staging: greybus: loopback: use gb_loopback_async_wait_all don't spin
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blob2c115fdab39765f4ecbeaade9fa74008e711d08a
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per-CPU nohz control structure
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
47 static ktime_t last_jiffies_update;
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
55 ktime_t delta;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta < tick_period)
62 return;
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta >= tick_period) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
74 /* Slow path for long timeouts */
75 if (unlikely(delta >= tick_period)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
83 do_timer(++ticks);
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
100 ktime_t period;
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
154 #endif
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
162 static bool check_tick_dependency(atomic_t *dep)
164 int val = atomic_read(dep);
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 return true;
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 return true;
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 return true;
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 return true;
186 return false;
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
191 WARN_ON_ONCE(!irqs_disabled());
193 if (unlikely(!cpu_online(cpu)))
194 return false;
196 if (check_tick_dependency(&tick_dep_mask))
197 return false;
199 if (check_tick_dependency(&ts->tick_dep_mask))
200 return false;
202 if (check_tick_dependency(&current->tick_dep_mask))
203 return false;
205 if (check_tick_dependency(&current->signal->tick_dep_mask))
206 return false;
208 return true;
211 static void nohz_full_kick_func(struct irq_work *work)
213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 .func = nohz_full_kick_func,
221 * Kick this CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224 * is NMI safe.
226 static void tick_nohz_full_kick(void)
228 if (!tick_nohz_full_cpu(smp_processor_id()))
229 return;
231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
235 * Kick the CPU if it's full dynticks in order to force it to
236 * re-evaluate its dependency on the tick and restart it if necessary.
238 void tick_nohz_full_kick_cpu(int cpu)
240 if (!tick_nohz_full_cpu(cpu))
241 return;
243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
247 * Kick all full dynticks CPUs in order to force these to re-evaluate
248 * their dependency on the tick and restart it if necessary.
250 static void tick_nohz_full_kick_all(void)
252 int cpu;
254 if (!tick_nohz_full_running)
255 return;
257 preempt_disable();
258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 tick_nohz_full_kick_cpu(cpu);
260 preempt_enable();
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 enum tick_dep_bits bit)
266 int prev;
268 prev = atomic_fetch_or(BIT(bit), dep);
269 if (!prev)
270 tick_nohz_full_kick_all();
274 * Set a global tick dependency. Used by perf events that rely on freq and
275 * by unstable clock.
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
279 tick_nohz_dep_set_all(&tick_dep_mask, bit);
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
284 atomic_andnot(BIT(bit), &tick_dep_mask);
288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289 * manage events throttling.
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
293 int prev;
294 struct tick_sched *ts;
296 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 if (!prev) {
300 preempt_disable();
301 /* Perf needs local kick that is NMI safe */
302 if (cpu == smp_processor_id()) {
303 tick_nohz_full_kick();
304 } else {
305 /* Remote irq work not NMI-safe */
306 if (!WARN_ON_ONCE(in_nmi()))
307 tick_nohz_full_kick_cpu(cpu);
309 preempt_enable();
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
317 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322 * per task timers.
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
327 * We could optimize this with just kicking the target running the task
328 * if that noise matters for nohz full users.
330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340 * per process timers.
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
349 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
353 * Re-evaluate the need for the tick as we switch the current task.
354 * It might need the tick due to per task/process properties:
355 * perf events, posix CPU timers, ...
357 void __tick_nohz_task_switch(void)
359 unsigned long flags;
360 struct tick_sched *ts;
362 local_irq_save(flags);
364 if (!tick_nohz_full_cpu(smp_processor_id()))
365 goto out;
367 ts = this_cpu_ptr(&tick_cpu_sched);
369 if (ts->tick_stopped) {
370 if (atomic_read(&current->tick_dep_mask) ||
371 atomic_read(&current->signal->tick_dep_mask))
372 tick_nohz_full_kick();
374 out:
375 local_irq_restore(flags);
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 free_bootmem_cpumask_var(tick_nohz_full_mask);
385 return 1;
387 tick_nohz_full_running = true;
389 return 1;
391 __setup("nohz_full=", tick_nohz_full_setup);
393 static int tick_nohz_cpu_down(unsigned int cpu)
396 * The boot CPU handles housekeeping duty (unbound timers,
397 * workqueues, timekeeping, ...) on behalf of full dynticks
398 * CPUs. It must remain online when nohz full is enabled.
