1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
10 #define DISABLE_BRANCH_PROFILING
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
17 #define __pa(x) ((unsigned long)(x))
18 #define __va(x) ((void *)((unsigned long)(x)))
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
30 #include <linux/kernel.h>
32 #include <linux/mem_encrypt.h>
34 #include <asm/setup.h>
35 #include <asm/sections.h>
36 #include <asm/cmdline.h>
38 #include "mm_internal.h"
40 #define PGD_FLAGS _KERNPG_TABLE_NOENC
41 #define P4D_FLAGS _KERNPG_TABLE_NOENC
42 #define PUD_FLAGS _KERNPG_TABLE_NOENC
43 #define PMD_FLAGS _KERNPG_TABLE_NOENC
45 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
47 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
48 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
49 (_PAGE_PAT | _PAGE_PWT))
51 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
53 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
55 #define PTE_FLAGS_DEC PTE_FLAGS
56 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
57 (_PAGE_PAT | _PAGE_PWT))
59 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
61 struct sme_populate_pgd_data
{
70 unsigned long vaddr_end
;
74 * This work area lives in the .init.scratch section, which lives outside of
75 * the kernel proper. It is sized to hold the intermediate copy buffer and
76 * more than enough pagetable pages.
78 * By using this section, the kernel can be encrypted in place and it
79 * avoids any possibility of boot parameters or initramfs images being
80 * placed such that the in-place encryption logic overwrites them. This
81 * section is 2MB aligned to allow for simple pagetable setup using only
82 * PMD entries (see vmlinux.lds.S).
84 static char sme_workarea
[2 * PMD_PAGE_SIZE
] __section(.init
.scratch
);
86 static char sme_cmdline_arg
[] __initdata
= "mem_encrypt";
87 static char sme_cmdline_on
[] __initdata
= "on";
88 static char sme_cmdline_off
[] __initdata
= "off";
90 static void __init
sme_clear_pgd(struct sme_populate_pgd_data
*ppd
)
92 unsigned long pgd_start
, pgd_end
, pgd_size
;
95 pgd_start
= ppd
->vaddr
& PGDIR_MASK
;
96 pgd_end
= ppd
->vaddr_end
& PGDIR_MASK
;
98 pgd_size
= (((pgd_end
- pgd_start
) / PGDIR_SIZE
) + 1) * sizeof(pgd_t
);
100 pgd_p
= ppd
->pgd
+ pgd_index(ppd
->vaddr
);
102 memset(pgd_p
, 0, pgd_size
);
105 static pud_t __init
*sme_prepare_pgd(struct sme_populate_pgd_data
*ppd
)
112 pgd
= ppd
->pgd
+ pgd_index(ppd
->vaddr
);
113 if (pgd_none(*pgd
)) {
114 p4d
= ppd
->pgtable_area
;
115 memset(p4d
, 0, sizeof(*p4d
) * PTRS_PER_P4D
);
116 ppd
->pgtable_area
+= sizeof(*p4d
) * PTRS_PER_P4D
;
117 set_pgd(pgd
, __pgd(PGD_FLAGS
| __pa(p4d
)));
120 p4d
= p4d_offset(pgd
, ppd
->vaddr
);
121 if (p4d_none(*p4d
)) {
122 pud
= ppd
->pgtable_area
;
123 memset(pud
, 0, sizeof(*pud
) * PTRS_PER_PUD
);
124 ppd
->pgtable_area
+= sizeof(*pud
) * PTRS_PER_PUD
;
125 set_p4d(p4d
, __p4d(P4D_FLAGS
| __pa(pud
)));
128 pud
= pud_offset(p4d
, ppd
->vaddr
);
129 if (pud_none(*pud
)) {
130 pmd
= ppd
->pgtable_area
;
131 memset(pmd
, 0, sizeof(*pmd
