Linux 5.7.6
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
bloba51df516b87bf1e174e2170b2c642406d2f28633
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static nokprobe_inline int
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
47 return 0;
51 * Prefetch quirks:
53 * 32-bit mode:
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it.
58 * 64-bit mode:
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
63 * Opcode checker based on code by Richard Brunner.
65 static inline int
66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 unsigned char opcode, int *prefetch)
69 unsigned char instr_hi = opcode & 0xf0;
70 unsigned char instr_lo = opcode & 0x0f;
72 switch (instr_hi) {
73 case 0x20:
74 case 0x30:
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
81 return ((instr_lo & 7) == 0x6);
82 #ifdef CONFIG_X86_64
83 case 0x40:
85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 * Need to figure out under what instruction mode the
87 * instruction was issued. Could check the LDT for lm,
88 * but for now it's good enough to assume that long
89 * mode only uses well known segments or kernel.
91 return (!user_mode(regs) || user_64bit_mode(regs));
92 #endif
93 case 0x60:
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo & 0xC) == 0x4;
96 case 0xF0:
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo || (instr_lo>>1) == 1;
99 case 0x00:
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (probe_kernel_address(instr, opcode))
102 return 0;
104 *prefetch = (instr_lo == 0xF) &&
105 (opcode == 0x0D || opcode == 0x18);
106 return 0;
107 default:
108 return 0;
112 static int
113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
115 unsigned char *max_instr;
116 unsigned char *instr;
117 int prefetch = 0;
120 * If it was a exec (instruction fetch) fault on NX page, then
121 * do not ignore the fault:
123 if (error_code & X86_PF_INSTR)
124 return 0;
126 instr = (void *)convert_ip_to_linear(current, regs);
127 max_instr = instr + 15;
129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
130 return 0;
132 while (instr < max_instr) {
133 unsigned char opcode;
135 if (probe_kernel_address(instr, opcode))
136 break;
138 instr++;
140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
141 break;
143 return prefetch;
146 DEFINE_SPINLOCK(pgd_lock);
147 LIST_HEAD(pgd_list);
149 #ifdef CONFIG_X86_32
150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
152 unsigned index = pgd_index(address);
153 pgd_t *pgd_k;
154 p4d_t *p4d, *p4d_k;
155 pud_t *pud, *pud_k;
156 pmd_t *pmd, *pmd_k;
158 pgd += index;
159 pgd_k = init_mm.pgd + index;
161 if (!pgd_present(*pgd_k))
162 return NULL;
165 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 * and redundant with the set_pmd() on non-PAE. As would
167 * set_p4d/set_pud.
169 p4d = p4d_offset(pgd, address);
170 p4d_k = p4d_offset(pgd_k, address);
171 if (!p4d_present(*p4d_k))
172 return NULL;
174 pud = pud_offset(p4d, address);
175 pud_k = pud_offset(p4d_k, address);
176 if (!pud_present(*pud_k))
177 return NULL;
179 pmd = pmd_offset(pud, address);
180 pmd_k = pmd_offset(pud_k, address);
182 if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 set_pmd(pmd, *pmd_k);
185 if (!pmd_present(*pmd_k))
186 return NULL;
187 else
188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
190 return pmd_k;
193 static void vmalloc_sync(void)
195 unsigned long address;
197 if (SHARED_KERNEL_PMD)
198 return;
200 for (address = VMALLOC_START & PMD_MASK;
201 address >= TASK_SIZE_MAX && address < VMALLOC_END;
202 address += PMD_SIZE) {
203 struct page *page;
205 spin_lock(&pgd_lock);
206 list_for_each_entry(page, &pgd_list, lru) {
207 spinlock_t *pgt_lock;
209 /* the pgt_lock only for Xen */
210 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
212 spin_lock(pgt_lock);
213 vmalloc_sync_one(page_address(page), address);
214 spin_unlock(pgt_lock);
216 spin_unlock(&pgd_lock);
220 void vmalloc_sync_mappings(void)
222 vmalloc_sync();
225 void vmalloc_sync_unmappings(void)
227 vmalloc_sync();
231 * 32-bit:
233 * Handle a fault on the vmalloc or module mapping area
235 static noinline int vmalloc_fault(unsigned long address)
237 unsigned long pgd_paddr;
238 pmd_t *pmd_k;
239 pte_t *pte_k;
241 /* Make sure we are in vmalloc area: */
242 if (!(address >= VMALLOC_START && address < VMALLOC_END))
243 return -1;
246 * Synchronize this task's top level page-table
247 * with the 'reference' page table.
249 * Do _not_ use "current" here. We might be inside
250 * an interrupt in the middle of a task switch..
