1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
5 #include <asm/processor-flags.h>
7 /* Forward declaration, a strange C thing */
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
23 #include <asm/desc_defs.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
43 * Based on this we disable the IP header alignment in network drivers.
45 #define NET_IP_ALIGN 0
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN 0
67 extern u16 __read_mostly tlb_lli_4k
[NR_INFO
];
68 extern u16 __read_mostly tlb_lli_2m
[NR_INFO
];
69 extern u16 __read_mostly tlb_lli_4m
[NR_INFO
];
70 extern u16 __read_mostly tlb_lld_4k
[NR_INFO
];
71 extern u16 __read_mostly tlb_lld_2m
[NR_INFO
];
72 extern u16 __read_mostly tlb_lld_4m
[NR_INFO
];
73 extern u16 __read_mostly tlb_lld_1g
[NR_INFO
];
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
82 __u8 x86
; /* CPU family */
83 __u8 x86_vendor
; /* CPU vendor */
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability
[NVMXINTS
];
95 /* CPUID returned core id bits: */
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level
;
100 /* Maximum supported CPUID level, -1=no CPUID: */
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
108 __u32 x86_capability
[NCAPINTS
+ NBUGINTS
];
109 unsigned long x86_capability_alignment
;
111 char x86_vendor_id
[16];
112 char x86_model_id
[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size
;
115 int x86_cache_alignment
; /* In bytes */
116 /* Cache QoS architectural values: */
117 int x86_cache_max_rmid
; /* max index */
118 int x86_cache_occ_scale
; /* scale to bytes */
120 unsigned long loops_per_jiffy
;
121 /* cpuid returned max cores value: */
125 u16 x86_clflush_size
;
126 /* number of cores as seen by the OS: */
128 /* Physical processor id: */
130 /* Logical processor id: */
136 /* Index into per_cpu list: */
139 /* Address space bits used by the cache internally */
141 unsigned initialized
: 1;
142 } __randomize_layout
;
145 u32 eax
, ebx
, ecx
, edx
;
148 enum cpuid_regs_idx
{
155 #define X86_VENDOR_INTEL 0
156 #define X86_VENDOR_CYRIX 1
157 #define X86_VENDOR_AMD 2
158 #define X86_VENDOR_UMC 3
159 #define X86_VENDOR_CENTAUR 5
160 #define X86_VENDOR_TRANSMETA 7
161 #define X86_VENDOR_NSC 8
162 #define X86_VENDOR_HYGON 9
163 #define X86_VENDOR_ZHAOXIN 10
164 #define X86_VENDOR_NUM 11
166 #define X86_VENDOR_UNKNOWN 0xff
169 * capabilities of CPUs
171 extern struct cpuinfo_x86 boot_cpu_data
;
172 extern struct cpuinfo_x86 new_cpu_data
;
174 extern __u32 cpu_caps_cleared
[NCAPINTS
+ NBUGINTS
];
175 extern __u32 cpu_caps_set
[NCAPINTS
+ NBUGINTS
];
178 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86
, cpu_info
);
179 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
181 #define cpu_info boot_cpu_data
182 #define cpu_data(cpu) boot_cpu_data
185 extern const struct seq_operations cpuinfo_op
;
187 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189 extern void cpu_detect(struct cpuinfo_x86
*c
);
191 static inline unsigned long long l1tf_pfn_limit(void)
193 return BIT_ULL(boot_cpu_data
.x86_cache_bits
- 1 - PAGE_SHIFT
);
196 extern void early_cpu_init(void);
197 extern void identify_boot_cpu(void);
198 extern void identify_secondary_cpu(struct cpuinfo_x86
*);
199 extern void print_cpu_info(struct cpuinfo_x86
*);
200 void print_cpu_msr(struct cpuinfo_x86
*);
203 extern int have_cpuid_p(void);
205 static inline int have_cpuid_p(void)
210 static inline void native_cpuid(unsigned int *eax
, unsigned int *ebx
,
211 unsigned int *ecx
, unsigned int *edx
)
213 /* ecx is often an input as well as an output. */
219 : "0" (*eax
), "2" (*ecx
)
223 #define native_cpuid_reg(reg) \
224 static inline unsigned int native_cpuid_##reg(unsigned int op) \
226 unsigned int eax = op, ebx, ecx = 0, edx; \
228 native_cpuid(&eax, &ebx, &ecx, &edx); \
234 * Native CPUID functions returning a single datum.
