staging: greybus: loopback: use gb_loopback_async_wait_all don't spin
[linux/fpc-iii.git] / kernel / workqueue.c
blob1d9fb6543a66a26c3094f8f2d05ab4447782dadd
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
54 enum {
56 * worker_pool flags
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
105 WQ_NAME_LEN = 24,
109 * Structure fields follow one of the following exclusion rules.
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
117 * L: pool->lock protected. Access with pool->lock held.
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
124 * A: pool->attach_mutex protected.
126 * PL: wq_pool_mutex protected.
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
135 * WQ: wq->mutex protected.
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 * MD: wq_mayday_lock protected.
142 /* struct worker is defined in workqueue_internal.h */
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
174 struct ida worker_ida; /* worker IDs for task name */
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
185 atomic_t nr_running ____cacheline_aligned_in_smp;
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
225 * Structure used to wait for workqueue flush.
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
233 struct wq_device;
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
273 struct rcu_head rcu;
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 static struct kmem_cache *pwq_cache;
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 static bool wq_online; /* can kworkers be created yet? */
295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
304 static bool workqueue_freezing; /* PL: have wqs started freezing? */
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
359 #define assert_rcu_or_pool_mutex() \
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
364 #define assert_rcu_or_wq_mutex(wq) \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
402 * This must be called with @pool->attach_mutex.
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 else
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
417 * This must be called either with wq->mutex held or sched RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
427 else
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 static struct debug_obj_descr work_debug_descr;
433 static void *work_debug_hint(void *addr)
435 return ((struct work_struct *) addr)->func;
438 static bool work_is_static_object(void *addr)
440 struct work_struct *work = addr;
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 * fixup_init is called when:
447 * - an active object is initialized
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 struct work_struct *work = addr;
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
464 * fixup_free is called when:
465 * - an active object is freed
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 struct work_struct *work = addr;
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
481 static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
489 static inline void debug_work_activate(struct work_struct *work)
491 debug_object_activate(work, &work_debug_descr);
494 static inline void debug_work_deactivate(struct work_struct *work)
496 debug_object_deactivate(work, &work_debug_descr);
499 void __init_work(struct work_struct *work, int onstack)
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
506 EXPORT_SYMBOL_GPL(__init_work);
508 void destroy_work_on_stack(struct work_struct *work)
510 debug_object_free(work, &work_debug_descr);
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
533 static int worker_pool_assign_id(struct worker_pool *pool)
535 int ret;
537 lockdep_assert_held(&wq_pool_mutex);
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
545 return ret;
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
558 * Return: The unbound pool_workqueue for @node.
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 static unsigned int work_color_to_flags(int color)
579 return color << WORK_STRUCT_COLOR_SHIFT;
582 static int get_work_color(struct work_struct *work)
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 static int work_next_color(int color)
590 return (color + 1) % WORK_NR_COLORS;
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
673 smp_mb();
676 static void clear_work_data(struct work_struct *work)
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 unsigned long data = atomic_long_read(&work->data);
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
705 * Return: The worker_pool @work was last associated with. %NULL if none.
707 static struct worker_pool *get_work_pool(struct work_struct *work)
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
712 assert_rcu_or_pool_mutex();
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
722 return idr_find(&worker_pool_idr, pool_id);
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
732 static int get_work_pool_id(struct work_struct *work)
734 unsigned long data = atomic_long_read(&work->data);
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740 return data >> WORK_OFFQ_POOL_SHIFT;
743 static void mark_work_canceling(struct work_struct *work)
745 unsigned long pool_id = get_work_pool_id(work);
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 static bool work_is_canceling(struct work_struct *work)
753 unsigned long data = atomic_long_read(&work->data);
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
764 static bool __need_more_worker(struct worker_pool *pool)
766 return !atomic_read(&pool->nr_running);
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
777 static bool need_more_worker(struct worker_pool *pool)
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 /* Can I start working? Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
785 return pool->nr_idle;
788 /* Do I need to keep working? Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
795 /* Do we need a new worker? Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
798 return need_more_worker(pool) && !may_start_working(pool);
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
804 bool managing = mutex_is_locked(&pool->manager_arb);
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 * Wake up functions.
815 /* Return the first idle worker. Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
821 return list_first_entry(&pool->idle_list, struct worker, entry);
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
828 * Wake up the first idle worker of @pool.
830 * CONTEXT:
831 * spin_lock_irq(pool->lock).
833 static void wake_up_worker(struct worker_pool *pool)
835 struct worker *worker = first_idle_worker(pool);
837 if (likely(worker))
838 wake_up_process(worker->task);
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 struct worker *worker = kthread_data(task);
856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 WARN_ON_ONCE(worker->pool->cpu != cpu);
858 atomic_inc(&worker->pool->nr_running);
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
873 * Return:
874 * Worker task on @cpu to wake up, %NULL if none.
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 struct worker_pool *pool;
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
886 if (worker->flags & WORKER_NOT_RUNNING)
887 return NULL;
889 pool = worker->pool;
891 /* this can only happen on the local cpu */
892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 return NULL;
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
903 * manipulating idle_list, so dereferencing idle_list without pool
904 * lock is safe.
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
908 to_wakeup = first_idle_worker(pool);
909 return to_wakeup ? to_wakeup->task : NULL;
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
914 * @worker: self
915 * @flags: flags to set
917 * Set @flags in @worker->flags and adjust nr_running accordingly.
919 * CONTEXT:
920 * spin_lock_irq(pool->lock)
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 struct worker_pool *pool = worker->pool;
926 WARN_ON_ONCE(worker->task != current);
928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
931 atomic_dec(&pool->nr_running);
934 worker->flags |= flags;
938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to clear
942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 struct worker_pool *pool = worker->pool;
950 unsigned int oflags = worker->flags;
952 WARN_ON_ONCE(worker->task != current);
954 worker->flags &= ~flags;
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
963 atomic_inc(&pool->nr_running);
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
992 * CONTEXT:
993 * spin_lock_irq(pool->lock).
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
997 * otherwise.
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 struct work_struct *work)
1002 struct worker *worker;
1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
1008 return worker;
1010 return NULL;
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1033 struct work_struct *n;
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1050 if (nextp)
1051 *nextp = n;
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1061 static void get_pwq(struct pool_workqueue *pwq)
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1075 static void put_pwq(struct pool_workqueue *pwq)
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1090 schedule_work(&pwq->unbound_release_work);
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 if (pwq) {
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1114 struct pool_workqueue *pwq = get_work_pwq(work);
1116 trace_workqueue_activate_work(work);
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
1119 move_linked_works(work, &pwq->pool->worklist, NULL);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 pwq->nr_active++;
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 struct work_struct, entry);
1129 pwq_activate_delayed_work(work);
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color == WORK_NO_COLOR)
1147 goto out_put;
1149 pwq->nr_in_flight[color]--;
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
1153 /* one down, submit a delayed one */
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq->flush_color != color))
1160 goto out_put;
1162 /* are there still in-flight works? */
1163 if (pwq->nr_in_flight[color])
1164 goto out_put;
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 put_pwq(pwq);
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1188 * Return:
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1204 * This function is safe to call from any context including IRQ handler.
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
1209 struct worker_pool *pool;
1210 struct pool_workqueue *pwq;
1212 local_irq_save(*flags);
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1227 /* try to claim PENDING the normal way */
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 pool = get_work_pool(work);
1236 if (!pool)
1237 goto fail;
1239 spin_lock(&pool->lock);
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
1246 * item is currently queued on that pool.
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
1250 debug_work_deactivate(work);
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
1255 * on the delayed_list, will confuse pwq->nr_active
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 pwq_activate_delayed_work(work);
1262 list_del_init(&work->entry);
1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265 /* work->data points to pwq iff queued, point to pool */
1266 set_work_pool_and_keep_pending(work, pool->id);
1268 spin_unlock(&pool->lock);
1269 return 1;
1271 spin_unlock(&pool->lock);
1272 fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
1277 return -EAGAIN;
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1288 * work_struct flags.
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
1296 struct worker_pool *pool = pwq->pool;
1298 /* we own @work, set data and link */
1299 set_work_pwq(work, pwq, extra_flags);
1300 list_add_tail(&work->entry, head);
1301 get_pwq(pwq);
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
1308 smp_mb();
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1318 static bool is_chained_work(struct workqueue_struct *wq)
1320 struct worker *worker;
1322 worker = current_wq_worker();
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1327 return worker && worker->current_pwq->wq == wq;
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1335 static int wq_select_unbound_cpu(int cpu)
1337 static bool printed_dbg_warning;
1338 int new_cpu;
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1360 return new_cpu;
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 struct work_struct *work)
1366 struct pool_workqueue *pwq;
1367 struct worker_pool *last_pool;
1368 struct list_head *worklist;
1369 unsigned int work_flags;
1370 unsigned int req_cpu = cpu;
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1378 WARN_ON_ONCE(!irqs_disabled());
1380 debug_work_activate(work);
1382 /* if draining, only works from the same workqueue are allowed */
1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 WARN_ON_ONCE(!is_chained_work(wq)))
1385 return;
1386 retry:
1387 if (req_cpu == WORK_CPU_UNBOUND)
1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390 /* pwq which will be used unless @work is executing elsewhere */
1391 if (!(wq->flags & WQ_UNBOUND))
1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
1405 spin_lock(&last_pool->lock);
1407 worker = find_worker_executing_work(last_pool, work);
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
1411 } else {
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
1414 spin_lock(&pwq->pool->lock);
1416 } else {
1417 spin_lock(&pwq->pool->lock);
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
1426 * make forward-progress.
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
1442 if (WARN_ON(!list_empty(&work->entry))) {
1443 spin_unlock(&pwq->pool->lock);
1444 return;
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1450 if (likely(pwq->nr_active < pwq->max_active)) {
1451 trace_workqueue_activate_work(work);
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
1458 worklist = &pwq->delayed_works;
1461 insert_work(pwq, work, worklist, work_flags);
1463 spin_unlock(&pwq->pool->lock);
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1475 * Return: %false if @work was already on a queue, %true otherwise.
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1480 bool ret = false;
1481 unsigned long flags;
1483 local_irq_save(flags);
1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 __queue_work(cpu, wq, work);
1487 ret = true;
1490 local_irq_restore(flags);
1491 return ret;
1493 EXPORT_SYMBOL(queue_work_on);
1495 void delayed_work_timer_fn(unsigned long __data)
1497 struct delayed_work *dwork = (struct delayed_work *)__data;
1499 /* should have been called from irqsafe timer with irq already off */
1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
1510 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1511 timer->data != (unsigned long)dwork);
1512 WARN_ON_ONCE(timer_pending(timer));
1513 WARN_ON_ONCE(!list_empty(&work->entry));
1516 * If @delay is 0, queue @dwork->work immediately. This is for
1517 * both optimization and correctness. The earliest @timer can
1518 * expire is on the closest next tick and delayed_work users depend
1519 * on that there's no such delay when @delay is 0.
1521 if (!delay) {
1522 __queue_work(cpu, wq, &dwork->work);
1523 return;
1526 timer_stats_timer_set_start_info(&dwork->timer);
1528 dwork->wq = wq;
1529 dwork->cpu = cpu;
1530 timer->expires = jiffies + delay;
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1545 * Return: %false if @work was already on a queue, %true otherwise. If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
1552 struct work_struct *work = &dwork->work;
1553 bool ret = false;
1554 unsigned long flags;
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 __queue_delayed_work(cpu, wq, dwork, delay);
1561 ret = true;
1564 local_irq_restore(flags);
1565 return ret;
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1590 unsigned long flags;
1591 int ret;
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 return ret;
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1611 * @worker is entering idle state. Update stats and idle timer if
1612 * necessary.
1614 * LOCKING:
1615 * spin_lock_irq(pool->lock).
1617 static void worker_enter_idle(struct worker *worker)
1619 struct worker_pool *pool = worker->pool;
1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 (worker->hentry.next || worker->hentry.pprev)))
1624 return;
1626 /* can't use worker_set_flags(), also called from create_worker() */
1627 worker->flags |= WORKER_IDLE;
1628 pool->nr_idle++;
1629 worker->last_active = jiffies;
1631 /* idle_list is LIFO */
1632 list_add(&worker->entry, &pool->idle_list);
1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1638 * Sanity check nr_running. Because wq_unbind_fn() releases
1639 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 * nr_running, the warning may trigger spuriously. Check iff
1641 * unbind is not in progress.
1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 pool->nr_workers == pool->nr_idle &&
1645 atomic_read(&pool->nr_running));
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1652 * @worker is leaving idle state. Update stats.
1654 * LOCKING:
1655 * spin_lock_irq(pool->lock).
1657 static void worker_leave_idle(struct worker *worker)
1659 struct worker_pool *pool = worker->pool;
1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 return;
1663 worker_clr_flags(worker, WORKER_IDLE);
1664 pool->nr_idle--;
1665 list_del_init(&worker->entry);
1668 static struct worker *alloc_worker(int node)
1670 struct worker *worker;
1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 if (worker) {
1674 INIT_LIST_HEAD(&worker->entry);
1675 INIT_LIST_HEAD(&worker->scheduled);
1676 INIT_LIST_HEAD(&worker->node);
1677 /* on creation a worker is in !idle && prep state */
1678 worker->flags = WORKER_PREP;
1680 return worker;
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1692 static void worker_attach_to_pool(struct worker *worker,
1693 struct worker_pool *pool)
1695 mutex_lock(&pool->attach_mutex);
1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 * online CPUs. It'll be re-applied when any of the CPUs come up.
