Linux 5.7.6
[linux/fpc-iii.git] / arch / x86 / mm / init.c
bloba573a3e63f02c0e7acfc2be613d24f14506df21b
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h> /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
30 * We need to define the tracepoints somewhere, and tlb.c
31 * is only compied when SMP=y.
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/tlb.h>
36 #include "mm_internal.h"
39 * Tables translating between page_cache_type_t and pte encoding.
41 * The default values are defined statically as minimal supported mode;
42 * WC and WT fall back to UC-. pat_init() updates these values to support
43 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
44 * for the details. Note, __early_ioremap() used during early boot-time
45 * takes pgprot_t (pte encoding) and does not use these tables.
47 * Index into __cachemode2pte_tbl[] is the cachemode.
49 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
54 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
60 EXPORT_SYMBOL(__cachemode2pte_tbl);
62 uint8_t __pte2cachemode_tbl[8] = {
63 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
64 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
66 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
67 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
72 EXPORT_SYMBOL(__pte2cachemode_tbl);
74 static unsigned long __initdata pgt_buf_start;
75 static unsigned long __initdata pgt_buf_end;
76 static unsigned long __initdata pgt_buf_top;
78 static unsigned long min_pfn_mapped;
80 static bool __initdata can_use_brk_pgt = true;
83 * Pages returned are already directly mapped.
85 * Changing that is likely to break Xen, see commit:
87 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
89 * for detailed information.
91 __ref void *alloc_low_pages(unsigned int num)
93 unsigned long pfn;
94 int i;
96 if (after_bootmem) {
97 unsigned int order;
99 order = get_order((unsigned long)num << PAGE_SHIFT);
100 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
103 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 unsigned long ret = 0;
106 if (min_pfn_mapped < max_pfn_mapped) {
107 ret = memblock_find_in_range(
108 min_pfn_mapped << PAGE_SHIFT,
109 max_pfn_mapped << PAGE_SHIFT,
110 PAGE_SIZE * num , PAGE_SIZE);
112 if (ret)
113 memblock_reserve(ret, PAGE_SIZE * num);
114 else if (can_use_brk_pgt)
115 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
117 if (!ret)
118 panic("alloc_low_pages: can not alloc memory");
120 pfn = ret >> PAGE_SHIFT;
121 } else {
122 pfn = pgt_buf_end;
123 pgt_buf_end += num;
126 for (i = 0; i < num; i++) {
127 void *adr;
129 adr = __va((pfn + i) << PAGE_SHIFT);
130 clear_page(adr);
133 return __va(pfn << PAGE_SHIFT);
137 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
138 * With KASLR memory randomization, depending on the machine e820 memory
139 * and the PUD alignment. We may need twice more pages when KASLR memory
140 * randomization is enabled.
142 #ifndef CONFIG_RANDOMIZE_MEMORY
143 #define INIT_PGD_PAGE_COUNT 6
144 #else
145 #define INIT_PGD_PAGE_COUNT 12
146 #endif
147 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
148 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
149 void __init early_alloc_pgt_buf(void)
151 unsigned long tables = INIT_PGT_BUF_SIZE;
152 phys_addr_t base;
154 base = __pa(extend_brk(tables, PAGE_SIZE));
156 pgt_buf_start = base >> PAGE_SHIFT;
157 pgt_buf_end = pgt_buf_start;
158 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
161 int after_bootmem;
163 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
165 struct map_range {
166 unsigned long start;
167 unsigned long end;
168 unsigned page_size_mask;
171 static int page_size_mask;
173 static void __init probe_page_size_mask(void)
176 * For pagealloc debugging, identity mapping will use small pages.
177 * This will simplify cpa(), which otherwise needs to support splitting
178 * large pages into small in interrupt context, etc.
