Linux 5.7.6
[linux/fpc-iii.git] / arch / x86 / mm / mem_encrypt_identity.c
blobe2b0e2ac07bb6366a61c3f86cf3cb315ca092ccf
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
10 #define DISABLE_BRANCH_PROFILING
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
17 #define __pa(x) ((unsigned long)(x))
18 #define __va(x) ((void *)((unsigned long)(x)))
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/mem_encrypt.h>
34 #include <asm/setup.h>
35 #include <asm/sections.h>
36 #include <asm/cmdline.h>
38 #include "mm_internal.h"
40 #define PGD_FLAGS _KERNPG_TABLE_NOENC
41 #define P4D_FLAGS _KERNPG_TABLE_NOENC
42 #define PUD_FLAGS _KERNPG_TABLE_NOENC
43 #define PMD_FLAGS _KERNPG_TABLE_NOENC
45 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
47 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
48 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
49 (_PAGE_PAT | _PAGE_PWT))
51 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
53 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
55 #define PTE_FLAGS_DEC PTE_FLAGS
56 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
57 (_PAGE_PAT | _PAGE_PWT))
59 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
61 struct sme_populate_pgd_data {
62 void *pgtable_area;
63 pgd_t *pgd;
65 pmdval_t pmd_flags;
66 pteval_t pte_flags;
67 unsigned long paddr;
69 unsigned long vaddr;
70 unsigned long vaddr_end;
74 * This work area lives in the .init.scratch section, which lives outside of
75 * the kernel proper. It is sized to hold the intermediate copy buffer and
76 * more than enough pagetable pages.
78 * By using this section, the kernel can be encrypted in place and it
79 * avoids any possibility of boot parameters or initramfs images being
80 * placed such that the in-place encryption logic overwrites them. This
81 * section is 2MB aligned to allow for simple pagetable setup using only
82 * PMD entries (see vmlinux.lds.S).
84 static char sme_workarea[2 * PMD_PAGE_SIZE] __section(.init.scratch);
86 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
87 static char sme_cmdline_on[] __initdata = "on";
88 static char sme_cmdline_off[] __initdata = "off";
90 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
92 unsigned long pgd_start, pgd_end, pgd_size;
93 pgd_t *pgd_p;
95 pgd_start = ppd->vaddr & PGDIR_MASK;
96 pgd_end = ppd->vaddr_end & PGDIR_MASK;
98 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
100 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
102 memset(pgd_p, 0, pgd_size);
105 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
107 pgd_t *pgd;
108 p4d_t *p4d;
109 pud_t *pud;
110 pmd_t *pmd;
112 pgd = ppd->pgd + pgd_index(ppd->vaddr);
113 if (pgd_none(*pgd)) {
114 p4d = ppd->pgtable_area;
115 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
116 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
117 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
120 p4d = p4d_offset(pgd, ppd->vaddr);
121 if (p4d_none(*p4d)) {
122 pud = ppd->pgtable_area;
123 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
124 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
125 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
128 pud = pud_offset(p4d, ppd->vaddr);
129 if (pud_none(*pud)) {
130 pmd = ppd->pgtable_area;
131 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
132 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
133 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
136 if (pud_large(*pud))
137 return NULL;
139 return pud;
142 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
144 pud_t *pud;
145 pmd_t *pmd;
147 pud = sme_prepare_pgd(ppd);
148 if (!pud)
149 return;
151 pmd = pmd_offset(pud, ppd->vaddr);
152 if (pmd_large(*pmd))
153 return;
155 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
158 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
160 pud_t *pud;
161 pmd_t *pmd;
162 pte_t *pte;
164 pud = sme_prepare_pgd(ppd);
165 if (!pud)
166 return;
168 pmd = pmd_offset(pud, ppd->vaddr);
169 if (pmd_none(*pmd)) {
170 pte = ppd->pgtable_area;
171 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
172 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
173 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
176 if (pmd_large(*pmd))
177 return;
179 pte = pte_offset_map(pmd, ppd->vaddr);
180 if (pte_none(*pte))
181 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
184 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
186 while (ppd->vaddr < ppd->vaddr_end) {
