2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv.h>
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/bios.h>
25 #include <asm/irq_vectors.h>
26 #include <asm/io_apic.h>
30 * Addressing Terminology
32 * M - The low M bits of a physical address represent the offset
33 * into the blade local memory. RAM memory on a blade is physically
34 * contiguous (although various IO spaces may punch holes in
37 * N - Number of bits in the node portion of a socket physical
40 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
41 * routers always have low bit of 1, C/MBricks have low bit
42 * equal to 0. Most addressing macros that target UV hub chips
43 * right shift the NASID by 1 to exclude the always-zero bit.
44 * NASIDs contain up to 15 bits.
46 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
49 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
50 * of the nasid for socket usage.
52 * GPA - (global physical address) a socket physical address converted
53 * so that it can be used by the GRU as a global address. Socket
54 * physical addresses 1) need additional NASID (node) bits added
55 * to the high end of the address, and 2) unaliased if the
56 * partition does not have a physical address 0. In addition, on
57 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
60 * NumaLink Global Physical Address Format:
61 * +--------------------------------+---------------------+
62 * |00..000| GNODE | NodeOffset |
63 * +--------------------------------+---------------------+
64 * |<-------53 - M bits --->|<--------M bits ----->
66 * M - number of node offset bits (35 .. 40)
69 * Memory/UV-HUB Processor Socket Address Format:
70 * +----------------+---------------+---------------------+
71 * |00..000000000000| PNODE | NodeOffset |
72 * +----------------+---------------+---------------------+
73 * <--- N bits --->|<--------M bits ----->
75 * M - number of node offset bits (35 .. 40)
76 * N - number of PNODE bits (0 .. 10)
78 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
79 * The actual values are configuration dependent and are set at
80 * boot time. M & N values are set by the hardware/BIOS at boot.
84 * NOTE!!!!!! This is the current format of the APICID. However, code
85 * should assume that this will change in the future. Use functions
86 * in this file for all APICID bit manipulations and conversion.
90 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
91 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
92 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
96 * l = socket number on board
99 * s = bits that are in the SOCKET_ID CSR
101 * Note: Processor may support fewer bits in the APICID register. The ACPI
102 * tables hold all 16 bits. Software needs to be aware of this.
104 * Unless otherwise specified, all references to APICID refer to
105 * the FULL value contained in ACPI tables, not the subset in the
106 * processor APICID register.
110 * Maximum number of bricks in all partitions and in all coherency domains.
111 * This is the total number of bricks accessible in the numalink fabric. It
112 * includes all C & M bricks. Routers are NOT included.
114 * This value is also the value of the maximum number of non-router NASIDs
115 * in the numalink fabric.
117 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
119 #define UV_MAX_NUMALINK_BLADES 16384
122 * Maximum number of C/Mbricks within a software SSI (hardware may support
125 #define UV_MAX_SSI_BLADES 256
128 * The largest possible NASID of a C or M brick (+ 2)
130 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
132 /* System Controller Interface Reg info */
134 struct timer_list timer
;
135 unsigned long offset
;
137 unsigned long idle_on
;
138 unsigned long idle_off
;
140 unsigned char enabled
;
143 /* GAM (globally addressed memory) range table */
144 struct uv_gam_range_s
{
145 u32 limit
; /* PA bits 56:26 (GAM_RANGE_SHFT) */
146 u16 nasid
; /* node's global physical address */
147 s8 base
; /* entry index of node's base addr */
152 * The following defines attributes of the HUB chip. These attributes are
153 * frequently referenced and are kept in a common per hub struct.
154 * After setup, the struct is read only, so it should be readily
155 * available in the L3 cache on the cpu socket for the node.