) * PTRS_PER_PMD
);
132 ppd
->pgtable_area
+= sizeof(*pmd
) * PTRS_PER_PMD
;
133 set_pud(pud
, __pud(PUD_FLAGS
| __pa(pmd
)));
142 static void __init
sme_populate_pgd_large(struct sme_populate_pgd_data
*ppd
)
147 pud
= sme_prepare_pgd(ppd
);
151 pmd
= pmd_offset(pud
, ppd
->vaddr
);
155 set_pmd(pmd
, __pmd(ppd
->paddr
| ppd
->pmd_flags
));
158 static void __init
sme_populate_pgd(struct sme_populate_pgd_data
*ppd
)
164 pud
= sme_prepare_pgd(ppd
);
168 pmd
= pmd_offset(pud
, ppd
->vaddr
);
169 if (pmd_none(*pmd
)) {
170 pte
= ppd
->pgtable_area
;
171 memset(pte
, 0, sizeof(*pte
) * PTRS_PER_PTE
);
172 ppd
->pgtable_area
+= sizeof(*pte
) * PTRS_PER_PTE
;
173 set_pmd(pmd
, __pmd(PMD_FLAGS
| __pa(pte
)));
179 pte
= pte_offset_map(pmd
, ppd
->vaddr
);
181 set_pte(pte
, __pte(ppd
->paddr
| ppd
->pte_flags
));
184 static void __init
__sme_map_range_pmd(struct sme_populate_pgd_data
*ppd
)
186 while (ppd
->vaddr
< ppd
->vaddr_end
) {
187 sme_populate_pgd_large(ppd
);
189 ppd
->vaddr
+= PMD_PAGE_SIZE
;
190 ppd
->paddr
+= PMD_PAGE_SIZE
;
194 static void __init
__sme_map_range_pte(struct sme_populate_pgd_data
*ppd
)
196 while (ppd
->vaddr
< ppd
->vaddr_end
) {
197 sme_populate_pgd(ppd
);
199 ppd
->vaddr
+= PAGE_SIZE
;
200 ppd
->paddr
+= PAGE_SIZE
;
204 static void __init
__sme_map_range(struct sme_populate_pgd_data
*ppd
,
205 pmdval_t pmd_flags
, pteval_t pte_flags
)
207 unsigned long vaddr_end
;
209 ppd
->pmd_flags
= pmd_flags
;
210 ppd
->pte_flags
= pte_flags
;
212 /* Save original end value since we modify the struct value */
213 vaddr_end
= ppd
->vaddr_end
;
215 /* If start is not 2MB aligned, create PTE entries */
216 ppd
->vaddr_end
= ALIGN(ppd
->vaddr
, PMD_PAGE_SIZE
);
217 __sme_map_range_pte(ppd
);
219 /* Create PMD entries */
220 ppd
->vaddr_end
= vaddr_end
& PMD_PAGE_MASK
;
221 __sme_map_range_pmd(ppd
);
223 /* If end is not 2MB aligned, create PTE entries */
224 ppd
->vaddr_end
= vaddr_end
;
225 __sme_map_range_pte(ppd
);
228 static void __init
sme_map_range_encrypted(struct sme_populate_pgd_data
*ppd
)
230 __sme_map_range(ppd
, PMD_FLAGS_ENC
, PTE_FLAGS_ENC
);
233 static void __init
sme_map_range_decrypted(struct sme_populate_pgd_data
*ppd
)
235 __sme_map_range(ppd
, PMD_FLAGS_DEC
, PTE_FLAGS_DEC
);
238 static void __init
sme_map_range_decrypted_wp(struct sme_populate_pgd_data
*ppd
)
240 __sme_map_range(ppd
, PMD_FLAGS_DEC_WP
, PTE_FLAGS_DEC_WP
);
243 static unsigned long __init
sme_pgtable_calc(unsigned long len
)
245 unsigned long entries
= 0, tables
= 0;
248 * Perform a relatively simplistic calculation of the pagetable
249 * entries that are needed. Those mappings will be covered mostly
250 * by 2MB PMD entries so we can conservatively calculate the required
251 * number of P4D, PUD and PMD structures needed to perform the
252 * mappings. For mappings that are not 2MB aligned, PTE mappings
253 * would be needed for the start and end portion of the address range
254 * that fall outside of the 2MB alignment. This results in, at most,
255 * two extra pages to hold PTE entries for each range that is mapped.