1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 * stable across this function. See the comments above the
1706 * flag definition for details.
1708 if (pool->flags & POOL_DISASSOCIATED)
1709 worker->flags |= WORKER_UNBOUND;
1711 list_add_tail(&worker->node, &pool->workers);
1713 mutex_unlock(&pool->attach_mutex);
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1721 * Undo the attaching which had been done in worker_attach_to_pool(). The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
1725 static void worker_detach_from_pool(struct worker *worker,
1726 struct worker_pool *pool)
1728 struct completion *detach_completion = NULL;
1730 mutex_lock(&pool->attach_mutex);
1731 list_del(&worker->node);
1732 if (list_empty(&pool->workers))
1733 detach_completion = pool->detach_completion;
1734 mutex_unlock(&pool->attach_mutex);
1736 /* clear leftover flags without pool->lock after it is detached */
1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1739 if (detach_completion)
1740 complete(detach_completion);
1744 * create_worker - create a new workqueue worker
1745 * @pool: pool the new worker will belong to
1747 * Create and start a new worker which is attached to @pool.
1749 * CONTEXT:
1750 * Might sleep. Does GFP_KERNEL allocations.
1752 * Return:
1753 * Pointer to the newly created worker.
1755 static struct worker *create_worker(struct worker_pool *pool)
1757 struct worker *worker = NULL;
1758 int id = -1;
1759 char id_buf[16];
1761 /* ID is needed to determine kthread name */
1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 if (id < 0)
1764 goto fail;
1766 worker = alloc_worker(pool->node);
1767 if (!worker)
1768 goto fail;
1770 worker->pool = pool;
1771 worker->id = id;
1773 if (pool->cpu >= 0)
1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 pool->attrs->nice < 0 ? "H" : "");
1776 else
1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 "kworker/%s", id_buf);
1781 if (IS_ERR(worker->task))
1782 goto fail;
1784 set_user_nice(worker->task, pool->attrs->nice);
1785 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1787 /* successful, attach the worker to the pool */
1788 worker_attach_to_pool(worker, pool);
1790 /* start the newly created worker */
1791 spin_lock_irq(&pool->lock);
1792 worker->pool->nr_workers++;
1793 worker_enter_idle(worker);
1794 wake_up_process(worker->task);
1795 spin_unlock_irq(&pool->lock);
1797 return worker;
1799 fail:
1800 if (id >= 0)
1801 ida_simple_remove(&pool->worker_ida, id);
1802 kfree(worker);
1803 return NULL;
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1810 * Destroy @worker and adjust @pool stats accordingly. The worker should
1811 * be idle.
1813 * CONTEXT:
1814 * spin_lock_irq(pool->lock).
1816 static void destroy_worker(struct worker *worker)
1818 struct worker_pool *pool = worker->pool;
1820 lockdep_assert_held(&pool->lock);
1822 /* sanity check frenzy */
1823 if (WARN_ON(worker->current_work) ||
1824 WARN_ON(!list_empty(&worker->scheduled)) ||
1825 WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 return;
1828 pool->nr_workers--;
1829 pool->nr_idle--;
1831 list_del_init(&worker->entry);
1832 worker->flags |= WORKER_DIE;
1833 wake_up_process(worker->task);
1836 static void idle_worker_timeout(unsigned long __pool)
1838 struct worker_pool *pool = (void *)__pool;
1840 spin_lock_irq(&pool->lock);
1842 while (too_many_workers(pool)) {
1843 struct worker *worker;
1844 unsigned long expires;
1846 /* idle_list is kept in LIFO order, check the last one */
1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1850 if (time_before(jiffies, expires)) {
1851 mod_timer(&pool->idle_timer, expires);
1852 break;
1855 destroy_worker(worker);
1858 spin_unlock_irq(&pool->lock);
1861 static void send_mayday(struct work_struct *work)
1863 struct pool_workqueue *pwq = get_work_pwq(work);
1864 struct workqueue_struct *wq = pwq->wq;
1866 lockdep_assert_held(&wq_mayday_lock);
1868 if (!wq->rescuer)
1869 return;
1871 /* mayday mayday mayday */
1872 if (list_empty(&pwq->mayday_node)) {
1874 * If @pwq is for an unbound wq, its base ref may be put at
1875 * any time due to an attribute change. Pin @pwq until the
1876 * rescuer is done with it.
1878 get_pwq(pwq);
1879 list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 wake_up_process(wq->rescuer->task);
1884 static void pool_mayday_timeout(unsigned long __pool)
1886 struct worker_pool *pool = (void *)__pool;
1887 struct work_struct *work;
1889 spin_lock_irq(&pool->lock);
1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1892 if (need_to_create_worker(pool)) {
1894 * We've been trying to create a new worker but
1895 * haven't been successful. We might be hitting an
1896 * allocation deadlock. Send distress signals to
1897 * rescuers.
1899 list_for_each_entry(work, &pool->worklist, entry)
1900 send_mayday(work);
1903 spin_unlock(&wq_mayday_lock);
1904 spin_unlock_irq(&pool->lock);
1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1910 * maybe_create_worker - create a new worker if necessary
1911 * @pool: pool to create a new worker for
1913 * Create a new worker for @pool if necessary. @pool is guaranteed to
1914 * have at least one idle worker on return from this function. If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916 * sent to all rescuers with works scheduled on @pool to resolve
1917 * possible allocation deadlock.
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
1922 * LOCKING:
1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 * multiple times. Does GFP_KERNEL allocations. Called only from
1925 * manager.
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1931 restart:
1932 spin_unlock_irq(&pool->lock);
1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1937 while (true) {
1938 if (create_worker(pool) || !need_to_create_worker(pool))
1939 break;
1941 schedule_timeout_interruptible(CREATE_COOLDOWN);
1943 if (!need_to_create_worker(pool))
1944 break;
1947 del_timer_sync(&pool->mayday_timer);
1948 spin_lock_irq(&pool->lock);
1950 * This is necessary even after a new worker was just successfully
1951 * created as @pool->lock was dropped and the new worker might have
1952 * already become busy.
1954 if (need_to_create_worker(pool))
1955 goto restart;
1959 * manage_workers - manage worker pool
1960 * @worker: self
1962 * Assume the manager role and manage the worker pool @worker belongs
1963 * to. At any given time, there can be only zero or one manager per
1964 * pool. The exclusion is handled automatically by this function.
1966 * The caller can safely start processing works on false return. On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
1970 * CONTEXT:
1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 * multiple times. Does GFP_KERNEL allocations.
1974 * Return:
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
1980 static bool manage_workers(struct worker *worker)
1982 struct worker_pool *pool = worker->pool;
1985 * Anyone who successfully grabs manager_arb wins the arbitration
1986 * and becomes the manager. mutex_trylock() on pool->manager_arb
1987 * failure while holding pool->lock reliably indicates that someone
1988 * else is managing the pool and the worker which failed trylock
1989 * can proceed to executing work items. This means that anyone
1990 * grabbing manager_arb is responsible for actually performing
1991 * manager duties. If manager_arb is grabbed and released without
1992 * actual management, the pool may stall indefinitely.
1994 if (!mutex_trylock(&pool->manager_arb))
1995 return false;
1996 pool->manager = worker;
1998 maybe_create_worker(pool);
2000 pool->manager = NULL;
2001 mutex_unlock(&pool->manager_arb);
2002 return true;
2006 * process_one_work - process single work
2007 * @worker: self
2008 * @work: work to process
2010 * Process @work. This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing. As long as context requirement is met, any worker can
2014 * call this function to process a work.
2016 * CONTEXT:
2017 * spin_lock_irq(pool->lock) which is released and regrabbed.
2019 static void process_one_work(struct worker *worker, struct work_struct *work)
2020 __releases(&pool->lock)
2021 __acquires(&pool->lock)
2023 struct pool_workqueue *pwq = get_work_pwq(work);
2024 struct worker_pool *pool = worker->pool;
2025 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2026 int work_color;
2027 struct worker *collision;
2028 #ifdef CONFIG_LOCKDEP
2030 * It is permissible to free the struct work_struct from
2031 * inside the function that is called from it, this we need to
2032 * take into account for lockdep too. To avoid bogus "held
2033 * lock freed" warnings as well as problems when looking into
2034 * work->lockdep_map, make a copy and use that here.
2036 struct lockdep_map lockdep_map;
2038 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2039 #endif
2040 /* ensure we're on the correct CPU */
2041 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2042 raw_smp_processor_id() != pool->cpu);
2045 * A single work shouldn't be executed concurrently by
2046 * multiple workers on a single cpu. Check whether anyone is
2047 * already processing the work. If so, defer the work to the
2048 * currently executing one.
2050 collision = find_worker_executing_work(pool, work);
2051 if (unlikely(collision)) {
2052 move_linked_works(work, &collision->scheduled, NULL);
2053 return;
2056 /* claim and dequeue */
2057 debug_work_deactivate(work);
2058 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2059 worker->current_work = work;
2060 worker->current_func = work->func;
2061 worker->current_pwq = pwq;
2062 work_color = get_work_color(work);
2064 list_del_init(&work->entry);
2067 * CPU intensive works don't participate in concurrency management.
2068 * They're the scheduler's responsibility. This takes @worker out
2069 * of concurrency management and the next code block will chain
2070 * execution of the pending work items.
2072 if (unlikely(cpu_intensive))
2073 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2076 * Wake up another worker if necessary. The condition is always
2077 * false for normal per-cpu workers since nr_running would always
2078 * be >= 1 at this point. This is used to chain execution of the
2079 * pending work items for WORKER_NOT_RUNNING workers such as the
2080 * UNBOUND and CPU_INTENSIVE ones.
2082 if (need_more_worker(pool))
2083 wake_up_worker(pool);
2086 * Record the last pool and clear PENDING which should be the last
2087 * update to @work. Also, do this inside @pool->lock so that
2088 * PENDING and queued state changes happen together while IRQ is
2089 * disabled.
2091 set_work_pool_and_clear_pending(work, pool->id);
2093 spin_unlock_irq(&pool->lock);
2095 lock_map_acquire_read(&pwq->wq->lockdep_map);
2096 lock_map_acquire(&lockdep_map);
2097 trace_workqueue_execute_start(work);
2098 worker->current_func(work);
2100 * While we must be careful to not use "work" after this, the trace
2101 * point will only record its address.
2103 trace_workqueue_execute_end(work);
2104 lock_map_release(&lockdep_map);
2105 lock_map_release(&pwq->wq->lockdep_map);
2107 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2108 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2109 " last function: %pf\n",
2110 current->comm, preempt_count(), task_pid_nr(current),
2111 worker->current_func);
2112 debug_show_held_locks(current);
2113 dump_stack();
2117 * The following prevents a kworker from hogging CPU on !PREEMPT
2118 * kernels, where a requeueing work item waiting for something to
2119 * happen could deadlock with stop_machine as such work item could
2120 * indefinitely requeue itself while all other CPUs are trapped in
2121 * stop_machine. At the same time, report a quiescent RCU state so
2122 * the same condition doesn't freeze RCU.
2124 cond_resched_rcu_qs();
2126 spin_lock_irq(&pool->lock);
2128 /* clear cpu intensive status */
2129 if (unlikely(cpu_intensive))
2130 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2132 /* we're done with it, release */
2133 hash_del(&worker->hentry);
2134 worker->current_work = NULL;
2135 worker->current_func = NULL;
2136 worker->current_pwq = NULL;
2137 worker->desc_valid = false;
2138 pwq_dec_nr_in_flight(pwq, work_color);
2142 * process_scheduled_works - process scheduled works
2143 * @worker: self
2145 * Process all scheduled works. Please note that the scheduled list
2146 * may change while processing a work, so this function repeatedly
2147 * fetches a work from the top and executes it.
2149 * CONTEXT:
2150 * spin_lock_irq(pool->lock) which may be released and regrabbed
2151 * multiple times.
2153 static void process_scheduled_works(struct worker *worker)
2155 while (!list_empty(&worker->scheduled)) {
2156 struct work_struct *work = list_first_entry(&worker->scheduled,
2157 struct work_struct, entry);
2158 process_one_work(worker, work);
2163 * worker_thread - the worker thread function
2164 * @__worker: self
2166 * The worker thread function. All workers belong to a worker_pool -
2167 * either a per-cpu one or dynamic unbound one. These workers process all
2168 * work items regardless of their specific target workqueue. The only
2169 * exception is work items which belong to workqueues with a rescuer which
2170 * will be explained in rescuer_thread().
2172 * Return: 0
2174 static int worker_thread(void *__worker)
2176 struct worker *worker = __worker;
2177 struct worker_pool *pool = worker->pool;
2179 /* tell the scheduler that this is a workqueue worker */
2180 worker->task->flags |= PF_WQ_WORKER;
2181 woke_up:
2182 spin_lock_irq(&pool->lock);
2184 /* am I supposed to die? */
2185 if (unlikely(worker->flags & WORKER_DIE)) {
2186 spin_unlock_irq(&pool->lock);
2187 WARN_ON_ONCE(!list_empty(&worker->entry));
2188 worker->task->flags &= ~PF_WQ_WORKER;
2190 set_task_comm(worker->task, "kworker/dying");
2191 ida_simple_remove(&pool->worker_ida, worker->id);
2192 worker_detach_from_pool(worker, pool);
2193 kfree(worker);
2194 return 0;
2197 worker_leave_idle(worker);
2198 recheck:
2199 /* no more worker necessary? */
2200 if (!need_more_worker(pool))
2201 goto sleep;
2203 /* do we need to manage? */
2204 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2205 goto recheck;
2208 * ->scheduled list can only be filled while a worker is
2209 * preparing to process a work or actually processing it.