252 pgd_paddr = read_cr3_pa();
253 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
254 if (!pmd_k)
255 return -1;
257 if (pmd_large(*pmd_k))
258 return 0;
260 pte_k = pte_offset_kernel(pmd_k, address);
261 if (!pte_present(*pte_k))
262 return -1;
264 return 0;
266 NOKPROBE_SYMBOL(vmalloc_fault);
269 * Did it hit the DOS screen memory VA from vm86 mode?
271 static inline void
272 check_v8086_mode(struct pt_regs *regs, unsigned long address,
273 struct task_struct *tsk)
275 #ifdef CONFIG_VM86
276 unsigned long bit;
278 if (!v8086_mode(regs) || !tsk->thread.vm86)
279 return;
281 bit = (address - 0xA0000) >> PAGE_SHIFT;
282 if (bit < 32)
283 tsk->thread.vm86->screen_bitmap |= 1 << bit;
284 #endif
287 static bool low_pfn(unsigned long pfn)
289 return pfn < max_low_pfn;
292 static void dump_pagetable(unsigned long address)
294 pgd_t *base = __va(read_cr3_pa());
295 pgd_t *pgd = &base[pgd_index(address)];
296 p4d_t *p4d;
297 pud_t *pud;
298 pmd_t *pmd;
299 pte_t *pte;
301 #ifdef CONFIG_X86_PAE
302 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
303 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
304 goto out;
305 #define pr_pde pr_cont
306 #else
307 #define pr_pde pr_info
308 #endif
309 p4d = p4d_offset(pgd, address);
310 pud = pud_offset(p4d, address);
311 pmd = pmd_offset(pud, address);
312 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
313 #undef pr_pde
316 * We must not directly access the pte in the highpte
317 * case if the page table is located in highmem.
318 * And let's rather not kmap-atomic the pte, just in case
319 * it's allocated already:
321 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
322 goto out;
324 pte = pte_offset_kernel(pmd, address);
325 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
326 out:
327 pr_cont("\n");
330 #else /* CONFIG_X86_64: */
332 void vmalloc_sync_mappings(void)
335 * 64-bit mappings might allocate new p4d/pud pages
336 * that need to be propagated to all tasks' PGDs.
338 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
341 void vmalloc_sync_unmappings(void)
344 * Unmappings never allocate or free p4d/pud pages.
345 * No work is required here.
350 * 64-bit:
352 * Handle a fault on the vmalloc area
354 static noinline int vmalloc_fault(unsigned long address)
356 pgd_t *pgd, *pgd_k;
357 p4d_t *p4d, *p4d_k;
358 pud_t *pud;
359 pmd_t *pmd;
360 pte_t *pte;
362 /* Make sure we are in vmalloc area: */
363 if (!(address >= VMALLOC_START && address < VMALLOC_END))
364 return -1;
367 * Copy kernel mappings over when needed. This can also
368 * happen within a race in page table update. In the later
369 * case just flush:
371 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
372 pgd_k = pgd_offset_k(address);
373 if (pgd_none(*pgd_k))
374 return -1;
376 if (pgtable_l5_enabled()) {
377 if (pgd_none(*pgd)) {
378 set_pgd(pgd, *pgd_k);
379 arch_flush_lazy_mmu_mode();
380 } else {
381 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
385 /* With 4-level paging, copying happens on the p4d level. */
386 p4d = p4d_offset(pgd, address);
387 p4d_k = p4d_offset(pgd_k, address);
388 if (p4d_none(*p4d_k))
389 return -1;
391 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
392 set_p4d(p4d, *p4d_k);
393 arch_flush_lazy_mmu_mode();
394 } else {
395 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
398 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
400 pud = pud_offset(p4d, address);
401 if (pud_none(*pud))
402 return -1;
404 if (pud_large(*pud))
405 return 0;
407 pmd = pmd_offset(pud, address);
408 if (pmd_none(*pmd))
409 return -1;
411 if (pmd_large(*pmd))
412 return 0;
414 pte = pte_offset_kernel(pmd, address);
415 if (!pte_present(*pte))
416 return -1;
418 return 0;
420 NOKPROBE_SYMBOL(vmalloc_fault);
422 #ifdef CONFIG_CPU_SUP_AMD
423 static const char errata93_warning[] =
424 KERN_ERR
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
429 #endif
432 * No vm86 mode in 64-bit mode:
434 static inline void
435 check_v8086_mode(struct pt_regs *regs, unsigned long address,
436 struct task_struct *tsk)
440 static int bad_address(void *p)
442 unsigned long dummy;
444 return probe_kernel_address((unsigned long *)p, dummy);
447 static void dump_pagetable(unsigned long address)
449 pgd_t *base = __va(read_cr3_pa());
450 pgd_t *pgd = base + pgd_index(address);
451 p4d_t *p4d;
452 pud_t *pud;
453 pmd_t *pmd;
454 pte_t *pte;
456 if (bad_address(pgd))
457 goto bad;
459 pr_info("PGD %lx ", pgd_val(*pgd));
461 if (!pgd_present(*pgd))
462 goto out;
464 p4d = p4d_offset(pgd, address);
465 if (bad_address(p4d))
466 goto bad;
468 pr_cont("P4D %lx ", p4d_val(*p4d));
469 if (!p4d_present(*p4d) || p4d_large(*p4d))
470 goto out;
472 pud = pud_offset(p4d, address);
473 if (bad_address(pud))
474 goto bad;
476 pr_cont("PUD %lx ", pud_val(*pud));
477 if (!pud_present(*pud) || pud_large(*pud))
478 goto out;
480 pmd = pmd_offset(pud, address);
481 if (bad_address(pmd))
482 goto bad;
484 pr_cont("PMD %lx ", pmd_val(*pmd));
485 if (!pmd_present(*pmd) || pmd_large(*pmd))
486 goto out;
488 pte = pte_offset_kernel(pmd, address);
489 if (bad_address(pte))
490 goto bad;
492 pr_cont("PTE %lx", pte_val(*pte));
493 out:
494 pr_cont("\n");
495 return;
496 bad:
497 pr_info("BAD\n");
500 #endif /* CONFIG_X86_64 */
503 * Workaround for K8 erratum #93 & buggy BIOS.