187 sme_populate_pgd_large(ppd);
189 ppd->vaddr += PMD_PAGE_SIZE;
190 ppd->paddr += PMD_PAGE_SIZE;
194 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
196 while (ppd->vaddr < ppd->vaddr_end) {
197 sme_populate_pgd(ppd);
199 ppd->vaddr += PAGE_SIZE;
200 ppd->paddr += PAGE_SIZE;
204 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
205 pmdval_t pmd_flags, pteval_t pte_flags)
207 unsigned long vaddr_end;
209 ppd->pmd_flags = pmd_flags;
210 ppd->pte_flags = pte_flags;
212 /* Save original end value since we modify the struct value */
213 vaddr_end = ppd->vaddr_end;
215 /* If start is not 2MB aligned, create PTE entries */
216 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
217 __sme_map_range_pte(ppd);
219 /* Create PMD entries */
220 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
221 __sme_map_range_pmd(ppd);
223 /* If end is not 2MB aligned, create PTE entries */
224 ppd->vaddr_end = vaddr_end;
225 __sme_map_range_pte(ppd);
228 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
230 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
233 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
235 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
238 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
240 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
243 static unsigned long __init sme_pgtable_calc(unsigned long len)
245 unsigned long entries = 0, tables = 0;
248 * Perform a relatively simplistic calculation of the pagetable
249 * entries that are needed. Those mappings will be covered mostly
250 * by 2MB PMD entries so we can conservatively calculate the required
251 * number of P4D, PUD and PMD structures needed to perform the
252 * mappings. For mappings that are not 2MB aligned, PTE mappings
253 * would be needed for the start and end portion of the address range
254 * that fall outside of the 2MB alignment. This results in, at most,
255 * two extra pages to hold PTE entries for each range that is mapped.
256 * Incrementing the count for each covers the case where the addresses
257 * cross entries.
260 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
261 if (PTRS_PER_P4D > 1)
262 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
263 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
264 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
265 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
268 * Now calculate the added pagetable structures needed to populate
269 * the new pagetables.
272 if (PTRS_PER_P4D > 1)
273 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
274 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
275 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
277 return entries + tables;
280 void __init sme_encrypt_kernel(struct boot_params *bp)
282 unsigned long workarea_start, workarea_end, workarea_len;
283 unsigned long execute_start, execute_end, execute_len;
284 unsigned long kernel_start, kernel_end, kernel_len;
285 unsigned long initrd_start, initrd_end, initrd_len;
286 struct sme_populate_pgd_data ppd;
287 unsigned long pgtable_area_len;
288 unsigned long decrypted_base;
290 if (!sme_active())
291 return;
294 * Prepare for encrypting the kernel and initrd by building new
295 * pagetables with the necessary attributes needed to encrypt the
296 * kernel in place.
298 * One range of virtual addresses will map the memory occupied
299 * by the kernel and initrd as encrypted.
301 * Another range of virtual addresses will map the memory occupied
302 * by the kernel and initrd as decrypted and write-protected.
304 * The use of write-protect attribute will prevent any of the
305 * memory from being cached.
308 /* Physical addresses gives us the identity mapped virtual addresses */
309 kernel_start = __pa_symbol(_text);
310 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
311 kernel_len = kernel_end - kernel_start;
313 initrd_start = 0;
314 initrd_end = 0;
315 initrd_len = 0;
316 #ifdef CONFIG_BLK_DEV_INITRD
317 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
318 ((unsigned long)bp->ext_ramdisk_size << 32);
319 if (initrd_len) {
320 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
321 ((unsigned long)bp->ext_ramdisk_image << 32);
322 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
323 initrd_len = initrd_end - initrd_start;
325 #endif
328 * We're running identity mapped, so we must obtain the address to the
329 * SME encryption workarea using rip-relative addressing.