2210 * Make sure nobody diddled with it while I was sleeping.
2212 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2215 * Finish PREP stage. We're guaranteed to have at least one idle
2216 * worker or that someone else has already assumed the manager
2217 * role. This is where @worker starts participating in concurrency
2218 * management if applicable and concurrency management is restored
2219 * after being rebound. See rebind_workers() for details.
2221 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2223 do {
2224 struct work_struct *work =
2225 list_first_entry(&pool->worklist,
2226 struct work_struct, entry);
2228 pool->watchdog_ts = jiffies;
2230 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2231 /* optimization path, not strictly necessary */
2232 process_one_work(worker, work);
2233 if (unlikely(!list_empty(&worker->scheduled)))
2234 process_scheduled_works(worker);
2235 } else {
2236 move_linked_works(work, &worker->scheduled, NULL);
2237 process_scheduled_works(worker);
2239 } while (keep_working(pool));
2241 worker_set_flags(worker, WORKER_PREP);
2242 sleep:
2244 * pool->lock is held and there's no work to process and no need to
2245 * manage, sleep. Workers are woken up only while holding
2246 * pool->lock or from local cpu, so setting the current state
2247 * before releasing pool->lock is enough to prevent losing any
2248 * event.
2250 worker_enter_idle(worker);
2251 __set_current_state(TASK_INTERRUPTIBLE);
2252 spin_unlock_irq(&pool->lock);
2253 schedule();
2254 goto woke_up;
2258 * rescuer_thread - the rescuer thread function
2259 * @__rescuer: self
2261 * Workqueue rescuer thread function. There's one rescuer for each
2262 * workqueue which has WQ_MEM_RECLAIM set.
2264 * Regular work processing on a pool may block trying to create a new
2265 * worker which uses GFP_KERNEL allocation which has slight chance of
2266 * developing into deadlock if some works currently on the same queue
2267 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2268 * the problem rescuer solves.
2270 * When such condition is possible, the pool summons rescuers of all
2271 * workqueues which have works queued on the pool and let them process
2272 * those works so that forward progress can be guaranteed.
2274 * This should happen rarely.
2276 * Return: 0
2278 static int rescuer_thread(void *__rescuer)
2280 struct worker *rescuer = __rescuer;
2281 struct workqueue_struct *wq = rescuer->rescue_wq;
2282 struct list_head *scheduled = &rescuer->scheduled;
2283 bool should_stop;
2285 set_user_nice(current, RESCUER_NICE_LEVEL);
2288 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2289 * doesn't participate in concurrency management.
2291 rescuer->task->flags |= PF_WQ_WORKER;
2292 repeat:
2293 set_current_state(TASK_INTERRUPTIBLE);
2296 * By the time the rescuer is requested to stop, the workqueue
2297 * shouldn't have any work pending, but @wq->maydays may still have
2298 * pwq(s) queued. This can happen by non-rescuer workers consuming
2299 * all the work items before the rescuer got to them. Go through
2300 * @wq->maydays processing before acting on should_stop so that the
2301 * list is always empty on exit.
2303 should_stop = kthread_should_stop();
2305 /* see whether any pwq is asking for help */
2306 spin_lock_irq(&wq_mayday_lock);
2308 while (!list_empty(&wq->maydays)) {
2309 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2310 struct pool_workqueue, mayday_node);
2311 struct worker_pool *pool = pwq->pool;
2312 struct work_struct *work, *n;
2313 bool first = true;
2315 __set_current_state(TASK_RUNNING);
2316 list_del_init(&pwq->mayday_node);
2318 spin_unlock_irq(&wq_mayday_lock);
2320 worker_attach_to_pool(rescuer, pool);
2322 spin_lock_irq(&pool->lock);
2323 rescuer->pool = pool;
2326 * Slurp in all works issued via this workqueue and
2327 * process'em.
2329 WARN_ON_ONCE(!list_empty(scheduled));
2330 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2331 if (get_work_pwq(work) == pwq) {
2332 if (first)
2333 pool->watchdog_ts = jiffies;
2334 move_linked_works(work, scheduled, &n);
2336 first = false;
2339 if (!list_empty(scheduled)) {
2340 process_scheduled_works(rescuer);
2343 * The above execution of rescued work items could
2344 * have created more to rescue through
2345 * pwq_activate_first_delayed() or chained
2346 * queueing. Let's put @pwq back on mayday list so
2347 * that such back-to-back work items, which may be
2348 * being used to relieve memory pressure, don't
2349 * incur MAYDAY_INTERVAL delay inbetween.
2351 if (need_to_create_worker(pool)) {
2352 spin_lock(&wq_mayday_lock);
2353 get_pwq(pwq);
2354 list_move_tail(&pwq->mayday_node, &wq->maydays);
2355 spin_unlock(&wq_mayday_lock);
2360 * Put the reference grabbed by send_mayday(). @pool won't
2361 * go away while we're still attached to it.
2363 put_pwq(pwq);
2366 * Leave this pool. If need_more_worker() is %true, notify a
2367 * regular worker; otherwise, we end up with 0 concurrency
2368 * and stalling the execution.
2370 if (need_more_worker(pool))
2371 wake_up_worker(pool);
2373 rescuer->pool = NULL;
2374 spin_unlock_irq(&pool->lock);
2376 worker_detach_from_pool(rescuer, pool);
2378 spin_lock_irq(&wq_mayday_lock);
2381 spin_unlock_irq(&wq_mayday_lock);
2383 if (should_stop) {
2384 __set_current_state(TASK_RUNNING);
2385 rescuer->task->flags &= ~PF_WQ_WORKER;
2386 return 0;
2389 /* rescuers should never participate in concurrency management */
2390 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391 schedule();
2392 goto repeat;
2396 * check_flush_dependency - check for flush dependency sanity
2397 * @target_wq: workqueue being flushed
2398 * @target_work: work item being flushed (NULL for workqueue flushes)
2400 * %current is trying to flush the whole @target_wq or @target_work on it.
2401 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2402 * reclaiming memory or running on a workqueue which doesn't have
2403 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404 * a deadlock.
2406 static void check_flush_dependency(struct workqueue_struct *target_wq,
2407 struct work_struct *target_work)
2409 work_func_t target_func = target_work ? target_work->func : NULL;
2410 struct worker *worker;
2412 if (target_wq->flags & WQ_MEM_RECLAIM)
2413 return;
2415 worker = current_wq_worker();
2417 WARN_ONCE(current->flags & PF_MEMALLOC,
2418 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2419 current->pid, current->comm, target_wq->name, target_func);
2420 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2421 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2422 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2423 worker->current_pwq->wq->name, worker->current_func,
2424 target_wq->name, target_func);
2427 struct wq_barrier {
2428 struct work_struct work;
2429 struct completion done;
2430 struct task_struct *task; /* purely informational */
2433 static void wq_barrier_func(struct work_struct *work)
2435 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436 complete(&barr->done);
2440 * insert_wq_barrier - insert a barrier work
2441 * @pwq: pwq to insert barrier into
2442 * @barr: wq_barrier to insert
2443 * @target: target work to attach @barr to
2444 * @worker: worker currently executing @target, NULL if @target is not executing
2446 * @barr is linked to @target such that @barr is completed only after
2447 * @target finishes execution. Please note that the ordering
2448 * guarantee is observed only with respect to @target and on the local
2449 * cpu.
2451 * Currently, a queued barrier can't be canceled. This is because
2452 * try_to_grab_pending() can't determine whether the work to be
2453 * grabbed is at the head of the queue and thus can't clear LINKED
2454 * flag of the previous work while there must be a valid next work
2455 * after a work with LINKED flag set.
2457 * Note that when @worker is non-NULL, @target may be modified
2458 * underneath us, so we can't reliably determine pwq from @target.
2460 * CONTEXT:
2461 * spin_lock_irq(pool->lock).
2463 static void insert_wq_barrier(struct pool_workqueue *pwq,
2464 struct wq_barrier *barr,
2465 struct work_struct *target, struct worker *worker)
2467 struct list_head *head;
2468 unsigned int linked = 0;
2471 * debugobject calls are safe here even with pool->lock locked
2472 * as we know for sure that this will not trigger any of the
2473 * checks and call back into the fixup functions where we
2474 * might deadlock.
2476 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2477 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478 init_completion(&barr->done);
2479 barr->task = current;
2482 * If @target is currently being executed, schedule the
2483 * barrier to the worker; otherwise, put it after @target.
2485 if (worker)
2486 head = worker->scheduled.next;
2487 else {
2488 unsigned long *bits = work_data_bits(target);
2490 head = target->entry.next;
2491 /* there can already be other linked works, inherit and set */
2492 linked = *bits & WORK_STRUCT_LINKED;
2493 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2496 debug_work_activate(&barr->work);
2497 insert_work(pwq, &barr->work, head,
2498 work_color_to_flags(WORK_NO_COLOR) | linked);
2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2507 * Prepare pwqs for workqueue flushing.
2509 * If @flush_color is non-negative, flush_color on all pwqs should be
2510 * -1. If no pwq has in-flight commands at the specified color, all
2511 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2512 * has in flight commands, its pwq->flush_color is set to
2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 * wakeup logic is armed and %true is returned.
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color. If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2521 * If @work_color is non-negative, all pwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2525 * CONTEXT:
2526 * mutex_lock(wq->mutex).
2528 * Return:
2529 * %true if @flush_color >= 0 and there's something to flush. %false
2530 * otherwise.
2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533 int flush_color, int work_color)
2535 bool wait = false;
2536 struct pool_workqueue *pwq;
2538 if (flush_color >= 0) {
2539 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540 atomic_set(&wq->nr_pwqs_to_flush, 1);
2543 for_each_pwq(pwq, wq) {
2544 struct worker_pool *pool = pwq->pool;
2546 spin_lock_irq(&pool->lock);
2548 if (flush_color >= 0) {
2549 WARN_ON_ONCE(pwq->flush_color != -1);
2551 if (pwq->nr_in_flight[flush_color]) {
2552 pwq->flush_color = flush_color;
2553 atomic_inc(&wq->nr_pwqs_to_flush);
2554 wait = true;
2558 if (work_color >= 0) {
2559 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560 pwq->work_color = work_color;
2563 spin_unlock_irq(&pool->lock);
2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567 complete(&wq->first_flusher->done);
2569 return wait;
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2576 * This function sleeps until all work items which were queued on entry
2577 * have finished execution, but it is not livelocked by new incoming ones.
2579 void flush_workqueue(struct workqueue_struct *wq)
2581 struct wq_flusher this_flusher = {
2582 .list = LIST_HEAD_INIT(this_flusher.list),
2583 .flush_color = -1,
2584 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2586 int next_color;
2588 if (WARN_ON(!wq_online))
2589 return;
2591 lock_map_acquire(&wq->lockdep_map);
2592 lock_map_release(&wq->lockdep_map);
2594 mutex_lock(&wq->mutex);
2597 * Start-to-wait phase
2599 next_color = work_next_color(wq->work_color);
2601 if (next_color != wq->flush_color) {
2603 * Color space is not full. The current work_color
2604 * becomes our flush_color and work_color is advanced
2605 * by one.
2607 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2608 this_flusher.flush_color = wq->work_color;
2609 wq->work_color = next_color;
2611 if (!wq->first_flusher) {
2612 /* no flush in progress, become the first flusher */
2613 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2615 wq->first_flusher = &this_flusher;
2617 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2618 wq->work_color)) {
2619 /* nothing to flush, done */
2620 wq->flush_color = next_color;
2621 wq->first_flusher = NULL;
2622 goto out_unlock;
2624 } else {
2625 /* wait in queue */
2626 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2627 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2630 } else {
2632 * Oops, color space is full, wait on overflow queue.
2633 * The next flush completion will assign us
2634 * flush_color and transfer to flusher_queue.
2636 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2639 check_flush_dependency(wq, NULL);
2641 mutex_unlock(&wq->mutex);
2643 wait_for_completion(&this_flusher.done);
2646 * Wake-up-and-cascade phase
2648 * First flushers are responsible for cascading flushes and
2649 * handling overflow. Non-first flushers can simply return.
2651 if (wq->first_flusher != &this_flusher)
2652 return;
2654 mutex_lock(&wq->mutex);
2656 /* we might have raced, check again with mutex held */
2657 if (wq->first_flusher != &this_flusher)
2658 goto out_unlock;
2660 wq->first_flusher = NULL;
2662 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2663 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2665 while (true) {
2666 struct wq_flusher *next, *tmp;
2668 /* complete all the flushers sharing the current flush color */
2669 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670 if (next->flush_color != wq->flush_color)
2671 break;
2672 list_del_init(&next->list);
2673 complete(&next->done);
2676 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2677 wq->flush_color != work_next_color(wq->work_color));
2679 /* this flush_color is finished, advance by one */
2680 wq->flush_color = work_next_color(wq->flush_color);
2682 /* one color has been freed, handle overflow queue */
2683 if (!list_empty(&wq->flusher_overflow)) {
2685 * Assign the same color to all overflowed
2686 * flushers, advance work_color and append to
2687 * flusher_queue. This is the start-to-wait
2688 * phase for these overflowed flushers.