256 * Incrementing the count for each covers the case where the addresses
260 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
261 if (PTRS_PER_P4D
> 1)
262 entries
+= (DIV_ROUND_UP(len
, PGDIR_SIZE
) + 1) * sizeof(p4d_t
) * PTRS_PER_P4D
;
263 entries
+= (DIV_ROUND_UP(len
, P4D_SIZE
) + 1) * sizeof(pud_t
) * PTRS_PER_PUD
;
264 entries
+= (DIV_ROUND_UP(len
, PUD_SIZE
) + 1) * sizeof(pmd_t
) * PTRS_PER_PMD
;
265 entries
+= 2 * sizeof(pte_t
) * PTRS_PER_PTE
;
268 * Now calculate the added pagetable structures needed to populate
269 * the new pagetables.
272 if (PTRS_PER_P4D
> 1)
273 tables
+= DIV_ROUND_UP(entries
, PGDIR_SIZE
) * sizeof(p4d_t
) * PTRS_PER_P4D
;
274 tables
+= DIV_ROUND_UP(entries
, P4D_SIZE
) * sizeof(pud_t
) * PTRS_PER_PUD
;
275 tables
+= DIV_ROUND_UP(entries
, PUD_SIZE
) * sizeof(pmd_t
) * PTRS_PER_PMD
;
277 return entries
+ tables
;
280 void __init
sme_encrypt_kernel(struct boot_params
*bp
)
282 unsigned long workarea_start
, workarea_end
, workarea_len
;
283 unsigned long execute_start
, execute_end
, execute_len
;
284 unsigned long kernel_start
, kernel_end
, kernel_len
;
285 unsigned long initrd_start
, initrd_end
, initrd_len
;
286 struct sme_populate_pgd_data ppd
;
287 unsigned long pgtable_area_len
;
288 unsigned long decrypted_base
;
294 * Prepare for encrypting the kernel and initrd by building new
295 * pagetables with the necessary attributes needed to encrypt the
298 * One range of virtual addresses will map the memory occupied
299 * by the kernel and initrd as encrypted.
301 * Another range of virtual addresses will map the memory occupied
302 * by the kernel and initrd as decrypted and write-protected.
304 * The use of write-protect attribute will prevent any of the
305 * memory from being cached.
308 /* Physical addresses gives us the identity mapped virtual addresses */
309 kernel_start
= __pa_symbol(_text
);
310 kernel_end
= ALIGN(__pa_symbol(_end
), PMD_PAGE_SIZE
);
311 kernel_len
= kernel_end
- kernel_start
;
316 #ifdef CONFIG_BLK_DEV_INITRD
317 initrd_len
= (unsigned long)bp
->hdr
.ramdisk_size
|
318 ((unsigned long)bp
->ext_ramdisk_size
<< 32);
320 initrd_start
= (unsigned long)bp
->hdr
.ramdisk_image
|
321 ((unsigned long)bp
->ext_ramdisk_image
<< 32);
322 initrd_end
= PAGE_ALIGN(initrd_start
+ initrd_len
);
323 initrd_len
= initrd_end
- initrd_start
;
328 * We're running identity mapped, so we must obtain the address to the
329 * SME encryption workarea using rip-relative addressing.
331 asm ("lea sme_workarea(%%rip), %0"
332 : "=r" (workarea_start
)
333 : "p" (sme_workarea
));
336 * Calculate required number of workarea bytes needed:
337 * executable encryption area size:
338 * stack page (PAGE_SIZE)
339 * encryption routine page (PAGE_SIZE)
340 * intermediate copy buffer (PMD_PAGE_SIZE)
341 * pagetable structures for the encryption of the kernel
342 * pagetable structures for workarea (in case not currently mapped)
344 execute_start
= workarea_start
;
345 execute_end
= execute_start
+ (PAGE_SIZE
* 2) + PMD_PAGE_SIZE
;
346 execute_len
= execute_end
- execute_start
;
349 * One PGD for both encrypted and decrypted mappings and a set of
350 * PUDs and PMDs for each of the encrypted and decrypted mappings.
352 pgtable_area_len
= sizeof(pgd_t
) * PTRS_PER_PGD
;
353 pgtable_area_len
+= sme_pgtable_calc(execute_end
- kernel_start
) * 2;
355 pgtable_area_len
+= sme_pgtable_calc(initrd_len
) * 2;
357 /* PUDs and PMDs needed in the current pagetables for the workarea */
358 pgtable_area_len
+= sme_pgtable_calc(execute_len
+ pgtable_area_len
);
361 * The total workarea includes the executable encryption area and
362 * the pagetable area. The start of the workarea is already 2MB
363 * aligned, align the end of the workarea on a 2MB boundary so that
364 * we don't try to create/allocate PTE entries from the workarea
365 * before it is mapped.