180 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
181 page_size_mask |= 1 << PG_LEVEL_2M;
182 else
183 direct_gbpages = 0;
185 /* Enable PSE if available */
186 if (boot_cpu_has(X86_FEATURE_PSE))
187 cr4_set_bits_and_update_boot(X86_CR4_PSE);
189 /* Enable PGE if available */
190 __supported_pte_mask &= ~_PAGE_GLOBAL;
191 if (boot_cpu_has(X86_FEATURE_PGE)) {
192 cr4_set_bits_and_update_boot(X86_CR4_PGE);
193 __supported_pte_mask |= _PAGE_GLOBAL;
196 /* By the default is everything supported: */
197 __default_kernel_pte_mask = __supported_pte_mask;
198 /* Except when with PTI where the kernel is mostly non-Global: */
199 if (cpu_feature_enabled(X86_FEATURE_PTI))
200 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
202 /* Enable 1 GB linear kernel mappings if available: */
203 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
204 printk(KERN_INFO "Using GB pages for direct mapping\n");
205 page_size_mask |= 1 << PG_LEVEL_1G;
206 } else {
207 direct_gbpages = 0;
211 static void setup_pcid(void)
213 if (!IS_ENABLED(CONFIG_X86_64))
214 return;
216 if (!boot_cpu_has(X86_FEATURE_PCID))
217 return;
219 if (boot_cpu_has(X86_FEATURE_PGE)) {
221 * This can't be cr4_set_bits_and_update_boot() -- the
222 * trampoline code can't handle CR4.PCIDE and it wouldn't
223 * do any good anyway. Despite the name,
224 * cr4_set_bits_and_update_boot() doesn't actually cause
225 * the bits in question to remain set all the way through
226 * the secondary boot asm.
228 * Instead, we brute-force it and set CR4.PCIDE manually in
229 * start_secondary().
231 cr4_set_bits(X86_CR4_PCIDE);
234 * INVPCID's single-context modes (2/3) only work if we set
235 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
236 * on systems that have X86_CR4_PCIDE clear, or that have
237 * no INVPCID support at all.
239 if (boot_cpu_has(X86_FEATURE_INVPCID))
240 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
241 } else {
243 * flush_tlb_all(), as currently implemented, won't work if
244 * PCID is on but PGE is not. Since that combination
245 * doesn't exist on real hardware, there's no reason to try
246 * to fully support it, but it's polite to avoid corrupting
247 * data if we're on an improperly configured VM.
249 setup_clear_cpu_cap(X86_FEATURE_PCID);
253 #ifdef CONFIG_X86_32
254 #define NR_RANGE_MR 3
255 #else /* CONFIG_X86_64 */
256 #define NR_RANGE_MR 5
257 #endif
259 static int __meminit save_mr(struct map_range *mr, int nr_range,
260 unsigned long start_pfn, unsigned long end_pfn,
261 unsigned long page_size_mask)
263 if (start_pfn < end_pfn) {
264 if (nr_range >= NR_RANGE_MR)
265 panic("run out of range for init_memory_mapping\n");
266 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
267 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
268 mr[nr_range].page_size_mask = page_size_mask;
269 nr_range++;
272 return nr_range;
276 * adjust the page_size_mask for small range to go with
277 * big page size instead small one if nearby are ram too.
279 static void __ref adjust_range_page_size_mask(struct map_range *mr,
280 int nr_range)
282 int i;
284 for (i = 0; i < nr_range; i++) {
285 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
286 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
287 unsigned long start = round_down(mr[i].start, PMD_SIZE);
288 unsigned long end = round_up(mr[i].end, PMD_SIZE);
290 #ifdef CONFIG_X86_32
291 if ((end >> PAGE_SHIFT) > max_low_pfn)
292 continue;
293 #endif
295 if (memblock_is_region_memory(start, end - start))
296 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
298 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
299 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
300 unsigned long start = round_down(mr[i].start, PUD_SIZE);
301 unsigned long end = round_up(mr[i].end, PUD_SIZE);
303 if (memblock_is_region_memory(start, end - start))
304 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
309 static const char *page_size_string(struct map_range *mr)
311 static const char str_1g[] = "1G";
312 static const char str_2m[] = "2M";
313 static const char str_4m[] = "4M";
314 static const char str_4k[] = "4k";
316 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
317 return str_1g;
319 * 32-bit without PAE has a 4M large page size.
320 * PG_LEVEL_2M is misnamed, but we can at least
321 * print out the right size in the string.
323 if (IS_ENABLED(CONFIG_X86_32) &&
324 !IS_ENABLED(CONFIG_X86_PAE) &&
325 mr->page_size_mask & (1<<PG_LEVEL_2M))
326 return str_4m;
328 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
329 return str_2m;
331 return str_4k;
334 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
335 unsigned long start,
336 unsigned long end)
338 unsigned long start_pfn, end_pfn, limit_pfn;
339 unsigned long pfn;
340 int i;
342 limit_pfn = PFN_DOWN(end);
344 /* head if not big page alignment ? */
345 pfn = start_pfn = PFN_DOWN(start);
346 #ifdef CONFIG_X86_32
348 * Don't use a large page for the first 2/4MB of memory
349 * because there are often fixed size MTRRs in there
350 * and overlapping MTRRs into large pages can cause
351 * slowdowns.