505 * BIOS SMM functions are required to use a specific workaround
506 * to avoid corruption of the 64bit RIP register on C stepping K8.
508 * A lot of BIOS that didn't get tested properly miss this.
510 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
511 * Try to work around it here.
513 * Note we only handle faults in kernel here.
514 * Does nothing on 32-bit.
516 static int is_errata93(struct pt_regs *regs, unsigned long address)
518 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
519 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
520 || boot_cpu_data.x86 != 0xf)
521 return 0;
523 if (address != regs->ip)
524 return 0;
526 if ((address >> 32) != 0)
527 return 0;
529 address |= 0xffffffffUL << 32;
530 if ((address >= (u64)_stext && address <= (u64)_etext) ||
531 (address >= MODULES_VADDR && address <= MODULES_END)) {
532 printk_once(errata93_warning);
533 regs->ip = address;
534 return 1;
536 #endif
537 return 0;
541 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
542 * to illegal addresses >4GB.
544 * We catch this in the page fault handler because these addresses
545 * are not reachable. Just detect this case and return. Any code
546 * segment in LDT is compatibility mode.
548 static int is_errata100(struct pt_regs *regs, unsigned long address)
550 #ifdef CONFIG_X86_64
551 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
552 return 1;
553 #endif
554 return 0;
557 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
559 #ifdef CONFIG_X86_F00F_BUG
560 unsigned long nr;
563 * Pentium F0 0F C7 C8 bug workaround:
565 if (boot_cpu_has_bug(X86_BUG_F00F)) {
566 nr = (address - idt_descr.address) >> 3;
568 if (nr == 6) {
569 do_invalid_op(regs, 0);
570 return 1;
573 #endif
574 return 0;
577 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
579 u32 offset = (index >> 3) * sizeof(struct desc_struct);
580 unsigned long addr;
581 struct ldttss_desc desc;
583 if (index == 0) {
584 pr_alert("%s: NULL\n", name);
585 return;
588 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
589 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
590 return;
593 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
594 sizeof(struct ldttss_desc))) {
595 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
596 name, index);
597 return;
600 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
601 #ifdef CONFIG_X86_64
602 addr |= ((u64)desc.base3 << 32);
603 #endif
604 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
605 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
608 static void
609 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
611 if (!oops_may_print())
612 return;
614 if (error_code & X86_PF_INSTR) {
615 unsigned int level;
616 pgd_t *pgd;
617 pte_t *pte;
619 pgd = __va(read_cr3_pa());
620 pgd += pgd_index(address);
622 pte = lookup_address_in_pgd(pgd, address, &level);
624 if (pte && pte_present(*pte) && !pte_exec(*pte))
625 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
626 from_kuid(&init_user_ns, current_uid()));
627 if (pte && pte_present(*pte) && pte_exec(*pte) &&
628 (pgd_flags(*pgd) & _PAGE_USER) &&
629 (__read_cr4() & X86_CR4_SMEP))
630 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
631 from_kuid(&init_user_ns, current_uid()));
634 if (address < PAGE_SIZE && !user_mode(regs))
635 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
636 (void *)address);
637 else
638 pr_alert("BUG: unable to handle page fault for address: %px\n",
639 (void *)address);
641 pr_alert("#PF: %s %s in %s mode\n",
642 (error_code & X86_PF_USER) ? "user" : "supervisor",
643 (error_code & X86_PF_INSTR) ? "instruction fetch" :
644 (error_code & X86_PF_WRITE) ? "write access" :
645 "read access",
646 user_mode(regs) ? "user" : "kernel");
647 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
648 !(error_code & X86_PF_PROT) ? "not-present page" :
649 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
650 (error_code & X86_PF_PK) ? "protection keys violation" :
651 "permissions violation");
653 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
654 struct desc_ptr idt, gdt;
655 u16 ldtr, tr;
658 * This can happen for quite a few reasons. The more obvious
659 * ones are faults accessing the GDT, or LDT. Perhaps
660 * surprisingly, if the CPU tries to deliver a benign or
661 * contributory exception from user code and gets a page fault
662 * during delivery, the page fault can be delivered as though
663 * it originated directly from user code. This could happen
664 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
665 * kernel or IST stack.