157 struct uv_hub_info_s
{
158 unsigned long global_mmr_base
;
159 unsigned long global_mmr_shift
;
160 unsigned long gpa_mask
;
161 unsigned short *socket_to_node
;
162 unsigned short *socket_to_pnode
;
163 unsigned short *pnode_to_socket
;
164 struct uv_gam_range_s
*gr_table
;
165 unsigned short min_socket
;
166 unsigned short min_pnode
;
169 unsigned char gr_table_len
;
170 unsigned char hub_revision
;
171 unsigned char apic_pnode_shift
;
172 unsigned char gpa_shift
;
173 unsigned char m_shift
;
174 unsigned char n_lshift
;
175 unsigned int gnode_extra
;
176 unsigned long gnode_upper
;
177 unsigned long lowmem_remap_top
;
178 unsigned long lowmem_remap_base
;
179 unsigned long global_gru_base
;
180 unsigned long global_gru_shift
;
181 unsigned short pnode
;
182 unsigned short pnode_mask
;
183 unsigned short coherency_domain_number
;
184 unsigned short numa_blade_id
;
185 unsigned short nr_possible_cpus
;
186 unsigned short nr_online_cpus
;
190 /* CPU specific info with a pointer to the hub common info struct */
191 struct uv_cpu_info_s
{
193 unsigned char blade_cpu_id
;
194 struct uv_scir_s scir
;
196 DECLARE_PER_CPU(struct uv_cpu_info_s
, __uv_cpu_info
);
198 #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
199 #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
201 #define uv_scir_info (&uv_cpu_info->scir)
202 #define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
204 /* Node specific hub common info struct */
205 extern void **__uv_hub_info_list
;
206 static inline struct uv_hub_info_s
*uv_hub_info_list(int node
)
208 return (struct uv_hub_info_s
*)__uv_hub_info_list
[node
];
211 static inline struct uv_hub_info_s
*_uv_hub_info(void)
213 return (struct uv_hub_info_s
*)uv_cpu_info
->p_uv_hub_info
;
215 #define uv_hub_info _uv_hub_info()
217 static inline struct uv_hub_info_s
*uv_cpu_hub_info(int cpu
)
219 return (struct uv_hub_info_s
*)uv_cpu_info_per(cpu
)->p_uv_hub_info
;
222 #define UV_HUB_INFO_VERSION 0x7150
223 extern int uv_hub_info_version(void);
224 static inline int uv_hub_info_check(int version
)
226 if (uv_hub_info_version() == version
)
229 pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
230 uv_hub_info_version(), version
);
232 BUG(); /* Catastrophic - cannot continue on unknown UV system */
234 #define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
237 * HUB revision ranges for each UV HUB architecture.
238 * This is a software convention - NOT the hardware revision numbers in
241 #define UV1_HUB_REVISION_BASE 1
242 #define UV2_HUB_REVISION_BASE 3
243 #define UV3_HUB_REVISION_BASE 5
244 #define UV4_HUB_REVISION_BASE 7
245 #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */
247 /* WARNING: UVx_HUB_IS_SUPPORTED defines are deprecated and will be removed */
248 static inline int is_uv1_hub(void)
250 #ifdef UV1_HUB_IS_SUPPORTED
251 return is_uv_hubbed(uv(1));
257 static inline int is_uv2_hub(void)
259 #ifdef UV2_HUB_IS_SUPPORTED
260 return is_uv_hubbed(uv(2));
266 static inline int is_uv3_hub(void)
268 #ifdef UV3_HUB_IS_SUPPORTED
269 return is_uv_hubbed(uv(3));
275 /* First test "is UV4A", then "is UV4" */
276 static inline int is_uv4a_hub(void)
278 #ifdef UV4A_HUB_IS_SUPPORTED
279 if (is_uv_hubbed(uv(4)))
280 return (uv_hub_info
->hub_revision
== UV4A_HUB_REVISION_BASE
);
285 static inline int is_uv4_hub(void)
287 #ifdef UV4_HUB_IS_SUPPORTED
288 return is_uv_hubbed(uv(4));
294 static inline int is_uvx_hub(void)
296 return (is_uv_hubbed(-2) >= uv(2));
299 static inline int is_uv_hub(void)
301 return is_uv1_hub() || is_uvx_hub();
306 struct uvh_apicid_s
{
307 unsigned long local_apic_mask
: 24;
308 unsigned long local_apic_shift
: 5;
309 unsigned long unused1
: 3;
310 unsigned long pnode_mask
: 24;
311 unsigned long pnode_shift
: 5;
312 unsigned long unused2
: 3;
317 * Local & Global MMR space macros.