331 asm ("lea sme_workarea(%%rip), %0"
332 : "=r" (workarea_start)
333 : "p" (sme_workarea));
336 * Calculate required number of workarea bytes needed:
337 * executable encryption area size:
338 * stack page (PAGE_SIZE)
339 * encryption routine page (PAGE_SIZE)
340 * intermediate copy buffer (PMD_PAGE_SIZE)
341 * pagetable structures for the encryption of the kernel
342 * pagetable structures for workarea (in case not currently mapped)
344 execute_start = workarea_start;
345 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
346 execute_len = execute_end - execute_start;
349 * One PGD for both encrypted and decrypted mappings and a set of
350 * PUDs and PMDs for each of the encrypted and decrypted mappings.
352 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
353 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
354 if (initrd_len)
355 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
357 /* PUDs and PMDs needed in the current pagetables for the workarea */
358 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
361 * The total workarea includes the executable encryption area and
362 * the pagetable area. The start of the workarea is already 2MB
363 * aligned, align the end of the workarea on a 2MB boundary so that
364 * we don't try to create/allocate PTE entries from the workarea
365 * before it is mapped.
367 workarea_len = execute_len + pgtable_area_len;
368 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
371 * Set the address to the start of where newly created pagetable
372 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
373 * structures are created when the workarea is added to the current
374 * pagetables and when the new encrypted and decrypted kernel
375 * mappings are populated.
377 ppd.pgtable_area = (void *)execute_end;
380 * Make sure the current pagetable structure has entries for
381 * addressing the workarea.
383 ppd.pgd = (pgd_t *)native_read_cr3_pa();
384 ppd.paddr = workarea_start;
385 ppd.vaddr = workarea_start;
386 ppd.vaddr_end = workarea_end;
387 sme_map_range_decrypted(&ppd);
389 /* Flush the TLB - no globals so cr3 is enough */
390 native_write_cr3(__native_read_cr3());
393 * A new pagetable structure is being built to allow for the kernel
394 * and initrd to be encrypted. It starts with an empty PGD that will
395 * then be populated with new PUDs and PMDs as the encrypted and
396 * decrypted kernel mappings are created.
398 ppd.pgd = ppd.pgtable_area;
399 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
400 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
403 * A different PGD index/entry must be used to get different
404 * pagetable entries for the decrypted mapping. Choose the next
405 * PGD index and convert it to a virtual address to be used as
406 * the base of the mapping.
408 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
409 if (initrd_len) {
410 unsigned long check_base;
412 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
413 decrypted_base = max(decrypted_base, check_base);
415 decrypted_base <<= PGDIR_SHIFT;
417 /* Add encrypted kernel (identity) mappings */
418 ppd.paddr = kernel_start;
419 ppd.vaddr = kernel_start;
420 ppd.vaddr_end = kernel_end;
421 sme_map_range_encrypted(&ppd);
423 /* Add decrypted, write-protected kernel (non-identity) mappings */
424 ppd.paddr = kernel_start;
425 ppd.vaddr = kernel_start + decrypted_base;
426 ppd.vaddr_end = kernel_end + decrypted_base;
427 sme_map_range_decrypted_wp(&ppd);
429 if (initrd_len) {
430 /* Add encrypted initrd (identity) mappings */
431 ppd.paddr = initrd_start;
432 ppd.vaddr = initrd_start;
433 ppd.vaddr_end = initrd_end;
434 sme_map_range_encrypted(&ppd);
436 * Add decrypted, write-protected initrd (non-identity) mappings
438 ppd.paddr = initrd_start;
439 ppd.vaddr = initrd_start + decrypted_base;
440 ppd.vaddr_end = initrd_end + decrypted_base;
441 sme_map_range_decrypted_wp(&ppd);
444 /* Add decrypted workarea mappings to both kernel mappings */
445 ppd.paddr = workarea_start;
446 ppd.vaddr = workarea_start;
447 ppd.vaddr_end = workarea_end;
448 sme_map_range_decrypted(&ppd);
450 ppd.paddr = workarea_start;
451 ppd.vaddr = workarea_start + decrypted_base;
452 ppd.vaddr_end = workarea_end + decrypted_base;
453 sme_map_range_decrypted(&ppd);
455 /* Perform the encryption */
456 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
457 kernel_len, workarea_start, (unsigned long)ppd.pgd);
459 if (initrd_len)
460 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
461 initrd_len, workarea_start,
462 (unsigned long)ppd.pgd);
465 * At this point we are running encrypted. Remove the mappings for
466 * the decrypted areas - all that is needed for this is to remove
467 * the PGD entry/entries.