2690 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691 tmp->flush_color = wq->work_color;
2693 wq->work_color = work_next_color(wq->work_color);
2695 list_splice_tail_init(&wq->flusher_overflow,
2696 &wq->flusher_queue);
2697 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2700 if (list_empty(&wq->flusher_queue)) {
2701 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2702 break;
2706 * Need to flush more colors. Make the next flusher
2707 * the new first flusher and arm pwqs.
2709 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2710 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2712 list_del_init(&next->list);
2713 wq->first_flusher = next;
2715 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2716 break;
2719 * Meh... this color is already done, clear first
2720 * flusher and repeat cascading.
2722 wq->first_flusher = NULL;
2725 out_unlock:
2726 mutex_unlock(&wq->mutex);
2728 EXPORT_SYMBOL(flush_workqueue);
2731 * drain_workqueue - drain a workqueue
2732 * @wq: workqueue to drain
2734 * Wait until the workqueue becomes empty. While draining is in progress,
2735 * only chain queueing is allowed. IOW, only currently pending or running
2736 * work items on @wq can queue further work items on it. @wq is flushed
2737 * repeatedly until it becomes empty. The number of flushing is determined
2738 * by the depth of chaining and should be relatively short. Whine if it
2739 * takes too long.
2741 void drain_workqueue(struct workqueue_struct *wq)
2743 unsigned int flush_cnt = 0;
2744 struct pool_workqueue *pwq;
2747 * __queue_work() needs to test whether there are drainers, is much
2748 * hotter than drain_workqueue() and already looks at @wq->flags.
2749 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2751 mutex_lock(&wq->mutex);
2752 if (!wq->nr_drainers++)
2753 wq->flags |= __WQ_DRAINING;
2754 mutex_unlock(&wq->mutex);
2755 reflush:
2756 flush_workqueue(wq);
2758 mutex_lock(&wq->mutex);
2760 for_each_pwq(pwq, wq) {
2761 bool drained;
2763 spin_lock_irq(&pwq->pool->lock);
2764 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2765 spin_unlock_irq(&pwq->pool->lock);
2767 if (drained)
2768 continue;
2770 if (++flush_cnt == 10 ||
2771 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2773 wq->name, flush_cnt);
2775 mutex_unlock(&wq->mutex);
2776 goto reflush;
2779 if (!--wq->nr_drainers)
2780 wq->flags &= ~__WQ_DRAINING;
2781 mutex_unlock(&wq->mutex);
2783 EXPORT_SYMBOL_GPL(drain_workqueue);
2785 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2787 struct worker *worker = NULL;
2788 struct worker_pool *pool;
2789 struct pool_workqueue *pwq;
2791 might_sleep();
2793 local_irq_disable();
2794 pool = get_work_pool(work);
2795 if (!pool) {
2796 local_irq_enable();
2797 return false;
2800 spin_lock(&pool->lock);
2801 /* see the comment in try_to_grab_pending() with the same code */
2802 pwq = get_work_pwq(work);
2803 if (pwq) {
2804 if (unlikely(pwq->pool != pool))
2805 goto already_gone;
2806 } else {
2807 worker = find_worker_executing_work(pool, work);
2808 if (!worker)
2809 goto already_gone;
2810 pwq = worker->current_pwq;
2813 check_flush_dependency(pwq->wq, work);
2815 insert_wq_barrier(pwq, barr, work, worker);
2816 spin_unlock_irq(&pool->lock);
2819 * If @max_active is 1 or rescuer is in use, flushing another work
2820 * item on the same workqueue may lead to deadlock. Make sure the
2821 * flusher is not running on the same workqueue by verifying write
2822 * access.
2824 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825 lock_map_acquire(&pwq->wq->lockdep_map);
2826 else
2827 lock_map_acquire_read(&pwq->wq->lockdep_map);
2828 lock_map_release(&pwq->wq->lockdep_map);
2830 return true;
2831 already_gone:
2832 spin_unlock_irq(&pool->lock);
2833 return false;
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2840 * Wait until @work has finished execution. @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
2843 * Return:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2847 bool flush_work(struct work_struct *work)
2849 struct wq_barrier barr;
2851 if (WARN_ON(!wq_online))
2852 return false;
2854 lock_map_acquire(&work->lockdep_map);
2855 lock_map_release(&work->lockdep_map);
2857 if (start_flush_work(work, &barr)) {
2858 wait_for_completion(&barr.done);
2859 destroy_work_on_stack(&barr.work);
2860 return true;
2861 } else {
2862 return false;
2865 EXPORT_SYMBOL_GPL(flush_work);
2867 struct cwt_wait {
2868 wait_queue_t wait;
2869 struct work_struct *work;
2872 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2874 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2876 if (cwait->work != key)
2877 return 0;
2878 return autoremove_wake_function(wait, mode, sync, key);
2881 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2883 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2884 unsigned long flags;
2885 int ret;
2887 do {
2888 ret = try_to_grab_pending(work, is_dwork, &flags);
2890 * If someone else is already canceling, wait for it to
2891 * finish. flush_work() doesn't work for PREEMPT_NONE
2892 * because we may get scheduled between @work's completion
2893 * and the other canceling task resuming and clearing
2894 * CANCELING - flush_work() will return false immediately
2895 * as @work is no longer busy, try_to_grab_pending() will
2896 * return -ENOENT as @work is still being canceled and the
2897 * other canceling task won't be able to clear CANCELING as
2898 * we're hogging the CPU.
2900 * Let's wait for completion using a waitqueue. As this
2901 * may lead to the thundering herd problem, use a custom
2902 * wake function which matches @work along with exclusive
2903 * wait and wakeup.
2905 if (unlikely(ret == -ENOENT)) {
2906 struct cwt_wait cwait;
2908 init_wait(&cwait.wait);
2909 cwait.wait.func = cwt_wakefn;
2910 cwait.work = work;
2912 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2913 TASK_UNINTERRUPTIBLE);
2914 if (work_is_canceling(work))
2915 schedule();
2916 finish_wait(&cancel_waitq, &cwait.wait);
2918 } while (unlikely(ret < 0));
2920 /* tell other tasks trying to grab @work to back off */
2921 mark_work_canceling(work);
2922 local_irq_restore(flags);
2925 * This allows canceling during early boot. We know that @work
2926 * isn't executing.
2928 if (wq_online)
2929 flush_work(work);
2931 clear_work_data(work);
2934 * Paired with prepare_to_wait() above so that either
2935 * waitqueue_active() is visible here or !work_is_canceling() is
2936 * visible there.
2938 smp_mb();
2939 if (waitqueue_active(&cancel_waitq))
2940 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2942 return ret;
2946 * cancel_work_sync - cancel a work and wait for it to finish
2947 * @work: the work to cancel
2949 * Cancel @work and wait for its execution to finish. This function
2950 * can be used even if the work re-queues itself or migrates to
2951 * another workqueue. On return from this function, @work is
2952 * guaranteed to be not pending or executing on any CPU.
2954 * cancel_work_sync(&delayed_work->work) must not be used for
2955 * delayed_work's. Use cancel_delayed_work_sync() instead.
2957 * The caller must ensure that the workqueue on which @work was last
2958 * queued can't be destroyed before this function returns.
2960 * Return:
2961 * %true if @work was pending, %false otherwise.
2963 bool cancel_work_sync(struct work_struct *work)
2965 return __cancel_work_timer(work, false);
2967 EXPORT_SYMBOL_GPL(cancel_work_sync);
2970 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2971 * @dwork: the delayed work to flush
2973 * Delayed timer is cancelled and the pending work is queued for
2974 * immediate execution. Like flush_work(), this function only
2975 * considers the last queueing instance of @dwork.
2977 * Return:
2978 * %true if flush_work() waited for the work to finish execution,
2979 * %false if it was already idle.
2981 bool flush_delayed_work(struct delayed_work *dwork)
2983 local_irq_disable();
2984 if (del_timer_sync(&dwork->timer))
2985 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2986 local_irq_enable();
2987 return flush_work(&dwork->work);
2989 EXPORT_SYMBOL(flush_delayed_work);
2991 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2993 unsigned long flags;
2994 int ret;
2996 do {
2997 ret = try_to_grab_pending(work, is_dwork, &flags);
2998 } while (unlikely(ret == -EAGAIN));
3000 if (unlikely(ret < 0))
3001 return false;
3003 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3004 local_irq_restore(flags);
3005 return ret;
3009 * See cancel_delayed_work()
3011 bool cancel_work(struct work_struct *work)
3013 return __cancel_work(work, false);
3017 * cancel_delayed_work - cancel a delayed work
3018 * @dwork: delayed_work to cancel
3020 * Kill off a pending delayed_work.
3022 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3023 * pending.
3025 * Note:
3026 * The work callback function may still be running on return, unless
3027 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3028 * use cancel_delayed_work_sync() to wait on it.
3030 * This function is safe to call from any context including IRQ handler.
3032 bool cancel_delayed_work(struct delayed_work *dwork)
3034 return __cancel_work(&dwork->work, true);
3036 EXPORT_SYMBOL(cancel_delayed_work);
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3042 * This is cancel_work_sync() for delayed works.
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3047 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3049 return __cancel_work_timer(&dwork->work, true);
3051 EXPORT_SYMBOL(cancel_delayed_work_sync);
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3061 * Return:
3062 * 0 on success, -errno on failure.
3064 int schedule_on_each_cpu(work_func_t func)
3066 int cpu;
3067 struct work_struct __percpu *works;
3069 works = alloc_percpu(struct work_struct);
3070 if (!works)
3071 return -ENOMEM;
3073 get_online_cpus();
3075 for_each_online_cpu(cpu) {
3076 struct work_struct *work = per_cpu_ptr(works, cpu);
3078 INIT_WORK(work, func);
3079 schedule_work_on(cpu, work);
3082 for_each_online_cpu(cpu)
3083 flush_work(per_cpu_ptr(works, cpu));
3085 put_online_cpus();
3086 free_percpu(works);
3087 return 0;
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn: the function to execute
3093 * @ew: guaranteed storage for the execute work structure (must
3094 * be available when the work executes)
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3099 * Return: 0 - function was executed
3100 * 1 - function was scheduled for execution
3102 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3104 if (!in_interrupt()) {
3105 fn(&ew->work);
3106 return 0;
3109 INIT_WORK(&ew->work, fn);
3110 schedule_work(&ew->work);
3112 return 1;
3114 EXPORT_SYMBOL_GPL(execute_in_process_context);
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3120 * Undo alloc_workqueue_attrs().
3122 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3124 if (attrs) {
3125 free_cpumask_var(attrs->cpumask);
3126 kfree(attrs);
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3139 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3141 struct workqueue_attrs *attrs;
3143 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144 if (!attrs)
3145 goto fail;
3146 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147 goto fail;
3149 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150 return attrs;
3151 fail:
3152 free_workqueue_attrs(attrs);
3153 return NULL;
3156 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157 const struct workqueue_attrs *from)
3159 to->nice = from->nice;
3160 cpumask_copy(to->cpumask, from->cpumask);
3162 * Unlike hash and equality test, this function doesn't ignore
3163 * ->no_numa as it is used for both pool and wq attrs. Instead,
3164 * get_unbound_pool() explicitly clears ->no_numa after copying.
3166 to->no_numa = from->no_numa;
3169 /* hash value of the content of @attr */
3170 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3172 u32 hash = 0;
3174 hash = jhash_1word(attrs->nice, hash);
3175 hash = jhash(cpumask_bits(attrs->cpumask),
3176 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177 return hash;
3180 /* content equality test */
3181 static bool wqattrs_equal(const struct workqueue_attrs *a,
3182 const struct workqueue_attrs *b)
3184 if (a->nice != b->nice)
3185 return false;
3186 if (!cpumask_equal(a->cpumask, b->cpumask))
3187 return false;
3188 return true;
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3195 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3197 * Return: 0 on success, -errno on failure. Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3201 static int init_worker_pool(struct worker_pool *pool)
3203 spin_lock_init(&pool->lock);
3204 pool->id = -1;
3205 pool->cpu = -1;
3206 pool->node = NUMA_NO_NODE;
3207 pool->flags |= POOL_DISASSOCIATED;
3208 pool->watchdog_ts = jiffies;
3209 INIT_LIST_HEAD(&pool->worklist);
3210 INIT_LIST_HEAD(&pool->idle_list);
3211 hash_init(pool->busy_hash);
3213 init_timer_deferrable(&pool->idle_timer);
3214 pool->idle_timer.function = idle_worker_timeout;
3215 pool->idle_timer.data = (unsigned long)pool;
3217 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218 (unsigned long)pool);
3220 mutex_init(&pool->manager_arb);
3221 mutex_init(&pool->attach_mutex);
3222 INIT_LIST_HEAD(&pool->workers);
3224 ida_init(&pool->worker_ida);
3225 INIT_HLIST_NODE(&pool->hash_node);
3226 pool->refcnt = 1;
3228 /* shouldn't fail above this point */
3229 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230 if (!pool->attrs)
3231 return -ENOMEM;
3232 return 0;
3235 static void rcu_free_wq(struct rcu_head *rcu)
3237 struct workqueue_struct *wq =
3238 container_of(rcu, struct workqueue_struct, rcu);
3240 if (!(wq->flags & WQ_UNBOUND))
3241 free_percpu(wq->cpu_pwqs);
3242 else
3243 free_workqueue_attrs(wq->unbound_attrs);
3245 kfree(wq->rescuer);
3246 kfree(wq);
3249 static void rcu_free_pool(struct rcu_head *rcu)
3251 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3253 ida_destroy(&pool->worker_ida);
3254 free_workqueue_attrs(pool->attrs);
3255 kfree(pool);
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3262 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner. get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3267 * Should be called with wq_pool_mutex held.
