Linux 5.7.6
[linux/fpc-iii.git] / arch / s390 / kernel / perf_cpum_sf.c
blob85a711d783eb45b8cdd46e02d9589dc8ae2fc451
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
30 #define CPUM_SF_MIN_SDBT 1
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
40 * must be added.
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt)
45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
48 /* Minimum and maximum sampling buffer sizes:
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
60 * 15 pages for SDBs
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
64 * 8176 pages for SDBs
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
70 struct sf_buffer {
71 unsigned long *sdbt; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb; /* Number of sample-data-blocks */
74 unsigned long num_sdbt; /* Number of sample-data-block-tables */
75 unsigned long *tail; /* last sample-data-block-table */
78 struct aux_buffer {
79 struct sf_buffer sfb;
80 unsigned long head; /* index of SDB of buffer head */
81 unsigned long alert_mark; /* index of SDB of alert request position */
82 unsigned long empty_mark; /* mark of SDB not marked full */
83 unsigned long *sdb_index; /* SDB address for fast lookup */
84 unsigned long *sdbt_index; /* SDBT address for fast lookup */
87 struct cpu_hw_sf {
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl;
92 struct sf_buffer sfb; /* Sampling buffer */
93 unsigned int flags; /* Status flags */
94 struct perf_event *event; /* Scheduled perf event */
95 struct perf_output_handle handle; /* AUX buffer output handle */
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
99 /* Debug feature */
100 static debug_info_t *sfdbg;
103 * sf_disable() - Switch off sampling facility
105 static int sf_disable(void)
107 struct hws_lsctl_request_block sreq;
109 memset(&sreq, 0, sizeof(sreq));
110 return lsctl(&sreq);
114 * sf_buffer_available() - Check for an allocated sampling buffer
116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
118 return !!cpuhw->sfb.sdbt;
122 * deallocate sampling facility buffer
124 static void free_sampling_buffer(struct sf_buffer *sfb)
126 unsigned long *sdbt, *curr;
128 if (!sfb->sdbt)
129 return;
131 sdbt = sfb->sdbt;
132 curr = sdbt;
134 /* Free the SDBT after all SDBs are processed... */
135 while (1) {
136 if (!*curr || !sdbt)
137 break;
139 /* Process table-link entries */
140 if (is_link_entry(curr)) {
141 curr = get_next_sdbt(curr);
142 if (sdbt)
143 free_page((unsigned long) sdbt);
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr == sfb->sdbt)
147 break;
148 else
149 sdbt = curr;
150 } else {
151 /* Process SDB pointer */
152 if (*curr) {
153 free_page(*curr);
154 curr++;
159 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 (unsigned long)sfb->sdbt);
161 memset(sfb, 0, sizeof(*sfb));
164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
166 unsigned long sdb, *trailer;
168 /* Allocate and initialize sample-data-block */
169 sdb = get_zeroed_page(gfp_flags);
170 if (!sdb)
171 return -ENOMEM;
172 trailer = trailer_entry_ptr(sdb);
173 *trailer = SDB_TE_ALERT_REQ_MASK;
175 /* Link SDB into the sample-data-block-table */
176 *sdbt = sdb;
178 return 0;
182 * realloc_sampling_buffer() - extend sampler memory
184 * Allocates new sample-data-blocks and adds them to the specified sampling
185 * buffer memory.
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
190 * Returns zero on success, non-zero otherwise.
192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 unsigned long num_sdb, gfp_t gfp_flags)
195 int i, rc;
196 unsigned long *new, *tail, *tail_prev = NULL;
198 if (!sfb->sdbt || !sfb->tail)
199 return -EINVAL;
201 if (!is_link_entry(sfb->tail))
202 return -EINVAL;
204 /* Append to the existing sampling buffer, overwriting the table-link
205 * register.
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
209 tail = sfb->tail;
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
214 if (sfb->sdbt != get_next_sdbt(tail)) {
215 debug_sprintf_event(sfdbg, 3, "%s: "
216 "sampling buffer is not linked: origin %#lx"
217 " tail %#lx\n", __func__,
218 (unsigned long)sfb->sdbt,
219 (unsigned long)tail);
220 return -EINVAL;
223 /* Allocate remaining SDBs */
224 rc = 0;
225 for (i = 0; i < num_sdb; i++) {
226 /* Allocate a new SDB-table if it is full. */
227 if (require_table_link(tail)) {
228 new = (unsigned long *) get_zeroed_page(gfp_flags);
229 if (!new) {
230 rc = -ENOMEM;
231 break;
233 sfb->num_sdbt++;
234 /* Link current page to tail of chain */
235 *tail = (unsigned long)(void *) new + 1;
236 tail_prev = tail;
237 tail = new;
240 /* Allocate a new sample-data-block.
241 * If there is not enough memory, stop the realloc process
242 * and simply use what was allocated. If this is a temporary
243 * issue, a new realloc call (if required) might succeed.
245 rc = alloc_sample_data_block(tail, gfp_flags);
246 if (rc) {
247 /* Undo last SDBT. An SDBT with no SDB at its first
248 * entry but with an SDBT entry instead can not be
249 * handled by the interrupt handler code.
250 * Avoid this situation.
252 if (tail_prev) {
253 sfb->num_sdbt--;
254 free_page((unsigned long) new);
255 tail = tail_prev;
257 break;
259 sfb->num_sdb++;
260 tail++;
261 tail_prev = new = NULL; /* Allocated at least one SBD */
264 /* Link sampling buffer to its origin */
265 *tail = (unsigned long) sfb->sdbt + 1;
266 sfb->tail = tail;
268 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
269 " settings: sdbt %lu sdb %lu\n", __func__,
270 sfb->num_sdbt, sfb->num_sdb);
271 return rc;
275 * allocate_sampling_buffer() - allocate sampler memory
277 * Allocates and initializes a sampling buffer structure using the
278 * specified number of sample-data-blocks (SDB). For each allocation,
279 * a 4K page is used. The number of sample-data-block-tables (SDBT)
280 * are calculated from SDBs.
281 * Also set the ALERT_REQ mask in each SDBs trailer.
283 * Returns zero on success, non-zero otherwise.
285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
287 int rc;
289 if (sfb->sdbt)
290 return -EINVAL;
292 /* Allocate the sample-data-block-table origin */
293 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
294 if (!sfb->sdbt)
295 return -ENOMEM;
296 sfb->num_sdb = 0;
297 sfb->num_sdbt = 1;
299 /* Link the table origin to point to itself to prepare for
300 * realloc_sampling_buffer() invocation.
302 sfb->tail = sfb->sdbt;
303 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
305 /* Allocate requested number of sample-data-blocks */
306 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
307 if (rc) {
308 free_sampling_buffer(sfb);
309 debug_sprintf_event(sfdbg, 4, "%s: "
310 "realloc_sampling_buffer failed with rc %i\n",
311 __func__, rc);
312 } else
313 debug_sprintf_event(sfdbg, 4,
314 "%s: tear %#lx dear %#lx\n", __func__,
315 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
316 return rc;
319 static void sfb_set_limits(unsigned long min, unsigned long max)
321 struct hws_qsi_info_block si;
323 CPUM_SF_MIN_SDB = min;
324 CPUM_SF_MAX_SDB = max;
326 memset(&si, 0, sizeof(si));
327 if (!qsi(&si))
328 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
333 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
334 : CPUM_SF_MAX_SDB;
337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
338 struct hw_perf_event *hwc)
340 if (!sfb->sdbt)
341 return SFB_ALLOC_REG(hwc);
342 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
343 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
344 return 0;
347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
348 struct hw_perf_event *hwc)
350 return sfb_pending_allocs(sfb, hwc) > 0;
353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
355 /* Limit the number of SDBs to not exceed the maximum */
356 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
357 if (num)
358 SFB_ALLOC_REG(hwc) += num;
361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
363 SFB_ALLOC_REG(hwc) = 0;
364 sfb_account_allocs(num, hwc);
367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
369 if (cpuhw->sfb.sdbt)
370 free_sampling_buffer(&cpuhw->sfb);
373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
375 unsigned long n_sdb, freq;
376 size_t sample_size;
378 /* Calculate sampling buffers using 4K pages
380 * 1. The sampling size is 32 bytes for basic sampling. This size
381 * is the same for all machine types. Diagnostic
382 * sampling uses auxlilary data buffer setup which provides the
383 * memory for SDBs using linux common code auxiliary trace
384 * setup.