469 ppd.vaddr = kernel_start + decrypted_base;
470 ppd.vaddr_end = kernel_end + decrypted_base;
471 sme_clear_pgd(&ppd);
473 if (initrd_len) {
474 ppd.vaddr = initrd_start + decrypted_base;
475 ppd.vaddr_end = initrd_end + decrypted_base;
476 sme_clear_pgd(&ppd);
479 ppd.vaddr = workarea_start + decrypted_base;
480 ppd.vaddr_end = workarea_end + decrypted_base;
481 sme_clear_pgd(&ppd);
483 /* Flush the TLB - no globals so cr3 is enough */
484 native_write_cr3(__native_read_cr3());
487 void __init sme_enable(struct boot_params *bp)
489 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
490 unsigned int eax, ebx, ecx, edx;
491 unsigned long feature_mask;
492 bool active_by_default;
493 unsigned long me_mask;
494 char buffer[16];
495 u64 msr;
497 /* Check for the SME/SEV support leaf */
498 eax = 0x80000000;
499 ecx = 0;
500 native_cpuid(&eax, &ebx, &ecx, &edx);
501 if (eax < 0x8000001f)
502 return;
504 #define AMD_SME_BIT BIT(0)
505 #define AMD_SEV_BIT BIT(1)
507 * Set the feature mask (SME or SEV) based on whether we are
508 * running under a hypervisor.
510 eax = 1;
511 ecx = 0;
512 native_cpuid(&eax, &ebx, &ecx, &edx);
513 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
516 * Check for the SME/SEV feature:
517 * CPUID Fn8000_001F[EAX]
518 * - Bit 0 - Secure Memory Encryption support
519 * - Bit 1 - Secure Encrypted Virtualization support
520 * CPUID Fn8000_001F[EBX]
521 * - Bits 5:0 - Pagetable bit position used to indicate encryption
523 eax = 0x8000001f;
524 ecx = 0;
525 native_cpuid(&eax, &ebx, &ecx, &edx);
526 if (!(eax & feature_mask))
527 return;
529 me_mask = 1UL << (ebx & 0x3f);
531 /* Check if memory encryption is enabled */
532 if (feature_mask == AMD_SME_BIT) {
533 /* For SME, check the SYSCFG MSR */
534 msr = __rdmsr(MSR_K8_SYSCFG);
535 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
536 return;
537 } else {
538 /* For SEV, check the SEV MSR */
539 msr = __rdmsr(MSR_AMD64_SEV);
540 if (!(msr & MSR_AMD64_SEV_ENABLED))
541 return;
543 /* SEV state cannot be controlled by a command line option */
544 sme_me_mask = me_mask;
545 sev_enabled = true;
546 physical_mask &= ~sme_me_mask;
547 return;
551 * Fixups have not been applied to phys_base yet and we're running
552 * identity mapped, so we must obtain the address to the SME command
553 * line argument data using rip-relative addressing.
555 asm ("lea sme_cmdline_arg(%%rip), %0"
556 : "=r" (cmdline_arg)
557 : "p" (sme_cmdline_arg));
558 asm ("lea sme_cmdline_on(%%rip), %0"
559 : "=r" (cmdline_on)
560 : "p" (sme_cmdline_on));
561 asm ("lea sme_cmdline_off(%%rip), %0"
562 : "=r" (cmdline_off)
563 : "p" (sme_cmdline_off));
565 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
566 active_by_default = true;
567 else
568 active_by_default = false;
570 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
571 ((u64)bp->ext_cmd_line_ptr << 32));
573 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
575 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
576 sme_me_mask = me_mask;
577 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
578 sme_me_mask = 0;
579 else
580 sme_me_mask = active_by_default ? me_mask : 0;
582 physical_mask &= ~sme_me_mask;