400 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
401 return -EBUSY;
402 return 0;
405 static int tick_nohz_init_all(void)
407 int err = -1;
409 #ifdef CONFIG_NO_HZ_FULL_ALL
410 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
411 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
412 return err;
414 err = 0;
415 cpumask_setall(tick_nohz_full_mask);
416 tick_nohz_full_running = true;
417 #endif
418 return err;
421 void __init tick_nohz_init(void)
423 int cpu, ret;
425 if (!tick_nohz_full_running) {
426 if (tick_nohz_init_all() < 0)
427 return;
430 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
431 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
432 cpumask_clear(tick_nohz_full_mask);
433 tick_nohz_full_running = false;
434 return;
438 * Full dynticks uses irq work to drive the tick rescheduling on safe
439 * locking contexts. But then we need irq work to raise its own
440 * interrupts to avoid circular dependency on the tick
442 if (!arch_irq_work_has_interrupt()) {
443 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 cpumask_clear(tick_nohz_full_mask);
445 cpumask_copy(housekeeping_mask, cpu_possible_mask);
446 tick_nohz_full_running = false;
447 return;
450 cpu = smp_processor_id();
452 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
453 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
454 cpu);
455 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
458 cpumask_andnot(housekeeping_mask,
459 cpu_possible_mask, tick_nohz_full_mask);
461 for_each_cpu(cpu, tick_nohz_full_mask)
462 context_tracking_cpu_set(cpu);
464 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
465 "kernel/nohz:predown", NULL,
466 tick_nohz_cpu_down);
467 WARN_ON(ret < 0);
468 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
469 cpumask_pr_args(tick_nohz_full_mask));
472 * We need at least one CPU to handle housekeeping work such
473 * as timekeeping, unbound timers, workqueues, ...
475 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
477 #endif
480 * NOHZ - aka dynamic tick functionality
482 #ifdef CONFIG_NO_HZ_COMMON
484 * NO HZ enabled ?
486 bool tick_nohz_enabled __read_mostly = true;
487 unsigned long tick_nohz_active __read_mostly;
489 * Enable / Disable tickless mode
491 static int __init setup_tick_nohz(char *str)
493 return (kstrtobool(str, &tick_nohz_enabled) == 0);
496 __setup("nohz=", setup_tick_nohz);
498 int tick_nohz_tick_stopped(void)
500 return __this_cpu_read(tick_cpu_sched.tick_stopped);
504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
506 * Called from interrupt entry when the CPU was idle
508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 * value. We do this unconditionally on any CPU, as we don't know whether the
511 * CPU, which has the update task assigned is in a long sleep.
513 static void tick_nohz_update_jiffies(ktime_t now)
515 unsigned long flags;
517 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
519 local_irq_save(flags);
520 tick_do_update_jiffies64(now);
521 local_irq_restore(flags);
523 touch_softlockup_watchdog_sched();
527 * Updates the per-CPU time idle statistics counters
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
532 ktime_t delta;
534 if (ts->idle_active) {
535 delta = ktime_sub(now, ts->idle_entrytime);
536 if (nr_iowait_cpu(cpu) > 0)
537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 else
539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 ts->idle_entrytime = now;
543 if (last_update_time)
544 *last_update_time = ktime_to_us(now);
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
550 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 ts->idle_active = 0;
553 sched_clock_idle_wakeup_event(0);
556 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
558 ktime_t now = ktime_get();
560 ts->idle_entrytime = now;
561 ts->idle_active = 1;
562 sched_clock_idle_sleep_event();
563 return now;
567 * get_cpu_idle_time_us - get the total idle time of a CPU
568 * @cpu: CPU number to query
569 * @last_update_time: variable to store update time in. Do not update
570 * counters if NULL.
572 * Return the cumulative idle time (since boot) for a given
573 * CPU, in microseconds.
575 * This time is measured via accounting rather than sampling,
576 * and is as accurate as ktime_get() is.
578 * This function returns -1 if NOHZ is not enabled.