236 native_cpuid_reg(eax
)
237 native_cpuid_reg(ebx
)
238 native_cpuid_reg(ecx
)
239 native_cpuid_reg(edx
)
242 * Friendlier CR3 helpers.
244 static inline unsigned long read_cr3_pa(void)
246 return __read_cr3() & CR3_ADDR_MASK
;
249 static inline unsigned long native_read_cr3_pa(void)
251 return __native_read_cr3() & CR3_ADDR_MASK
;
254 static inline void load_cr3(pgd_t
*pgdir
)
256 write_cr3(__sme_pa(pgdir
));
260 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
261 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
262 * unrelated to the task-switch mechanism:
265 /* This is the TSS defined by the hardware. */
267 unsigned short back_link
, __blh
;
269 unsigned short ss0
, __ss0h
;
273 * We don't use ring 1, so ss1 is a convenient scratch space in
274 * the same cacheline as sp0. We use ss1 to cache the value in
275 * MSR_IA32_SYSENTER_CS. When we context switch
276 * MSR_IA32_SYSENTER_CS, we first check if the new value being
277 * written matches ss1, and, if it's not, then we wrmsr the new
278 * value and update ss1.
280 * The only reason we context switch MSR_IA32_SYSENTER_CS is
281 * that we set it to zero in vm86 tasks to avoid corrupting the
282 * stack if we were to go through the sysenter path from vm86
285 unsigned short ss1
; /* MSR_IA32_SYSENTER_CS */
287 unsigned short __ss1h
;
289 unsigned short ss2
, __ss2h
;
301 unsigned short es
, __esh
;
302 unsigned short cs
, __csh
;
303 unsigned short ss
, __ssh
;
304 unsigned short ds
, __dsh
;
305 unsigned short fs
, __fsh
;
306 unsigned short gs
, __gsh
;
307 unsigned short ldt
, __ldth
;
308 unsigned short trace
;
309 unsigned short io_bitmap_base
;
311 } __attribute__((packed
));
318 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
319 * Linux does not use ring 1, so sp1 is not otherwise needed.
324 * Since Linux does not use ring 2, the 'sp2' slot is unused by
325 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
326 * the user RSP value.
337 } __attribute__((packed
));
343 #define IO_BITMAP_BITS 65536
344 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
345 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
347 #define IO_BITMAP_OFFSET_VALID_MAP \
348 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
349 offsetof(struct tss_struct, x86_tss))
351 #define IO_BITMAP_OFFSET_VALID_ALL \
352 (offsetof(struct tss_struct, io_bitmap.mapall) - \
353 offsetof(struct tss_struct, x86_tss))
355 #ifdef CONFIG_X86_IOPL_IOPERM
357 * sizeof(unsigned long) coming from an extra "long" at the end of the
358 * iobitmap. The limit is inclusive, i.e. the last valid byte.
360 # define __KERNEL_TSS_LIMIT \
361 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
362 sizeof(unsigned long) - 1)
364 # define __KERNEL_TSS_LIMIT \
365 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
368 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
369 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
372 unsigned long words
[64];
375 struct entry_stack_page
{
376 struct entry_stack stack
;
377 } __aligned(PAGE_SIZE
);
380 * All IO bitmap related data stored in the TSS:
382 struct x86_io_bitmap
{
383 /* The sequence number of the last active bitmap. */
387 * Store the dirty size of the last io bitmap offender. The next
388 * one will have to do the cleanup as the switch out to a non io
389 * bitmap user will just set x86_tss.io_bitmap_base to a value
390 * outside of the TSS limit. So for sane tasks there is no need to
391 * actually touch the io_bitmap at all.
