2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per-CPU nohz control structure
36 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
47 static ktime_t last_jiffies_update
;
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now
)
54 unsigned long ticks
= 0;
58 * Do a quick check without holding jiffies_lock:
60 delta
= ktime_sub(now
, last_jiffies_update
);
61 if (delta
< tick_period
)
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock
);
67 delta
= ktime_sub(now
, last_jiffies_update
);
68 if (delta
>= tick_period
) {
70 delta
= ktime_sub(delta
, tick_period
);
71 last_jiffies_update
= ktime_add(last_jiffies_update
,
74 /* Slow path for long timeouts */
75 if (unlikely(delta
>= tick_period
)) {
76 s64 incr
= ktime_to_ns(tick_period
);
78 ticks
= ktime_divns(delta
, incr
);
80 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
88 write_sequnlock(&jiffies_lock
);
91 write_sequnlock(&jiffies_lock
);
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t
tick_init_jiffy_update(void)
102 write_seqlock(&jiffies_lock
);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update
== 0)
105 last_jiffies_update
= tick_next_period
;
106 period
= last_jiffies_update
;
107 write_sequnlock(&jiffies_lock
);
112 static void tick_sched_do_timer(ktime_t now
)
114 int cpu
= smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
124 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
125 && !tick_nohz_full_cpu(cpu
))
126 tick_do_timer_cpu
= cpu
;
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu
== cpu
)
131 tick_do_update_jiffies64(now
);
134 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts
->tick_stopped
) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current
))
151 update_process_times(user_mode(regs
));
152 profile_tick(CPU_PROFILING
);
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask
;
158 cpumask_var_t housekeeping_mask
;
159 bool tick_nohz_full_running
;
160 static atomic_t tick_dep_mask
;
162 static bool check_tick_dependency(atomic_t
*dep
)
164 int val
= atomic_read(dep
);
166 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
171 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
176 if (val
& TICK_DEP_MASK_SCHED
) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
181 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
189 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
191 WARN_ON_ONCE(!irqs_disabled());
193 if (unlikely(!cpu_online(cpu
)))
196 if (check_tick_dependency(&tick_dep_mask
))
199 if (check_tick_dependency(&ts
->tick_dep_mask
))
202 if (check_tick_dependency(¤t
->tick_dep_mask
))
205 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
211 static void nohz_full_kick_func(struct irq_work
*work
)
213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
216 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
217 .func
= nohz_full_kick_func
,
221 * Kick this CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
226 static void tick_nohz_full_kick(void)
228 if (!tick_nohz_full_cpu(smp_processor_id()))
231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
235 * Kick the CPU if it's full dynticks in order to force it to
236 * re-evaluate its dependency on the tick and restart it if necessary.
238 void tick_nohz_full_kick_cpu(int cpu
)
240 if (!tick_nohz_full_cpu(cpu
))
243 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
247 * Kick all full dynticks CPUs in order to force these to re-evaluate
248 * their dependency on the tick and restart it if necessary.
250 static void tick_nohz_full_kick_all(void)
254 if (!tick_nohz_full_running
)
258 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
259 tick_nohz_full_kick_cpu(cpu
);
263 static void tick_nohz_dep_set_all(atomic_t
*dep
,
264 enum tick_dep_bits bit
)
268 prev
= atomic_fetch_or(BIT(bit
), dep
);
270 tick_nohz_full_kick_all();
274 * Set a global tick dependency. Used by perf events that rely on freq and
277 void tick_nohz_dep_set(enum tick_dep_bits bit
)
279 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
282 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
284 atomic_andnot(BIT(bit
), &tick_dep_mask
);
288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289 * manage events throttling.
291 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
294 struct tick_sched
*ts
;
296 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
298 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
301 /* Perf needs local kick that is NMI safe */
302 if (cpu
== smp_processor_id()) {
303 tick_nohz_full_kick();
305 /* Remote irq work not NMI-safe */
306 if (!WARN_ON_ONCE(in_nmi()))
307 tick_nohz_full_kick_cpu(cpu
);
313 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
315 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
317 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
324 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
327 * We could optimize this with just kicking the target running the task
328 * if that noise matters for nohz full users.