3269 static void put_unbound_pool(struct worker_pool *pool)
3271 DECLARE_COMPLETION_ONSTACK(detach_completion);
3272 struct worker *worker;
3274 lockdep_assert_held(&wq_pool_mutex);
3276 if (--pool->refcnt)
3277 return;
3279 /* sanity checks */
3280 if (WARN_ON(!(pool->cpu < 0)) ||
3281 WARN_ON(!list_empty(&pool->worklist)))
3282 return;
3284 /* release id and unhash */
3285 if (pool->id >= 0)
3286 idr_remove(&worker_pool_idr, pool->id);
3287 hash_del(&pool->hash_node);
3290 * Become the manager and destroy all workers. Grabbing
3291 * manager_arb prevents @pool's workers from blocking on
3292 * attach_mutex.
3294 mutex_lock(&pool->manager_arb);
3296 spin_lock_irq(&pool->lock);
3297 while ((worker = first_idle_worker(pool)))
3298 destroy_worker(worker);
3299 WARN_ON(pool->nr_workers || pool->nr_idle);
3300 spin_unlock_irq(&pool->lock);
3302 mutex_lock(&pool->attach_mutex);
3303 if (!list_empty(&pool->workers))
3304 pool->detach_completion = &detach_completion;
3305 mutex_unlock(&pool->attach_mutex);
3307 if (pool->detach_completion)
3308 wait_for_completion(pool->detach_completion);
3310 mutex_unlock(&pool->manager_arb);
3312 /* shut down the timers */
3313 del_timer_sync(&pool->idle_timer);
3314 del_timer_sync(&pool->mayday_timer);
3316 /* sched-RCU protected to allow dereferences from get_work_pool() */
3317 call_rcu_sched(&pool->rcu, rcu_free_pool);
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it. If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3329 * Should be called with wq_pool_mutex held.
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3334 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3336 u32 hash = wqattrs_hash(attrs);
3337 struct worker_pool *pool;
3338 int node;
3339 int target_node = NUMA_NO_NODE;
3341 lockdep_assert_held(&wq_pool_mutex);
3343 /* do we already have a matching pool? */
3344 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345 if (wqattrs_equal(pool->attrs, attrs)) {
3346 pool->refcnt++;
3347 return pool;
3351 /* if cpumask is contained inside a NUMA node, we belong to that node */
3352 if (wq_numa_enabled) {
3353 for_each_node(node) {
3354 if (cpumask_subset(attrs->cpumask,
3355 wq_numa_possible_cpumask[node])) {
3356 target_node = node;
3357 break;
3362 /* nope, create a new one */
3363 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364 if (!pool || init_worker_pool(pool) < 0)
3365 goto fail;
3367 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3368 copy_workqueue_attrs(pool->attrs, attrs);
3369 pool->node = target_node;
3372 * no_numa isn't a worker_pool attribute, always clear it. See
3373 * 'struct workqueue_attrs' comments for detail.
3375 pool->attrs->no_numa = false;
3377 if (worker_pool_assign_id(pool) < 0)
3378 goto fail;
3380 /* create and start the initial worker */
3381 if (wq_online && !create_worker(pool))
3382 goto fail;
3384 /* install */
3385 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3387 return pool;
3388 fail:
3389 if (pool)
3390 put_unbound_pool(pool);
3391 return NULL;
3394 static void rcu_free_pwq(struct rcu_head *rcu)
3396 kmem_cache_free(pwq_cache,
3397 container_of(rcu, struct pool_workqueue, rcu));
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3404 static void pwq_unbound_release_workfn(struct work_struct *work)
3406 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407 unbound_release_work);
3408 struct workqueue_struct *wq = pwq->wq;
3409 struct worker_pool *pool = pwq->pool;
3410 bool is_last;
3412 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413 return;
3415 mutex_lock(&wq->mutex);
3416 list_del_rcu(&pwq->pwqs_node);
3417 is_last = list_empty(&wq->pwqs);
3418 mutex_unlock(&wq->mutex);
3420 mutex_lock(&wq_pool_mutex);
3421 put_unbound_pool(pool);
3422 mutex_unlock(&wq_pool_mutex);
3424 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3427 * If we're the last pwq going away, @wq is already dead and no one
3428 * is gonna access it anymore. Schedule RCU free.
3430 if (is_last)
3431 call_rcu_sched(&wq->rcu, rcu_free_wq);
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3442 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3444 struct workqueue_struct *wq = pwq->wq;
3445 bool freezable = wq->flags & WQ_FREEZABLE;
3446 unsigned long flags;
3448 /* for @wq->saved_max_active */
3449 lockdep_assert_held(&wq->mutex);
3451 /* fast exit for non-freezable wqs */
3452 if (!freezable && pwq->max_active == wq->saved_max_active)
3453 return;
3455 /* this function can be called during early boot w/ irq disabled */
3456 spin_lock_irqsave(&pwq->pool->lock, flags);
3459 * During [un]freezing, the caller is responsible for ensuring that
3460 * this function is called at least once after @workqueue_freezing
3461 * is updated and visible.
3463 if (!freezable || !workqueue_freezing) {
3464 pwq->max_active = wq->saved_max_active;
3466 while (!list_empty(&pwq->delayed_works) &&
3467 pwq->nr_active < pwq->max_active)
3468 pwq_activate_first_delayed(pwq);
3471 * Need to kick a worker after thawed or an unbound wq's
3472 * max_active is bumped. It's a slow path. Do it always.
3474 wake_up_worker(pwq->pool);
3475 } else {
3476 pwq->max_active = 0;
3479 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3482 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3483 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3484 struct worker_pool *pool)
3486 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3488 memset(pwq, 0, sizeof(*pwq));
3490 pwq->pool = pool;
3491 pwq->wq = wq;
3492 pwq->flush_color = -1;
3493 pwq->refcnt = 1;
3494 INIT_LIST_HEAD(&pwq->delayed_works);
3495 INIT_LIST_HEAD(&pwq->pwqs_node);
3496 INIT_LIST_HEAD(&pwq->mayday_node);
3497 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3500 /* sync @pwq with the current state of its associated wq and link it */
3501 static void link_pwq(struct pool_workqueue *pwq)
3503 struct workqueue_struct *wq = pwq->wq;
3505 lockdep_assert_held(&wq->mutex);
3507 /* may be called multiple times, ignore if already linked */
3508 if (!list_empty(&pwq->pwqs_node))
3509 return;
3511 /* set the matching work_color */
3512 pwq->work_color = wq->work_color;
3514 /* sync max_active to the current setting */
3515 pwq_adjust_max_active(pwq);
3517 /* link in @pwq */
3518 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3521 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3522 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3523 const struct workqueue_attrs *attrs)
3525 struct worker_pool *pool;
3526 struct pool_workqueue *pwq;
3528 lockdep_assert_held(&wq_pool_mutex);
3530 pool = get_unbound_pool(attrs);
3531 if (!pool)
3532 return NULL;
3534 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3535 if (!pwq) {
3536 put_unbound_pool(pool);
3537 return NULL;
3540 init_pwq(pwq, wq, pool);
3541 return pwq;
3545 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3546 * @attrs: the wq_attrs of the default pwq of the target workqueue
3547 * @node: the target NUMA node
3548 * @cpu_going_down: if >= 0, the CPU to consider as offline
3549 * @cpumask: outarg, the resulting cpumask
3551 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3552 * @cpu_going_down is >= 0, that cpu is considered offline during
3553 * calculation. The result is stored in @cpumask.
3555 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3556 * enabled and @node has online CPUs requested by @attrs, the returned
3557 * cpumask is the intersection of the possible CPUs of @node and
3558 * @attrs->cpumask.
3560 * The caller is responsible for ensuring that the cpumask of @node stays
3561 * stable.
3563 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3564 * %false if equal.
3566 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3567 int cpu_going_down, cpumask_t *cpumask)
3569 if (!wq_numa_enabled || attrs->no_numa)
3570 goto use_dfl;
3572 /* does @node have any online CPUs @attrs wants? */
3573 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3574 if (cpu_going_down >= 0)
3575 cpumask_clear_cpu(cpu_going_down, cpumask);
3577 if (cpumask_empty(cpumask))
3578 goto use_dfl;
3580 /* yeap, return possible CPUs in @node that @attrs wants */
3581 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3582 return !cpumask_equal(cpumask, attrs->cpumask);
3584 use_dfl:
3585 cpumask_copy(cpumask, attrs->cpumask);
3586 return false;
3589 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3590 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3591 int node,
3592 struct pool_workqueue *pwq)
3594 struct pool_workqueue *old_pwq;
3596 lockdep_assert_held(&wq_pool_mutex);
3597 lockdep_assert_held(&wq->mutex);
3599 /* link_pwq() can handle duplicate calls */
3600 link_pwq(pwq);
3602 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3603 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3604 return old_pwq;
3607 /* context to store the prepared attrs & pwqs before applying */
3608 struct apply_wqattrs_ctx {
3609 struct workqueue_struct *wq; /* target workqueue */
3610 struct workqueue_attrs *attrs; /* attrs to apply */
3611 struct list_head list; /* queued for batching commit */
3612 struct pool_workqueue *dfl_pwq;
3613 struct pool_workqueue *pwq_tbl[];
3616 /* free the resources after success or abort */
3617 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3619 if (ctx) {
3620 int node;
3622 for_each_node(node)
3623 put_pwq_unlocked(ctx->pwq_tbl[node]);
3624 put_pwq_unlocked(ctx->dfl_pwq);
3626 free_workqueue_attrs(ctx->attrs);
3628 kfree(ctx);
3632 /* allocate the attrs and pwqs for later installation */
3633 static struct apply_wqattrs_ctx *
3634 apply_wqattrs_prepare(struct workqueue_struct *wq,
3635 const struct workqueue_attrs *attrs)
3637 struct apply_wqattrs_ctx *ctx;
3638 struct workqueue_attrs *new_attrs, *tmp_attrs;
3639 int node;
3641 lockdep_assert_held(&wq_pool_mutex);
3643 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3644 GFP_KERNEL);
3646 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3648 if (!ctx || !new_attrs || !tmp_attrs)
3649 goto out_free;
3652 * Calculate the attrs of the default pwq.
3653 * If the user configured cpumask doesn't overlap with the
3654 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3656 copy_workqueue_attrs(new_attrs, attrs);
3657 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3658 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3659 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3662 * We may create multiple pwqs with differing cpumasks. Make a
3663 * copy of @new_attrs which will be modified and used to obtain
3664 * pools.
3666 copy_workqueue_attrs(tmp_attrs, new_attrs);
3669 * If something goes wrong during CPU up/down, we'll fall back to
3670 * the default pwq covering whole @attrs->cpumask. Always create
3671 * it even if we don't use it immediately.
3673 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3674 if (!ctx->dfl_pwq)
3675 goto out_free;
3677 for_each_node(node) {
3678 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3679 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3680 if (!ctx->pwq_tbl[node])
3681 goto out_free;
3682 } else {
3683 ctx->dfl_pwq->refcnt++;
3684 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3688 /* save the user configured attrs and sanitize it. */
3689 copy_workqueue_attrs(new_attrs, attrs);
3690 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3691 ctx->attrs = new_attrs;
3693 ctx->wq = wq;
3694 free_workqueue_attrs(tmp_attrs);
3695 return ctx;
3697 out_free:
3698 free_workqueue_attrs(tmp_attrs);
3699 free_workqueue_attrs(new_attrs);
3700 apply_wqattrs_cleanup(ctx);
3701 return NULL;
3704 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3705 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3707 int node;
3709 /* all pwqs have been created successfully, let's install'em */
3710 mutex_lock(&ctx->wq->mutex);
3712 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3714 /* save the previous pwq and install the new one */
3715 for_each_node(node)
3716 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3717 ctx->pwq_tbl[node]);
3719 /* @dfl_pwq might not have been used, ensure it's linked */
3720 link_pwq(ctx->dfl_pwq);
3721 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3723 mutex_unlock(&ctx->wq->mutex);
3726 static void apply_wqattrs_lock(void)
3728 /* CPUs should stay stable across pwq creations and installations */
3729 get_online_cpus();
3730 mutex_lock(&wq_pool_mutex);
3733 static void apply_wqattrs_unlock(void)
3735 mutex_unlock(&wq_pool_mutex);
3736 put_online_cpus();
3739 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3740 const struct workqueue_attrs *attrs)
3742 struct apply_wqattrs_ctx *ctx;
3744 /* only unbound workqueues can change attributes */
3745 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3746 return -EINVAL;
3748 /* creating multiple pwqs breaks ordering guarantee */
3749 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3750 return -EINVAL;
3752 ctx = apply_wqattrs_prepare(wq, attrs);
3753 if (!ctx)
3754 return -ENOMEM;
3756 /* the ctx has been prepared successfully, let's commit it */
3757 apply_wqattrs_commit(ctx);
3758 apply_wqattrs_cleanup(ctx);
3760 return 0;
3764 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3765 * @wq: the target workqueue
3766 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3768 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3769 * machines, this function maps a separate pwq to each NUMA node with
3770 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3771 * NUMA node it was issued on. Older pwqs are released as in-flight work
3772 * items finish. Note that a work item which repeatedly requeues itself
3773 * back-to-back will stay on its current pwq.
3775 * Performs GFP_KERNEL allocations.
3777 * Return: 0 on success and -errno on failure.