318 * Note: macros are intended to be used ONLY by inline functions
319 * in this file - not by other kernel code.
320 * n - NASID (full 15-bit global nasid)
321 * g - GNODE (full 15-bit global nasid, right shifted 1)
322 * p - PNODE (local part of nsids, right shifted 1)
324 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
325 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
326 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
328 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
329 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
330 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
331 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
333 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
334 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
335 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
336 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
338 #define UV3_LOCAL_MMR_BASE 0xfa000000UL
339 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
340 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
341 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
343 #define UV4_LOCAL_MMR_BASE 0xfa000000UL
344 #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
345 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
346 #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
348 #define UV_LOCAL_MMR_BASE ( \
349 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
350 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
351 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
352 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
354 #define UV_GLOBAL_MMR32_BASE ( \
355 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
356 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
357 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
358 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
360 #define UV_LOCAL_MMR_SIZE ( \
361 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
362 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
363 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
364 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
366 #define UV_GLOBAL_MMR32_SIZE ( \
367 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
368 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
369 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
370 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
372 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
374 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
376 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
377 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
378 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
380 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
382 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
383 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
385 #define UVH_APICID 0x002D0E00L
386 #define UV_APIC_PNODE_SHIFT 6
388 #define UV_APICID_HIBIT_MASK 0xffff0000
390 /* Local Bus from cpu's perspective */
391 #define LOCAL_BUS_BASE 0x1c00000
392 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
395 * System Controller Interface Reg
397 * Note there are NO leds on a UV system. This register is only
398 * used by the system controller to monitor system-wide operation.
399 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
400 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
403 * The window is located at top of ACPI MMR space
405 #define SCIR_WINDOW_COUNT 64
406 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
410 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
411 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
412 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
414 /* Loop through all installed blades */
415 #define for_each_possible_blade(bid) \
416 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
419 * Macros for converting between kernel virtual addresses, socket local physical
420 * addresses, and UV global physical addresses.
421 * Note: use the standard __pa() & __va() macros for converting
422 * between socket virtual and socket physical addresses.
425 /* global bits offset - number of local address bits in gpa for this UV arch */
426 static inline unsigned int uv_gpa_shift(void)
428 return uv_hub_info
->gpa_shift
;
430 #define _uv_gpa_shift
432 /* Find node that has the address range that contains global address */