393 unsigned int prev_max
;
396 * The extra 1 is there because the CPU will access an
397 * additional byte beyond the end of the IO permission
398 * bitmap. The extra byte must be all 1 bits, and must
399 * be within the limit.
401 unsigned long bitmap
[IO_BITMAP_LONGS
+ 1];
404 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
405 * except the additional byte at the end.
407 unsigned long mapall
[IO_BITMAP_LONGS
+ 1];
412 * The fixed hardware portion. This must not cross a page boundary
413 * at risk of violating the SDM's advice and potentially triggering
416 struct x86_hw_tss x86_tss
;
418 struct x86_io_bitmap io_bitmap
;
419 } __aligned(PAGE_SIZE
);
421 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct
, cpu_tss_rw
);
423 /* Per CPU interrupt stacks */
425 char stack
[IRQ_STACK_SIZE
];
426 } __aligned(IRQ_STACK_SIZE
);
428 DECLARE_PER_CPU(struct irq_stack
*, hardirq_stack_ptr
);
431 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack
);
433 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
434 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
438 struct fixed_percpu_data
{
440 * GCC hardcodes the stack canary as %gs:40. Since the
441 * irq_stack is the object at %gs:0, we reserve the bottom
442 * 48 bytes of the irq stack for the canary.
445 unsigned long stack_canary
;
448 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data
, fixed_percpu_data
) __visible
;
449 DECLARE_INIT_PER_CPU(fixed_percpu_data
);
451 static inline unsigned long cpu_kernelmode_gs_base(int cpu
)
453 return (unsigned long)per_cpu(fixed_percpu_data
.gs_base
, cpu
);
456 DECLARE_PER_CPU(unsigned int, irq_count
);
457 extern asmlinkage
void ignore_sysret(void);
459 #if IS_ENABLED(CONFIG_KVM)
460 /* Save actual FS/GS selectors and bases to current->thread */
461 void save_fsgs_for_kvm(void);
464 #ifdef CONFIG_STACKPROTECTOR
466 * Make sure stack canary segment base is cached-aligned:
467 * "For Intel Atom processors, avoid non zero segment base address
468 * that is not aligned to cache line boundary at all cost."
469 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
471 struct stack_canary
{
472 char __pad
[20]; /* canary at %gs:20 */
473 unsigned long canary
;
475 DECLARE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
477 /* Per CPU softirq stack pointer */
478 DECLARE_PER_CPU(struct irq_stack
*, softirq_stack_ptr
);
481 extern unsigned int fpu_kernel_xstate_size
;
482 extern unsigned int fpu_user_xstate_size
;
490 struct thread_struct
{
491 /* Cached TLS descriptors: */
492 struct desc_struct tls_array
[GDT_ENTRY_TLS_ENTRIES
];
498 unsigned long sysenter_cs
;
502 unsigned short fsindex
;
503 unsigned short gsindex
;
507 unsigned long fsbase
;
508 unsigned long gsbase
;
511 * XXX: this could presumably be unsigned short. Alternatively,
512 * 32-bit kernels could be taught to use fsindex instead.
518 /* Save middle states of ptrace breakpoints */
519 struct perf_event
*ptrace_bps
[HBP_NUM
];
520 /* Debug status used for traps, single steps, etc... */
521 unsigned long debugreg6
;
522 /* Keep track of the exact dr7 value set by the user */
523 unsigned long ptrace_dr7
;
526 unsigned long trap_nr
;
527 unsigned long error_code
;
529 /* Virtual 86 mode info */
532 /* IO permissions: */
533 struct io_bitmap
*io_bitmap
;
536 * IOPL. Priviledge level dependent I/O permission which is
537 * emulated via the I/O bitmap to prevent user space from disabling
540 unsigned long iopl_emul
;
542 mm_segment_t addr_limit
;
544 unsigned int sig_on_uaccess_err
:1;
546 /* Floating point and extended processor state */
549 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
554 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
555 static inline void arch_thread_struct_whitelist(unsigned long *offset
,
558 *offset
= offsetof(struct thread_struct
, fpu
.state
);
559 *size
= fpu_kernel_xstate_size
;
563 * Thread-synchronous status.
