_load(vcpu
, run
);
453 vcpu
->mmio_needed
= 0;
456 if (run
->immediate_exit
)
462 guest_enter_irqoff();
463 trace_kvm_enter(vcpu
);
466 * Make sure the read of VCPU requests in vcpu_run() callback is not
467 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
468 * flush request while the requester sees the VCPU as outside of guest
469 * mode and not needing an IPI.
471 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
473 r
= kvm_mips_callbacks
->vcpu_run(run
, vcpu
);
480 kvm_sigset_deactivate(vcpu
);
486 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
487 struct kvm_mips_interrupt
*irq
)
489 int intr
= (int)irq
->irq
;
490 struct kvm_vcpu
*dvcpu
= NULL
;
492 if (intr
== 3 || intr
== -3 || intr
== 4 || intr
== -4)
493 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__
, irq
->cpu
,
499 dvcpu
= vcpu
->kvm
->vcpus
[irq
->cpu
];
501 if (intr
== 2 || intr
== 3 || intr
== 4) {
502 kvm_mips_callbacks
->queue_io_int(dvcpu
, irq
);
504 } else if (intr
== -2 || intr
== -3 || intr
== -4) {
505 kvm_mips_callbacks
->dequeue_io_int(dvcpu
, irq
);
507 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__
,
512 dvcpu
->arch
.wait
= 0;
514 if (swq_has_sleeper(&dvcpu
->wq
))
515 swake_up_one(&dvcpu
->wq
);
520 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
521 struct kvm_mp_state
*mp_state
)
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
527 struct kvm_mp_state
*mp_state
)
532 static u64 kvm_mips_get_one_regs
[] = {
566 #ifndef CONFIG_CPU_MIPSR6
573 static u64 kvm_mips_get_one_regs_fpu
[] = {
575 KVM_REG_MIPS_FCR_CSR
,
578 static u64 kvm_mips_get_one_regs_msa
[] = {
580 KVM_REG_MIPS_MSA_CSR
,
583 static unsigned long kvm_mips_num_regs(struct kvm_vcpu
*vcpu
)
587 ret
= ARRAY_SIZE(kvm_mips_get_one_regs
);
588 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
589 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
) + 48;
591 if (boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
)
594 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
595 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
) + 32;
596 ret
+= kvm_mips_callbacks
->num_regs(vcpu
);
601 static int kvm_mips_copy_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*indices
)
606 if (copy_to_user(indices
, kvm_mips_get_one_regs
,
607 sizeof(kvm_mips_get_one_regs
)))
609 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs
);
611 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
612 if (copy_to_user(indices
, kvm_mips_get_one_regs_fpu
,
613 sizeof(kvm_mips_get_one_regs_fpu
)))
615 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
);
617 for (i
= 0; i
< 32; ++i
) {
618 index
= KVM_REG_MIPS_FPR_32(i
);
619 if (copy_to_user(indices
, &index
, sizeof(index
)))
623 /* skip odd doubles if no F64 */
624 if (i
& 1 && !(boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
627 index
= KVM_REG_MIPS_FPR_64(i
);
628 if (copy_to_user(indices
, &index
, sizeof(index
)))
634 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
)) {
635 if (copy_to_user(indices
, kvm_mips_get_one_regs_msa
,
636 sizeof(kvm_mips_get_one_regs_msa
)))
638 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
);
640 for (i
= 0; i
< 32; ++i
) {
641 index
= KVM_REG_MIPS_VEC_128(i
);
642 if (copy_to_user(indices
, &index
, sizeof(index
)))
648 return kvm_mips_callbacks
->copy_reg_indices(vcpu
, indices
);
651 static int kvm_mips_get_reg(struct kvm_vcpu
*vcpu
,
652 const struct kvm_one_reg
*reg
)
654 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
655 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
662 /* General purpose registers */
663 case KVM_REG_MIPS_R0
... KVM_REG_MIPS_R31
:
664 v
= (long)vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
];
666 #ifndef CONFIG_CPU_MIPSR6
667 case KVM_REG_MIPS_HI
:
668 v
= (long)vcpu
->arch
.hi
;
670 case KVM_REG_MIPS_LO
:
671 v
= (long)vcpu
->arch
.lo
;
674 case KVM_REG_MIPS_PC
:
675 v
= (long)vcpu
->arch
.pc
;
678 /* Floating point registers */
679 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
680 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
682 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
683 /* Odd singles in top of even double when FR=0 */
684 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
685 v
= get_fpr32(&fpu
->fpr
[idx
], 0);
687 v
= get_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1);