580 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
582 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 ktime_t now, idle;
585 if (!tick_nohz_active)
586 return -1;
588 now = ktime_get();
589 if (last_update_time) {
590 update_ts_time_stats(cpu, ts, now, last_update_time);
591 idle = ts->idle_sleeptime;
592 } else {
593 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
594 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
596 idle = ktime_add(ts->idle_sleeptime, delta);
597 } else {
598 idle = ts->idle_sleeptime;
602 return ktime_to_us(idle);
605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
609 * @cpu: CPU number to query
610 * @last_update_time: variable to store update time in. Do not update
611 * counters if NULL.
613 * Return the cumulative iowait time (since boot) for a given
614 * CPU, in microseconds.
616 * This time is measured via accounting rather than sampling,
617 * and is as accurate as ktime_get() is.
619 * This function returns -1 if NOHZ is not enabled.
621 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
623 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
624 ktime_t now, iowait;
626 if (!tick_nohz_active)
627 return -1;
629 now = ktime_get();
630 if (last_update_time) {
631 update_ts_time_stats(cpu, ts, now, last_update_time);
632 iowait = ts->iowait_sleeptime;
633 } else {
634 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
635 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
637 iowait = ktime_add(ts->iowait_sleeptime, delta);
638 } else {
639 iowait = ts->iowait_sleeptime;
643 return ktime_to_us(iowait);
645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
647 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
649 hrtimer_cancel(&ts->sched_timer);
650 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
652 /* Forward the time to expire in the future */
653 hrtimer_forward(&ts->sched_timer, now, tick_period);
655 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
657 else
658 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
661 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
662 ktime_t now, int cpu)
664 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
665 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
666 unsigned long seq, basejiff;
667 ktime_t tick;
669 /* Read jiffies and the time when jiffies were updated last */
670 do {
671 seq = read_seqbegin(&jiffies_lock);
672 basemono = last_jiffies_update;
673 basejiff = jiffies;
674 } while (read_seqretry(&jiffies_lock, seq));
675 ts->last_jiffies = basejiff;
677 if (rcu_needs_cpu(basemono, &next_rcu) ||
678 arch_needs_cpu() || irq_work_needs_cpu()) {
679 next_tick = basemono + TICK_NSEC;
680 } else {
682 * Get the next pending timer. If high resolution
683 * timers are enabled this only takes the timer wheel
684 * timers into account. If high resolution timers are
685 * disabled this also looks at the next expiring
686 * hrtimer.
688 next_tmr = get_next_timer_interrupt(basejiff, basemono);
689 ts->next_timer = next_tmr;
690 /* Take the next rcu event into account */
691 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
695 * If the tick is due in the next period, keep it ticking or
696 * force prod the timer.
698 delta = next_tick - basemono;
699 if (delta <= (u64)TICK_NSEC) {
700 tick = 0;
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
706 timer_clear_idle();
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
711 if (!ts->tick_stopped)
712 goto out;
715 * If, OTOH, we did stop it, but there's a pending (expired)
716 * timer reprogram the timer hardware to fire now.
718 * We will not restart the tick proper, just prod the timer
719 * hardware into firing an interrupt to process the pending
720 * timers. Just like tick_irq_exit() will not restart the tick
721 * for 'normal' interrupts.
723 * Only once we exit the idle loop will we re-enable the tick,
724 * see tick_nohz_idle_exit().
726 if (delta == 0) {
727 tick_nohz_restart(ts, now);
728 goto out;
733 * If this CPU is the one which updates jiffies, then give up
734 * the assignment and let it be taken by the CPU which runs
735 * the tick timer next, which might be this CPU as well. If we
736 * don't drop this here the jiffies might be stale and
737 * do_timer() never invoked. Keep track of the fact that it
738 * was the one which had the do_timer() duty last. If this CPU
739 * is the one which had the do_timer() duty last, we limit the
740 * sleep time to the timekeeping max_deferment value.
741 * Otherwise we can sleep as long as we want.