3779 int apply_workqueue_attrs(struct workqueue_struct *wq,
3780 const struct workqueue_attrs *attrs)
3782 int ret;
3784 apply_wqattrs_lock();
3785 ret = apply_workqueue_attrs_locked(wq, attrs);
3786 apply_wqattrs_unlock();
3788 return ret;
3792 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3793 * @wq: the target workqueue
3794 * @cpu: the CPU coming up or going down
3795 * @online: whether @cpu is coming up or going down
3797 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3798 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3799 * @wq accordingly.
3801 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3802 * falls back to @wq->dfl_pwq which may not be optimal but is always
3803 * correct.
3805 * Note that when the last allowed CPU of a NUMA node goes offline for a
3806 * workqueue with a cpumask spanning multiple nodes, the workers which were
3807 * already executing the work items for the workqueue will lose their CPU
3808 * affinity and may execute on any CPU. This is similar to how per-cpu
3809 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3810 * affinity, it's the user's responsibility to flush the work item from
3811 * CPU_DOWN_PREPARE.
3813 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3814 bool online)
3816 int node = cpu_to_node(cpu);
3817 int cpu_off = online ? -1 : cpu;
3818 struct pool_workqueue *old_pwq = NULL, *pwq;
3819 struct workqueue_attrs *target_attrs;
3820 cpumask_t *cpumask;
3822 lockdep_assert_held(&wq_pool_mutex);
3824 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3825 wq->unbound_attrs->no_numa)
3826 return;
3829 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3830 * Let's use a preallocated one. The following buf is protected by
3831 * CPU hotplug exclusion.
3833 target_attrs = wq_update_unbound_numa_attrs_buf;
3834 cpumask = target_attrs->cpumask;
3836 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3837 pwq = unbound_pwq_by_node(wq, node);
3840 * Let's determine what needs to be done. If the target cpumask is
3841 * different from the default pwq's, we need to compare it to @pwq's
3842 * and create a new one if they don't match. If the target cpumask
3843 * equals the default pwq's, the default pwq should be used.
3845 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3846 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3847 return;
3848 } else {
3849 goto use_dfl_pwq;
3852 /* create a new pwq */
3853 pwq = alloc_unbound_pwq(wq, target_attrs);
3854 if (!pwq) {
3855 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3856 wq->name);
3857 goto use_dfl_pwq;
3860 /* Install the new pwq. */
3861 mutex_lock(&wq->mutex);
3862 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3863 goto out_unlock;
3865 use_dfl_pwq:
3866 mutex_lock(&wq->mutex);
3867 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3868 get_pwq(wq->dfl_pwq);
3869 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3870 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3871 out_unlock:
3872 mutex_unlock(&wq->mutex);
3873 put_pwq_unlocked(old_pwq);
3876 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3878 bool highpri = wq->flags & WQ_HIGHPRI;
3879 int cpu, ret;
3881 if (!(wq->flags & WQ_UNBOUND)) {
3882 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3883 if (!wq->cpu_pwqs)
3884 return -ENOMEM;
3886 for_each_possible_cpu(cpu) {
3887 struct pool_workqueue *pwq =
3888 per_cpu_ptr(wq->cpu_pwqs, cpu);
3889 struct worker_pool *cpu_pools =
3890 per_cpu(cpu_worker_pools, cpu);
3892 init_pwq(pwq, wq, &cpu_pools[highpri]);
3894 mutex_lock(&wq->mutex);
3895 link_pwq(pwq);
3896 mutex_unlock(&wq->mutex);
3898 return 0;
3899 } else if (wq->flags & __WQ_ORDERED) {
3900 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3901 /* there should only be single pwq for ordering guarantee */
3902 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3903 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3904 "ordering guarantee broken for workqueue %s\n", wq->name);
3905 return ret;
3906 } else {
3907 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3911 static int wq_clamp_max_active(int max_active, unsigned int flags,
3912 const char *name)
3914 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3916 if (max_active < 1 || max_active > lim)
3917 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3918 max_active, name, 1, lim);
3920 return clamp_val(max_active, 1, lim);
3923 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3924 unsigned int flags,
3925 int max_active,
3926 struct lock_class_key *key,
3927 const char *lock_name, ...)
3929 size_t tbl_size = 0;
3930 va_list args;
3931 struct workqueue_struct *wq;
3932 struct pool_workqueue *pwq;
3934 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3935 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3936 flags |= WQ_UNBOUND;
3938 /* allocate wq and format name */
3939 if (flags & WQ_UNBOUND)
3940 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3942 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3943 if (!wq)
3944 return NULL;
3946 if (flags & WQ_UNBOUND) {
3947 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3948 if (!wq->unbound_attrs)
3949 goto err_free_wq;
3952 va_start(args, lock_name);
3953 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3954 va_end(args);
3956 max_active = max_active ?: WQ_DFL_ACTIVE;
3957 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3959 /* init wq */
3960 wq->flags = flags;
3961 wq->saved_max_active = max_active;
3962 mutex_init(&wq->mutex);
3963 atomic_set(&wq->nr_pwqs_to_flush, 0);
3964 INIT_LIST_HEAD(&wq->pwqs);
3965 INIT_LIST_HEAD(&wq->flusher_queue);
3966 INIT_LIST_HEAD(&wq->flusher_overflow);
3967 INIT_LIST_HEAD(&wq->maydays);
3969 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3970 INIT_LIST_HEAD(&wq->list);
3972 if (alloc_and_link_pwqs(wq) < 0)
3973 goto err_free_wq;
3976 * Workqueues which may be used during memory reclaim should
3977 * have a rescuer to guarantee forward progress.
3979 if (flags & WQ_MEM_RECLAIM) {
3980 struct worker *rescuer;
3982 rescuer = alloc_worker(NUMA_NO_NODE);
3983 if (!rescuer)
3984 goto err_destroy;
3986 rescuer->rescue_wq = wq;
3987 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3988 wq->name);
3989 if (IS_ERR(rescuer->task)) {
3990 kfree(rescuer);
3991 goto err_destroy;
3994 wq->rescuer = rescuer;
3995 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3996 wake_up_process(rescuer->task);
3999 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4000 goto err_destroy;
4003 * wq_pool_mutex protects global freeze state and workqueues list.
4004 * Grab it, adjust max_active and add the new @wq to workqueues
4005 * list.
4007 mutex_lock(&wq_pool_mutex);
4009 mutex_lock(&wq->mutex);
4010 for_each_pwq(pwq, wq)
4011 pwq_adjust_max_active(pwq);
4012 mutex_unlock(&wq->mutex);
4014 list_add_tail_rcu(&wq->list, &workqueues);
4016 mutex_unlock(&wq_pool_mutex);
4018 return wq;
4020 err_free_wq:
4021 free_workqueue_attrs(wq->unbound_attrs);
4022 kfree(wq);
4023 return NULL;
4024 err_destroy:
4025 destroy_workqueue(wq);
4026 return NULL;
4028 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4031 * destroy_workqueue - safely terminate a workqueue
4032 * @wq: target workqueue
4034 * Safely destroy a workqueue. All work currently pending will be done first.
4036 void destroy_workqueue(struct workqueue_struct *wq)
4038 struct pool_workqueue *pwq;
4039 int node;
4041 /* drain it before proceeding with destruction */
4042 drain_workqueue(wq);
4044 /* sanity checks */
4045 mutex_lock(&wq->mutex);
4046 for_each_pwq(pwq, wq) {
4047 int i;
4049 for (i = 0; i < WORK_NR_COLORS; i++) {
4050 if (WARN_ON(pwq->nr_in_flight[i])) {
4051 mutex_unlock(&wq->mutex);
4052 show_workqueue_state();
4053 return;
4057 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4058 WARN_ON(pwq->nr_active) ||
4059 WARN_ON(!list_empty(&pwq->delayed_works))) {
4060 mutex_unlock(&wq->mutex);
4061 show_workqueue_state();
4062 return;
4065 mutex_unlock(&wq->mutex);
4068 * wq list is used to freeze wq, remove from list after
4069 * flushing is complete in case freeze races us.
4071 mutex_lock(&wq_pool_mutex);
4072 list_del_rcu(&wq->list);
4073 mutex_unlock(&wq_pool_mutex);
4075 workqueue_sysfs_unregister(wq);
4077 if (wq->rescuer)
4078 kthread_stop(wq->rescuer->task);
4080 if (!(wq->flags & WQ_UNBOUND)) {
4082 * The base ref is never dropped on per-cpu pwqs. Directly
4083 * schedule RCU free.
4085 call_rcu_sched(&wq->rcu, rcu_free_wq);
4086 } else {
4088 * We're the sole accessor of @wq at this point. Directly
4089 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4090 * @wq will be freed when the last pwq is released.
4092 for_each_node(node) {
4093 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4094 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4095 put_pwq_unlocked(pwq);
4099 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4100 * put. Don't access it afterwards.
4102 pwq = wq->dfl_pwq;
4103 wq->dfl_pwq = NULL;
4104 put_pwq_unlocked(pwq);
4107 EXPORT_SYMBOL_GPL(destroy_workqueue);
4110 * workqueue_set_max_active - adjust max_active of a workqueue
4111 * @wq: target workqueue
4112 * @max_active: new max_active value.
4114 * Set max_active of @wq to @max_active.
4116 * CONTEXT:
4117 * Don't call from IRQ context.
4119 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4121 struct pool_workqueue *pwq;
4123 /* disallow meddling with max_active for ordered workqueues */
4124 if (WARN_ON(wq->flags & __WQ_ORDERED))
4125 return;
4127 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4129 mutex_lock(&wq->mutex);
4131 wq->saved_max_active = max_active;
4133 for_each_pwq(pwq, wq)
4134 pwq_adjust_max_active(pwq);
4136 mutex_unlock(&wq->mutex);
4138 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4141 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4143 * Determine whether %current is a workqueue rescuer. Can be used from
4144 * work functions to determine whether it's being run off the rescuer task.
4146 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4148 bool current_is_workqueue_rescuer(void)
4150 struct worker *worker = current_wq_worker();
4152 return worker && worker->rescue_wq;
4156 * workqueue_congested - test whether a workqueue is congested
4157 * @cpu: CPU in question
4158 * @wq: target workqueue
4160 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4161 * no synchronization around this function and the test result is
4162 * unreliable and only useful as advisory hints or for debugging.
4164 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4165 * Note that both per-cpu and unbound workqueues may be associated with
4166 * multiple pool_workqueues which have separate congested states. A
4167 * workqueue being congested on one CPU doesn't mean the workqueue is also
4168 * contested on other CPUs / NUMA nodes.
4170 * Return:
4171 * %true if congested, %false otherwise.
4173 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4175 struct pool_workqueue *pwq;
4176 bool ret;
4178 rcu_read_lock_sched();
4180 if (cpu == WORK_CPU_UNBOUND)
4181 cpu = smp_processor_id();
4183 if (!(wq->flags & WQ_UNBOUND))
4184 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4185 else
4186 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4188 ret = !list_empty(&pwq->delayed_works);
4189 rcu_read_unlock_sched();
4191 return ret;
4193 EXPORT_SYMBOL_GPL(workqueue_congested);
4196 * work_busy - test whether a work is currently pending or running
4197 * @work: the work to be tested
4199 * Test whether @work is currently pending or running. There is no
4200 * synchronization around this function and the test result is
4201 * unreliable and only useful as advisory hints or for debugging.
4203 * Return:
4204 * OR'd bitmask of WORK_BUSY_* bits.
4206 unsigned int work_busy(struct work_struct *work)
4208 struct worker_pool *pool;
4209 unsigned long flags;
4210 unsigned int ret = 0;
4212 if (work_pending(work))
4213 ret |= WORK_BUSY_PENDING;
4215 local_irq_save(flags);
4216 pool = get_work_pool(work);
4217 if (pool) {
4218 spin_lock(&pool->lock);
4219 if (find_worker_executing_work(pool, work))
4220 ret |= WORK_BUSY_RUNNING;
4221 spin_unlock(&pool->lock);
4223 local_irq_restore(flags);
4225 return ret;
4227 EXPORT_SYMBOL_GPL(work_busy);
4230 * set_worker_desc - set description for the current work item
4231 * @fmt: printf-style format string
4232 * @...: arguments for the format string
4234 * This function can be called by a running work function to describe what
4235 * the work item is about. If the worker task gets dumped, this
4236 * information will be printed out together to help debugging. The
4237 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4239 void set_worker_desc(const char *fmt, ...)
4241 struct worker *worker = current_wq_worker();
4242 va_list args;
4244 if (worker) {
4245 va_start(args, fmt);
4246 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4247 va_end(args);
4248 worker->desc_valid = true;
4253 * print_worker_info - print out worker information and description
4254 * @log_lvl: the log level to use when printing
4255 * @task: target task
4257 * If @task is a worker and currently executing a work item, print out the
4258 * name of the workqueue being serviced and worker description set with
4259 * set_worker_desc() by the currently executing work item.
4261 * This function can be safely called on any task as long as the
4262 * task_struct itself is accessible. While safe, this function isn't
4263 * synchronized and may print out mixups or garbages of limited length.
4265 void print_worker_info(const char *log_lvl, struct task_struct *task)
4267 work_func_t *fn = NULL;
4268 char name[WQ_NAME_LEN] = { };
4269 char desc[WORKER_DESC_LEN] = { };
4270 struct pool_workqueue *pwq = NULL;
4271 struct workqueue_struct *wq = NULL;
4272 bool desc_valid = false;
4273 struct worker *worker;
4275 if (!(task->flags & PF_WQ_WORKER))
4276 return;
4279 * This function is called without any synchronization and @task
4280 * could be in any state. Be careful with dereferences.