667 store_idt(&idt);
669 /* Usable even on Xen PV -- it's just slow. */
670 native_store_gdt(&gdt);
672 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
673 idt.address, idt.size, gdt.address, gdt.size);
675 store_ldt(ldtr);
676 show_ldttss(&gdt, "LDTR", ldtr);
678 store_tr(tr);
679 show_ldttss(&gdt, "TR", tr);
682 dump_pagetable(address);
685 static noinline void
686 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
687 unsigned long address)
689 struct task_struct *tsk;
690 unsigned long flags;
691 int sig;
693 flags = oops_begin();
694 tsk = current;
695 sig = SIGKILL;
697 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
698 tsk->comm, address);
699 dump_pagetable(address);
701 if (__die("Bad pagetable", regs, error_code))
702 sig = 0;
704 oops_end(flags, regs, sig);
707 static void set_signal_archinfo(unsigned long address,
708 unsigned long error_code)
710 struct task_struct *tsk = current;
713 * To avoid leaking information about the kernel page
714 * table layout, pretend that user-mode accesses to
715 * kernel addresses are always protection faults.
717 * NB: This means that failed vsyscalls with vsyscall=none
718 * will have the PROT bit. This doesn't leak any
719 * information and does not appear to cause any problems.
721 if (address >= TASK_SIZE_MAX)
722 error_code |= X86_PF_PROT;
724 tsk->thread.trap_nr = X86_TRAP_PF;
725 tsk->thread.error_code = error_code | X86_PF_USER;
726 tsk->thread.cr2 = address;
729 static noinline void
730 no_context(struct pt_regs *regs, unsigned long error_code,
731 unsigned long address, int signal, int si_code)
733 struct task_struct *tsk = current;
734 unsigned long flags;
735 int sig;
737 if (user_mode(regs)) {
739 * This is an implicit supervisor-mode access from user
740 * mode. Bypass all the kernel-mode recovery code and just
741 * OOPS.
743 goto oops;
746 /* Are we prepared to handle this kernel fault? */
747 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
749 * Any interrupt that takes a fault gets the fixup. This makes
750 * the below recursive fault logic only apply to a faults from
751 * task context.
753 if (in_interrupt())
754 return;
757 * Per the above we're !in_interrupt(), aka. task context.
759 * In this case we need to make sure we're not recursively
760 * faulting through the emulate_vsyscall() logic.
762 if (current->thread.sig_on_uaccess_err && signal) {
763 set_signal_archinfo(address, error_code);
765 /* XXX: hwpoison faults will set the wrong code. */
766 force_sig_fault(signal, si_code, (void __user *)address);
770 * Barring that, we can do the fixup and be happy.
772 return;
775 #ifdef CONFIG_VMAP_STACK
777 * Stack overflow? During boot, we can fault near the initial
778 * stack in the direct map, but that's not an overflow -- check
779 * that we're in vmalloc space to avoid this.
781 if (is_vmalloc_addr((void *)address) &&
782 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
783 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
784 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
786 * We're likely to be running with very little stack space
787 * left. It's plausible that we'd hit this condition but
788 * double-fault even before we get this far, in which case
789 * we're fine: the double-fault handler will deal with it.
791 * We don't want to make it all the way into the oops code
792 * and then double-fault, though, because we're likely to
793 * break the console driver and lose most of the stack dump.
795 asm volatile ("movq %[stack], %%rsp\n\t"
796 "call handle_stack_overflow\n\t"
797 "1: jmp 1b"
798 : ASM_CALL_CONSTRAINT
799 : "D" ("kernel stack overflow (page fault)"),
800 "S" (regs), "d" (address),
801 [stack] "rm" (stack));
802 unreachable();
804 #endif
807 * 32-bit:
809 * Valid to do another page fault here, because if this fault
810 * had been triggered by is_prefetch fixup_exception would have
811 * handled it.
813 * 64-bit:
815 * Hall of shame of CPU/BIOS bugs.
817 if (is_prefetch(regs, error_code, address))
818 return;
820 if (is_errata93(regs, address))
821 return;
824 * Buggy firmware could access regions which might page fault, try to
825 * recover from such faults.