433 static inline struct uv_gam_range_s
*uv_gam_range(unsigned long pa
)
435 struct uv_gam_range_s
*gr
= uv_hub_info
->gr_table
;
436 unsigned long pal
= (pa
& uv_hub_info
->gpa_mask
) >> UV_GAM_RANGE_SHFT
;
437 int i
, num
= uv_hub_info
->gr_table_len
;
440 for (i
= 0; i
< num
; i
++, gr
++) {
445 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa
, gr
);
449 /* Return base address of node that contains global address */
450 static inline unsigned long uv_gam_range_base(unsigned long pa
)
452 struct uv_gam_range_s
*gr
= uv_gam_range(pa
);
458 return uv_hub_info
->gr_table
[base
].limit
;
461 /* socket phys RAM --> UV global NASID (UV4+) */
462 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr
)
464 return uv_gam_range(paddr
)->nasid
;
466 #define _uv_soc_phys_ram_to_nasid
468 /* socket virtual --> UV global NASID (UV4+) */
469 static inline unsigned long uv_gpa_nasid(void *v
)
471 return uv_soc_phys_ram_to_nasid(__pa(v
));
474 /* socket phys RAM --> UV global physical address */
475 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
477 unsigned int m_val
= uv_hub_info
->m_val
;
479 if (paddr
< uv_hub_info
->lowmem_remap_top
)
480 paddr
|= uv_hub_info
->lowmem_remap_base
;
483 paddr
|= uv_hub_info
->gnode_upper
;
484 paddr
= ((paddr
<< uv_hub_info
->m_shift
)
485 >> uv_hub_info
->m_shift
) |
486 ((paddr
>> uv_hub_info
->m_val
)
487 << uv_hub_info
->n_lshift
);
489 paddr
|= uv_soc_phys_ram_to_nasid(paddr
)
490 << uv_hub_info
->gpa_shift
;
495 /* socket virtual --> UV global physical address */
496 static inline unsigned long uv_gpa(void *v
)
498 return uv_soc_phys_ram_to_gpa(__pa(v
));
501 /* Top two bits indicate the requested address is in MMR space. */
503 uv_gpa_in_mmr_space(unsigned long gpa
)
505 return (gpa
>> 62) == 0x3UL
;
508 /* UV global physical address --> socket phys RAM */
509 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa
)
512 unsigned long remap_base
= uv_hub_info
->lowmem_remap_base
;
513 unsigned long remap_top
= uv_hub_info
->lowmem_remap_top
;
514 unsigned int m_val
= uv_hub_info
->m_val
;
517 gpa
= ((gpa
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
) |
518 ((gpa
>> uv_hub_info
->n_lshift
) << uv_hub_info
->m_val
);
520 paddr
= gpa
& uv_hub_info
->gpa_mask
;
521 if (paddr
>= remap_base
&& paddr
< remap_base
+ remap_top
)
527 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa
)
529 unsigned int n_lshift
= uv_hub_info
->n_lshift
;
532 return gpa
>> n_lshift
;
534 return uv_gam_range(gpa
)->nasid
>> 1;
538 static inline int uv_gpa_to_pnode(unsigned long gpa
)
540 return uv_gpa_to_gnode(gpa
) & uv_hub_info
->pnode_mask
;
543 /* gpa -> node offset */
544 static inline unsigned long uv_gpa_to_offset(unsigned long gpa
)
546 unsigned int m_shift
= uv_hub_info
->m_shift
;
549 return (gpa
<< m_shift
) >> m_shift
;
551 return (gpa
& uv_hub_info
->gpa_mask
) - uv_gam_range_base(gpa
);
554 /* Convert socket to node */
555 static inline int _uv_socket_to_node(int socket
, unsigned short *s2nid
)
557 return s2nid
? s2nid
[socket
- uv_hub_info
->min_socket
] : socket
;
560 static inline int uv_socket_to_node(int socket
)
562 return _uv_socket_to_node(socket
, uv_hub_info
->socket_to_node
);
565 /* pnode, offset --> socket virtual */
566 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
568 unsigned int m_val
= uv_hub_info
->m_val
;
570 unsigned short sockid
, node
, *p2s
;
573 return __va(((unsigned long)pnode
<< m_val
) | offset
);
575 p2s
= uv_hub_info
->pnode_to_socket
;
576 sockid
= p2s
? p2s
[pnode
- uv_hub_info
->min_pnode
] : pnode
;
577 node
= uv_socket_to_node(sockid
);
579 /* limit address of previous socket is our base, except node 0 is 0 */
581 return __va((unsigned long)offset
);
583 base
= (unsigned long)(uv_hub_info
->gr_table
[node
- 1].limit
);
584 return __va(base
<< UV_GAM_RANGE_SHFT
| offset
);
587 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
588 static inline int uv_apicid_to_pnode(int apicid
)
590 int pnode
= apicid
>> uv_hub_info
->apic_pnode_shift
;
591 unsigned short *s2pn
= uv_hub_info
->socket_to_pnode
;
593 return s2pn
? s2pn
[pnode
- uv_hub_info
->min_socket
] : pnode
;
596 /* Convert an apicid to the socket number on the blade */
597 static inline int uv_apicid_to_socket(int apicid
)
600 return (apicid
>> (uv_hub_info
->apic_pnode_shift
- 1)) & 1;
606 * Access global MMRs using the low memory MMR32 space. This region supports
607 * faster MMR access but not all MMRs are accessible in this space.