386 * 2. Function alloc_sampling_buffer() sets the Alert Request
387 * Control indicator to trigger a measurement-alert to harvest
388 * sample-data-blocks (SDB). This is done per SDB. This
389 * measurement alert interrupt fires quick enough to handle
390 * one SDB, on very high frequency and work loads there might
391 * be 2 to 3 SBDs available for sample processing.
392 * Currently there is no need for setup alert request on every
393 * n-th page. This is counterproductive as one IRQ triggers
394 * a very high number of samples to be processed at one IRQ.
396 * 3. Use the sampling frequency as input.
397 * Compute the number of SDBs and ensure a minimum
398 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
399 * SDBs to handle a higher sampling rate.
400 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
401 * (one SDB) for every 10000 HZ frequency increment.
403 * 4. Compute the number of sample-data-block-tables (SDBT) and
404 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
405 * to 511 SDBs).
407 sample_size = sizeof(struct hws_basic_entry);
408 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
409 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
411 /* If there is already a sampling buffer allocated, it is very likely
412 * that the sampling facility is enabled too. If the event to be
413 * initialized requires a greater sampling buffer, the allocation must
414 * be postponed. Changing the sampling buffer requires the sampling
415 * facility to be in the disabled state. So, account the number of
416 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
417 * before the event is started.
419 sfb_init_allocs(n_sdb, hwc);
420 if (sf_buffer_available(cpuhw))
421 return 0;
423 debug_sprintf_event(sfdbg, 3,
424 "%s: rate %lu f %lu sdb %lu/%lu"
425 " sample_size %lu cpuhw %p\n", __func__,
426 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
427 sample_size, cpuhw);
429 return alloc_sampling_buffer(&cpuhw->sfb,
430 sfb_pending_allocs(&cpuhw->sfb, hwc));
433 static unsigned long min_percent(unsigned int percent, unsigned long base,
434 unsigned long min)
436 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
441 /* Use a percentage-based approach to extend the sampling facility
442 * buffer. Accept up to 5% sample data loss.
443 * Vary the extents between 1% to 5% of the current number of
444 * sample-data-blocks.
446 if (ratio <= 5)
447 return 0;
448 if (ratio <= 25)
449 return min_percent(1, base, 1);
450 if (ratio <= 50)
451 return min_percent(1, base, 1);
452 if (ratio <= 75)
453 return min_percent(2, base, 2);
454 if (ratio <= 100)
455 return min_percent(3, base, 3);
456 if (ratio <= 250)
457 return min_percent(4, base, 4);
459 return min_percent(5, base, 8);
462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
463 struct hw_perf_event *hwc)
465 unsigned long ratio, num;
467 if (!OVERFLOW_REG(hwc))
468 return;
470 /* The sample_overflow contains the average number of sample data
471 * that has been lost because sample-data-blocks were full.
473 * Calculate the total number of sample data entries that has been
474 * discarded. Then calculate the ratio of lost samples to total samples
475 * per second in percent.
477 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
478 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
480 /* Compute number of sample-data-blocks */
481 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
482 if (num)
483 sfb_account_allocs(num, hwc);
485 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
486 __func__, OVERFLOW_REG(hwc), ratio, num);
487 OVERFLOW_REG(hwc) = 0;
490 /* extend_sampling_buffer() - Extend sampling buffer
491 * @sfb: Sampling buffer structure (for local CPU)
492 * @hwc: Perf event hardware structure
494 * Use this function to extend the sampling buffer based on the overflow counter
495 * and postponed allocation extents stored in the specified Perf event hardware.
497 * Important: This function disables the sampling facility in order to safely
498 * change the sampling buffer structure. Do not call this function
499 * when the PMU is active.
501 static void extend_sampling_buffer(struct sf_buffer *sfb,
502 struct hw_perf_event *hwc)
504 unsigned long num, num_old;
505 int rc;
507 num = sfb_pending_allocs(sfb, hwc);
508 if (!num)
509 return;
510 num_old = sfb->num_sdb;
512 /* Disable the sampling facility to reset any states and also
513 * clear pending measurement alerts.
515 sf_disable();
517 /* Extend the sampling buffer.
518 * This memory allocation typically happens in an atomic context when
519 * called by perf. Because this is a reallocation, it is fine if the
520 * new SDB-request cannot be satisfied immediately.
522 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
523 if (rc)
524 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
525 __func__, rc);
527 if (sfb_has_pending_allocs(sfb, hwc))
528 debug_sprintf_event(sfdbg, 5, "%s: "
529 "req %lu alloc %lu remaining %lu\n",
530 __func__, num, sfb->num_sdb - num_old,
531 sfb_pending_allocs(sfb, hwc));
534 /* Number of perf events counting hardware events */
535 static atomic_t num_events;
536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
537 static DEFINE_MUTEX(pmc_reserve_mutex);
539 #define PMC_INIT 0
540 #define PMC_RELEASE 1
541 #define PMC_FAILURE 2
542 static void setup_pmc_cpu(void *flags)
544 int err;
545 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
547 err = 0;
548 switch (*((int *) flags)) {
549 case PMC_INIT:
550 memset(cpusf, 0, sizeof(*cpusf));
551 err = qsi(&cpusf->qsi);
552 if (err)
553 break;
554 cpusf->flags |= PMU_F_RESERVED;
555 err = sf_disable();
556 if (err)
557 pr_err("Switching off the sampling facility failed "
558 "with rc %i\n", err);
559 debug_sprintf_event(sfdbg, 5,
560 "%s: initialized: cpuhw %p\n", __func__,
561 cpusf);
562 break;
563 case PMC_RELEASE:
564 cpusf->flags &= ~PMU_F_RESERVED;
565 err = sf_disable();
566 if (err) {
567 pr_err("Switching off the sampling facility failed "
568 "with rc %i\n", err);
569 } else
570 deallocate_buffers(cpusf);
571 debug_sprintf_event(sfdbg, 5,
572 "%s: released: cpuhw %p\n", __func__,
573 cpusf);
574 break;
576 if (err)
577 *((int *) flags) |= PMC_FAILURE;
580 static void release_pmc_hardware(void)
582 int flags = PMC_RELEASE;
584 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
585 on_each_cpu(setup_pmc_cpu, &flags, 1);
588 static int reserve_pmc_hardware(void)
590 int flags = PMC_INIT;
592 on_each_cpu(setup_pmc_cpu, &flags, 1);
593 if (flags & PMC_FAILURE) {
594 release_pmc_hardware();
595 return -ENODEV;
597 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
599 return 0;
602 static void hw_perf_event_destroy(struct perf_event *event)
604 /* Release PMC if this is the last perf event */
605 if (!atomic_add_unless(&num_events, -1, 1)) {
606 mutex_lock(&pmc_reserve_mutex);
607 if (atomic_dec_return(&num_events) == 0)
608 release_pmc_hardware();
609 mutex_unlock(&pmc_reserve_mutex);
613 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
615 hwc->sample_period = period;
616 hwc->last_period = hwc->sample_period;
617 local64_set(&hwc->period_left, hwc->sample_period);
620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
621 unsigned long rate)
623 return clamp_t(unsigned long, rate,
624 si->min_sampl_rate, si->max_sampl_rate);
627 static u32 cpumsf_pid_type(struct perf_event *event,
628 u32 pid, enum pid_type type)
630 struct task_struct *tsk;
632 /* Idle process */
633 if (!pid)
634 goto out;
636 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
637 pid = -1;
638 if (tsk) {
640 * Only top level events contain the pid namespace in which
641 * they are created.