689 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
690 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
692 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
693 /* Can't access odd doubles in FR=0 mode */
694 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
696 v
= get_fpr64(&fpu
->fpr
[idx
], 0);
698 case KVM_REG_MIPS_FCR_IR
:
699 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
701 v
= boot_cpu_data
.fpu_id
;
703 case KVM_REG_MIPS_FCR_CSR
:
704 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
709 /* MIPS SIMD Architecture (MSA) registers */
710 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
711 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
713 /* Can't access MSA registers in FR=0 mode */
714 if (!(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
716 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
717 #ifdef CONFIG_CPU_LITTLE_ENDIAN
718 /* least significant byte first */
719 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 0);
720 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 1);
722 /* most significant byte first */
723 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 1);
724 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 0);
727 case KVM_REG_MIPS_MSA_IR
:
728 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
730 v
= boot_cpu_data
.msa_id
;
732 case KVM_REG_MIPS_MSA_CSR
:
733 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
738 /* registers to be handled specially */
740 ret
= kvm_mips_callbacks
->get_one_reg(vcpu
, reg
, &v
);
745 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
746 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
748 return put_user(v
, uaddr64
);
749 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
750 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
753 return put_user(v32
, uaddr32
);
754 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
755 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
757 return copy_to_user(uaddr
, vs
, 16) ? -EFAULT
: 0;
763 static int kvm_mips_set_reg(struct kvm_vcpu
*vcpu
,
764 const struct kvm_one_reg
*reg
)
766 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
767 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
772 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
773 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
775 if (get_user(v
, uaddr64
) != 0)
777 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
778 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
781 if (get_user(v32
, uaddr32
) != 0)
784 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
785 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
787 return copy_from_user(vs
, uaddr
, 16) ? -EFAULT
: 0;
793 /* General purpose registers */
794 case KVM_REG_MIPS_R0
:
795 /* Silently ignore requests to set $0 */
797 case KVM_REG_MIPS_R1
... KVM_REG_MIPS_R31
:
798 vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
] = v
;
800 #ifndef CONFIG_CPU_MIPSR6
801 case KVM_REG_MIPS_HI
:
804 case KVM_REG_MIPS_LO
:
808 case KVM_REG_MIPS_PC
:
812 /* Floating point registers */
813 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
814 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
816 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
817 /* Odd singles in top of even double when FR=0 */
818 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
819 set_fpr32(&fpu
->fpr
[idx
], 0, v
);
821 set_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1, v
);
823 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
824 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
826 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
827 /* Can't access odd doubles in FR=0 mode */
828 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
830 set_fpr64(&fpu
->fpr
[idx
], 0, v
);
832 case KVM_REG_MIPS_FCR_IR
:
833 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
837 case KVM_REG_MIPS_FCR_CSR
:
838 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
843 /* MIPS SIMD Architecture (MSA) registers */
844 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
845 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
847 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
848 #ifdef CONFIG_CPU_LITTLE_ENDIAN
849 /* least significant byte first */
850 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[0]);