827 if (IS_ENABLED(CONFIG_EFI))
828 efi_recover_from_page_fault(address);
830 oops:
832 * Oops. The kernel tried to access some bad page. We'll have to
833 * terminate things with extreme prejudice:
835 flags = oops_begin();
837 show_fault_oops(regs, error_code, address);
839 if (task_stack_end_corrupted(tsk))
840 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
842 sig = SIGKILL;
843 if (__die("Oops", regs, error_code))
844 sig = 0;
846 /* Executive summary in case the body of the oops scrolled away */
847 printk(KERN_DEFAULT "CR2: %016lx\n", address);
849 oops_end(flags, regs, sig);
853 * Print out info about fatal segfaults, if the show_unhandled_signals
854 * sysctl is set:
856 static inline void
857 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
858 unsigned long address, struct task_struct *tsk)
860 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
862 if (!unhandled_signal(tsk, SIGSEGV))
863 return;
865 if (!printk_ratelimit())
866 return;
868 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
869 loglvl, tsk->comm, task_pid_nr(tsk), address,
870 (void *)regs->ip, (void *)regs->sp, error_code);
872 print_vma_addr(KERN_CONT " in ", regs->ip);
874 printk(KERN_CONT "\n");
876 show_opcodes(regs, loglvl);
880 * The (legacy) vsyscall page is the long page in the kernel portion
881 * of the address space that has user-accessible permissions.
883 static bool is_vsyscall_vaddr(unsigned long vaddr)
885 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
888 static void
889 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
890 unsigned long address, u32 pkey, int si_code)
892 struct task_struct *tsk = current;
894 /* User mode accesses just cause a SIGSEGV */
895 if (user_mode(regs) && (error_code & X86_PF_USER)) {
897 * It's possible to have interrupts off here:
899 local_irq_enable();
902 * Valid to do another page fault here because this one came
903 * from user space:
905 if (is_prefetch(regs, error_code, address))
906 return;
908 if (is_errata100(regs, address))
909 return;
912 * To avoid leaking information about the kernel page table
913 * layout, pretend that user-mode accesses to kernel addresses
914 * are always protection faults.
916 if (address >= TASK_SIZE_MAX)
917 error_code |= X86_PF_PROT;
919 if (likely(show_unhandled_signals))
920 show_signal_msg(regs, error_code, address, tsk);
922 set_signal_archinfo(address, error_code);
924 if (si_code == SEGV_PKUERR)
925 force_sig_pkuerr((void __user *)address, pkey);
927 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
929 return;
932 if (is_f00f_bug(regs, address))
933 return;
935 no_context(regs, error_code, address, SIGSEGV, si_code);
938 static noinline void
939 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
940 unsigned long address)
942 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
945 static void
946 __bad_area(struct pt_regs *regs, unsigned long error_code,
947 unsigned long address, u32 pkey, int si_code)
949 struct mm_struct *mm = current->mm;
951 * Something tried to access memory that isn't in our memory map..
952 * Fix it, but check if it's kernel or user first..
954 up_read(&mm->mmap_sem);
956 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
959 static noinline void
960 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
962 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
965 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
966 struct vm_area_struct *vma)
968 /* This code is always called on the current mm */
969 bool foreign = false;
971 if (!boot_cpu_has(X86_FEATURE_OSPKE))
972 return false;
973 if (error_code & X86_PF_PK)
974 return true;
975 /* this checks permission keys on the VMA: */
976 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
977 (error_code & X86_PF_INSTR), foreign))
978 return true;
979 return false;
982 static noinline void
983 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
984 unsigned long address, struct vm_area_struct *vma)
987 * This OSPKE check is not strictly necessary at runtime.
988 * But, doing it this way allows compiler optimizations
989 * if pkeys are compiled out.
991 if (bad_area_access_from_pkeys(error_code, vma)) {
993 * A protection key fault means that the PKRU value did not allow
994 * access to some PTE. Userspace can figure out what PKRU was
995 * from the XSAVE state. This function captures the pkey from
996 * the vma and passes it to userspace so userspace can discover
997 * which protection key was set on the PTE.
999 * If we get here, we know that the hardware signaled a X86_PF_PK
1000 * fault and that there was a VMA once we got in the fault
1001 * handler. It does *not* guarantee that the VMA we find here
1002 * was the one that we faulted on.
1004 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
1005 * 2. T1 : set PKRU to deny access to pkey=4, touches page
1006 * 3. T1 : faults...
1007 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
1008 * 5. T1 : enters fault handler, takes mmap_sem, etc...
1009 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
1010 * faulted on a pte with its pkey=4.