643 if (event->parent)
644 event = event->parent;
645 pid = __task_pid_nr_ns(tsk, type, event->ns);
647 * See also 1d953111b648
648 * "perf/core: Don't report zero PIDs for exiting tasks".
650 if (!pid && !pid_alive(tsk))
651 pid = -1;
653 out:
654 return pid;
657 static void cpumsf_output_event_pid(struct perf_event *event,
658 struct perf_sample_data *data,
659 struct pt_regs *regs)
661 u32 pid;
662 struct perf_event_header header;
663 struct perf_output_handle handle;
666 * Obtain the PID from the basic-sampling data entry and
667 * correct the data->tid_entry.pid value.
669 pid = data->tid_entry.pid;
671 /* Protect callchain buffers, tasks */
672 rcu_read_lock();
674 perf_prepare_sample(&header, data, event, regs);
675 if (perf_output_begin(&handle, event, header.size))
676 goto out;
678 /* Update the process ID (see also kernel/events/core.c) */
679 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
680 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
682 perf_output_sample(&handle, &header, data, event);
683 perf_output_end(&handle);
684 out:
685 rcu_read_unlock();
688 static unsigned long getrate(bool freq, unsigned long sample,
689 struct hws_qsi_info_block *si)
691 unsigned long rate;
693 if (freq) {
694 rate = freq_to_sample_rate(si, sample);
695 rate = hw_limit_rate(si, rate);
696 } else {
697 /* The min/max sampling rates specifies the valid range
698 * of sample periods. If the specified sample period is
699 * out of range, limit the period to the range boundary.
701 rate = hw_limit_rate(si, sample);
703 /* The perf core maintains a maximum sample rate that is
704 * configurable through the sysctl interface. Ensure the
705 * sampling rate does not exceed this value. This also helps
706 * to avoid throttling when pushing samples with
707 * perf_event_overflow().
709 if (sample_rate_to_freq(si, rate) >
710 sysctl_perf_event_sample_rate) {
711 debug_sprintf_event(sfdbg, 1, "%s: "
712 "Sampling rate exceeds maximum "
713 "perf sample rate\n", __func__);
714 rate = 0;
717 return rate;
720 /* The sampling information (si) contains information about the
721 * min/max sampling intervals and the CPU speed. So calculate the
722 * correct sampling interval and avoid the whole period adjust
723 * feedback loop.
725 * Since the CPU Measurement sampling facility can not handle frequency
726 * calculate the sampling interval when frequency is specified using
727 * this formula:
728 * interval := cpu_speed * 1000000 / sample_freq
730 * Returns errno on bad input and zero on success with parameter interval
731 * set to the correct sampling rate.
733 * Note: This function turns off freq bit to avoid calling function
734 * perf_adjust_period(). This causes frequency adjustment in the common
735 * code part which causes tremendous variations in the counter values.
737 static int __hw_perf_event_init_rate(struct perf_event *event,
738 struct hws_qsi_info_block *si)
740 struct perf_event_attr *attr = &event->attr;
741 struct hw_perf_event *hwc = &event->hw;
742 unsigned long rate;
744 if (attr->freq) {
745 if (!attr->sample_freq)
746 return -EINVAL;
747 rate = getrate(attr->freq, attr->sample_freq, si);
748 attr->freq = 0; /* Don't call perf_adjust_period() */
749 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
750 } else {
751 rate = getrate(attr->freq, attr->sample_period, si);
752 if (!rate)
753 return -EINVAL;
755 attr->sample_period = rate;
756 SAMPL_RATE(hwc) = rate;
757 hw_init_period(hwc, SAMPL_RATE(hwc));
758 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
759 __func__, event->cpu, event->attr.sample_period,
760 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
761 return 0;
764 static int __hw_perf_event_init(struct perf_event *event)
766 struct cpu_hw_sf *cpuhw;
767 struct hws_qsi_info_block si;
768 struct perf_event_attr *attr = &event->attr;
769 struct hw_perf_event *hwc = &event->hw;
770 int cpu, err;
772 /* Reserve CPU-measurement sampling facility */
773 err = 0;
774 if (!atomic_inc_not_zero(&num_events)) {
775 mutex_lock(&pmc_reserve_mutex);
776 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
777 err = -EBUSY;
778 else
779 atomic_inc(&num_events);
780 mutex_unlock(&pmc_reserve_mutex);
782 event->destroy = hw_perf_event_destroy;
784 if (err)
785 goto out;
787 /* Access per-CPU sampling information (query sampling info) */
789 * The event->cpu value can be -1 to count on every CPU, for example,
790 * when attaching to a task. If this is specified, use the query
791 * sampling info from the current CPU, otherwise use event->cpu to
792 * retrieve the per-CPU information.
793 * Later, cpuhw indicates whether to allocate sampling buffers for a
794 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
796 memset(&si, 0, sizeof(si));
797 cpuhw = NULL;
798 if (event->cpu == -1)
799 qsi(&si);
800 else {
801 /* Event is pinned to a particular CPU, retrieve the per-CPU
802 * sampling structure for accessing the CPU-specific QSI.
804 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
805 si = cpuhw->qsi;
808 /* Check sampling facility authorization and, if not authorized,
809 * fall back to other PMUs. It is safe to check any CPU because
810 * the authorization is identical for all configured CPUs.
812 if (!si.as) {
813 err = -ENOENT;
814 goto out;
817 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
818 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
819 err = -EBUSY;
820 goto out;
823 /* Always enable basic sampling */
824 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
826 /* Check if diagnostic sampling is requested. Deny if the required
827 * sampling authorization is missing.
829 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
830 if (!si.ad) {
831 err = -EPERM;
832 goto out;
834 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
837 /* Check and set other sampling flags */
838 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
839 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
841 err = __hw_perf_event_init_rate(event, &si);
842 if (err)
843 goto out;
845 /* Initialize sample data overflow accounting */
846 hwc->extra_reg.reg = REG_OVERFLOW;
847 OVERFLOW_REG(hwc) = 0;
849 /* Use AUX buffer. No need to allocate it by ourself */
850 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
851 return 0;
853 /* Allocate the per-CPU sampling buffer using the CPU information
854 * from the event. If the event is not pinned to a particular
855 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
856 * buffers for each online CPU.
858 if (cpuhw)
859 /* Event is pinned to a particular CPU */
860 err = allocate_buffers(cpuhw, hwc);
861 else {
862 /* Event is not pinned, allocate sampling buffer on
863 * each online CPU
865 for_each_online_cpu(cpu) {
866 cpuhw = &per_cpu(cpu_hw_sf, cpu);
867 err = allocate_buffers(cpuhw, hwc);
868 if (err)
869 break;
873 /* If PID/TID sampling is active, replace the default overflow
874 * handler to extract and resolve the PIDs from the basic-sampling
875 * data entries.
877 if (event->attr.sample_type & PERF_SAMPLE_TID)
878 if (is_default_overflow_handler(event))
879 event->overflow_handler = cpumsf_output_event_pid;
880 out:
881 return err;
884 static int cpumsf_pmu_event_init(struct perf_event *event)
886 int err;
888 /* No support for taken branch sampling */
889 if (has_branch_stack(event))
890 return -EOPNOTSUPP;
892 switch (event->attr.type) {
893 case PERF_TYPE_RAW:
894 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
895 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
896 return -ENOENT;
897 break;
898 case PERF_TYPE_HARDWARE:
899 /* Support sampling of CPU cycles in addition to the
900 * counter facility. However, the counter facility
901 * is more precise and, hence, restrict this PMU to
902 * sampling events only.