743 delta = timekeeping_max_deferment();
744 if (cpu == tick_do_timer_cpu) {
745 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
746 ts->do_timer_last = 1;
747 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
748 delta = KTIME_MAX;
749 ts->do_timer_last = 0;
750 } else if (!ts->do_timer_last) {
751 delta = KTIME_MAX;
754 #ifdef CONFIG_NO_HZ_FULL
755 /* Limit the tick delta to the maximum scheduler deferment */
756 if (!ts->inidle)
757 delta = min(delta, scheduler_tick_max_deferment());
758 #endif
760 /* Calculate the next expiry time */
761 if (delta < (KTIME_MAX - basemono))
762 expires = basemono + delta;
763 else
764 expires = KTIME_MAX;
766 expires = min_t(u64, expires, next_tick);
767 tick = expires;
769 /* Skip reprogram of event if its not changed */
770 if (ts->tick_stopped && (expires == dev->next_event))
771 goto out;
774 * nohz_stop_sched_tick can be called several times before
775 * the nohz_restart_sched_tick is called. This happens when
776 * interrupts arrive which do not cause a reschedule. In the
777 * first call we save the current tick time, so we can restart
778 * the scheduler tick in nohz_restart_sched_tick.
780 if (!ts->tick_stopped) {
781 nohz_balance_enter_idle(cpu);
782 calc_load_enter_idle();
783 cpu_load_update_nohz_start();
785 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
786 ts->tick_stopped = 1;
787 trace_tick_stop(1, TICK_DEP_MASK_NONE);
791 * If the expiration time == KTIME_MAX, then we simply stop
792 * the tick timer.
794 if (unlikely(expires == KTIME_MAX)) {
795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
796 hrtimer_cancel(&ts->sched_timer);
797 goto out;
800 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
801 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
802 else
803 tick_program_event(tick, 1);
804 out:
805 /* Update the estimated sleep length */
806 ts->sleep_length = ktime_sub(dev->next_event, now);
807 return tick;
810 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
812 /* Update jiffies first */
813 tick_do_update_jiffies64(now);
814 cpu_load_update_nohz_stop();
817 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
818 * the clock forward checks in the enqueue path:
820 timer_clear_idle();
822 calc_load_exit_idle();
823 touch_softlockup_watchdog_sched();
825 * Cancel the scheduled timer and restore the tick
827 ts->tick_stopped = 0;
828 ts->idle_exittime = now;
830 tick_nohz_restart(ts, now);
833 static void tick_nohz_full_update_tick(struct tick_sched *ts)
835 #ifdef CONFIG_NO_HZ_FULL
836 int cpu = smp_processor_id();
838 if (!tick_nohz_full_cpu(cpu))
839 return;
841 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
842 return;
844 if (can_stop_full_tick(cpu, ts))
845 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
846 else if (ts->tick_stopped)
847 tick_nohz_restart_sched_tick(ts, ktime_get());
848 #endif
851 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
854 * If this CPU is offline and it is the one which updates
855 * jiffies, then give up the assignment and let it be taken by
856 * the CPU which runs the tick timer next. If we don't drop
857 * this here the jiffies might be stale and do_timer() never
858 * invoked.
860 if (unlikely(!cpu_online(cpu))) {
861 if (cpu == tick_do_timer_cpu)
862 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
863 return false;
866 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
867 ts->sleep_length = NSEC_PER_SEC / HZ;
868 return false;
871 if (need_resched())
872 return false;
874 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
875 static int ratelimit;
877 if (ratelimit < 10 &&
878 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
879 pr_warn("NOHZ: local_softirq_pending %02x\n",
880 (unsigned int) local_softirq_pending());
881 ratelimit++;
883 return false;
886 if (tick_nohz_full_enabled()) {
888 * Keep the tick alive to guarantee timekeeping progression
889 * if there are full dynticks CPUs around
891 if (tick_do_timer_cpu == cpu)
892 return false;
894 * Boot safety: make sure the timekeeping duty has been
895 * assigned before entering dyntick-idle mode,
897 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
898 return false;
901 return true;
904 static void __tick_nohz_idle_enter(struct tick_sched *ts)
906 ktime_t now, expires;
907 int cpu = smp_processor_id();
909 now = tick_nohz_start_idle(ts);
911 if (can_stop_idle_tick(cpu, ts)) {
912 int was_stopped = ts->tick_stopped;
914 ts->idle_calls++;
916 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
917 if (expires > 0LL) {
918 ts->idle_sleeps++;
919 ts->idle_expires = expires;
922 if (!was_stopped && ts->tick_stopped)
923 ts->idle_jiffies = ts->last_jiffies;
928 * tick_nohz_idle_enter - stop the idle tick from the idle task
930 * When the next event is more than a tick into the future, stop the idle tick
931 * Called when we start the idle loop.