1012 u32 pkey = vma_pkey(vma);
1014 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
1015 } else {
1016 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
1020 static void
1021 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022 vm_fault_t fault)
1024 /* Kernel mode? Handle exceptions or die: */
1025 if (!(error_code & X86_PF_USER)) {
1026 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1027 return;
1030 /* User-space => ok to do another page fault: */
1031 if (is_prefetch(regs, error_code, address))
1032 return;
1034 set_signal_archinfo(address, error_code);
1036 #ifdef CONFIG_MEMORY_FAILURE
1037 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1038 struct task_struct *tsk = current;
1039 unsigned lsb = 0;
1041 pr_err(
1042 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1043 tsk->comm, tsk->pid, address);
1044 if (fault & VM_FAULT_HWPOISON_LARGE)
1045 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1046 if (fault & VM_FAULT_HWPOISON)
1047 lsb = PAGE_SHIFT;
1048 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1049 return;
1051 #endif
1052 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1055 static noinline void
1056 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1057 unsigned long address, vm_fault_t fault)
1059 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1060 no_context(regs, error_code, address, 0, 0);
1061 return;
1064 if (fault & VM_FAULT_OOM) {
1065 /* Kernel mode? Handle exceptions or die: */
1066 if (!(error_code & X86_PF_USER)) {
1067 no_context(regs, error_code, address,
1068 SIGSEGV, SEGV_MAPERR);
1069 return;
1073 * We ran out of memory, call the OOM killer, and return the
1074 * userspace (which will retry the fault, or kill us if we got
1075 * oom-killed):
1077 pagefault_out_of_memory();
1078 } else {
1079 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1080 VM_FAULT_HWPOISON_LARGE))
1081 do_sigbus(regs, error_code, address, fault);
1082 else if (fault & VM_FAULT_SIGSEGV)
1083 bad_area_nosemaphore(regs, error_code, address);
1084 else
1085 BUG();
1089 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1091 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1092 return 0;
1094 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1095 return 0;
1097 return 1;
1101 * Handle a spurious fault caused by a stale TLB entry.
1103 * This allows us to lazily refresh the TLB when increasing the
1104 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1105 * eagerly is very expensive since that implies doing a full
1106 * cross-processor TLB flush, even if no stale TLB entries exist
1107 * on other processors.
1109 * Spurious faults may only occur if the TLB contains an entry with
1110 * fewer permission than the page table entry. Non-present (P = 0)
1111 * and reserved bit (R = 1) faults are never spurious.
1113 * There are no security implications to leaving a stale TLB when
1114 * increasing the permissions on a page.
1116 * Returns non-zero if a spurious fault was handled, zero otherwise.
1118 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1119 * (Optional Invalidation).
1121 static noinline int
1122 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1124 pgd_t *pgd;
1125 p4d_t *p4d;
1126 pud_t *pud;
1127 pmd_t *pmd;
1128 pte_t *pte;
1129 int ret;
1132 * Only writes to RO or instruction fetches from NX may cause
1133 * spurious faults.
1135 * These could be from user or supervisor accesses but the TLB
1136 * is only lazily flushed after a kernel mapping protection
1137 * change, so user accesses are not expected to cause spurious
1138 * faults.
1140 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1141 error_code != (X86_PF_INSTR | X86_PF_PROT))
1142 return 0;
1144 pgd = init_mm.pgd + pgd_index(address);
1145 if (!pgd_present(*pgd))
1146 return 0;
1148 p4d = p4d_offset(pgd, address);
1149 if (!p4d_present(*p4d))
1150 return 0;
1152 if (p4d_large(*p4d))
1153 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1155 pud = pud_offset(p4d, address);
1156 if (!pud_present(*pud))
1157 return 0;
1159 if (pud_large(*pud))
1160 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1162 pmd = pmd_offset(pud, address);
1163 if (!pmd_present(*pmd))
1164 return 0;
1166 if (pmd_large(*pmd))
1167 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1169 pte = pte_offset_kernel(pmd, address);
1170 if (!pte_present(*pte))
1171 return 0;
1173 ret = spurious_kernel_fault_check(error_code, pte);
1174 if (!ret)
1175 return 0;
1178 * Make sure we have permissions in PMD.
1179 * If not, then there's a bug in the page tables:
1181 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1182 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1184 return ret;
1186 NOKPROBE_SYMBOL(spurious_kernel_fault);
1188 int show_unhandled_signals = 1;
1190 static inline int
1191 access_error(unsigned long error_code, struct vm_area_struct *vma)
1193 /* This is only called for the current mm, so: */
1194 bool foreign = false;
1197 * Read or write was blocked by protection keys. This is
1198 * always an unconditional error and can never result in
1199 * a follow-up action to resolve the fault, like a COW.
1201 if (error_code & X86_PF_PK)
1202 return 1;
1205 * Make sure to check the VMA so that we do not perform
1206 * faults just to hit a X86_PF_PK as soon as we fill in a
1207 * page.