904 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
905 return -ENOENT;
906 if (!is_sampling_event(event))
907 return -ENOENT;
908 break;
909 default:
910 return -ENOENT;
913 /* Check online status of the CPU to which the event is pinned */
914 if (event->cpu >= 0 && !cpu_online(event->cpu))
915 return -ENODEV;
917 /* Force reset of idle/hv excludes regardless of what the
918 * user requested.
920 if (event->attr.exclude_hv)
921 event->attr.exclude_hv = 0;
922 if (event->attr.exclude_idle)
923 event->attr.exclude_idle = 0;
925 err = __hw_perf_event_init(event);
926 if (unlikely(err))
927 if (event->destroy)
928 event->destroy(event);
929 return err;
932 static void cpumsf_pmu_enable(struct pmu *pmu)
934 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
935 struct hw_perf_event *hwc;
936 int err;
938 if (cpuhw->flags & PMU_F_ENABLED)
939 return;
941 if (cpuhw->flags & PMU_F_ERR_MASK)
942 return;
944 /* Check whether to extent the sampling buffer.
946 * Two conditions trigger an increase of the sampling buffer for a
947 * perf event:
948 * 1. Postponed buffer allocations from the event initialization.
949 * 2. Sampling overflows that contribute to pending allocations.
951 * Note that the extend_sampling_buffer() function disables the sampling
952 * facility, but it can be fully re-enabled using sampling controls that
953 * have been saved in cpumsf_pmu_disable().
955 if (cpuhw->event) {
956 hwc = &cpuhw->event->hw;
957 if (!(SAMPL_DIAG_MODE(hwc))) {
959 * Account number of overflow-designated
960 * buffer extents
962 sfb_account_overflows(cpuhw, hwc);
963 extend_sampling_buffer(&cpuhw->sfb, hwc);
965 /* Rate may be adjusted with ioctl() */
966 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
969 /* (Re)enable the PMU and sampling facility */
970 cpuhw->flags |= PMU_F_ENABLED;
971 barrier();
973 err = lsctl(&cpuhw->lsctl);
974 if (err) {
975 cpuhw->flags &= ~PMU_F_ENABLED;
976 pr_err("Loading sampling controls failed: op %i err %i\n",
977 1, err);
978 return;
981 /* Load current program parameter */
982 lpp(&S390_lowcore.lpp);
984 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
985 "interval %#lx tear %#lx dear %#lx\n", __func__,
986 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
987 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
988 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
991 static void cpumsf_pmu_disable(struct pmu *pmu)
993 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
994 struct hws_lsctl_request_block inactive;
995 struct hws_qsi_info_block si;
996 int err;
998 if (!(cpuhw->flags & PMU_F_ENABLED))
999 return;
1001 if (cpuhw->flags & PMU_F_ERR_MASK)
1002 return;
1004 /* Switch off sampling activation control */
1005 inactive = cpuhw->lsctl;
1006 inactive.cs = 0;
1007 inactive.cd = 0;
1009 err = lsctl(&inactive);
1010 if (err) {
1011 pr_err("Loading sampling controls failed: op %i err %i\n",
1012 2, err);
1013 return;
1016 /* Save state of TEAR and DEAR register contents */
1017 err = qsi(&si);
1018 if (!err) {
1019 /* TEAR/DEAR values are valid only if the sampling facility is
1020 * enabled. Note that cpumsf_pmu_disable() might be called even
1021 * for a disabled sampling facility because cpumsf_pmu_enable()
1022 * controls the enable/disable state.
1024 if (si.es) {
1025 cpuhw->lsctl.tear = si.tear;
1026 cpuhw->lsctl.dear = si.dear;
1028 } else
1029 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1030 __func__, err);
1032 cpuhw->flags &= ~PMU_F_ENABLED;
1035 /* perf_exclude_event() - Filter event
1036 * @event: The perf event
1037 * @regs: pt_regs structure
1038 * @sde_regs: Sample-data-entry (sde) regs structure
1040 * Filter perf events according to their exclude specification.
1042 * Return non-zero if the event shall be excluded.
1044 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1045 struct perf_sf_sde_regs *sde_regs)
1047 if (event->attr.exclude_user && user_mode(regs))
1048 return 1;
1049 if (event->attr.exclude_kernel && !user_mode(regs))
1050 return 1;
1051 if (event->attr.exclude_guest && sde_regs->in_guest)
1052 return 1;
1053 if (event->attr.exclude_host && !sde_regs->in_guest)
1054 return 1;
1055 return 0;
1058 /* perf_push_sample() - Push samples to perf
1059 * @event: The perf event
1060 * @sample: Hardware sample data
1062 * Use the hardware sample data to create perf event sample. The sample
1063 * is the pushed to the event subsystem and the function checks for
1064 * possible event overflows. If an event overflow occurs, the PMU is
1065 * stopped.
1067 * Return non-zero if an event overflow occurred.
1069 static int perf_push_sample(struct perf_event *event,
1070 struct hws_basic_entry *basic)
1072 int overflow;
1073 struct pt_regs regs;
1074 struct perf_sf_sde_regs *sde_regs;
1075 struct perf_sample_data data;
1077 /* Setup perf sample */
1078 perf_sample_data_init(&data, 0, event->hw.last_period);
1080 /* Setup pt_regs to look like an CPU-measurement external interrupt
1081 * using the Program Request Alert code. The regs.int_parm_long
1082 * field which is unused contains additional sample-data-entry related
1083 * indicators.
1085 memset(&regs, 0, sizeof(regs));
1086 regs.int_code = 0x1407;
1087 regs.int_parm = CPU_MF_INT_SF_PRA;
1088 sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1090 psw_bits(regs.psw).ia = basic->ia;
1091 psw_bits(regs.psw).dat = basic->T;
1092 psw_bits(regs.psw).wait = basic->W;
1093 psw_bits(regs.psw).pstate = basic->P;
1094 psw_bits(regs.psw).as = basic->AS;
1097 * Use the hardware provided configuration level to decide if the
1098 * sample belongs to a guest or host. If that is not available,
1099 * fall back to the following heuristics:
1100 * A non-zero guest program parameter always indicates a guest
1101 * sample. Some early samples or samples from guests without
1102 * lpp usage would be misaccounted to the host. We use the asn
1103 * value as an addon heuristic to detect most of these guest samples.
1104 * If the value differs from 0xffff (the host value), we assume to
1105 * be a KVM guest.
1107 switch (basic->CL) {
1108 case 1: /* logical partition */
1109 sde_regs->in_guest = 0;
1110 break;
1111 case 2: /* virtual machine */
1112 sde_regs->in_guest = 1;
1113 break;
1114 default: /* old machine, use heuristics */
1115 if (basic->gpp || basic->prim_asn != 0xffff)
1116 sde_regs->in_guest = 1;
1117 break;
1121 * Store the PID value from the sample-data-entry to be
1122 * processed and resolved by cpumsf_output_event_pid().
1124 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1126 overflow = 0;
1127 if (perf_exclude_event(event, &regs, sde_regs))
1128 goto out;
1129 if (perf_event_overflow(event, &data, &regs)) {
1130 overflow = 1;
1131 event->pmu->stop(event, 0);
1133 perf_event_update_userpage(event);
1134 out:
1135 return overflow;
1138 static void perf_event_count_update(struct perf_event *event, u64 count)
1140 local64_add(count, &event->count);
1143 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1144 * @event: The perf event
1145 * @sdbt: Sample-data-block table
1146 * @overflow: Event overflow counter
1148 * Walks through a sample-data-block and collects sampling data entries that are
1149 * then pushed to the perf event subsystem. Depending on the sampling function,
1150 * there can be either basic-sampling or combined-sampling data entries. A
1151 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1152 * data entry. The sampling function is determined by the flags in the perf
1153 * event hardware structure. The function always works with a combined-sampling
1154 * data entry but ignores the the diagnostic portion if it is not available.