933 * The arch is responsible of calling:
935 * - rcu_idle_enter() after its last use of RCU before the CPU is put
936 * to sleep.
937 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
939 void tick_nohz_idle_enter(void)
941 struct tick_sched *ts;
943 WARN_ON_ONCE(irqs_disabled());
946 * Update the idle state in the scheduler domain hierarchy
947 * when tick_nohz_stop_sched_tick() is called from the idle loop.
948 * State will be updated to busy during the first busy tick after
949 * exiting idle.
951 set_cpu_sd_state_idle();
953 local_irq_disable();
955 ts = this_cpu_ptr(&tick_cpu_sched);
956 ts->inidle = 1;
957 __tick_nohz_idle_enter(ts);
959 local_irq_enable();
963 * tick_nohz_irq_exit - update next tick event from interrupt exit
965 * When an interrupt fires while we are idle and it doesn't cause
966 * a reschedule, it may still add, modify or delete a timer, enqueue
967 * an RCU callback, etc...
968 * So we need to re-calculate and reprogram the next tick event.
970 void tick_nohz_irq_exit(void)
972 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
974 if (ts->inidle)
975 __tick_nohz_idle_enter(ts);
976 else
977 tick_nohz_full_update_tick(ts);
981 * tick_nohz_get_sleep_length - return the length of the current sleep
983 * Called from power state control code with interrupts disabled
985 ktime_t tick_nohz_get_sleep_length(void)
987 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
989 return ts->sleep_length;
992 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
994 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
995 unsigned long ticks;
997 if (vtime_accounting_cpu_enabled())
998 return;
1000 * We stopped the tick in idle. Update process times would miss the
1001 * time we slept as update_process_times does only a 1 tick
1002 * accounting. Enforce that this is accounted to idle !
1004 ticks = jiffies - ts->idle_jiffies;
1006 * We might be one off. Do not randomly account a huge number of ticks!
1008 if (ticks && ticks < LONG_MAX)
1009 account_idle_ticks(ticks);
1010 #endif
1014 * tick_nohz_idle_exit - restart the idle tick from the idle task
1016 * Restart the idle tick when the CPU is woken up from idle
1017 * This also exit the RCU extended quiescent state. The CPU
1018 * can use RCU again after this function is called.
1020 void tick_nohz_idle_exit(void)
1022 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1023 ktime_t now;
1025 local_irq_disable();
1027 WARN_ON_ONCE(!ts->inidle);
1029 ts->inidle = 0;
1031 if (ts->idle_active || ts->tick_stopped)
1032 now = ktime_get();
1034 if (ts->idle_active)
1035 tick_nohz_stop_idle(ts, now);
1037 if (ts->tick_stopped) {
1038 tick_nohz_restart_sched_tick(ts, now);
1039 tick_nohz_account_idle_ticks(ts);
1042 local_irq_enable();
1046 * The nohz low res interrupt handler
1048 static void tick_nohz_handler(struct clock_event_device *dev)
1050 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1051 struct pt_regs *regs = get_irq_regs();
1052 ktime_t now = ktime_get();
1054 dev->next_event = KTIME_MAX;
1056 tick_sched_do_timer(now);
1057 tick_sched_handle(ts, regs);
1059 /* No need to reprogram if we are running tickless */
1060 if (unlikely(ts->tick_stopped))
1061 return;
1063 hrtimer_forward(&ts->sched_timer, now, tick_period);
1064 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1067 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1069 if (!tick_nohz_enabled)
1070 return;
1071 ts->nohz_mode = mode;
1072 /* One update is enough */
1073 if (!test_and_set_bit(0, &tick_nohz_active))
1074 timers_update_migration(true);
1078 * tick_nohz_switch_to_nohz - switch to nohz mode
1080 static void tick_nohz_switch_to_nohz(void)
1082 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083 ktime_t next;
1085 if (!tick_nohz_enabled)
1086 return;
1088 if (tick_switch_to_oneshot(tick_nohz_handler))
1089 return;
1092 * Recycle the hrtimer in ts, so we can share the
1093 * hrtimer_forward with the highres code.