353 if (pfn == 0)
354 end_pfn = PFN_DOWN(PMD_SIZE);
355 else
356 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
357 #else /* CONFIG_X86_64 */
358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #endif
360 if (end_pfn > limit_pfn)
361 end_pfn = limit_pfn;
362 if (start_pfn < end_pfn) {
363 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
364 pfn = end_pfn;
367 /* big page (2M) range */
368 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
369 #ifdef CONFIG_X86_32
370 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
371 #else /* CONFIG_X86_64 */
372 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
373 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
374 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
375 #endif
377 if (start_pfn < end_pfn) {
378 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
379 page_size_mask & (1<<PG_LEVEL_2M));
380 pfn = end_pfn;
383 #ifdef CONFIG_X86_64
384 /* big page (1G) range */
385 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
386 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
387 if (start_pfn < end_pfn) {
388 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
389 page_size_mask &
390 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
391 pfn = end_pfn;
394 /* tail is not big page (1G) alignment */
395 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
396 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
397 if (start_pfn < end_pfn) {
398 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
399 page_size_mask & (1<<PG_LEVEL_2M));
400 pfn = end_pfn;
402 #endif
404 /* tail is not big page (2M) alignment */
405 start_pfn = pfn;
406 end_pfn = limit_pfn;
407 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
409 if (!after_bootmem)
410 adjust_range_page_size_mask(mr, nr_range);
412 /* try to merge same page size and continuous */
413 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
414 unsigned long old_start;
415 if (mr[i].end != mr[i+1].start ||
416 mr[i].page_size_mask != mr[i+1].page_size_mask)
417 continue;
418 /* move it */
419 old_start = mr[i].start;
420 memmove(&mr[i], &mr[i+1],
421 (nr_range - 1 - i) * sizeof(struct map_range));
422 mr[i--].start = old_start;
423 nr_range--;
426 for (i = 0; i < nr_range; i++)
427 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
428 mr[i].start, mr[i].end - 1,
429 page_size_string(&mr[i]));
431 return nr_range;
434 struct range pfn_mapped[E820_MAX_ENTRIES];
435 int nr_pfn_mapped;
437 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
439 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
440 nr_pfn_mapped, start_pfn, end_pfn);
441 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
443 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
445 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
446 max_low_pfn_mapped = max(max_low_pfn_mapped,
447 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
450 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
452 int i;
454 for (i = 0; i < nr_pfn_mapped; i++)
455 if ((start_pfn >= pfn_mapped[i].start) &&
456 (end_pfn <= pfn_mapped[i].end))
457 return true;
459 return false;
463 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
464 * This runs before bootmem is initialized and gets pages directly from
465 * the physical memory. To access them they are temporarily mapped.
467 unsigned long __ref init_memory_mapping(unsigned long start,
468 unsigned long end, pgprot_t prot)
470 struct map_range mr[NR_RANGE_MR];
471 unsigned long ret = 0;
472 int nr_range, i;
474 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
475 start, end - 1);
477 memset(mr, 0, sizeof(mr));
478 nr_range = split_mem_range(mr, 0, start, end);
480 for (i = 0; i < nr_range; i++)
481 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
482 mr[i].page_size_mask,
483 prot);
485 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
487 return ret >> PAGE_SHIFT;
491 * We need to iterate through the E820 memory map and create direct mappings
492 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
493 * create direct mappings for all pfns from [0 to max_low_pfn) and
494 * [4GB to max_pfn) because of possible memory holes in high addresses
495 * that cannot be marked as UC by fixed/variable range MTRRs.
496 * Depending on the alignment of E820 ranges, this may possibly result
497 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
499 * init_mem_mapping() calls init_range_memory_mapping() with big range.
500 * That range would have hole in the middle or ends, and only ram parts
501 * will be mapped in init_range_memory_mapping().