1156 * Note that the implementation focuses on basic-sampling data entries and, if
1157 * such an entry is not valid, the entire combined-sampling data entry is
1158 * ignored.
1160 * The overflow variables counts the number of samples that has been discarded
1161 * due to a perf event overflow.
1163 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1164 unsigned long long *overflow)
1166 struct hws_trailer_entry *te;
1167 struct hws_basic_entry *sample;
1169 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1170 sample = (struct hws_basic_entry *) *sdbt;
1171 while ((unsigned long *) sample < (unsigned long *) te) {
1172 /* Check for an empty sample */
1173 if (!sample->def)
1174 break;
1176 /* Update perf event period */
1177 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1179 /* Check whether sample is valid */
1180 if (sample->def == 0x0001) {
1181 /* If an event overflow occurred, the PMU is stopped to
1182 * throttle event delivery. Remaining sample data is
1183 * discarded.
1185 if (!*overflow) {
1186 /* Check whether sample is consistent */
1187 if (sample->I == 0 && sample->W == 0) {
1188 /* Deliver sample data to perf */
1189 *overflow = perf_push_sample(event,
1190 sample);
1192 } else
1193 /* Count discarded samples */
1194 *overflow += 1;
1195 } else {
1196 debug_sprintf_event(sfdbg, 4,
1197 "%s: Found unknown"
1198 " sampling data entry: te->f %i"
1199 " basic.def %#4x (%p)\n", __func__,
1200 te->f, sample->def, sample);
1201 /* Sample slot is not yet written or other record.
1203 * This condition can occur if the buffer was reused
1204 * from a combined basic- and diagnostic-sampling.
1205 * If only basic-sampling is then active, entries are
1206 * written into the larger diagnostic entries.
1207 * This is typically the case for sample-data-blocks
1208 * that are not full. Stop processing if the first
1209 * invalid format was detected.
1211 if (!te->f)
1212 break;
1215 /* Reset sample slot and advance to next sample */
1216 sample->def = 0;
1217 sample++;
1221 /* hw_perf_event_update() - Process sampling buffer
1222 * @event: The perf event
1223 * @flush_all: Flag to also flush partially filled sample-data-blocks
1225 * Processes the sampling buffer and create perf event samples.
1226 * The sampling buffer position are retrieved and saved in the TEAR_REG
1227 * register of the specified perf event.
1229 * Only full sample-data-blocks are processed. Specify the flash_all flag
1230 * to also walk through partially filled sample-data-blocks. It is ignored
1231 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1232 * enforces the processing of full sample-data-blocks only (trailer entries
1233 * with the block-full-indicator bit set).
1235 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1237 struct hw_perf_event *hwc = &event->hw;
1238 struct hws_trailer_entry *te;
1239 unsigned long *sdbt;
1240 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1241 int done;
1244 * AUX buffer is used when in diagnostic sampling mode.
1245 * No perf events/samples are created.
1247 if (SAMPL_DIAG_MODE(&event->hw))
1248 return;
1250 if (flush_all && SDB_FULL_BLOCKS(hwc))
1251 flush_all = 0;
1253 sdbt = (unsigned long *) TEAR_REG(hwc);
1254 done = event_overflow = sampl_overflow = num_sdb = 0;
1255 while (!done) {
1256 /* Get the trailer entry of the sample-data-block */
1257 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1259 /* Leave loop if no more work to do (block full indicator) */
1260 if (!te->f) {
1261 done = 1;
1262 if (!flush_all)
1263 break;
1266 /* Check the sample overflow count */
1267 if (te->overflow)
1268 /* Account sample overflows and, if a particular limit
1269 * is reached, extend the sampling buffer.
1270 * For details, see sfb_account_overflows().
1272 sampl_overflow += te->overflow;
1274 /* Timestamps are valid for full sample-data-blocks only */
1275 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1276 "overflow %llu timestamp %#llx\n",
1277 __func__, (unsigned long)sdbt, te->overflow,
1278 (te->f) ? trailer_timestamp(te) : 0ULL);
1280 /* Collect all samples from a single sample-data-block and
1281 * flag if an (perf) event overflow happened. If so, the PMU
1282 * is stopped and remaining samples will be discarded.
1284 hw_collect_samples(event, sdbt, &event_overflow);
1285 num_sdb++;
1287 /* Reset trailer (using compare-double-and-swap) */
1288 do {
1289 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1290 te_flags |= SDB_TE_ALERT_REQ_MASK;
1291 } while (!cmpxchg_double(&te->flags, &te->overflow,
1292 te->flags, te->overflow,
1293 te_flags, 0ULL));
1295 /* Advance to next sample-data-block */
1296 sdbt++;
1297 if (is_link_entry(sdbt))
1298 sdbt = get_next_sdbt(sdbt);
1300 /* Update event hardware registers */
1301 TEAR_REG(hwc) = (unsigned long) sdbt;
1303 /* Stop processing sample-data if all samples of the current
1304 * sample-data-block were flushed even if it was not full.
1306 if (flush_all && done)
1307 break;
1310 /* Account sample overflows in the event hardware structure */
1311 if (sampl_overflow)
1312 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1313 sampl_overflow, 1 + num_sdb);
1315 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1316 * the interrupt rate to an upper limit. Roughly 1000 samples per
1317 * task tick.
1318 * Hitting this limit results in a large number
1319 * of throttled REF_REPORT_THROTTLE entries and the samples
1320 * are dropped.
1321 * Slightly increase the interval to avoid hitting this limit.
1323 if (event_overflow) {
1324 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1325 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1326 __func__,
1327 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1330 if (sampl_overflow || event_overflow)
1331 debug_sprintf_event(sfdbg, 4, "%s: "
1332 "overflows: sample %llu event %llu"
1333 " total %llu num_sdb %llu\n",
1334 __func__, sampl_overflow, event_overflow,
1335 OVERFLOW_REG(hwc), num_sdb);
1338 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1339 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1340 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1341 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1344 * Get trailer entry by index of SDB.
1346 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1347 unsigned long index)
1349 unsigned long sdb;
1351 index = AUX_SDB_INDEX(aux, index);
1352 sdb = aux->sdb_index[index];
1353 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1357 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1358 * disabled. Collect the full SDBs in AUX buffer which have not reached
1359 * the point of alert indicator. And ignore the SDBs which are not
1360 * full.
1362 * 1. Scan SDBs to see how much data is there and consume them.
1363 * 2. Remove alert indicator in the buffer.
1365 static void aux_output_end(struct perf_output_handle *handle)
1367 unsigned long i, range_scan, idx;
1368 struct aux_buffer *aux;
1369 struct hws_trailer_entry *te;
1371 aux = perf_get_aux(handle);
1372 if (!aux)
1373 return;
1375 range_scan = AUX_SDB_NUM_ALERT(aux);
1376 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1377 te = aux_sdb_trailer(aux, idx);
1378 if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1379 break;
1381 /* i is num of SDBs which are full */
1382 perf_aux_output_end(handle, i << PAGE_SHIFT);
1384 /* Remove alert indicators in the buffer */
1385 te = aux_sdb_trailer(aux, aux->alert_mark);
1386 te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1388 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1389 __func__, i, range_scan, aux->head);
1393 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1394 * is first added to the CPU or rescheduled again to the CPU. It is called
1395 * with pmu disabled.
1397 * 1. Reset the trailer of SDBs to get ready for new data.
1398 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1399 * head(tear/dear).