330 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
333 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
335 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340 * per process timers.
342 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
344 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
347 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
349 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
353 * Re-evaluate the need for the tick as we switch the current task.
354 * It might need the tick due to per task/process properties:
355 * perf events, posix CPU timers, ...
357 void __tick_nohz_task_switch(void)
360 struct tick_sched
*ts
;
362 local_irq_save(flags
);
364 if (!tick_nohz_full_cpu(smp_processor_id()))
367 ts
= this_cpu_ptr(&tick_cpu_sched
);
369 if (ts
->tick_stopped
) {
370 if (atomic_read(¤t
->tick_dep_mask
) ||
371 atomic_read(¤t
->signal
->tick_dep_mask
))
372 tick_nohz_full_kick();
375 local_irq_restore(flags
);
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init
tick_nohz_full_setup(char *str
)
381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
382 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 free_bootmem_cpumask_var(tick_nohz_full_mask
);
387 tick_nohz_full_running
= true;
391 __setup("nohz_full=", tick_nohz_full_setup
);
393 static int tick_nohz_cpu_down(unsigned int cpu
)
396 * The boot CPU handles housekeeping duty (unbound timers,
397 * workqueues, timekeeping, ...) on behalf of full dynticks
398 * CPUs. It must remain online when nohz full is enabled.
400 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
405 static int tick_nohz_init_all(void)
409 #ifdef CONFIG_NO_HZ_FULL_ALL
410 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
411 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 cpumask_setall(tick_nohz_full_mask
);
416 tick_nohz_full_running
= true;
421 void __init
tick_nohz_init(void)
425 if (!tick_nohz_full_running
) {
426 if (tick_nohz_init_all() < 0)
430 if (!alloc_cpumask_var(&housekeeping_mask
, GFP_KERNEL
)) {
431 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
432 cpumask_clear(tick_nohz_full_mask
);
433 tick_nohz_full_running
= false;
438 * Full dynticks uses irq work to drive the tick rescheduling on safe
439 * locking contexts. But then we need irq work to raise its own
440 * interrupts to avoid circular dependency on the tick
442 if (!arch_irq_work_has_interrupt()) {
443 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 cpumask_clear(tick_nohz_full_mask
);
445 cpumask_copy(housekeeping_mask
, cpu_possible_mask
);
446 tick_nohz_full_running
= false;
450 cpu
= smp_processor_id();
452 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
453 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
455 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
458 cpumask_andnot(housekeeping_mask
,
459 cpu_possible_mask
, tick_nohz_full_mask
);
461 for_each_cpu(cpu
, tick_nohz_full_mask
)
462 context_tracking_cpu_set(cpu
);
464 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
465 "kernel/nohz:predown", NULL
,
468 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
469 cpumask_pr_args(tick_nohz_full_mask
));
472 * We need at least one CPU to handle housekeeping work such
473 * as timekeeping, unbound timers, workqueues, ...
475 WARN_ON_ONCE(cpumask_empty(housekeeping_mask
));
480 * NOHZ - aka dynamic tick functionality
482 #ifdef CONFIG_NO_HZ_COMMON
486 bool tick_nohz_enabled __read_mostly
= true;
487 unsigned long tick_nohz_active __read_mostly
;
489 * Enable / Disable tickless mode
491 static int __init
setup_tick_nohz(char *str
)
493 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
496 __setup("nohz=", setup_tick_nohz
);
498 int tick_nohz_tick_stopped(void)
500 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
506 * Called from interrupt entry when the CPU was idle
508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 * value. We do this unconditionally on any CPU, as we don't know whether the
511 * CPU, which has the update task assigned is in a long sleep.