1095 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096 /* Get the next period */
1097 next = tick_init_jiffy_update();
1099 hrtimer_set_expires(&ts->sched_timer, next);
1100 hrtimer_forward_now(&ts->sched_timer, tick_period);
1101 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1102 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1105 static inline void tick_nohz_irq_enter(void)
1107 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 ktime_t now;
1110 if (!ts->idle_active && !ts->tick_stopped)
1111 return;
1112 now = ktime_get();
1113 if (ts->idle_active)
1114 tick_nohz_stop_idle(ts, now);
1115 if (ts->tick_stopped)
1116 tick_nohz_update_jiffies(now);
1119 #else
1121 static inline void tick_nohz_switch_to_nohz(void) { }
1122 static inline void tick_nohz_irq_enter(void) { }
1123 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1125 #endif /* CONFIG_NO_HZ_COMMON */
1128 * Called from irq_enter to notify about the possible interruption of idle()
1130 void tick_irq_enter(void)
1132 tick_check_oneshot_broadcast_this_cpu();
1133 tick_nohz_irq_enter();
1137 * High resolution timer specific code
1139 #ifdef CONFIG_HIGH_RES_TIMERS
1141 * We rearm the timer until we get disabled by the idle code.
1142 * Called with interrupts disabled.
1144 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1146 struct tick_sched *ts =
1147 container_of(timer, struct tick_sched, sched_timer);
1148 struct pt_regs *regs = get_irq_regs();
1149 ktime_t now = ktime_get();
1151 tick_sched_do_timer(now);
1154 * Do not call, when we are not in irq context and have
1155 * no valid regs pointer
1157 if (regs)
1158 tick_sched_handle(ts, regs);
1160 /* No need to reprogram if we are in idle or full dynticks mode */
1161 if (unlikely(ts->tick_stopped))
1162 return HRTIMER_NORESTART;
1164 hrtimer_forward(timer, now, tick_period);
1166 return HRTIMER_RESTART;
1169 static int sched_skew_tick;
1171 static int __init skew_tick(char *str)
1173 get_option(&str, &sched_skew_tick);
1175 return 0;
1177 early_param("skew_tick", skew_tick);
1180 * tick_setup_sched_timer - setup the tick emulation timer
1182 void tick_setup_sched_timer(void)
1184 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185 ktime_t now = ktime_get();
1188 * Emulate tick processing via per-CPU hrtimers:
1190 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1191 ts->sched_timer.function = tick_sched_timer;
1193 /* Get the next period (per-CPU) */
1194 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1196 /* Offset the tick to avert jiffies_lock contention. */
1197 if (sched_skew_tick) {
1198 u64 offset = ktime_to_ns(tick_period) >> 1;
1199 do_div(offset, num_possible_cpus());
1200 offset *= smp_processor_id();
1201 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1204 hrtimer_forward(&ts->sched_timer, now, tick_period);
1205 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1206 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1208 #endif /* HIGH_RES_TIMERS */
1210 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1211 void tick_cancel_sched_timer(int cpu)
1213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1215 # ifdef CONFIG_HIGH_RES_TIMERS
1216 if (ts->sched_timer.base)
1217 hrtimer_cancel(&ts->sched_timer);
1218 # endif
1220 memset(ts, 0, sizeof(*ts));
1222 #endif
1225 * Async notification about clocksource changes
1227 void tick_clock_notify(void)
1229 int cpu;
1231 for_each_possible_cpu(cpu)
1232 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1236 * Async notification about clock event changes
1238 void tick_oneshot_notify(void)
1240 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1242 set_bit(0, &ts->check_clocks);
1246 * Check, if a change happened, which makes oneshot possible.
1248 * Called cyclic from the hrtimer softirq (driven by the timer
1249 * softirq) allow_nohz signals, that we can switch into low-res nohz
1250 * mode, because high resolution timers are disabled (either compile
1251 * or runtime). Called with interrupts disabled.
1253 int tick_check_oneshot_change(int allow_nohz)
1255 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1257 if (!test_and_clear_bit(0, &ts->check_clocks))
1258 return 0;
1260 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1261 return 0;
1263 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1264 return 0;
1266 if (!allow_nohz)
1267 return 1;
1269 tick_nohz_switch_to_nohz();
1270 return 0;