565 * This is different from the flags in that nobody else
566 * ever touches our thread-synchronous status, so we don't
567 * have to worry about atomic accesses.
569 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
572 native_load_sp0(unsigned long sp0
)
574 this_cpu_write(cpu_tss_rw
.x86_tss
.sp0
, sp0
);
577 static inline void native_swapgs(void)
580 asm volatile("swapgs" ::: "memory");
584 static inline unsigned long current_top_of_stack(void)
587 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
588 * and around vm86 mode and sp0 on x86_64 is special because of the
591 return this_cpu_read_stable(cpu_current_top_of_stack
);
594 static inline bool on_thread_stack(void)
596 return (unsigned long)(current_top_of_stack() -
597 current_stack_pointer
) < THREAD_SIZE
;
600 #ifdef CONFIG_PARAVIRT_XXL
601 #include <asm/paravirt.h>
603 #define __cpuid native_cpuid
605 static inline void load_sp0(unsigned long sp0
)
607 native_load_sp0(sp0
);
610 #endif /* CONFIG_PARAVIRT_XXL */
612 /* Free all resources held by a thread. */
613 extern void release_thread(struct task_struct
*);
615 unsigned long get_wchan(struct task_struct
*p
);
618 * Generic CPUID function
619 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
620 * resulting in stale register contents being returned.
622 static inline void cpuid(unsigned int op
,
623 unsigned int *eax
, unsigned int *ebx
,
624 unsigned int *ecx
, unsigned int *edx
)
628 __cpuid(eax
, ebx
, ecx
, edx
);
631 /* Some CPUID calls want 'count' to be placed in ecx */
632 static inline void cpuid_count(unsigned int op
, int count
,
633 unsigned int *eax
, unsigned int *ebx
,
634 unsigned int *ecx
, unsigned int *edx
)
638 __cpuid(eax
, ebx
, ecx
, edx
);
642 * CPUID functions returning a single datum
644 static inline unsigned int cpuid_eax(unsigned int op
)
646 unsigned int eax
, ebx
, ecx
, edx
;
648 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
653 static inline unsigned int cpuid_ebx(unsigned int op
)
655 unsigned int eax
, ebx
, ecx
, edx
;
657 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
662 static inline unsigned int cpuid_ecx(unsigned int op
)
664 unsigned int eax
, ebx
, ecx
, edx
;
666 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
671 static inline unsigned int cpuid_edx(unsigned int op
)
673 unsigned int eax
, ebx
, ecx
, edx
;
675 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
681 * This function forces the icache and prefetched instruction stream to
682 * catch up with reality in two very specific cases:
684 * a) Text was modified using one virtual address and is about to be executed
685 * from the same physical page at a different virtual address.
687 * b) Text was modified on a different CPU, may subsequently be
688 * executed on this CPU, and you want to make sure the new version
689 * gets executed. This generally means you're calling this in a IPI.
691 * If you're calling this for a different reason, you're probably doing
694 static inline void sync_core(void)
697 * There are quite a few ways to do this. IRET-to-self is nice
698 * because it works on every CPU, at any CPL (so it's compatible
699 * with paravirtualization), and it never exits to a hypervisor.
700 * The only down sides are that it's a bit slow (it seems to be
701 * a bit more than 2x slower than the fastest options) and that
702 * it unmasks NMIs. The "push %cs" is needed because, in
703 * paravirtual environments, __KERNEL_CS may not be a valid CS
704 * value when we do IRET directly.