367 workarea_len
= execute_len
+ pgtable_area_len
;
368 workarea_end
= ALIGN(workarea_start
+ workarea_len
, PMD_PAGE_SIZE
);
371 * Set the address to the start of where newly created pagetable
372 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
373 * structures are created when the workarea is added to the current
374 * pagetables and when the new encrypted and decrypted kernel
375 * mappings are populated.
377 ppd
.pgtable_area
= (void *)execute_end
;
380 * Make sure the current pagetable structure has entries for
381 * addressing the workarea.
383 ppd
.pgd
= (pgd_t
*)native_read_cr3_pa();
384 ppd
.paddr
= workarea_start
;
385 ppd
.vaddr
= workarea_start
;
386 ppd
.vaddr_end
= workarea_end
;
387 sme_map_range_decrypted(&ppd
);
389 /* Flush the TLB - no globals so cr3 is enough */
390 native_write_cr3(__native_read_cr3());
393 * A new pagetable structure is being built to allow for the kernel
394 * and initrd to be encrypted. It starts with an empty PGD that will
395 * then be populated with new PUDs and PMDs as the encrypted and
396 * decrypted kernel mappings are created.
398 ppd
.pgd
= ppd
.pgtable_area
;
399 memset(ppd
.pgd
, 0, sizeof(pgd_t
) * PTRS_PER_PGD
);
400 ppd
.pgtable_area
+= sizeof(pgd_t
) * PTRS_PER_PGD
;
403 * A different PGD index/entry must be used to get different
404 * pagetable entries for the decrypted mapping. Choose the next
405 * PGD index and convert it to a virtual address to be used as
406 * the base of the mapping.
408 decrypted_base
= (pgd_index(workarea_end
) + 1) & (PTRS_PER_PGD
- 1);
410 unsigned long check_base
;
412 check_base
= (pgd_index(initrd_end
) + 1) & (PTRS_PER_PGD
- 1);
413 decrypted_base
= max(decrypted_base
, check_base
);
415 decrypted_base
<<= PGDIR_SHIFT
;
417 /* Add encrypted kernel (identity) mappings */
418 ppd
.paddr
= kernel_start
;
419 ppd
.vaddr
= kernel_start
;
420 ppd
.vaddr_end
= kernel_end
;
421 sme_map_range_encrypted(&ppd
);
423 /* Add decrypted, write-protected kernel (non-identity) mappings */
424 ppd
.paddr
= kernel_start
;
425 ppd
.vaddr
= kernel_start
+ decrypted_base
;
426 ppd
.vaddr_end
= kernel_end
+ decrypted_base
;
427 sme_map_range_decrypted_wp(&ppd
);
430 /* Add encrypted initrd (identity) mappings */
431 ppd
.paddr
= initrd_start
;
432 ppd
.vaddr
= initrd_start
;
433 ppd
.vaddr_end
= initrd_end
;
434 sme_map_range_encrypted(&ppd
);
436 * Add decrypted, write-protected initrd (non-identity) mappings
438 ppd
.paddr
= initrd_start
;
439 ppd
.vaddr
= initrd_start
+ decrypted_base
;
440 ppd
.vaddr_end
= initrd_end
+ decrypted_base
;
441 sme_map_range_decrypted_wp(&ppd
);
444 /* Add decrypted workarea mappings to both kernel mappings */
445 ppd
.paddr
= workarea_start
;
446 ppd
.vaddr
= workarea_start
;
447 ppd
.vaddr_end
= workarea_end
;
448 sme_map_range_decrypted(&ppd
);
450 ppd
.paddr
= workarea_start
;
451 ppd
.vaddr
= workarea_start
+ decrypted_base
;
452 ppd
.vaddr_end
= workarea_end
+ decrypted_base
;
453 sme_map_range_decrypted(&ppd
);
455 /* Perform the encryption */
456 sme_encrypt_execute(kernel_start
, kernel_start
+ decrypted_base
,
457 kernel_len
, workarea_start
, (unsigned long)ppd
.pgd
);
460 sme_encrypt_execute(initrd_start
, initrd_start
+ decrypted_base
,
461 initrd_len
, workarea_start
,
462 (unsigned long)ppd
.pgd
);
465 * At this point we are running encrypted. Remove the mappings for
466 * the decrypted areas - all that is needed for this is to remove
467 * the PGD entry/entries.