851 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[1]);
853 /* most significant byte first */
854 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[0]);
855 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[1]);
858 case KVM_REG_MIPS_MSA_IR
:
859 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
863 case KVM_REG_MIPS_MSA_CSR
:
864 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
869 /* registers to be handled specially */
871 return kvm_mips_callbacks
->set_one_reg(vcpu
, reg
, v
);
876 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
877 struct kvm_enable_cap
*cap
)
881 if (!kvm_vm_ioctl_check_extension(vcpu
->kvm
, cap
->cap
))
889 case KVM_CAP_MIPS_FPU
:
890 vcpu
->arch
.fpu_enabled
= true;
892 case KVM_CAP_MIPS_MSA
:
893 vcpu
->arch
.msa_enabled
= true;
903 long kvm_arch_vcpu_async_ioctl(struct file
*filp
, unsigned int ioctl
,
906 struct kvm_vcpu
*vcpu
= filp
->private_data
;
907 void __user
*argp
= (void __user
*)arg
;
909 if (ioctl
== KVM_INTERRUPT
) {
910 struct kvm_mips_interrupt irq
;
912 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
914 kvm_debug("[%d] %s: irq: %d\n", vcpu
->vcpu_id
, __func__
,
917 return kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
923 long kvm_arch_vcpu_ioctl(struct file
*filp
, unsigned int ioctl
,
926 struct kvm_vcpu
*vcpu
= filp
->private_data
;
927 void __user
*argp
= (void __user
*)arg
;
933 case KVM_SET_ONE_REG
:
934 case KVM_GET_ONE_REG
: {
935 struct kvm_one_reg reg
;
938 if (copy_from_user(®
, argp
, sizeof(reg
)))
940 if (ioctl
== KVM_SET_ONE_REG
)
941 r
= kvm_mips_set_reg(vcpu
, ®
);
943 r
= kvm_mips_get_reg(vcpu
, ®
);
946 case KVM_GET_REG_LIST
: {
947 struct kvm_reg_list __user
*user_list
= argp
;
948 struct kvm_reg_list reg_list
;
952 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
955 reg_list
.n
= kvm_mips_num_regs(vcpu
);
956 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
961 r
= kvm_mips_copy_reg_indices(vcpu
, user_list
->reg
);
964 case KVM_ENABLE_CAP
: {
965 struct kvm_enable_cap cap
;
968 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
970 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
981 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
986 void kvm_arch_flush_remote_tlbs_memslot(struct kvm
*kvm
,
987 struct kvm_memory_slot
*memslot
)
989 /* Let implementation handle TLB/GVA invalidation */
990 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, memslot
);
993 long kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
1005 int kvm_arch_init(void *opaque
)
1007 if (kvm_mips_callbacks
) {
1008 kvm_err("kvm: module already exists\n");
1012 return kvm_mips_emulation_init(&kvm_mips_callbacks
);
1015 void kvm_arch_exit(void)
1017 kvm_mips_callbacks
= NULL
;
1020 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1021 struct kvm_sregs
*sregs
)
1023 return -ENOIOCTLCMD
;
1026 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1027 struct kvm_sregs
*sregs
)
1029 return -ENOIOCTLCMD
;
1032 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
1036 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1038 return -ENOIOCTLCMD
;
1041 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1043 return -ENOIOCTLCMD
;
1046 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
1048 return VM_FAULT_SIGBUS
;
1051 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
1056 case KVM_CAP_ONE_REG
:
1057 case KVM_CAP_ENABLE_CAP
:
1058 case KVM_CAP_READONLY_MEM
:
1059 case KVM_CAP_SYNC_MMU
:
1060 case KVM_CAP_IMMEDIATE_EXIT
:
1063 case KVM_CAP_NR_VCPUS
:
1064 r
= num_online_cpus();
1066 case KVM_CAP_MAX_VCPUS
:
1069 case KVM_CAP_MAX_VCPU_ID
:
1070 r
= KVM_MAX_VCPU_ID
;
1072 case KVM_CAP_MIPS_FPU
:
1073 /* We don't handle systems with inconsistent cpu_has_fpu */
1074 r
= !!raw_cpu_has_fpu
;
1076 case KVM_CAP_MIPS_MSA
:
1078 * We don't support MSA vector partitioning yet:
1079 * 1) It would require explicit support which can't be tested
1080 * yet due to lack of support in current hardware.
1081 * 2) It extends the state that would need to be saved/restored
1082 * by e.g. QEMU for migration.
1084 * When vector partitioning hardware becomes available, support
1085 * could be added by requiring a flag when enabling
1086 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1087 * to save/restore the appropriate extra state.