706 * In case NMI unmasking or performance ever becomes a problem,
707 * the next best option appears to be MOV-to-CR2 and an
708 * unconditional jump. That sequence also works on all CPUs,
709 * but it will fault at CPL3 (i.e. Xen PV).
711 * CPUID is the conventional way, but it's nasty: it doesn't
712 * exist on some 486-like CPUs, and it usually exits to a
715 * Like all of Linux's memory ordering operations, this is a
716 * compiler barrier as well.
725 : ASM_CALL_CONSTRAINT
: : "memory");
734 "addq $8, (%%rsp)\n\t"
742 : "=&r" (tmp
), ASM_CALL_CONSTRAINT
: : "cc", "memory");
746 extern void select_idle_routine(const struct cpuinfo_x86
*c
);
747 extern void amd_e400_c1e_apic_setup(void);
749 extern unsigned long boot_option_idle_override
;
751 enum idle_boot_override
{IDLE_NO_OVERRIDE
=0, IDLE_HALT
, IDLE_NOMWAIT
,
754 extern void enable_sep_cpu(void);
755 extern int sysenter_setup(void);
758 /* Defined in head.S */
759 extern struct desc_ptr early_gdt_descr
;
761 extern void switch_to_new_gdt(int);
762 extern void load_direct_gdt(int);
763 extern void load_fixmap_gdt(int);
764 extern void load_percpu_segment(int);
765 extern void cpu_init(void);
766 extern void cr4_init(void);
768 static inline unsigned long get_debugctlmsr(void)
770 unsigned long debugctlmsr
= 0;
772 #ifndef CONFIG_X86_DEBUGCTLMSR
773 if (boot_cpu_data
.x86
< 6)
776 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctlmsr
);
781 static inline void update_debugctlmsr(unsigned long debugctlmsr
)
783 #ifndef CONFIG_X86_DEBUGCTLMSR
784 if (boot_cpu_data
.x86
< 6)
787 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctlmsr
);
790 extern void set_task_blockstep(struct task_struct
*task
, bool on
);
792 /* Boot loader type from the setup header: */
793 extern int bootloader_type
;
794 extern int bootloader_version
;
796 extern char ignore_fpu_irq
;
798 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
799 #define ARCH_HAS_PREFETCHW
800 #define ARCH_HAS_SPINLOCK_PREFETCH
803 # define BASE_PREFETCH ""
804 # define ARCH_HAS_PREFETCH
806 # define BASE_PREFETCH "prefetcht0 %P1"
810 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
812 * It's not worth to care about 3dnow prefetches for the K6
813 * because they are microcoded there and very slow.
815 static inline void prefetch(const void *x
)
817 alternative_input(BASE_PREFETCH
, "prefetchnta %P1",
819 "m" (*(const char *)x
));
823 * 3dnow prefetch to get an exclusive cache line.
824 * Useful for spinlocks to avoid one state transition in the
825 * cache coherency protocol:
827 static inline void prefetchw(const void *x
)
829 alternative_input(BASE_PREFETCH
, "prefetchw %P1",
830 X86_FEATURE_3DNOWPREFETCH
,
831 "m" (*(const char *)x
));
834 static inline void spin_lock_prefetch(const void *x
)
839 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
840 TOP_OF_KERNEL_STACK_PADDING)
842 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
844 #define task_pt_regs(task) \
846 unsigned long __ptr = (unsigned long)task_stack_page(task); \
847 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
848 ((struct pt_regs *)__ptr) - 1; \
853 * User space process size: 3GB (default).