1401 static int aux_output_begin(struct perf_output_handle *handle,
1402 struct aux_buffer *aux,
1403 struct cpu_hw_sf *cpuhw)
1405 unsigned long range;
1406 unsigned long i, range_scan, idx;
1407 unsigned long head, base, offset;
1408 struct hws_trailer_entry *te;
1410 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1411 return -EINVAL;
1413 aux->head = handle->head >> PAGE_SHIFT;
1414 range = (handle->size + 1) >> PAGE_SHIFT;
1415 if (range <= 1)
1416 return -ENOMEM;
1419 * SDBs between aux->head and aux->empty_mark are already ready
1420 * for new data. range_scan is num of SDBs not within them.
1422 debug_sprintf_event(sfdbg, 6,
1423 "%s: range %ld head %ld alert %ld empty %ld\n",
1424 __func__, range, aux->head, aux->alert_mark,
1425 aux->empty_mark);
1426 if (range > AUX_SDB_NUM_EMPTY(aux)) {
1427 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1428 idx = aux->empty_mark + 1;
1429 for (i = 0; i < range_scan; i++, idx++) {
1430 te = aux_sdb_trailer(aux, idx);
1431 te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1432 SDB_TE_ALERT_REQ_MASK);
1433 te->overflow = 0;
1435 /* Save the position of empty SDBs */
1436 aux->empty_mark = aux->head + range - 1;
1439 /* Set alert indicator */
1440 aux->alert_mark = aux->head + range/2 - 1;
1441 te = aux_sdb_trailer(aux, aux->alert_mark);
1442 te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1444 /* Reset hardware buffer head */
1445 head = AUX_SDB_INDEX(aux, aux->head);
1446 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1447 offset = head % CPUM_SF_SDB_PER_TABLE;
1448 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1449 cpuhw->lsctl.dear = aux->sdb_index[head];
1451 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1452 "index %ld tear %#lx dear %#lx\n", __func__,
1453 aux->head, aux->alert_mark, aux->empty_mark,
1454 head / CPUM_SF_SDB_PER_TABLE,
1455 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1457 return 0;
1461 * Set alert indicator on SDB at index @alert_index while sampler is running.
1463 * Return true if successfully.
1464 * Return false if full indicator is already set by hardware sampler.
1466 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1467 unsigned long long *overflow)
1469 unsigned long long orig_overflow, orig_flags, new_flags;
1470 struct hws_trailer_entry *te;
1472 te = aux_sdb_trailer(aux, alert_index);
1473 do {
1474 orig_flags = te->flags;
1475 *overflow = orig_overflow = te->overflow;
1476 if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1478 * SDB is already set by hardware.
1479 * Abort and try to set somewhere
1480 * behind.
1482 return false;
1484 new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1485 } while (!cmpxchg_double(&te->flags, &te->overflow,
1486 orig_flags, orig_overflow,
1487 new_flags, 0ULL));
1488 return true;
1492 * aux_reset_buffer() - Scan and setup SDBs for new samples
1493 * @aux: The AUX buffer to set
1494 * @range: The range of SDBs to scan started from aux->head
1495 * @overflow: Set to overflow count
1497 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1498 * marked as empty, check if it is already set full by the hardware sampler.
1499 * If yes, that means new data is already there before we can set an alert
1500 * indicator. Caller should try to set alert indicator to some position behind.
1502 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1503 * previously and have already been consumed by user space. Reset these SDBs
1504 * (clear full indicator and alert indicator) for new data.
1505 * If aux->alert_mark fall in this area, just set it. Overflow count is
1506 * recorded while scanning.
1508 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1509 * and ready for new samples. So scanning on this area could be skipped.
1511 * Return true if alert indicator is set successfully and false if not.
1513 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1514 unsigned long long *overflow)
1516 unsigned long long orig_overflow, orig_flags, new_flags;
1517 unsigned long i, range_scan, idx, idx_old;
1518 struct hws_trailer_entry *te;
1520 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1521 "empty %ld\n", __func__, range, aux->head,
1522 aux->alert_mark, aux->empty_mark);
1523 if (range <= AUX_SDB_NUM_EMPTY(aux))
1525 * No need to scan. All SDBs in range are marked as empty.
1526 * Just set alert indicator. Should check race with hardware
1527 * sampler.
1529 return aux_set_alert(aux, aux->alert_mark, overflow);
1531 if (aux->alert_mark <= aux->empty_mark)
1533 * Set alert indicator on empty SDB. Should check race
1534 * with hardware sampler.
1536 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1537 return false;
1540 * Scan the SDBs to clear full and alert indicator used previously.
1541 * Start scanning from one SDB behind empty_mark. If the new alert
1542 * indicator fall into this range, set it.
1544 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1545 idx_old = idx = aux->empty_mark + 1;
1546 for (i = 0; i < range_scan; i++, idx++) {
1547 te = aux_sdb_trailer(aux, idx);
1548 do {
1549 orig_flags = te->flags;
1550 orig_overflow = te->overflow;
1551 new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1552 if (idx == aux->alert_mark)
1553 new_flags |= SDB_TE_ALERT_REQ_MASK;
1554 else
1555 new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1556 } while (!cmpxchg_double(&te->flags, &te->overflow,
1557 orig_flags, orig_overflow,
1558 new_flags, 0ULL));
1559 *overflow += orig_overflow;
1562 /* Update empty_mark to new position */
1563 aux->empty_mark = aux->head + range - 1;
1565 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1566 "empty %ld\n", __func__, range_scan, idx_old,
1567 idx - 1, aux->empty_mark);
1568 return true;
1572 * Measurement alert handler for diagnostic mode sampling.
1574 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1576 struct aux_buffer *aux;
1577 int done = 0;
1578 unsigned long range = 0, size;
1579 unsigned long long overflow = 0;
1580 struct perf_output_handle *handle = &cpuhw->handle;
1581 unsigned long num_sdb;
1583 aux = perf_get_aux(handle);
1584 if (WARN_ON_ONCE(!aux))
1585 return;
1587 /* Inform user space new data arrived */
1588 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1589 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1590 size >> PAGE_SHIFT);
1591 perf_aux_output_end(handle, size);
1593 num_sdb = aux->sfb.num_sdb;
1594 while (!done) {
1595 /* Get an output handle */
1596 aux = perf_aux_output_begin(handle, cpuhw->event);
1597 if (handle->size == 0) {
1598 pr_err("The AUX buffer with %lu pages for the "
1599 "diagnostic-sampling mode is full\n",
1600 num_sdb);
1601 debug_sprintf_event(sfdbg, 1,
1602 "%s: AUX buffer used up\n",
1603 __func__);
1604 break;
1606 if (WARN_ON_ONCE(!aux))
1607 return;
1609 /* Update head and alert_mark to new position */
1610 aux->head = handle->head >> PAGE_SHIFT;
1611 range = (handle->size + 1) >> PAGE_SHIFT;
1612 if (range == 1)
1613 aux->alert_mark = aux->head;
1614 else
1615 aux->alert_mark = aux->head + range/2 - 1;
1617 if (aux_reset_buffer(aux, range, &overflow)) {
1618 if (!overflow) {
1619 done = 1;
1620 break;
1622 size = range << PAGE_SHIFT;
1623 perf_aux_output_end(&cpuhw->handle, size);
1624 pr_err("Sample data caused the AUX buffer with %lu "
1625 "pages to overflow\n", aux->sfb.num_sdb);
1626 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1627 "overflow %lld\n", __func__,
1628 aux->head, range, overflow);
1629 } else {
1630 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1631 perf_aux_output_end(&cpuhw->handle, size);
1632 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1633 "already full, try another\n",
1634 __func__,
1635 aux->head, aux->alert_mark);
1639 if (done)
1640 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1641 "empty %ld\n", __func__, aux->head,
1642 aux->alert_mark, aux->empty_mark);
1646 * Callback when freeing AUX buffers.