513 static void tick_nohz_update_jiffies(ktime_t now
)
517 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
519 local_irq_save(flags
);
520 tick_do_update_jiffies64(now
);
521 local_irq_restore(flags
);
523 touch_softlockup_watchdog_sched();
527 * Updates the per-CPU time idle statistics counters
530 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
534 if (ts
->idle_active
) {
535 delta
= ktime_sub(now
, ts
->idle_entrytime
);
536 if (nr_iowait_cpu(cpu
) > 0)
537 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
539 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
540 ts
->idle_entrytime
= now
;
543 if (last_update_time
)
544 *last_update_time
= ktime_to_us(now
);
548 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
550 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
553 sched_clock_idle_wakeup_event(0);
556 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
558 ktime_t now
= ktime_get();
560 ts
->idle_entrytime
= now
;
562 sched_clock_idle_sleep_event();
567 * get_cpu_idle_time_us - get the total idle time of a CPU
568 * @cpu: CPU number to query
569 * @last_update_time: variable to store update time in. Do not update
572 * Return the cumulative idle time (since boot) for a given
573 * CPU, in microseconds.
575 * This time is measured via accounting rather than sampling,
576 * and is as accurate as ktime_get() is.
578 * This function returns -1 if NOHZ is not enabled.
580 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
582 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
585 if (!tick_nohz_active
)
589 if (last_update_time
) {
590 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
591 idle
= ts
->idle_sleeptime
;
593 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
594 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
596 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
598 idle
= ts
->idle_sleeptime
;
602 return ktime_to_us(idle
);
605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
609 * @cpu: CPU number to query
610 * @last_update_time: variable to store update time in. Do not update
613 * Return the cumulative iowait time (since boot) for a given
614 * CPU, in microseconds.
616 * This time is measured via accounting rather than sampling,
617 * and is as accurate as ktime_get() is.
619 * This function returns -1 if NOHZ is not enabled.
621 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
623 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
626 if (!tick_nohz_active
)
630 if (last_update_time
) {
631 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
632 iowait
= ts
->iowait_sleeptime
;
634 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
635 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
637 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
639 iowait
= ts
->iowait_sleeptime
;
643 return ktime_to_us(iowait
);
645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
647 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
649 hrtimer_cancel(&ts
->sched_timer
);
650 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
652 /* Forward the time to expire in the future */
653 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
655 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
656 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
658 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
661 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
662 ktime_t now
, int cpu
)
664 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
665 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
666 unsigned long seq
, basejiff
;
669 /* Read jiffies and the time when jiffies were updated last */
671 seq
= read_seqbegin(&jiffies_lock
);
672 basemono
= last_jiffies_update
;
674 } while (read_seqretry(&jiffies_lock
, seq
));
675 ts
->last_jiffies
= basejiff
;
677 if (rcu_needs_cpu(basemono
, &next_rcu
) ||
678 arch_needs_cpu() || irq_work_needs_cpu()) {
679 next_tick
= basemono
+ TICK_NSEC
;
682 * Get the next pending timer. If high resolution
683 * timers are enabled this only takes the timer wheel
684 * timers into account. If high resolution timers are
685 * disabled this also looks at the next expiring
688 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
689 ts
->next_timer
= next_tmr
;
690 /* Take the next rcu event into account */
691 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
695 * If the tick is due in the next period, keep it ticking or
696 * force prod the timer.
698 delta
= next_tick
- basemono
;
699 if (delta
<= (u64
)TICK_NSEC
) {
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
711 if (!ts
->tick_stopped
)
715 * If, OTOH, we did stop it, but there's a pending (expired)
716 * timer reprogram the timer hardware to fire now.
718 * We will not restart the tick proper, just prod the timer
719 * hardware into firing an interrupt to process the pending
720 * timers. Just like tick_irq_exit() will not restart the tick
721 * for 'normal' interrupts.
723 * Only once we exit the idle loop will we re-enable the tick,
724 * see tick_nohz_idle_exit().
727 tick_nohz_restart(ts
, now
);
733 * If this CPU is the one which updates jiffies, then give up
734 * the assignment and let it be taken by the CPU which runs
735 * the tick timer next, which might be this CPU as well. If we
736 * don't drop this here the jiffies might be stale and
737 * do_timer() never invoked. Keep track of the fact that it
738 * was the one which had the do_timer() duty last. If this CPU
739 * is the one which had the do_timer() duty last, we limit the
740 * sleep time to the timekeeping max_deferment value.