609 static inline unsigned long *uv_global_mmr32_address(int pnode
, unsigned long offset
)
611 return __va(UV_GLOBAL_MMR32_BASE
|
612 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
615 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
, unsigned long val
)
617 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
620 static inline unsigned long uv_read_global_mmr32(int pnode
, unsigned long offset
)
622 return readq(uv_global_mmr32_address(pnode
, offset
));
626 * Access Global MMR space using the MMR space located at the top of physical
629 static inline volatile void __iomem
*uv_global_mmr64_address(int pnode
, unsigned long offset
)
631 return __va(UV_GLOBAL_MMR64_BASE
|
632 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
635 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
, unsigned long val
)
637 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
640 static inline unsigned long uv_read_global_mmr64(int pnode
, unsigned long offset
)
642 return readq(uv_global_mmr64_address(pnode
, offset
));
645 static inline void uv_write_global_mmr8(int pnode
, unsigned long offset
, unsigned char val
)
647 writeb(val
, uv_global_mmr64_address(pnode
, offset
));
650 static inline unsigned char uv_read_global_mmr8(int pnode
, unsigned long offset
)
652 return readb(uv_global_mmr64_address(pnode
, offset
));
656 * Access hub local MMRs. Faster than using global space but only local MMRs
659 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
661 return __va(UV_LOCAL_MMR_BASE
| offset
);
664 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
666 return readq(uv_local_mmr_address(offset
));
669 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
671 writeq(val
, uv_local_mmr_address(offset
));
674 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
676 return readb(uv_local_mmr_address(offset
));
679 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
681 writeb(val
, uv_local_mmr_address(offset
));
684 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
685 static inline int uv_blade_processor_id(void)
687 return uv_cpu_info
->blade_cpu_id
;
690 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
691 static inline int uv_cpu_blade_processor_id(int cpu
)
693 return uv_cpu_info_per(cpu
)->blade_cpu_id
;
695 #define _uv_cpu_blade_processor_id 1 /* indicate function available */
697 /* Blade number to Node number (UV1..UV4 is 1:1) */
698 static inline int uv_blade_to_node(int blade
)
703 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
704 static inline int uv_numa_blade_id(void)
706 return uv_hub_info
->numa_blade_id
;
710 * Convert linux node number to the UV blade number.
711 * .. Currently for UV1 thru UV4 the node and the blade are identical.
712 * .. If this changes then you MUST check references to this function!
714 static inline int uv_node_to_blade_id(int nid
)
719 /* Convert a cpu number to the the UV blade number */
720 static inline int uv_cpu_to_blade_id(int cpu
)
722 return uv_node_to_blade_id(cpu_to_node(cpu
));
725 /* Convert a blade id to the PNODE of the blade */
726 static inline int uv_blade_to_pnode(int bid
)
728 return uv_hub_info_list(uv_blade_to_node(bid
))->pnode
;
731 /* Nid of memory node on blade. -1 if no blade-local memory */
732 static inline int uv_blade_to_memory_nid(int bid
)
734 return uv_hub_info_list(uv_blade_to_node(bid
))->memory_nid
;
737 /* Determine the number of possible cpus on a blade */
738 static inline int uv_blade_nr_possible_cpus(int bid
)
740 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_possible_cpus
;
743 /* Determine the number of online cpus on a blade */
744 static inline int uv_blade_nr_online_cpus(int bid
)
746 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_online_cpus
;
749 /* Convert a cpu id to the PNODE of the blade containing the cpu */
750 static inline int uv_cpu_to_pnode(int cpu
)
752 return uv_cpu_hub_info(cpu
)->pnode
;
755 /* Convert a linux node number to the PNODE of the blade */
756 static inline int uv_node_to_pnode(int nid
)
758 return uv_hub_info_list(nid
)->pnode
;