4282 worker = kthread_probe_data(task);
4285 * Carefully copy the associated workqueue's workfn and name. Keep
4286 * the original last '\0' in case the original contains garbage.
4288 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4289 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4290 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4291 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4293 /* copy worker description */
4294 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4295 if (desc_valid)
4296 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4298 if (fn || name[0] || desc[0]) {
4299 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4300 if (desc[0])
4301 pr_cont(" (%s)", desc);
4302 pr_cont("\n");
4306 static void pr_cont_pool_info(struct worker_pool *pool)
4308 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4309 if (pool->node != NUMA_NO_NODE)
4310 pr_cont(" node=%d", pool->node);
4311 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4314 static void pr_cont_work(bool comma, struct work_struct *work)
4316 if (work->func == wq_barrier_func) {
4317 struct wq_barrier *barr;
4319 barr = container_of(work, struct wq_barrier, work);
4321 pr_cont("%s BAR(%d)", comma ? "," : "",
4322 task_pid_nr(barr->task));
4323 } else {
4324 pr_cont("%s %pf", comma ? "," : "", work->func);
4328 static void show_pwq(struct pool_workqueue *pwq)
4330 struct worker_pool *pool = pwq->pool;
4331 struct work_struct *work;
4332 struct worker *worker;
4333 bool has_in_flight = false, has_pending = false;
4334 int bkt;
4336 pr_info(" pwq %d:", pool->id);
4337 pr_cont_pool_info(pool);
4339 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4340 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4342 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4343 if (worker->current_pwq == pwq) {
4344 has_in_flight = true;
4345 break;
4348 if (has_in_flight) {
4349 bool comma = false;
4351 pr_info(" in-flight:");
4352 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4353 if (worker->current_pwq != pwq)
4354 continue;
4356 pr_cont("%s %d%s:%pf", comma ? "," : "",
4357 task_pid_nr(worker->task),
4358 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4359 worker->current_func);
4360 list_for_each_entry(work, &worker->scheduled, entry)
4361 pr_cont_work(false, work);
4362 comma = true;
4364 pr_cont("\n");
4367 list_for_each_entry(work, &pool->worklist, entry) {
4368 if (get_work_pwq(work) == pwq) {
4369 has_pending = true;
4370 break;
4373 if (has_pending) {
4374 bool comma = false;
4376 pr_info(" pending:");
4377 list_for_each_entry(work, &pool->worklist, entry) {
4378 if (get_work_pwq(work) != pwq)
4379 continue;
4381 pr_cont_work(comma, work);
4382 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4384 pr_cont("\n");
4387 if (!list_empty(&pwq->delayed_works)) {
4388 bool comma = false;
4390 pr_info(" delayed:");
4391 list_for_each_entry(work, &pwq->delayed_works, entry) {
4392 pr_cont_work(comma, work);
4393 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4395 pr_cont("\n");
4400 * show_workqueue_state - dump workqueue state
4402 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4403 * all busy workqueues and pools.
4405 void show_workqueue_state(void)
4407 struct workqueue_struct *wq;
4408 struct worker_pool *pool;
4409 unsigned long flags;
4410 int pi;
4412 rcu_read_lock_sched();
4414 pr_info("Showing busy workqueues and worker pools:\n");
4416 list_for_each_entry_rcu(wq, &workqueues, list) {
4417 struct pool_workqueue *pwq;
4418 bool idle = true;
4420 for_each_pwq(pwq, wq) {
4421 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4422 idle = false;
4423 break;
4426 if (idle)
4427 continue;
4429 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4431 for_each_pwq(pwq, wq) {
4432 spin_lock_irqsave(&pwq->pool->lock, flags);
4433 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4434 show_pwq(pwq);
4435 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4439 for_each_pool(pool, pi) {
4440 struct worker *worker;
4441 bool first = true;
4443 spin_lock_irqsave(&pool->lock, flags);
4444 if (pool->nr_workers == pool->nr_idle)
4445 goto next_pool;
4447 pr_info("pool %d:", pool->id);
4448 pr_cont_pool_info(pool);
4449 pr_cont(" hung=%us workers=%d",
4450 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4451 pool->nr_workers);
4452 if (pool->manager)
4453 pr_cont(" manager: %d",
4454 task_pid_nr(pool->manager->task));
4455 list_for_each_entry(worker, &pool->idle_list, entry) {
4456 pr_cont(" %s%d", first ? "idle: " : "",
4457 task_pid_nr(worker->task));
4458 first = false;
4460 pr_cont("\n");
4461 next_pool:
4462 spin_unlock_irqrestore(&pool->lock, flags);
4465 rcu_read_unlock_sched();
4469 * CPU hotplug.
4471 * There are two challenges in supporting CPU hotplug. Firstly, there
4472 * are a lot of assumptions on strong associations among work, pwq and
4473 * pool which make migrating pending and scheduled works very
4474 * difficult to implement without impacting hot paths. Secondly,
4475 * worker pools serve mix of short, long and very long running works making
4476 * blocked draining impractical.
4478 * This is solved by allowing the pools to be disassociated from the CPU
4479 * running as an unbound one and allowing it to be reattached later if the
4480 * cpu comes back online.
4483 static void wq_unbind_fn(struct work_struct *work)
4485 int cpu = smp_processor_id();
4486 struct worker_pool *pool;
4487 struct worker *worker;
4489 for_each_cpu_worker_pool(pool, cpu) {
4490 mutex_lock(&pool->attach_mutex);
4491 spin_lock_irq(&pool->lock);
4494 * We've blocked all attach/detach operations. Make all workers
4495 * unbound and set DISASSOCIATED. Before this, all workers
4496 * except for the ones which are still executing works from
4497 * before the last CPU down must be on the cpu. After
4498 * this, they may become diasporas.
4500 for_each_pool_worker(worker, pool)
4501 worker->flags |= WORKER_UNBOUND;
4503 pool->flags |= POOL_DISASSOCIATED;
4505 spin_unlock_irq(&pool->lock);
4506 mutex_unlock(&pool->attach_mutex);
4509 * Call schedule() so that we cross rq->lock and thus can
4510 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4511 * This is necessary as scheduler callbacks may be invoked
4512 * from other cpus.
4514 schedule();
4517 * Sched callbacks are disabled now. Zap nr_running.
4518 * After this, nr_running stays zero and need_more_worker()
4519 * and keep_working() are always true as long as the
4520 * worklist is not empty. This pool now behaves as an
4521 * unbound (in terms of concurrency management) pool which
4522 * are served by workers tied to the pool.
4524 atomic_set(&pool->nr_running, 0);
4527 * With concurrency management just turned off, a busy
4528 * worker blocking could lead to lengthy stalls. Kick off
4529 * unbound chain execution of currently pending work items.
4531 spin_lock_irq(&pool->lock);
4532 wake_up_worker(pool);
4533 spin_unlock_irq(&pool->lock);
4538 * rebind_workers - rebind all workers of a pool to the associated CPU
4539 * @pool: pool of interest
4541 * @pool->cpu is coming online. Rebind all workers to the CPU.
4543 static void rebind_workers(struct worker_pool *pool)
4545 struct worker *worker;
4547 lockdep_assert_held(&pool->attach_mutex);
4550 * Restore CPU affinity of all workers. As all idle workers should
4551 * be on the run-queue of the associated CPU before any local
4552 * wake-ups for concurrency management happen, restore CPU affinity
4553 * of all workers first and then clear UNBOUND. As we're called
4554 * from CPU_ONLINE, the following shouldn't fail.
4556 for_each_pool_worker(worker, pool)
4557 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4558 pool->attrs->cpumask) < 0);
4560 spin_lock_irq(&pool->lock);
4563 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4564 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4565 * being reworked and this can go away in time.
4567 if (!(pool->flags & POOL_DISASSOCIATED)) {
4568 spin_unlock_irq(&pool->lock);
4569 return;
4572 pool->flags &= ~POOL_DISASSOCIATED;
4574 for_each_pool_worker(worker, pool) {
4575 unsigned int worker_flags = worker->flags;
4578 * A bound idle worker should actually be on the runqueue
4579 * of the associated CPU for local wake-ups targeting it to
4580 * work. Kick all idle workers so that they migrate to the
4581 * associated CPU. Doing this in the same loop as
4582 * replacing UNBOUND with REBOUND is safe as no worker will
4583 * be bound before @pool->lock is released.
4585 if (worker_flags & WORKER_IDLE)
4586 wake_up_process(worker->task);
4589 * We want to clear UNBOUND but can't directly call
4590 * worker_clr_flags() or adjust nr_running. Atomically
4591 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4592 * @worker will clear REBOUND using worker_clr_flags() when
4593 * it initiates the next execution cycle thus restoring
4594 * concurrency management. Note that when or whether
4595 * @worker clears REBOUND doesn't affect correctness.
4597 * ACCESS_ONCE() is necessary because @worker->flags may be
4598 * tested without holding any lock in
4599 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4600 * fail incorrectly leading to premature concurrency
4601 * management operations.
4603 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4604 worker_flags |= WORKER_REBOUND;
4605 worker_flags &= ~WORKER_UNBOUND;
4606 ACCESS_ONCE(worker->flags) = worker_flags;
4609 spin_unlock_irq(&pool->lock);
4613 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4614 * @pool: unbound pool of interest
4615 * @cpu: the CPU which is coming up
4617 * An unbound pool may end up with a cpumask which doesn't have any online
4618 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4619 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4620 * online CPU before, cpus_allowed of all its workers should be restored.
4622 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4624 static cpumask_t cpumask;
4625 struct worker *worker;
4627 lockdep_assert_held(&pool->attach_mutex);
4629 /* is @cpu allowed for @pool? */
4630 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4631 return;
4633 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4635 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4636 for_each_pool_worker(worker, pool)
4637 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4640 int workqueue_prepare_cpu(unsigned int cpu)
4642 struct worker_pool *pool;
4644 for_each_cpu_worker_pool(pool, cpu) {
4645 if (pool->nr_workers)
4646 continue;
4647 if (!create_worker(pool))
4648 return -ENOMEM;
4650 return 0;
4653 int workqueue_online_cpu(unsigned int cpu)
4655 struct worker_pool *pool;
4656 struct workqueue_struct *wq;
4657 int pi;
4659 mutex_lock(&wq_pool_mutex);
4661 for_each_pool(pool, pi) {
4662 mutex_lock(&pool->attach_mutex);
4664 if (pool->cpu == cpu)
4665 rebind_workers(pool);
4666 else if (pool->cpu < 0)
4667 restore_unbound_workers_cpumask(pool, cpu);
4669 mutex_unlock(&pool->attach_mutex);
4672 /* update NUMA affinity of unbound workqueues */
4673 list_for_each_entry(wq, &workqueues, list)
4674 wq_update_unbound_numa(wq, cpu, true);
4676 mutex_unlock(&wq_pool_mutex);
4677 return 0;
4680 int workqueue_offline_cpu(unsigned int cpu)
4682 struct work_struct unbind_work;
4683 struct workqueue_struct *wq;
4685 /* unbinding per-cpu workers should happen on the local CPU */
4686 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4687 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4689 /* update NUMA affinity of unbound workqueues */
4690 mutex_lock(&wq_pool_mutex);
4691 list_for_each_entry(wq, &workqueues, list)
4692 wq_update_unbound_numa(wq, cpu, false);
4693 mutex_unlock(&wq_pool_mutex);
4695 /* wait for per-cpu unbinding to finish */
4696 flush_work(&unbind_work);
4697 destroy_work_on_stack(&unbind_work);
4698 return 0;
4701 #ifdef CONFIG_SMP
4703 struct work_for_cpu {
4704 struct work_struct work;
4705 long (*fn)(void *);
4706 void *arg;
4707 long ret;
4710 static void work_for_cpu_fn(struct work_struct *work)
4712 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4714 wfc->ret = wfc->fn(wfc->arg);
4718 * work_on_cpu - run a function in thread context on a particular cpu
4719 * @cpu: the cpu to run on
4720 * @fn: the function to run
4721 * @arg: the function arg
4723 * It is up to the caller to ensure that the cpu doesn't go offline.
4724 * The caller must not hold any locks which would prevent @fn from completing.
4726 * Return: The value @fn returns.
4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4730 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4732 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733 schedule_work_on(cpu, &wfc.work);
4734 flush_work(&wfc.work);
4735 destroy_work_on_stack(&wfc.work);
4736 return wfc.ret;
4738 EXPORT_SYMBOL_GPL(work_on_cpu);
4739 #endif /* CONFIG_SMP */
4741 #ifdef CONFIG_FREEZER
4744 * freeze_workqueues_begin - begin freezing workqueues
4746 * Start freezing workqueues. After this function returns, all freezable
4747 * workqueues will queue new works to their delayed_works list instead of
4748 * pool->worklist.
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4753 void freeze_workqueues_begin(void)
4755 struct workqueue_struct *wq;
4756 struct pool_workqueue *pwq;
4758 mutex_lock(&wq_pool_mutex);
4760 WARN_ON_ONCE(workqueue_freezing);
4761 workqueue_freezing = true;
4763 list_for_each_entry(wq, &workqueues, list) {
4764 mutex_lock(&wq->mutex);
4765 for_each_pwq(pwq, wq)
4766 pwq_adjust_max_active(pwq);
4767 mutex_unlock(&wq->mutex);
4770 mutex_unlock(&wq_pool_mutex);
4774 * freeze_workqueues_busy - are freezable workqueues still busy?