741 * Otherwise we can sleep as long as we want.
743 delta
= timekeeping_max_deferment();
744 if (cpu
== tick_do_timer_cpu
) {
745 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
746 ts
->do_timer_last
= 1;
747 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
749 ts
->do_timer_last
= 0;
750 } else if (!ts
->do_timer_last
) {
754 #ifdef CONFIG_NO_HZ_FULL
755 /* Limit the tick delta to the maximum scheduler deferment */
757 delta
= min(delta
, scheduler_tick_max_deferment());
760 /* Calculate the next expiry time */
761 if (delta
< (KTIME_MAX
- basemono
))
762 expires
= basemono
+ delta
;
766 expires
= min_t(u64
, expires
, next_tick
);
769 /* Skip reprogram of event if its not changed */
770 if (ts
->tick_stopped
&& (expires
== dev
->next_event
))
774 * nohz_stop_sched_tick can be called several times before
775 * the nohz_restart_sched_tick is called. This happens when
776 * interrupts arrive which do not cause a reschedule. In the
777 * first call we save the current tick time, so we can restart
778 * the scheduler tick in nohz_restart_sched_tick.
780 if (!ts
->tick_stopped
) {
781 nohz_balance_enter_idle(cpu
);
782 calc_load_enter_idle();
783 cpu_load_update_nohz_start();
785 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
786 ts
->tick_stopped
= 1;
787 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
791 * If the expiration time == KTIME_MAX, then we simply stop
794 if (unlikely(expires
== KTIME_MAX
)) {
795 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
796 hrtimer_cancel(&ts
->sched_timer
);
800 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
801 hrtimer_start(&ts
->sched_timer
, tick
, HRTIMER_MODE_ABS_PINNED
);
803 tick_program_event(tick
, 1);
805 /* Update the estimated sleep length */
806 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
810 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
812 /* Update jiffies first */
813 tick_do_update_jiffies64(now
);
814 cpu_load_update_nohz_stop();
817 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
818 * the clock forward checks in the enqueue path:
822 calc_load_exit_idle();
823 touch_softlockup_watchdog_sched();
825 * Cancel the scheduled timer and restore the tick
827 ts
->tick_stopped
= 0;
828 ts
->idle_exittime
= now
;
830 tick_nohz_restart(ts
, now
);
833 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
835 #ifdef CONFIG_NO_HZ_FULL
836 int cpu
= smp_processor_id();
838 if (!tick_nohz_full_cpu(cpu
))
841 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
844 if (can_stop_full_tick(cpu
, ts
))
845 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
846 else if (ts
->tick_stopped
)
847 tick_nohz_restart_sched_tick(ts
, ktime_get());
851 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
854 * If this CPU is offline and it is the one which updates
855 * jiffies, then give up the assignment and let it be taken by
856 * the CPU which runs the tick timer next. If we don't drop
857 * this here the jiffies might be stale and do_timer() never
860 if (unlikely(!cpu_online(cpu
))) {
861 if (cpu
== tick_do_timer_cpu
)
862 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
866 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
867 ts
->sleep_length
= NSEC_PER_SEC
/ HZ
;
874 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
875 static int ratelimit
;
877 if (ratelimit
< 10 &&
878 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
879 pr_warn("NOHZ: local_softirq_pending %02x\n",
880 (unsigned int) local_softirq_pending());
886 if (tick_nohz_full_enabled()) {
888 * Keep the tick alive to guarantee timekeeping progression
889 * if there are full dynticks CPUs around
891 if (tick_do_timer_cpu
== cpu
)
894 * Boot safety: make sure the timekeeping duty has been
895 * assigned before entering dyntick-idle mode,
897 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
904 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
906 ktime_t now
, expires
;
907 int cpu
= smp_processor_id();
909 now
= tick_nohz_start_idle(ts
);
911 if (can_stop_idle_tick(cpu
, ts
)) {
912 int was_stopped
= ts
->tick_stopped
;
916 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
919 ts
->idle_expires
= expires
;
922 if (!was_stopped
&& ts
->tick_stopped
)
923 ts
->idle_jiffies
= ts
->last_jiffies
;
928 * tick_nohz_idle_enter - stop the idle tick from the idle task
930 * When the next event is more than a tick into the future, stop the idle tick
931 * Called when we start the idle loop.