761 /* Maximum possible number of blades */
762 extern short uv_possible_blades
;
763 static inline int uv_num_possible_blades(void)
765 return uv_possible_blades
;
768 /* Per Hub NMI support */
769 extern void uv_nmi_setup(void);
770 extern void uv_nmi_setup_hubless(void);
772 /* BIOS/Kernel flags exchange MMR */
773 #define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5
774 #define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS
775 #define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2
777 /* TSC sync valid, set by BIOS */
778 #define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR
779 #define UVH_TSC_SYNC_SHIFT 10
780 #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */
781 #define UVH_TSC_SYNC_MASK 3 /* 0011 */
782 #define UVH_TSC_SYNC_VALID 3 /* 0011 */
783 #define UVH_TSC_SYNC_INVALID 2 /* 0010 */
785 /* BMC sets a bit this MMR non-zero before sending an NMI */
786 #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR
787 #define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS
788 #define UVH_NMI_MMR_SHIFT 63
789 #define UVH_NMI_MMR_TYPE "SCRATCH5"
791 /* Newer SMM NMI handler, not present in all systems */
792 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
793 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
794 #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
795 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
797 /* Non-zero indicates newer SMM NMI handler present */
798 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
800 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
801 #define UVH_NMI_MMRX_REQ UVH_BIOS_KERNEL_MMR_ALIAS_2
802 #define UVH_NMI_MMRX_REQ_SHIFT 62
804 struct uv_hub_nmi_s
{
805 raw_spinlock_t nmi_lock
;
806 atomic_t in_nmi
; /* flag this node in UV NMI IRQ */
807 atomic_t cpu_owner
; /* last locker of this struct */
808 atomic_t read_mmr_count
; /* count of MMR reads */
809 atomic_t nmi_count
; /* count of true UV NMIs */
810 unsigned long nmi_value
; /* last value read from NMI MMR */
811 bool hub_present
; /* false means UV hubless system */
812 bool pch_owner
; /* indicates this hub owns PCH */
815 struct uv_cpu_nmi_s
{
816 struct uv_hub_nmi_s
*hub
;
823 DECLARE_PER_CPU(struct uv_cpu_nmi_s
, uv_cpu_nmi
);
825 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
826 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
827 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
829 /* uv_cpu_nmi_states */
830 #define UV_NMI_STATE_OUT 0
831 #define UV_NMI_STATE_IN 1
832 #define UV_NMI_STATE_DUMP 2
833 #define UV_NMI_STATE_DUMP_DONE 3
835 /* Update SCIR state */
836 static inline void uv_set_scir_bits(unsigned char value
)
838 if (uv_scir_info
->state
!= value
) {
839 uv_scir_info
->state
= value
;
840 uv_write_local_mmr8(uv_scir_info
->offset
, value
);
844 static inline unsigned long uv_scir_offset(int apicid
)
846 return SCIR_LOCAL_MMR_BASE
| (apicid
& 0x3f);
849 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
851 if (uv_cpu_scir_info(cpu
)->state
!= value
) {
852 uv_write_global_mmr8(uv_cpu_to_pnode(cpu
),
853 uv_cpu_scir_info(cpu
)->offset
, value
);
854 uv_cpu_scir_info(cpu
)->state
= value
;
858 extern unsigned int uv_apicid_hibits
;
859 static unsigned long uv_hub_ipi_value(int apicid
, int vector
, int mode
)
861 apicid
|= uv_apicid_hibits
;
862 return (1UL << UVH_IPI_INT_SEND_SHFT
) |
863 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
864 (mode
<< UVH_IPI_INT_DELIVERY_MODE_SHFT
) |
865 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
868 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
871 unsigned long dmode
= dest_Fixed
;
873 if (vector
== NMI_VECTOR
)
876 val
= uv_hub_ipi_value(apicid
, vector
, dmode
);
877 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
881 * Get the minimum revision number of the hub chips within the partition.
882 * (See UVx_HUB_REVISION_BASE above for specific values.)
884 static inline int uv_get_min_hub_revision_id(void)
886 return uv_hub_info
->hub_revision
;
889 #endif /* CONFIG_X86_64 */
890 #endif /* _ASM_X86_UV_UV_HUB_H */