469 ppd
.vaddr
= kernel_start
+ decrypted_base
;
470 ppd
.vaddr_end
= kernel_end
+ decrypted_base
;
474 ppd
.vaddr
= initrd_start
+ decrypted_base
;
475 ppd
.vaddr_end
= initrd_end
+ decrypted_base
;
479 ppd
.vaddr
= workarea_start
+ decrypted_base
;
480 ppd
.vaddr_end
= workarea_end
+ decrypted_base
;
483 /* Flush the TLB - no globals so cr3 is enough */
484 native_write_cr3(__native_read_cr3());
487 void __init
sme_enable(struct boot_params
*bp
)
489 const char *cmdline_ptr
, *cmdline_arg
, *cmdline_on
, *cmdline_off
;
490 unsigned int eax
, ebx
, ecx
, edx
;
491 unsigned long feature_mask
;
492 bool active_by_default
;
493 unsigned long me_mask
;
497 /* Check for the SME/SEV support leaf */
500 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
501 if (eax
< 0x8000001f)
504 #define AMD_SME_BIT BIT(0)
505 #define AMD_SEV_BIT BIT(1)
507 * Set the feature mask (SME or SEV) based on whether we are
508 * running under a hypervisor.
512 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
513 feature_mask
= (ecx
& BIT(31)) ? AMD_SEV_BIT
: AMD_SME_BIT
;
516 * Check for the SME/SEV feature:
517 * CPUID Fn8000_001F[EAX]
518 * - Bit 0 - Secure Memory Encryption support
519 * - Bit 1 - Secure Encrypted Virtualization support
520 * CPUID Fn8000_001F[EBX]
521 * - Bits 5:0 - Pagetable bit position used to indicate encryption
525 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
526 if (!(eax
& feature_mask
))
529 me_mask
= 1UL << (ebx
& 0x3f);
531 /* Check if memory encryption is enabled */
532 if (feature_mask
== AMD_SME_BIT
) {
533 /* For SME, check the SYSCFG MSR */
534 msr
= __rdmsr(MSR_K8_SYSCFG
);
535 if (!(msr
& MSR_K8_SYSCFG_MEM_ENCRYPT
))
538 /* For SEV, check the SEV MSR */
539 msr
= __rdmsr(MSR_AMD64_SEV
);
540 if (!(msr
& MSR_AMD64_SEV_ENABLED
))
543 /* SEV state cannot be controlled by a command line option */
544 sme_me_mask
= me_mask
;
546 physical_mask
&= ~sme_me_mask
;
551 * Fixups have not been applied to phys_base yet and we're running
552 * identity mapped, so we must obtain the address to the SME command
553 * line argument data using rip-relative addressing.
555 asm ("lea sme_cmdline_arg(%%rip), %0"
557 : "p" (sme_cmdline_arg
));
558 asm ("lea sme_cmdline_on(%%rip), %0"
560 : "p" (sme_cmdline_on
));
561 asm ("lea sme_cmdline_off(%%rip), %0"
563 : "p" (sme_cmdline_off
));
565 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
))
566 active_by_default
= true;
568 active_by_default
= false;
570 cmdline_ptr
= (const char *)((u64
)bp
->hdr
.cmd_line_ptr
|
571 ((u64
)bp
->ext_cmd_line_ptr
<< 32));
573 cmdline_find_option(cmdline_ptr
, cmdline_arg
, buffer
, sizeof(buffer
));
575 if (!strncmp(buffer
, cmdline_on
, sizeof(buffer
)))
576 sme_me_mask
= me_mask
;
577 else if (!strncmp(buffer
, cmdline_off
, sizeof(buffer
)))
580 sme_me_mask
= active_by_default
? me_mask
: 0;
582 physical_mask
&= ~sme_me_mask
;