933 * The arch is responsible of calling:
935 * - rcu_idle_enter() after its last use of RCU before the CPU is put
937 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
939 void tick_nohz_idle_enter(void)
941 struct tick_sched
*ts
;
943 WARN_ON_ONCE(irqs_disabled());
946 * Update the idle state in the scheduler domain hierarchy
947 * when tick_nohz_stop_sched_tick() is called from the idle loop.
948 * State will be updated to busy during the first busy tick after
951 set_cpu_sd_state_idle();
955 ts
= this_cpu_ptr(&tick_cpu_sched
);
957 __tick_nohz_idle_enter(ts
);
963 * tick_nohz_irq_exit - update next tick event from interrupt exit
965 * When an interrupt fires while we are idle and it doesn't cause
966 * a reschedule, it may still add, modify or delete a timer, enqueue
967 * an RCU callback, etc...
968 * So we need to re-calculate and reprogram the next tick event.
970 void tick_nohz_irq_exit(void)
972 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
975 __tick_nohz_idle_enter(ts
);
977 tick_nohz_full_update_tick(ts
);
981 * tick_nohz_get_sleep_length - return the length of the current sleep
983 * Called from power state control code with interrupts disabled
985 ktime_t
tick_nohz_get_sleep_length(void)
987 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
989 return ts
->sleep_length
;
992 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
994 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
997 if (vtime_accounting_cpu_enabled())
1000 * We stopped the tick in idle. Update process times would miss the
1001 * time we slept as update_process_times does only a 1 tick
1002 * accounting. Enforce that this is accounted to idle !
1004 ticks
= jiffies
- ts
->idle_jiffies
;
1006 * We might be one off. Do not randomly account a huge number of ticks!
1008 if (ticks
&& ticks
< LONG_MAX
)
1009 account_idle_ticks(ticks
);
1014 * tick_nohz_idle_exit - restart the idle tick from the idle task
1016 * Restart the idle tick when the CPU is woken up from idle
1017 * This also exit the RCU extended quiescent state. The CPU
1018 * can use RCU again after this function is called.
1020 void tick_nohz_idle_exit(void)
1022 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1025 local_irq_disable();
1027 WARN_ON_ONCE(!ts
->inidle
);
1031 if (ts
->idle_active
|| ts
->tick_stopped
)
1034 if (ts
->idle_active
)
1035 tick_nohz_stop_idle(ts
, now
);
1037 if (ts
->tick_stopped
) {
1038 tick_nohz_restart_sched_tick(ts
, now
);
1039 tick_nohz_account_idle_ticks(ts
);
1046 * The nohz low res interrupt handler
1048 static void tick_nohz_handler(struct clock_event_device
*dev
)
1050 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1051 struct pt_regs
*regs
= get_irq_regs();
1052 ktime_t now
= ktime_get();
1054 dev
->next_event
= KTIME_MAX
;
1056 tick_sched_do_timer(now
);
1057 tick_sched_handle(ts
, regs
);
1059 /* No need to reprogram if we are running tickless */
1060 if (unlikely(ts
->tick_stopped
))
1063 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1064 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1067 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1069 if (!tick_nohz_enabled
)
1071 ts
->nohz_mode
= mode
;
1072 /* One update is enough */
1073 if (!test_and_set_bit(0, &tick_nohz_active
))
1074 timers_update_migration(true);
1078 * tick_nohz_switch_to_nohz - switch to nohz mode
1080 static void tick_nohz_switch_to_nohz(void)
1082 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1085 if (!tick_nohz_enabled
)
1088 if (tick_switch_to_oneshot(tick_nohz_handler
))
1092 * Recycle the hrtimer in ts, so we can share the
1093 * hrtimer_forward with the highres code.