1209 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1210 (error_code & X86_PF_INSTR), foreign))
1211 return 1;
1213 if (error_code & X86_PF_WRITE) {
1214 /* write, present and write, not present: */
1215 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1216 return 1;
1217 return 0;
1220 /* read, present: */
1221 if (unlikely(error_code & X86_PF_PROT))
1222 return 1;
1224 /* read, not present: */
1225 if (unlikely(!vma_is_accessible(vma)))
1226 return 1;
1228 return 0;
1231 static int fault_in_kernel_space(unsigned long address)
1234 * On 64-bit systems, the vsyscall page is at an address above
1235 * TASK_SIZE_MAX, but is not considered part of the kernel
1236 * address space.
1238 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1239 return false;
1241 return address >= TASK_SIZE_MAX;
1245 * Called for all faults where 'address' is part of the kernel address
1246 * space. Might get called for faults that originate from *code* that
1247 * ran in userspace or the kernel.
1249 static void
1250 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1251 unsigned long address)
1254 * Protection keys exceptions only happen on user pages. We
1255 * have no user pages in the kernel portion of the address
1256 * space, so do not expect them here.
1258 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1261 * We can fault-in kernel-space virtual memory on-demand. The
1262 * 'reference' page table is init_mm.pgd.
1264 * NOTE! We MUST NOT take any locks for this case. We may
1265 * be in an interrupt or a critical region, and should
1266 * only copy the information from the master page table,
1267 * nothing more.
1269 * Before doing this on-demand faulting, ensure that the
1270 * fault is not any of the following:
1271 * 1. A fault on a PTE with a reserved bit set.
1272 * 2. A fault caused by a user-mode access. (Do not demand-
1273 * fault kernel memory due to user-mode accesses).
1274 * 3. A fault caused by a page-level protection violation.
1275 * (A demand fault would be on a non-present page which
1276 * would have X86_PF_PROT==0).
1278 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1279 if (vmalloc_fault(address) >= 0)
1280 return;
1283 /* Was the fault spurious, caused by lazy TLB invalidation? */
1284 if (spurious_kernel_fault(hw_error_code, address))
1285 return;
1287 /* kprobes don't want to hook the spurious faults: */
1288 if (kprobe_page_fault(regs, X86_TRAP_PF))
1289 return;
1292 * Note, despite being a "bad area", there are quite a few
1293 * acceptable reasons to get here, such as erratum fixups
1294 * and handling kernel code that can fault, like get_user().
1296 * Don't take the mm semaphore here. If we fixup a prefetch
1297 * fault we could otherwise deadlock:
1299 bad_area_nosemaphore(regs, hw_error_code, address);
1301 NOKPROBE_SYMBOL(do_kern_addr_fault);
1303 /* Handle faults in the user portion of the address space */
1304 static inline
1305 void do_user_addr_fault(struct pt_regs *regs,
1306 unsigned long hw_error_code,
1307 unsigned long address)
1309 struct vm_area_struct *vma;
1310 struct task_struct *tsk;
1311 struct mm_struct *mm;
1312 vm_fault_t fault, major = 0;
1313 unsigned int flags = FAULT_FLAG_DEFAULT;
1315 tsk = current;
1316 mm = tsk->mm;
1318 /* kprobes don't want to hook the spurious faults: */
1319 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1320 return;
1323 * Reserved bits are never expected to be set on
1324 * entries in the user portion of the page tables.
1326 if (unlikely(hw_error_code & X86_PF_RSVD))
1327 pgtable_bad(regs, hw_error_code, address);
1330 * If SMAP is on, check for invalid kernel (supervisor) access to user
1331 * pages in the user address space. The odd case here is WRUSS,
1332 * which, according to the preliminary documentation, does not respect
1333 * SMAP and will have the USER bit set so, in all cases, SMAP
1334 * enforcement appears to be consistent with the USER bit.
1336 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1337 !(hw_error_code & X86_PF_USER) &&
1338 !(regs->flags & X86_EFLAGS_AC)))
1340 bad_area_nosemaphore(regs, hw_error_code, address);
1341 return;
1345 * If we're in an interrupt, have no user context or are running
1346 * in a region with pagefaults disabled then we must not take the fault
1348 if (unlikely(faulthandler_disabled() || !mm)) {
1349 bad_area_nosemaphore(regs, hw_error_code, address);
1350 return;
1354 * It's safe to allow irq's after cr2 has been saved and the
1355 * vmalloc fault has been handled.
1357 * User-mode registers count as a user access even for any
1358 * potential system fault or CPU buglet:
1360 if (user_mode(regs)) {
1361 local_irq_enable();
1362 flags |= FAULT_FLAG_USER;
1363 } else {
1364 if (regs->flags & X86_EFLAGS_IF)
1365 local_irq_enable();
1368 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1370 if (hw_error_code & X86_PF_WRITE)
1371 flags |= FAULT_FLAG_WRITE;
1372 if (hw_error_code & X86_PF_INSTR)
1373 flags |= FAULT_FLAG_INSTRUCTION;
1375 #ifdef CONFIG_X86_64
1377 * Faults in the vsyscall page might need emulation. The
1378 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1379 * considered to be part of the user address space.