1089 r
= cpu_has_msa
&& !(boot_cpu_data
.msa_id
& MSA_IR_WRPF
);
1092 r
= kvm_mips_callbacks
->check_extension(kvm
, ext
);
1098 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
1100 return kvm_mips_pending_timer(vcpu
) ||
1101 kvm_read_c0_guest_cause(vcpu
->arch
.cop0
) & C_TI
;
1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu
*vcpu
)
1107 struct mips_coproc
*cop0
;
1112 kvm_debug("VCPU Register Dump:\n");
1113 kvm_debug("\tpc = 0x%08lx\n", vcpu
->arch
.pc
);
1114 kvm_debug("\texceptions: %08lx\n", vcpu
->arch
.pending_exceptions
);
1116 for (i
= 0; i
< 32; i
+= 4) {
1117 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i
,
1119 vcpu
->arch
.gprs
[i
+ 1],
1120 vcpu
->arch
.gprs
[i
+ 2], vcpu
->arch
.gprs
[i
+ 3]);
1122 kvm_debug("\thi: 0x%08lx\n", vcpu
->arch
.hi
);
1123 kvm_debug("\tlo: 0x%08lx\n", vcpu
->arch
.lo
);
1125 cop0
= vcpu
->arch
.cop0
;
1126 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1127 kvm_read_c0_guest_status(cop0
),
1128 kvm_read_c0_guest_cause(cop0
));
1130 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0
));
1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1141 for (i
= 1; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1142 vcpu
->arch
.gprs
[i
] = regs
->gpr
[i
];
1143 vcpu
->arch
.gprs
[0] = 0; /* zero is special, and cannot be set. */
1144 vcpu
->arch
.hi
= regs
->hi
;
1145 vcpu
->arch
.lo
= regs
->lo
;
1146 vcpu
->arch
.pc
= regs
->pc
;
1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1158 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1159 regs
->gpr
[i
] = vcpu
->arch
.gprs
[i
];
1161 regs
->hi
= vcpu
->arch
.hi
;
1162 regs
->lo
= vcpu
->arch
.lo
;
1163 regs
->pc
= vcpu
->arch
.pc
;
1169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1170 struct kvm_translation
*tr
)
1175 static void kvm_mips_set_c0_status(void)
1177 u32 status
= read_c0_status();
1182 write_c0_status(status
);
1187 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1189 int kvm_mips_handle_exit(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
1191 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1192 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
1193 u32 __user
*opc
= (u32 __user
*) vcpu
->arch
.pc
;
1194 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1195 enum emulation_result er
= EMULATE_DONE
;
1197 int ret
= RESUME_GUEST
;
1199 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
1201 /* re-enable HTW before enabling interrupts */
1202 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1205 /* Set a default exit reason */
1206 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1207 run
->ready_for_interrupt_injection
= 1;
1210 * Set the appropriate status bits based on host CPU features,
1211 * before we hit the scheduler
1213 kvm_mips_set_c0_status();
1217 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1218 cause
, opc
, run
, vcpu
);
1219 trace_kvm_exit(vcpu
, exccode
);
1221 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1223 * Do a privilege check, if in UM most of these exit conditions
1224 * end up causing an exception to be delivered to the Guest
1227 er
= kvm_mips_check_privilege(cause
, opc
, run
, vcpu
);
1228 if (er
== EMULATE_PRIV_FAIL
) {
1230 } else if (er
== EMULATE_FAIL
) {
1231 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1239 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu
->vcpu_id
, opc
);
1241 ++vcpu
->stat
.int_exits
;
1250 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc
);
1252 ++vcpu
->stat
.cop_unusable_exits
;
1253 ret
= kvm_mips_callbacks
->handle_cop_unusable(vcpu
);
1254 /* XXXKYMA: Might need to return to user space */
1255 if (run
->exit_reason
== KVM_EXIT_IRQ_WINDOW_OPEN
)
1260 ++vcpu
->stat
.tlbmod_exits
;
1261 ret
= kvm_mips_callbacks
->handle_tlb_mod(vcpu
);
1265 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1266 cause
, kvm_read_c0_guest_status(vcpu
->arch
.cop0
), opc
,
1269 ++vcpu
->stat
.tlbmiss_st_exits
;
1270 ret
= kvm_mips_callbacks
->handle_tlb_st_miss(vcpu
);
1274 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1275 cause
, opc
, badvaddr
);
1277 ++vcpu
->stat
.tlbmiss_ld_exits
;
1278 ret
= kvm_mips_callbacks
->handle_tlb_ld_miss(vcpu
);
1282 ++vcpu
->stat
.addrerr_st_exits
;
1283 ret
= kvm_mips_callbacks
->handle_addr_err_st(vcpu
);
1287 ++vcpu
->stat
.addrerr_ld_exits
;
1288 ret
= kvm_mips_callbacks
->handle_addr_err_ld(vcpu
);
1292 ++vcpu
->stat
.syscall_exits
;
1293 ret
= kvm_mips_callbacks
->handle_syscall(vcpu