503 static unsigned long __init init_range_memory_mapping(
504 unsigned long r_start,
505 unsigned long r_end)
507 unsigned long start_pfn, end_pfn;
508 unsigned long mapped_ram_size = 0;
509 int i;
511 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
512 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
513 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
514 if (start >= end)
515 continue;
518 * if it is overlapping with brk pgt, we need to
519 * alloc pgt buf from memblock instead.
521 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
522 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
523 init_memory_mapping(start, end, PAGE_KERNEL);
524 mapped_ram_size += end - start;
525 can_use_brk_pgt = true;
528 return mapped_ram_size;
531 static unsigned long __init get_new_step_size(unsigned long step_size)
534 * Initial mapped size is PMD_SIZE (2M).
535 * We can not set step_size to be PUD_SIZE (1G) yet.
536 * In worse case, when we cross the 1G boundary, and
537 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
538 * to map 1G range with PTE. Hence we use one less than the
539 * difference of page table level shifts.
541 * Don't need to worry about overflow in the top-down case, on 32bit,
542 * when step_size is 0, round_down() returns 0 for start, and that
543 * turns it into 0x100000000ULL.
544 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
545 * needs to be taken into consideration by the code below.
547 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
551 * memory_map_top_down - Map [map_start, map_end) top down
552 * @map_start: start address of the target memory range
553 * @map_end: end address of the target memory range
555 * This function will setup direct mapping for memory range
556 * [map_start, map_end) in top-down. That said, the page tables
557 * will be allocated at the end of the memory, and we map the
558 * memory in top-down.
560 static void __init memory_map_top_down(unsigned long map_start,
561 unsigned long map_end)
563 unsigned long real_end, start, last_start;
564 unsigned long step_size;
565 unsigned long addr;
566 unsigned long mapped_ram_size = 0;
568 /* xen has big range in reserved near end of ram, skip it at first.*/
569 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
570 real_end = addr + PMD_SIZE;
572 /* step_size need to be small so pgt_buf from BRK could cover it */
573 step_size = PMD_SIZE;
574 max_pfn_mapped = 0; /* will get exact value next */
575 min_pfn_mapped = real_end >> PAGE_SHIFT;
576 last_start = start = real_end;
579 * We start from the top (end of memory) and go to the bottom.
580 * The memblock_find_in_range() gets us a block of RAM from the
581 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
582 * for page table.
584 while (last_start > map_start) {
585 if (last_start > step_size) {
586 start = round_down(last_start - 1, step_size);
587 if (start < map_start)
588 start = map_start;
589 } else
590 start = map_start;
591 mapped_ram_size += init_range_memory_mapping(start,
592 last_start);
593 last_start = start;
594 min_pfn_mapped = last_start >> PAGE_SHIFT;
595 if (mapped_ram_size >= step_size)
596 step_size = get_new_step_size(step_size);
599 if (real_end < map_end)
600 init_range_memory_mapping(real_end, map_end);
604 * memory_map_bottom_up - Map [map_start, map_end) bottom up
605 * @map_start: start address of the target memory range
606 * @map_end: end address of the target memory range
608 * This function will setup direct mapping for memory range
609 * [map_start, map_end) in bottom-up. Since we have limited the
610 * bottom-up allocation above the kernel, the page tables will
611 * be allocated just above the kernel and we map the memory
612 * in [map_start, map_end) in bottom-up.
614 static void __init memory_map_bottom_up(unsigned long map_start,
615 unsigned long map_end)
617 unsigned long next, start;
618 unsigned long mapped_ram_size = 0;
619 /* step_size need to be small so pgt_buf from BRK could cover it */
620 unsigned long step_size = PMD_SIZE;
622 start = map_start;
623 min_pfn_mapped = start >> PAGE_SHIFT;
626 * We start from the bottom (@map_start) and go to the top (@map_end).
627 * The memblock_find_in_range() gets us a block of RAM from the
628 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
629 * for page table.
631 while (start < map_end) {
632 if (step_size && map_end - start > step_size) {
633 next = round_up(start + 1, step_size);
634 if (next > map_end)
635 next = map_end;
636 } else {
637 next = map_end;
640 mapped_ram_size += init_range_memory_mapping(start, next);
641 start = next;
643 if (mapped_ram_size >= step_size)
644 step_size = get_new_step_size(step_size);
648 void __init init_mem_mapping(void)
650 unsigned long end;
652 pti_check_boottime_disable();
653 probe_page_size_mask();
654 setup_pcid();
656 #ifdef CONFIG_X86_64
657 end = max_pfn << PAGE_SHIFT;
658 #else
659 end = max_low_pfn << PAGE_SHIFT;
660 #endif
662 /* the ISA range is always mapped regardless of memory holes */
663 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
665 /* Init the trampoline, possibly with KASLR memory offset */
666 init_trampoline();
669 * If the allocation is in bottom-up direction, we setup direct mapping
670 * in bottom-up, otherwise we setup direct mapping in top-down.