855 #define IA32_PAGE_OFFSET PAGE_OFFSET
856 #define TASK_SIZE PAGE_OFFSET
857 #define TASK_SIZE_LOW TASK_SIZE
858 #define TASK_SIZE_MAX TASK_SIZE
859 #define DEFAULT_MAP_WINDOW TASK_SIZE
860 #define STACK_TOP TASK_SIZE
861 #define STACK_TOP_MAX STACK_TOP
863 #define INIT_THREAD { \
864 .sp0 = TOP_OF_INIT_STACK, \
865 .sysenter_cs = __KERNEL_CS, \
866 .addr_limit = KERNEL_DS, \
869 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
873 * User space process size. This is the first address outside the user range.
874 * There are a few constraints that determine this:
876 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
877 * address, then that syscall will enter the kernel with a
878 * non-canonical return address, and SYSRET will explode dangerously.
879 * We avoid this particular problem by preventing anything executable
880 * from being mapped at the maximum canonical address.
882 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
883 * CPUs malfunction if they execute code from the highest canonical page.
884 * They'll speculate right off the end of the canonical space, and
885 * bad things happen. This is worked around in the same way as the
888 * With page table isolation enabled, we map the LDT in ... [stay tuned]
890 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
892 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
894 /* This decides where the kernel will search for a free chunk of vm
895 * space during mmap's.
897 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
898 0xc0000000 : 0xFFFFe000)
900 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
901 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
902 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
903 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
904 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
905 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
907 #define STACK_TOP TASK_SIZE_LOW
908 #define STACK_TOP_MAX TASK_SIZE_MAX
910 #define INIT_THREAD { \
911 .addr_limit = KERNEL_DS, \
914 extern unsigned long KSTK_ESP(struct task_struct
*task
);
916 #endif /* CONFIG_X86_64 */
918 extern void start_thread(struct pt_regs
*regs
, unsigned long new_ip
,
919 unsigned long new_sp
);
922 * This decides where the kernel will search for a free chunk of vm
923 * space during mmap's.
925 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
926 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
928 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
930 /* Get/set a process' ability to use the timestamp counter instruction */
931 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
932 #define SET_TSC_CTL(val) set_tsc_mode((val))
934 extern int get_tsc_mode(unsigned long adr
);
935 extern int set_tsc_mode(unsigned int val
);
937 DECLARE_PER_CPU(u64
, msr_misc_features_shadow
);
939 #ifdef CONFIG_CPU_SUP_AMD
940 extern u16
amd_get_nb_id(int cpu
);
941 extern u32
amd_get_nodes_per_socket(void);
943 static inline u16
amd_get_nb_id(int cpu
) { return 0; }
944 static inline u32
amd_get_nodes_per_socket(void) { return 0; }
947 static inline uint32_t hypervisor_cpuid_base(const char *sig
, uint32_t leaves
)
949 uint32_t base
, eax
, signature
[3];
951 for (base
= 0x40000000; base
< 0x40010000; base
+= 0x100) {
952 cpuid(base
, &eax
, &signature
[0], &signature
[1], &signature
[2]);
954 if (!memcmp(sig
, signature
, 12) &&
955 (leaves
== 0 || ((eax
- base
) >= leaves
)))
962 extern unsigned long arch_align_stack(unsigned long sp
);
963 void free_init_pages(const char *what
, unsigned long begin
, unsigned long end
);
964 extern void free_kernel_image_pages(const char *what
, void *begin
, void *end
);
966 void default_idle(void);
968 bool xen_set_default_idle(void);
970 #define xen_set_default_idle 0
973 void stop_this_cpu(void *dummy
);
974 void microcode_check(void);
976 enum l1tf_mitigations
{
978 L1TF_MITIGATION_FLUSH_NOWARN
,
979 L1TF_MITIGATION_FLUSH
,
980 L1TF_MITIGATION_FLUSH_NOSMT
,
981 L1TF_MITIGATION_FULL
,
982 L1TF_MITIGATION_FULL_FORCE
985 extern enum l1tf_mitigations l1tf_mitigation
;
987 enum mds_mitigations
{
990 MDS_MITIGATION_VMWERV
,
993 #endif /* _ASM_X86_PROCESSOR_H */