1648 static void aux_buffer_free(void *data)
1650 struct aux_buffer *aux = data;
1651 unsigned long i, num_sdbt;
1653 if (!aux)
1654 return;
1656 /* Free SDBT. SDB is freed by the caller */
1657 num_sdbt = aux->sfb.num_sdbt;
1658 for (i = 0; i < num_sdbt; i++)
1659 free_page(aux->sdbt_index[i]);
1661 kfree(aux->sdbt_index);
1662 kfree(aux->sdb_index);
1663 kfree(aux);
1665 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1668 static void aux_sdb_init(unsigned long sdb)
1670 struct hws_trailer_entry *te;
1672 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1674 /* Save clock base */
1675 te->clock_base = 1;
1676 memcpy(&te->progusage2, &tod_clock_base[1], 8);
1680 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1681 * @event: Event the buffer is setup for, event->cpu == -1 means current
1682 * @pages: Array of pointers to buffer pages passed from perf core
1683 * @nr_pages: Total pages
1684 * @snapshot: Flag for snapshot mode
1686 * This is the callback when setup an event using AUX buffer. Perf tool can
1687 * trigger this by an additional mmap() call on the event. Unlike the buffer
1688 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1689 * the task among online cpus when it is a per-thread event.
1691 * Return the private AUX buffer structure if success or NULL if fails.
1693 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1694 int nr_pages, bool snapshot)
1696 struct sf_buffer *sfb;
1697 struct aux_buffer *aux;
1698 unsigned long *new, *tail;
1699 int i, n_sdbt;
1701 if (!nr_pages || !pages)
1702 return NULL;
1704 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1705 pr_err("AUX buffer size (%i pages) is larger than the "
1706 "maximum sampling buffer limit\n",
1707 nr_pages);
1708 return NULL;
1709 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1710 pr_err("AUX buffer size (%i pages) is less than the "
1711 "minimum sampling buffer limit\n",
1712 nr_pages);
1713 return NULL;
1716 /* Allocate aux_buffer struct for the event */
1717 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1718 if (!aux)
1719 goto no_aux;
1720 sfb = &aux->sfb;
1722 /* Allocate sdbt_index for fast reference */
1723 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1724 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1725 if (!aux->sdbt_index)
1726 goto no_sdbt_index;
1728 /* Allocate sdb_index for fast reference */
1729 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1730 if (!aux->sdb_index)
1731 goto no_sdb_index;
1733 /* Allocate the first SDBT */
1734 sfb->num_sdbt = 0;
1735 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1736 if (!sfb->sdbt)
1737 goto no_sdbt;
1738 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1739 tail = sfb->tail = sfb->sdbt;
1742 * Link the provided pages of AUX buffer to SDBT.
1743 * Allocate SDBT if needed.
1745 for (i = 0; i < nr_pages; i++, tail++) {
1746 if (require_table_link(tail)) {
1747 new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1748 if (!new)
1749 goto no_sdbt;
1750 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1751 /* Link current page to tail of chain */
1752 *tail = (unsigned long)(void *) new + 1;
1753 tail = new;
1755 /* Tail is the entry in a SDBT */
1756 *tail = (unsigned long)pages[i];
1757 aux->sdb_index[i] = (unsigned long)pages[i];
1758 aux_sdb_init((unsigned long)pages[i]);
1760 sfb->num_sdb = nr_pages;
1762 /* Link the last entry in the SDBT to the first SDBT */
1763 *tail = (unsigned long) sfb->sdbt + 1;
1764 sfb->tail = tail;
1767 * Initial all SDBs are zeroed. Mark it as empty.
1768 * So there is no need to clear the full indicator
1769 * when this event is first added.
1771 aux->empty_mark = sfb->num_sdb - 1;
1773 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1774 sfb->num_sdbt, sfb->num_sdb);
1776 return aux;
1778 no_sdbt:
1779 /* SDBs (AUX buffer pages) are freed by caller */
1780 for (i = 0; i < sfb->num_sdbt; i++)
1781 free_page(aux->sdbt_index[i]);
1782 kfree(aux->sdb_index);
1783 no_sdb_index:
1784 kfree(aux->sdbt_index);
1785 no_sdbt_index:
1786 kfree(aux);
1787 no_aux:
1788 return NULL;
1791 static void cpumsf_pmu_read(struct perf_event *event)
1793 /* Nothing to do ... updates are interrupt-driven */
1796 /* Check if the new sampling period/freqeuncy is appropriate.
1798 * Return non-zero on error and zero on passed checks.
1800 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1802 struct hws_qsi_info_block si;
1803 unsigned long rate;
1804 bool do_freq;
1806 memset(&si, 0, sizeof(si));
1807 if (event->cpu == -1) {
1808 if (qsi(&si))
1809 return -ENODEV;
1810 } else {
1811 /* Event is pinned to a particular CPU, retrieve the per-CPU
1812 * sampling structure for accessing the CPU-specific QSI.
1814 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1816 si = cpuhw->qsi;
1819 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1820 rate = getrate(do_freq, value, &si);
1821 if (!rate)
1822 return -EINVAL;
1824 event->attr.sample_period = rate;
1825 SAMPL_RATE(&event->hw) = rate;
1826 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1827 debug_sprintf_event(sfdbg, 4, "%s:"
1828 " cpu %d value %#llx period %#llx freq %d\n",
1829 __func__, event->cpu, value,
1830 event->attr.sample_period, do_freq);
1831 return 0;
1834 /* Activate sampling control.
1835 * Next call of pmu_enable() starts sampling.
1837 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1839 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1841 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1842 return;
1844 if (flags & PERF_EF_RELOAD)
1845 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1847 perf_pmu_disable(event->pmu);
1848 event->hw.state = 0;
1849 cpuhw->lsctl.cs = 1;
1850 if (SAMPL_DIAG_MODE(&event->hw))
1851 cpuhw->lsctl.cd = 1;
1852 perf_pmu_enable(event->pmu);
1855 /* Deactivate sampling control.
1856 * Next call of pmu_enable() stops sampling.
1858 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1860 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1862 if (event->hw.state & PERF_HES_STOPPED)
1863 return;
1865 perf_pmu_disable(event->pmu);
1866 cpuhw->lsctl.cs = 0;
1867 cpuhw->lsctl.cd = 0;
1868 event->hw.state |= PERF_HES_STOPPED;
1870 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1871 hw_perf_event_update(event, 1);
1872 event->hw.state |= PERF_HES_UPTODATE;
1874 perf_pmu_enable(event->pmu);
1877 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1879 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1880 struct aux_buffer *aux;
1881 int err;
1883 if (cpuhw->flags & PMU_F_IN_USE)
1884 return -EAGAIN;
1886 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1887 return -EINVAL;
1889 err = 0;
1890 perf_pmu_disable(event->pmu);
1892 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1894 /* Set up sampling controls. Always program the sampling register
1895 * using the SDB-table start. Reset TEAR_REG event hardware register
1896 * that is used by hw_perf_event_update() to store the sampling buffer
1897 * position after samples have been flushed.