672 if (memblock_bottom_up()) {
673 unsigned long kernel_end = __pa_symbol(_end);
676 * we need two separate calls here. This is because we want to
677 * allocate page tables above the kernel. So we first map
678 * [kernel_end, end) to make memory above the kernel be mapped
679 * as soon as possible. And then use page tables allocated above
680 * the kernel to map [ISA_END_ADDRESS, kernel_end).
682 memory_map_bottom_up(kernel_end, end);
683 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
684 } else {
685 memory_map_top_down(ISA_END_ADDRESS, end);
688 #ifdef CONFIG_X86_64
689 if (max_pfn > max_low_pfn) {
690 /* can we preseve max_low_pfn ?*/
691 max_low_pfn = max_pfn;
693 #else
694 early_ioremap_page_table_range_init();
695 #endif
697 load_cr3(swapper_pg_dir);
698 __flush_tlb_all();
700 x86_init.hyper.init_mem_mapping();
702 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
706 * Initialize an mm_struct to be used during poking and a pointer to be used
707 * during patching.
709 void __init poking_init(void)
711 spinlock_t *ptl;
712 pte_t *ptep;
714 poking_mm = copy_init_mm();
715 BUG_ON(!poking_mm);
718 * Randomize the poking address, but make sure that the following page
719 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
720 * and adjust the address if the PMD ends after the first one.
722 poking_addr = TASK_UNMAPPED_BASE;
723 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
724 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
725 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
727 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
728 poking_addr += PAGE_SIZE;
731 * We need to trigger the allocation of the page-tables that will be
732 * needed for poking now. Later, poking may be performed in an atomic
733 * section, which might cause allocation to fail.
735 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
736 BUG_ON(!ptep);
737 pte_unmap_unlock(ptep, ptl);
741 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
742 * is valid. The argument is a physical page number.
744 * On x86, access has to be given to the first megabyte of RAM because that
745 * area traditionally contains BIOS code and data regions used by X, dosemu,
746 * and similar apps. Since they map the entire memory range, the whole range
747 * must be allowed (for mapping), but any areas that would otherwise be
748 * disallowed are flagged as being "zero filled" instead of rejected.
749 * Access has to be given to non-kernel-ram areas as well, these contain the
750 * PCI mmio resources as well as potential bios/acpi data regions.
752 int devmem_is_allowed(unsigned long pagenr)
754 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
755 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
756 != REGION_DISJOINT) {
758 * For disallowed memory regions in the low 1MB range,
759 * request that the page be shown as all zeros.
761 if (pagenr < 256)
762 return 2;
764 return 0;
768 * This must follow RAM test, since System RAM is considered a
769 * restricted resource under CONFIG_STRICT_IOMEM.
771 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
772 /* Low 1MB bypasses iomem restrictions. */
773 if (pagenr < 256)
774 return 1;
776 return 0;
779 return 1;
782 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
784 unsigned long begin_aligned, end_aligned;
786 /* Make sure boundaries are page aligned */
787 begin_aligned = PAGE_ALIGN(begin);
788 end_aligned = end & PAGE_MASK;
790 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
791 begin = begin_aligned;
792 end = end_aligned;
795 if (begin >= end)
796 return;
799 * If debugging page accesses then do not free this memory but
800 * mark them not present - any buggy init-section access will
801 * create a kernel page fault:
803 if (debug_pagealloc_enabled()) {
804 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
805 begin, end - 1);
807 * Inform kmemleak about the hole in the memory since the
808 * corresponding pages will be unmapped.
810 kmemleak_free_part((void *)begin, end - begin);
811 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
812 } else {
814 * We just marked the kernel text read only above, now that
815 * we are going to free part of that, we need to make that
816 * writeable and non-executable first.
818 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
819 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
821 free_reserved_area((void *)begin, (void *)end,
822 POISON_FREE_INITMEM, what);
827 * begin/end can be in the direct map or the "high kernel mapping"
828 * used for the kernel image only. free_init_pages() will do the
829 * right thing for either kind of address.