1095 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1096 /* Get the next period */
1097 next
= tick_init_jiffy_update();
1099 hrtimer_set_expires(&ts
->sched_timer
, next
);
1100 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1101 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1102 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1105 static inline void tick_nohz_irq_enter(void)
1107 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1110 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1113 if (ts
->idle_active
)
1114 tick_nohz_stop_idle(ts
, now
);
1115 if (ts
->tick_stopped
)
1116 tick_nohz_update_jiffies(now
);
1121 static inline void tick_nohz_switch_to_nohz(void) { }
1122 static inline void tick_nohz_irq_enter(void) { }
1123 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1125 #endif /* CONFIG_NO_HZ_COMMON */
1128 * Called from irq_enter to notify about the possible interruption of idle()
1130 void tick_irq_enter(void)
1132 tick_check_oneshot_broadcast_this_cpu();
1133 tick_nohz_irq_enter();
1137 * High resolution timer specific code
1139 #ifdef CONFIG_HIGH_RES_TIMERS
1141 * We rearm the timer until we get disabled by the idle code.
1142 * Called with interrupts disabled.
1144 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1146 struct tick_sched
*ts
=
1147 container_of(timer
, struct tick_sched
, sched_timer
);
1148 struct pt_regs
*regs
= get_irq_regs();
1149 ktime_t now
= ktime_get();
1151 tick_sched_do_timer(now
);
1154 * Do not call, when we are not in irq context and have
1155 * no valid regs pointer
1158 tick_sched_handle(ts
, regs
);
1160 /* No need to reprogram if we are in idle or full dynticks mode */
1161 if (unlikely(ts
->tick_stopped
))
1162 return HRTIMER_NORESTART
;
1164 hrtimer_forward(timer
, now
, tick_period
);
1166 return HRTIMER_RESTART
;
1169 static int sched_skew_tick
;
1171 static int __init
skew_tick(char *str
)
1173 get_option(&str
, &sched_skew_tick
);
1177 early_param("skew_tick", skew_tick
);
1180 * tick_setup_sched_timer - setup the tick emulation timer
1182 void tick_setup_sched_timer(void)
1184 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1185 ktime_t now
= ktime_get();
1188 * Emulate tick processing via per-CPU hrtimers:
1190 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1191 ts
->sched_timer
.function
= tick_sched_timer
;
1193 /* Get the next period (per-CPU) */
1194 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1196 /* Offset the tick to avert jiffies_lock contention. */
1197 if (sched_skew_tick
) {
1198 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1199 do_div(offset
, num_possible_cpus());
1200 offset
*= smp_processor_id();
1201 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1204 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1205 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1206 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1208 #endif /* HIGH_RES_TIMERS */
1210 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1211 void tick_cancel_sched_timer(int cpu
)
1213 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1215 # ifdef CONFIG_HIGH_RES_TIMERS
1216 if (ts
->sched_timer
.base
)
1217 hrtimer_cancel(&ts
->sched_timer
);
1220 memset(ts
, 0, sizeof(*ts
));
1225 * Async notification about clocksource changes
1227 void tick_clock_notify(void)
1231 for_each_possible_cpu(cpu
)
1232 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1236 * Async notification about clock event changes
1238 void tick_oneshot_notify(void)
1240 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1242 set_bit(0, &ts
->check_clocks
);
1246 * Check, if a change happened, which makes oneshot possible.
1248 * Called cyclic from the hrtimer softirq (driven by the timer
1249 * softirq) allow_nohz signals, that we can switch into low-res nohz
1250 * mode, because high resolution timers are disabled (either compile
1251 * or runtime). Called with interrupts disabled.
1253 int tick_check_oneshot_change(int allow_nohz
)
1255 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1257 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1260 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1263 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1269 tick_nohz_switch_to_nohz();