1899 cpuhw->lsctl.s = 0;
1900 cpuhw->lsctl.h = 1;
1901 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1902 if (!SAMPL_DIAG_MODE(&event->hw)) {
1903 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1904 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1905 TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1908 /* Ensure sampling functions are in the disabled state. If disabled,
1909 * switch on sampling enable control. */
1910 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1911 err = -EAGAIN;
1912 goto out;
1914 if (SAMPL_DIAG_MODE(&event->hw)) {
1915 aux = perf_aux_output_begin(&cpuhw->handle, event);
1916 if (!aux) {
1917 err = -EINVAL;
1918 goto out;
1920 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1921 if (err)
1922 goto out;
1923 cpuhw->lsctl.ed = 1;
1925 cpuhw->lsctl.es = 1;
1927 /* Set in_use flag and store event */
1928 cpuhw->event = event;
1929 cpuhw->flags |= PMU_F_IN_USE;
1931 if (flags & PERF_EF_START)
1932 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1933 out:
1934 perf_event_update_userpage(event);
1935 perf_pmu_enable(event->pmu);
1936 return err;
1939 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1941 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1943 perf_pmu_disable(event->pmu);
1944 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1946 cpuhw->lsctl.es = 0;
1947 cpuhw->lsctl.ed = 0;
1948 cpuhw->flags &= ~PMU_F_IN_USE;
1949 cpuhw->event = NULL;
1951 if (SAMPL_DIAG_MODE(&event->hw))
1952 aux_output_end(&cpuhw->handle);
1953 perf_event_update_userpage(event);
1954 perf_pmu_enable(event->pmu);
1957 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1958 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1960 /* Attribute list for CPU_SF.
1962 * The availablitiy depends on the CPU_MF sampling facility authorization
1963 * for basic + diagnositic samples. This is determined at initialization
1964 * time by the sampling facility device driver.
1965 * If the authorization for basic samples is turned off, it should be
1966 * also turned off for diagnostic sampling.
1968 * During initialization of the device driver, check the authorization
1969 * level for diagnostic sampling and installs the attribute
1970 * file for diagnostic sampling if necessary.
1972 * For now install a placeholder to reference all possible attributes:
1973 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1974 * Add another entry for the final NULL pointer.
1976 enum {
1977 SF_CYCLES_BASIC_ATTR_IDX = 0,
1978 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1979 SF_CYCLES_ATTR_MAX
1982 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1983 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1986 PMU_FORMAT_ATTR(event, "config:0-63");
1988 static struct attribute *cpumsf_pmu_format_attr[] = {
1989 &format_attr_event.attr,
1990 NULL,
1993 static struct attribute_group cpumsf_pmu_events_group = {
1994 .name = "events",
1995 .attrs = cpumsf_pmu_events_attr,
1998 static struct attribute_group cpumsf_pmu_format_group = {
1999 .name = "format",
2000 .attrs = cpumsf_pmu_format_attr,
2003 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2004 &cpumsf_pmu_events_group,
2005 &cpumsf_pmu_format_group,
2006 NULL,
2009 static struct pmu cpumf_sampling = {
2010 .pmu_enable = cpumsf_pmu_enable,
2011 .pmu_disable = cpumsf_pmu_disable,
2013 .event_init = cpumsf_pmu_event_init,
2014 .add = cpumsf_pmu_add,
2015 .del = cpumsf_pmu_del,
2017 .start = cpumsf_pmu_start,
2018 .stop = cpumsf_pmu_stop,
2019 .read = cpumsf_pmu_read,
2021 .attr_groups = cpumsf_pmu_attr_groups,
2023 .setup_aux = aux_buffer_setup,
2024 .free_aux = aux_buffer_free,
2026 .check_period = cpumsf_pmu_check_period,
2029 static void cpumf_measurement_alert(struct ext_code ext_code,
2030 unsigned int alert, unsigned long unused)
2032 struct cpu_hw_sf *cpuhw;
2034 if (!(alert & CPU_MF_INT_SF_MASK))
2035 return;
2036 inc_irq_stat(IRQEXT_CMS);
2037 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2039 /* Measurement alerts are shared and might happen when the PMU
2040 * is not reserved. Ignore these alerts in this case. */
2041 if (!(cpuhw->flags & PMU_F_RESERVED))
2042 return;
2044 /* The processing below must take care of multiple alert events that
2045 * might be indicated concurrently. */
2047 /* Program alert request */
2048 if (alert & CPU_MF_INT_SF_PRA) {
2049 if (cpuhw->flags & PMU_F_IN_USE)
2050 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2051 hw_collect_aux(cpuhw);
2052 else
2053 hw_perf_event_update(cpuhw->event, 0);
2054 else
2055 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2058 /* Report measurement alerts only for non-PRA codes */
2059 if (alert != CPU_MF_INT_SF_PRA)
2060 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2061 alert);
2063 /* Sampling authorization change request */
2064 if (alert & CPU_MF_INT_SF_SACA)
2065 qsi(&cpuhw->qsi);
2067 /* Loss of sample data due to high-priority machine activities */
2068 if (alert & CPU_MF_INT_SF_LSDA) {
2069 pr_err("Sample data was lost\n");
2070 cpuhw->flags |= PMU_F_ERR_LSDA;
2071 sf_disable();
2074 /* Invalid sampling buffer entry */
2075 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2076 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2077 alert);
2078 cpuhw->flags |= PMU_F_ERR_IBE;
2079 sf_disable();
2083 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2085 /* Ignore the notification if no events are scheduled on the PMU.
2086 * This might be racy...
2088 if (!atomic_read(&num_events))
2089 return 0;
2091 local_irq_disable();
2092 setup_pmc_cpu(&flags);
2093 local_irq_enable();
2094 return 0;
2097 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2099 return cpusf_pmu_setup(cpu, PMC_INIT);
2102 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2104 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2107 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2109 if (!cpum_sf_avail())
2110 return -ENODEV;
2111 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2114 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2116 int rc;
2117 unsigned long min, max;
2119 if (!cpum_sf_avail())
2120 return -ENODEV;
2121 if (!val || !strlen(val))
2122 return -EINVAL;
2124 /* Valid parameter values: "min,max" or "max" */
2125 min = CPUM_SF_MIN_SDB;
2126 max = CPUM_SF_MAX_SDB;
2127 if (strchr(val, ','))
2128 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2129 else
2130 rc = kstrtoul(val, 10, &max);
2132 if (min < 2 || min >= max || max > get_num_physpages())
2133 rc = -EINVAL;
2134 if (rc)
2135 return rc;
2137 sfb_set_limits(min, max);
2138 pr_info("The sampling buffer limits have changed to: "
2139 "min %lu max %lu (diag %lu)\n",
2140 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2141 return 0;
2144 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2145 static const struct kernel_param_ops param_ops_sfb_size = {
2146 .set = param_set_sfb_size,
2147 .get = param_get_sfb_size,
2150 #define RS_INIT_FAILURE_QSI 0x0001
2151 #define RS_INIT_FAILURE_BSDES 0x0002
2152 #define RS_INIT_FAILURE_ALRT 0x0003
2153 #define RS_INIT_FAILURE_PERF 0x0004
2154 static void __init pr_cpumsf_err(unsigned int reason)
2156 pr_err("Sampling facility support for perf is not available: "
2157 "reason %#x\n", reason);
2160 static int __init init_cpum_sampling_pmu(void)
2162 struct hws_qsi_info_block si;
2163 int err;
2165 if (!cpum_sf_avail())
2166 return -ENODEV;
2168 memset(&si, 0, sizeof(si));
2169 if (qsi(&si)) {
2170 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2171 return -ENODEV;
2174 if (!si.as && !si.ad)
2175 return -ENODEV;
2177 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2178 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2179 return -EINVAL;
2182 if (si.ad) {
2183 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2184 /* Sampling of diagnostic data authorized,
2185 * install event into attribute list of PMU device.
2187 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2188 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2191 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2192 if (!sfdbg) {
2193 pr_err("Registering for s390dbf failed\n");
2194 return -ENOMEM;
2196 debug_register_view(sfdbg, &debug_sprintf_view);
2198 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2199 cpumf_measurement_alert);
2200 if (err) {
2201 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2202 debug_unregister(sfdbg);
2203 goto out;
2206 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2207 if (err) {
2208 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2209 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2210 cpumf_measurement_alert);
2211 debug_unregister(sfdbg);
2212 goto out;
2215 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2216 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2217 out:
2218 return err;
2221 arch_initcall(init_cpum_sampling_pmu);
2222 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);