831 void free_kernel_image_pages(const char *what, void *begin, void *end)
833 unsigned long begin_ul = (unsigned long)begin;
834 unsigned long end_ul = (unsigned long)end;
835 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
837 free_init_pages(what, begin_ul, end_ul);
840 * PTI maps some of the kernel into userspace. For performance,
841 * this includes some kernel areas that do not contain secrets.
842 * Those areas might be adjacent to the parts of the kernel image
843 * being freed, which may contain secrets. Remove the "high kernel
844 * image mapping" for these freed areas, ensuring they are not even
845 * potentially vulnerable to Meltdown regardless of the specific
846 * optimizations PTI is currently using.
848 * The "noalias" prevents unmapping the direct map alias which is
849 * needed to access the freed pages.
851 * This is only valid for 64bit kernels. 32bit has only one mapping
852 * which can't be treated in this way for obvious reasons.
854 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
855 set_memory_np_noalias(begin_ul, len_pages);
858 void __weak mem_encrypt_free_decrypted_mem(void) { }
860 void __ref free_initmem(void)
862 e820__reallocate_tables();
864 mem_encrypt_free_decrypted_mem();
866 free_kernel_image_pages("unused kernel image (initmem)",
867 &__init_begin, &__init_end);
870 #ifdef CONFIG_BLK_DEV_INITRD
871 void __init free_initrd_mem(unsigned long start, unsigned long end)
874 * end could be not aligned, and We can not align that,
875 * decompresser could be confused by aligned initrd_end
876 * We already reserve the end partial page before in
877 * - i386_start_kernel()
878 * - x86_64_start_kernel()
879 * - relocate_initrd()
880 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
882 free_init_pages("initrd", start, PAGE_ALIGN(end));
884 #endif
887 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
888 * and pass it to the MM layer - to help it set zone watermarks more
889 * accurately.
891 * Done on 64-bit systems only for the time being, although 32-bit systems
892 * might benefit from this as well.
894 void __init memblock_find_dma_reserve(void)
896 #ifdef CONFIG_X86_64
897 u64 nr_pages = 0, nr_free_pages = 0;
898 unsigned long start_pfn, end_pfn;
899 phys_addr_t start_addr, end_addr;
900 int i;
901 u64 u;
904 * Iterate over all memory ranges (free and reserved ones alike),
905 * to calculate the total number of pages in the first 16 MB of RAM:
907 nr_pages = 0;
908 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
909 start_pfn = min(start_pfn, MAX_DMA_PFN);
910 end_pfn = min(end_pfn, MAX_DMA_PFN);
912 nr_pages += end_pfn - start_pfn;
916 * Iterate over free memory ranges to calculate the number of free
917 * pages in the DMA zone, while not counting potential partial
918 * pages at the beginning or the end of the range:
920 nr_free_pages = 0;
921 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
922 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
923 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
925 if (start_pfn < end_pfn)
926 nr_free_pages += end_pfn - start_pfn;
929 set_dma_reserve(nr_pages - nr_free_pages);
930 #endif
933 void __init zone_sizes_init(void)
935 unsigned long max_zone_pfns[MAX_NR_ZONES];
937 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
939 #ifdef CONFIG_ZONE_DMA
940 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
941 #endif
942 #ifdef CONFIG_ZONE_DMA32
943 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
944 #endif
945 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
946 #ifdef CONFIG_HIGHMEM
947 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
948 #endif
950 free_area_init_nodes(max_zone_pfns);
953 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
954 .loaded_mm = &init_mm,
955 .next_asid = 1,
956 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
958 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
960 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
962 /* entry 0 MUST be WB (hardwired to speed up translations) */
963 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
965 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
966 __pte2cachemode_tbl[entry] = cache;
969 #ifdef CONFIG_SWAP
970 unsigned long max_swapfile_size(void)
972 unsigned long pages;
974 pages = generic_max_swapfile_size();
976 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
977 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
978 unsigned long long l1tf_limit = l1tf_pfn_limit();
980 * We encode swap offsets also with 3 bits below those for pfn
981 * which makes the usable limit higher.
983 #if CONFIG_PGTABLE_LEVELS > 2
984 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
985 #endif
986 pages = min_t(unsigned long long, l1tf_limit, pages);
988 return pages;
990 #endif