);
1297 ++vcpu
->stat
.resvd_inst_exits
;
1298 ret
= kvm_mips_callbacks
->handle_res_inst(vcpu
);
1302 ++vcpu
->stat
.break_inst_exits
;
1303 ret
= kvm_mips_callbacks
->handle_break(vcpu
);
1307 ++vcpu
->stat
.trap_inst_exits
;
1308 ret
= kvm_mips_callbacks
->handle_trap(vcpu
);
1311 case EXCCODE_MSAFPE
:
1312 ++vcpu
->stat
.msa_fpe_exits
;
1313 ret
= kvm_mips_callbacks
->handle_msa_fpe(vcpu
);
1317 ++vcpu
->stat
.fpe_exits
;
1318 ret
= kvm_mips_callbacks
->handle_fpe(vcpu
);
1321 case EXCCODE_MSADIS
:
1322 ++vcpu
->stat
.msa_disabled_exits
;
1323 ret
= kvm_mips_callbacks
->handle_msa_disabled(vcpu
);
1327 /* defer exit accounting to handler */
1328 ret
= kvm_mips_callbacks
->handle_guest_exit(vcpu
);
1332 if (cause
& CAUSEF_BD
)
1335 kvm_get_badinstr(opc
, vcpu
, &inst
);
1336 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1337 exccode
, opc
, inst
, badvaddr
,
1338 kvm_read_c0_guest_status(vcpu
->arch
.cop0
));
1339 kvm_arch_vcpu_dump_regs(vcpu
);
1340 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1347 local_irq_disable();
1349 if (ret
== RESUME_GUEST
)
1350 kvm_vz_acquire_htimer(vcpu
);
1352 if (er
== EMULATE_DONE
&& !(ret
& RESUME_HOST
))
1353 kvm_mips_deliver_interrupts(vcpu
, cause
);
1355 if (!(ret
& RESUME_HOST
)) {
1356 /* Only check for signals if not already exiting to userspace */
1357 if (signal_pending(current
)) {
1358 run
->exit_reason
= KVM_EXIT_INTR
;
1359 ret
= (-EINTR
<< 2) | RESUME_HOST
;
1360 ++vcpu
->stat
.signal_exits
;
1361 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_SIGNAL
);
1365 if (ret
== RESUME_GUEST
) {
1366 trace_kvm_reenter(vcpu
);
1369 * Make sure the read of VCPU requests in vcpu_reenter()
1370 * callback is not reordered ahead of the write to vcpu->mode,
1371 * or we could miss a TLB flush request while the requester sees
1372 * the VCPU as outside of guest mode and not needing an IPI.
1374 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
1376 kvm_mips_callbacks
->vcpu_reenter(run
, vcpu
);
1379 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1380 * is live), restore FCR31 / MSACSR.
1382 * This should be before returning to the guest exception
1383 * vector, as it may well cause an [MSA] FP exception if there
1384 * are pending exception bits unmasked. (see
1385 * kvm_mips_csr_die_notifier() for how that is handled).
1387 if (kvm_mips_guest_has_fpu(&vcpu
->arch
) &&
1388 read_c0_status() & ST0_CU1
)
1389 __kvm_restore_fcsr(&vcpu
->arch
);
1391 if (kvm_mips_guest_has_msa(&vcpu
->arch
) &&
1392 read_c0_config5() & MIPS_CONF5_MSAEN
)
1393 __kvm_restore_msacsr(&vcpu
->arch
);
1396 /* Disable HTW before returning to guest or host */
1397 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1403 /* Enable FPU for guest and restore context */
1404 void kvm_own_fpu(struct kvm_vcpu
*vcpu
)
1406 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1407 unsigned int sr
, cfg5
;
1411 sr
= kvm_read_c0_guest_status(cop0
);
1414 * If MSA state is already live, it is undefined how it interacts with
1415 * FR=0 FPU state, and we don't want to hit reserved instruction
1416 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1417 * play it safe and save it first.
1419 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1420 * get called when guest CU1 is set, however we can't trust the guest
1421 * not to clobber the status register directly via the commpage.
1423 if (cpu_has_msa
&& sr
& ST0_CU1
&& !(sr
& ST0_FR
) &&
1424 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1428 * Enable FPU for guest
1429 * We set FR and FRE according to guest context
1431 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1433 cfg5
= kvm_read_c0_guest_config5(cop0
);
1434 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1436 enable_fpu_hazard();
1438 /* If guest FPU state not active, restore it now */
1439 if (!(vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)) {
1440 __kvm_restore_fpu(&vcpu
->arch
);
1441 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1442 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_FPU
);
1444 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_FPU
);
1450 #ifdef CONFIG_CPU_HAS_MSA
1451 /* Enable MSA for guest and restore context */
1452 void kvm_own_msa(struct kvm_vcpu
*vcpu
)
1454 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1455 unsigned int sr
, cfg5
;
1460 * Enable FPU if enabled in guest, since we're restoring FPU context
1461 * anyway. We set FR and FRE according to guest context.