1381 * The vsyscall page does not have a "real" VMA, so do this
1382 * emulation before we go searching for VMAs.
1384 * PKRU never rejects instruction fetches, so we don't need
1385 * to consider the PF_PK bit.
1387 if (is_vsyscall_vaddr(address)) {
1388 if (emulate_vsyscall(hw_error_code, regs, address))
1389 return;
1391 #endif
1394 * Kernel-mode access to the user address space should only occur
1395 * on well-defined single instructions listed in the exception
1396 * tables. But, an erroneous kernel fault occurring outside one of
1397 * those areas which also holds mmap_sem might deadlock attempting
1398 * to validate the fault against the address space.
1400 * Only do the expensive exception table search when we might be at
1401 * risk of a deadlock. This happens if we
1402 * 1. Failed to acquire mmap_sem, and
1403 * 2. The access did not originate in userspace.
1405 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1406 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1408 * Fault from code in kernel from
1409 * which we do not expect faults.
1411 bad_area_nosemaphore(regs, hw_error_code, address);
1412 return;
1414 retry:
1415 down_read(&mm->mmap_sem);
1416 } else {
1418 * The above down_read_trylock() might have succeeded in
1419 * which case we'll have missed the might_sleep() from
1420 * down_read():
1422 might_sleep();
1425 vma = find_vma(mm, address);
1426 if (unlikely(!vma)) {
1427 bad_area(regs, hw_error_code, address);
1428 return;
1430 if (likely(vma->vm_start <= address))
1431 goto good_area;
1432 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1433 bad_area(regs, hw_error_code, address);
1434 return;
1436 if (unlikely(expand_stack(vma, address))) {
1437 bad_area(regs, hw_error_code, address);
1438 return;
1442 * Ok, we have a good vm_area for this memory access, so
1443 * we can handle it..
1445 good_area:
1446 if (unlikely(access_error(hw_error_code, vma))) {
1447 bad_area_access_error(regs, hw_error_code, address, vma);
1448 return;
1452 * If for any reason at all we couldn't handle the fault,
1453 * make sure we exit gracefully rather than endlessly redo
1454 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1455 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1457 * Note that handle_userfault() may also release and reacquire mmap_sem
1458 * (and not return with VM_FAULT_RETRY), when returning to userland to
1459 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1460 * (potentially after handling any pending signal during the return to
1461 * userland). The return to userland is identified whenever
1462 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1464 fault = handle_mm_fault(vma, address, flags);
1465 major |= fault & VM_FAULT_MAJOR;
1467 /* Quick path to respond to signals */
1468 if (fault_signal_pending(fault, regs)) {
1469 if (!user_mode(regs))
1470 no_context(regs, hw_error_code, address, SIGBUS,
1471 BUS_ADRERR);
1472 return;
1476 * If we need to retry the mmap_sem has already been released,
1477 * and if there is a fatal signal pending there is no guarantee
1478 * that we made any progress. Handle this case first.
1480 if (unlikely((fault & VM_FAULT_RETRY) &&
1481 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1482 flags |= FAULT_FLAG_TRIED;
1483 goto retry;
1486 up_read(&mm->mmap_sem);
1487 if (unlikely(fault & VM_FAULT_ERROR)) {
1488 mm_fault_error(regs, hw_error_code, address, fault);
1489 return;
1493 * Major/minor page fault accounting. If any of the events
1494 * returned VM_FAULT_MAJOR, we account it as a major fault.
1496 if (major) {
1497 tsk->maj_flt++;
1498 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1499 } else {
1500 tsk->min_flt++;
1501 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1504 check_v8086_mode(regs, address, tsk);
1506 NOKPROBE_SYMBOL(do_user_addr_fault);
1508 static __always_inline void
1509 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1510 unsigned long address)
1512 if (!trace_pagefault_enabled())
1513 return;
1515 if (user_mode(regs))
1516 trace_page_fault_user(address, regs, error_code);
1517 else
1518 trace_page_fault_kernel(address, regs, error_code);
1521 dotraplinkage void
1522 do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1523 unsigned long address)
1525 prefetchw(&current->mm->mmap_sem);
1526 trace_page_fault_entries(regs, hw_error_code, address);
1528 if (unlikely(kmmio_fault(regs, address)))
1529 return;
1531 /* Was the fault on kernel-controlled part of the address space? */
1532 if (unlikely(fault_in_kernel_space(address)))
1533 do_kern_addr_fault(regs, hw_error_code, address);
1534 else
1535 do_user_addr_fault(regs, hw_error_code, address);
1537 NOKPROBE_SYMBOL(do_page_fault);