1463 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1464 sr
= kvm_read_c0_guest_status(cop0
);
1467 * If FR=0 FPU state is already live, it is undefined how it
1468 * interacts with MSA state, so play it safe and save it first.
1470 if (!(sr
& ST0_FR
) &&
1471 (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
|
1472 KVM_MIPS_AUX_MSA
)) == KVM_MIPS_AUX_FPU
)
1475 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1476 if (sr
& ST0_CU1
&& cpu_has_fre
) {
1477 cfg5
= kvm_read_c0_guest_config5(cop0
);
1478 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1482 /* Enable MSA for guest */
1483 set_c0_config5(MIPS_CONF5_MSAEN
);
1484 enable_fpu_hazard();
1486 switch (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
)) {
1487 case KVM_MIPS_AUX_FPU
:
1489 * Guest FPU state already loaded, only restore upper MSA state
1491 __kvm_restore_msa_upper(&vcpu
->arch
);
1492 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1493 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_MSA
);
1496 /* Neither FPU or MSA already active, restore full MSA state */
1497 __kvm_restore_msa(&vcpu
->arch
);
1498 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1499 if (kvm_mips_guest_has_fpu(&vcpu
->arch
))
1500 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1501 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
,
1502 KVM_TRACE_AUX_FPU_MSA
);
1505 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_MSA
);
1513 /* Drop FPU & MSA without saving it */
1514 void kvm_drop_fpu(struct kvm_vcpu
*vcpu
)
1517 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1519 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_MSA
);
1520 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_MSA
;
1522 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1523 clear_c0_status(ST0_CU1
| ST0_FR
);
1524 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_FPU
);
1525 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1530 /* Save and disable FPU & MSA */
1531 void kvm_lose_fpu(struct kvm_vcpu
*vcpu
)
1534 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1535 * is disabled in guest context (software), but the register state in
1536 * the hardware may still be in use.
1537 * This is why we explicitly re-enable the hardware before saving.
1541 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1542 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1543 set_c0_config5(MIPS_CONF5_MSAEN
);
1544 enable_fpu_hazard();
1547 __kvm_save_msa(&vcpu
->arch
);
1548 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU_MSA
);
1550 /* Disable MSA & FPU */
1552 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1553 clear_c0_status(ST0_CU1
| ST0_FR
);
1554 disable_fpu_hazard();
1556 vcpu
->arch
.aux_inuse
&= ~(KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
);
1557 } else if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1558 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1559 set_c0_status(ST0_CU1
);
1560 enable_fpu_hazard();
1563 __kvm_save_fpu(&vcpu
->arch
);
1564 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1565 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU
);
1568 clear_c0_status(ST0_CU1
| ST0_FR
);
1569 disable_fpu_hazard();
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1579 static int kvm_mips_csr_die_notify(struct notifier_block
*self
,
1580 unsigned long cmd
, void *ptr
)
1582 struct die_args
*args
= (struct die_args
*)ptr
;
1583 struct pt_regs
*regs
= args
->regs
;
1586 /* Only interested in FPE and MSAFPE */
1587 if (cmd
!= DIE_FP
&& cmd
!= DIE_MSAFP
)
1590 /* Return immediately if guest context isn't active */
1591 if (!(current
->flags
& PF_VCPU
))
1594 /* Should never get here from user mode */
1595 BUG_ON(user_mode(regs
));
1597 pc
= instruction_pointer(regs
);
1600 /* match 2nd instruction in __kvm_restore_fcsr */
1601 if (pc
!= (unsigned long)&__kvm_restore_fcsr
+ 4)
1605 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1607 pc
< (unsigned long)&__kvm_restore_msacsr
+ 4 ||
1608 pc
> (unsigned long)&__kvm_restore_msacsr
+ 8)
1613 /* Move PC forward a little and continue executing */
1614 instruction_pointer(regs
) += 4;
1619 static struct notifier_block kvm_mips_csr_die_notifier
= {
1620 .notifier_call
= kvm_mips_csr_die_notify
,
1623 static int __init
kvm_mips_init(void)
1628 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1632 ret
= kvm_mips_entry_setup();
1636 ret
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1641 register_die_notifier(&kvm_mips_csr_die_notifier
);
1646 static void __exit
kvm_mips_exit(void)
1650 unregister_die_notifier(&kvm_mips_csr_die_notifier
);
1653 module_init(kvm_mips_init
);
1654 module_exit(kvm_mips_exit
);
1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit
);