4776 * Check whether freezing is complete. This function must be called
4777 * between freeze_workqueues_begin() and thaw_workqueues().
4779 * CONTEXT:
4780 * Grabs and releases wq_pool_mutex.
4782 * Return:
4783 * %true if some freezable workqueues are still busy. %false if freezing
4784 * is complete.
4786 bool freeze_workqueues_busy(void)
4788 bool busy = false;
4789 struct workqueue_struct *wq;
4790 struct pool_workqueue *pwq;
4792 mutex_lock(&wq_pool_mutex);
4794 WARN_ON_ONCE(!workqueue_freezing);
4796 list_for_each_entry(wq, &workqueues, list) {
4797 if (!(wq->flags & WQ_FREEZABLE))
4798 continue;
4800 * nr_active is monotonically decreasing. It's safe
4801 * to peek without lock.
4803 rcu_read_lock_sched();
4804 for_each_pwq(pwq, wq) {
4805 WARN_ON_ONCE(pwq->nr_active < 0);
4806 if (pwq->nr_active) {
4807 busy = true;
4808 rcu_read_unlock_sched();
4809 goto out_unlock;
4812 rcu_read_unlock_sched();
4814 out_unlock:
4815 mutex_unlock(&wq_pool_mutex);
4816 return busy;
4820 * thaw_workqueues - thaw workqueues
4822 * Thaw workqueues. Normal queueing is restored and all collected
4823 * frozen works are transferred to their respective pool worklists.
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4828 void thaw_workqueues(void)
4830 struct workqueue_struct *wq;
4831 struct pool_workqueue *pwq;
4833 mutex_lock(&wq_pool_mutex);
4835 if (!workqueue_freezing)
4836 goto out_unlock;
4838 workqueue_freezing = false;
4840 /* restore max_active and repopulate worklist */
4841 list_for_each_entry(wq, &workqueues, list) {
4842 mutex_lock(&wq->mutex);
4843 for_each_pwq(pwq, wq)
4844 pwq_adjust_max_active(pwq);
4845 mutex_unlock(&wq->mutex);
4848 out_unlock:
4849 mutex_unlock(&wq_pool_mutex);
4851 #endif /* CONFIG_FREEZER */
4853 static int workqueue_apply_unbound_cpumask(void)
4855 LIST_HEAD(ctxs);
4856 int ret = 0;
4857 struct workqueue_struct *wq;
4858 struct apply_wqattrs_ctx *ctx, *n;
4860 lockdep_assert_held(&wq_pool_mutex);
4862 list_for_each_entry(wq, &workqueues, list) {
4863 if (!(wq->flags & WQ_UNBOUND))
4864 continue;
4865 /* creating multiple pwqs breaks ordering guarantee */
4866 if (wq->flags & __WQ_ORDERED)
4867 continue;
4869 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4870 if (!ctx) {
4871 ret = -ENOMEM;
4872 break;
4875 list_add_tail(&ctx->list, &ctxs);
4878 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4879 if (!ret)
4880 apply_wqattrs_commit(ctx);
4881 apply_wqattrs_cleanup(ctx);
4884 return ret;
4888 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4889 * @cpumask: the cpumask to set
4891 * The low-level workqueues cpumask is a global cpumask that limits
4892 * the affinity of all unbound workqueues. This function check the @cpumask
4893 * and apply it to all unbound workqueues and updates all pwqs of them.
4895 * Retun: 0 - Success
4896 * -EINVAL - Invalid @cpumask
4897 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4899 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4901 int ret = -EINVAL;
4902 cpumask_var_t saved_cpumask;
4904 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4905 return -ENOMEM;
4907 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4908 if (!cpumask_empty(cpumask)) {
4909 apply_wqattrs_lock();
4911 /* save the old wq_unbound_cpumask. */
4912 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4914 /* update wq_unbound_cpumask at first and apply it to wqs. */
4915 cpumask_copy(wq_unbound_cpumask, cpumask);
4916 ret = workqueue_apply_unbound_cpumask();
4918 /* restore the wq_unbound_cpumask when failed. */
4919 if (ret < 0)
4920 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4922 apply_wqattrs_unlock();
4925 free_cpumask_var(saved_cpumask);
4926 return ret;
4929 #ifdef CONFIG_SYSFS
4931 * Workqueues with WQ_SYSFS flag set is visible to userland via
4932 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4933 * following attributes.
4935 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4936 * max_active RW int : maximum number of in-flight work items
4938 * Unbound workqueues have the following extra attributes.
4940 * id RO int : the associated pool ID
4941 * nice RW int : nice value of the workers
4942 * cpumask RW mask : bitmask of allowed CPUs for the workers
4944 struct wq_device {
4945 struct workqueue_struct *wq;
4946 struct device dev;
4949 static struct workqueue_struct *dev_to_wq(struct device *dev)
4951 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4953 return wq_dev->wq;
4956 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4957 char *buf)
4959 struct workqueue_struct *wq = dev_to_wq(dev);
4961 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4963 static DEVICE_ATTR_RO(per_cpu);
4965 static ssize_t max_active_show(struct device *dev,
4966 struct device_attribute *attr, char *buf)
4968 struct workqueue_struct *wq = dev_to_wq(dev);
4970 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4973 static ssize_t max_active_store(struct device *dev,
4974 struct device_attribute *attr, const char *buf,
4975 size_t count)
4977 struct workqueue_struct *wq = dev_to_wq(dev);
4978 int val;
4980 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4981 return -EINVAL;
4983 workqueue_set_max_active(wq, val);
4984 return count;
4986 static DEVICE_ATTR_RW(max_active);
4988 static struct attribute *wq_sysfs_attrs[] = {
4989 &dev_attr_per_cpu.attr,
4990 &dev_attr_max_active.attr,
4991 NULL,
4993 ATTRIBUTE_GROUPS(wq_sysfs);
4995 static ssize_t wq_pool_ids_show(struct device *dev,
4996 struct device_attribute *attr, char *buf)
4998 struct workqueue_struct *wq = dev_to_wq(dev);
4999 const char *delim = "";
5000 int node, written = 0;
5002 rcu_read_lock_sched();
5003 for_each_node(node) {
5004 written += scnprintf(buf + written, PAGE_SIZE - written,
5005 "%s%d:%d", delim, node,
5006 unbound_pwq_by_node(wq, node)->pool->id);
5007 delim = " ";
5009 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5010 rcu_read_unlock_sched();
5012 return written;
5015 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5016 char *buf)
5018 struct workqueue_struct *wq = dev_to_wq(dev);
5019 int written;
5021 mutex_lock(&wq->mutex);
5022 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5023 mutex_unlock(&wq->mutex);
5025 return written;
5028 /* prepare workqueue_attrs for sysfs store operations */
5029 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5031 struct workqueue_attrs *attrs;
5033 lockdep_assert_held(&wq_pool_mutex);
5035 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5036 if (!attrs)
5037 return NULL;
5039 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5040 return attrs;
5043 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5044 const char *buf, size_t count)
5046 struct workqueue_struct *wq = dev_to_wq(dev);
5047 struct workqueue_attrs *attrs;
5048 int ret = -ENOMEM;
5050 apply_wqattrs_lock();
5052 attrs = wq_sysfs_prep_attrs(wq);
5053 if (!attrs)
5054 goto out_unlock;
5056 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5057 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5058 ret = apply_workqueue_attrs_locked(wq, attrs);
5059 else
5060 ret = -EINVAL;
5062 out_unlock:
5063 apply_wqattrs_unlock();
5064 free_workqueue_attrs(attrs);
5065 return ret ?: count;
5068 static ssize_t wq_cpumask_show(struct device *dev,
5069 struct device_attribute *attr, char *buf)
5071 struct workqueue_struct *wq = dev_to_wq(dev);
5072 int written;
5074 mutex_lock(&wq->mutex);
5075 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5076 cpumask_pr_args(wq->unbound_attrs->cpumask));
5077 mutex_unlock(&wq->mutex);
5078 return written;
5081 static ssize_t wq_cpumask_store(struct device *dev,
5082 struct device_attribute *attr,
5083 const char *buf, size_t count)
5085 struct workqueue_struct *wq = dev_to_wq(dev);
5086 struct workqueue_attrs *attrs;
5087 int ret = -ENOMEM;
5089 apply_wqattrs_lock();
5091 attrs = wq_sysfs_prep_attrs(wq);
5092 if (!attrs)
5093 goto out_unlock;
5095 ret = cpumask_parse(buf, attrs->cpumask);
5096 if (!ret)
5097 ret = apply_workqueue_attrs_locked(wq, attrs);
5099 out_unlock:
5100 apply_wqattrs_unlock();
5101 free_workqueue_attrs(attrs);
5102 return ret ?: count;
5105 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5106 char *buf)
5108 struct workqueue_struct *wq = dev_to_wq(dev);
5109 int written;
5111 mutex_lock(&wq->mutex);
5112 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5113 !wq->unbound_attrs->no_numa);
5114 mutex_unlock(&wq->mutex);
5116 return written;
5119 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5120 const char *buf, size_t count)
5122 struct workqueue_struct *wq = dev_to_wq(dev);
5123 struct workqueue_attrs *attrs;
5124 int v, ret = -ENOMEM;
5126 apply_wqattrs_lock();
5128 attrs = wq_sysfs_prep_attrs(wq);
5129 if (!attrs)
5130 goto out_unlock;
5132 ret = -EINVAL;
5133 if (sscanf(buf, "%d", &v) == 1) {
5134 attrs->no_numa = !v;
5135 ret = apply_workqueue_attrs_locked(wq, attrs);
5138 out_unlock:
5139 apply_wqattrs_unlock();
5140 free_workqueue_attrs(attrs);
5141 return ret ?: count;
5144 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5145 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5146 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5147 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5148 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5149 __ATTR_NULL,
5152 static struct bus_type wq_subsys = {
5153 .name = "workqueue",
5154 .dev_groups = wq_sysfs_groups,
5157 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5158 struct device_attribute *attr, char *buf)
5160 int written;
5162 mutex_lock(&wq_pool_mutex);
5163 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5164 cpumask_pr_args(wq_unbound_cpumask));
5165 mutex_unlock(&wq_pool_mutex);
5167 return written;
5170 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5171 struct device_attribute *attr, const char *buf, size_t count)
5173 cpumask_var_t cpumask;
5174 int ret;
5176 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5177 return -ENOMEM;
5179 ret = cpumask_parse(buf, cpumask);
5180 if (!ret)
5181 ret = workqueue_set_unbound_cpumask(cpumask);
5183 free_cpumask_var(cpumask);
5184 return ret ? ret : count;
5187 static struct device_attribute wq_sysfs_cpumask_attr =
5188 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5189 wq_unbound_cpumask_store);
5191 static int __init wq_sysfs_init(void)
5193 int err;
5195 err = subsys_virtual_register(&wq_subsys, NULL);
5196 if (err)
5197 return err;
5199 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5201 core_initcall(wq_sysfs_init);
5203 static void wq_device_release(struct device *dev)
5205 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5207 kfree(wq_dev);
5211 * workqueue_sysfs_register - make a workqueue visible in sysfs
5212 * @wq: the workqueue to register
5214 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5215 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5216 * which is the preferred method.
5218 * Workqueue user should use this function directly iff it wants to apply
5219 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5220 * apply_workqueue_attrs() may race against userland updating the
5221 * attributes.
5223 * Return: 0 on success, -errno on failure.
5225 int workqueue_sysfs_register(struct workqueue_struct *wq)
5227 struct wq_device *wq_dev;
5228 int ret;
5231 * Adjusting max_active or creating new pwqs by applying
5232 * attributes breaks ordering guarantee. Disallow exposing ordered
5233 * workqueues.
5235 if (WARN_ON(wq->flags & __WQ_ORDERED))
5236 return -EINVAL;
5238 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5239 if (!wq_dev)
5240 return -ENOMEM;
5242 wq_dev->wq = wq;
5243 wq_dev->dev.bus = &wq_subsys;
5244 wq_dev->dev.release = wq_device_release;
5245 dev_set_name(&wq_dev->dev, "%s", wq->name);
5248 * unbound_attrs are created separately. Suppress uevent until
5249 * everything is ready.
5251 dev_set_uevent_suppress(&wq_dev->dev, true);
5253 ret = device_register(&wq_dev->dev);
5254 if (ret) {
5255 kfree(wq_dev);
5256 wq->wq_dev = NULL;
5257 return ret;
5260 if (wq->flags & WQ_UNBOUND) {
5261 struct device_attribute *attr;
5263 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5264 ret = device_create_file(&wq_dev->dev, attr);
5265 if (ret) {
5266 device_unregister(&wq_dev->dev);
5267 wq->wq_dev = NULL;
5268 return ret;
5273 dev_set_uevent_suppress(&wq_dev->dev, false);
5274 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5275 return 0;
5279 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5280 * @wq: the workqueue to unregister
5282 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5284 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5286 struct wq_device *wq_dev = wq->wq_dev;
5288 if (!wq->wq_dev)
5289 return;
5291 wq->wq_dev = NULL;
5292 device_unregister(&wq_dev->dev);
5294 #else /* CONFIG_SYSFS */
5295 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5296 #endif /* CONFIG_SYSFS */
5299 * Workqueue watchdog.
5301 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5302 * flush dependency, a concurrency managed work item which stays RUNNING
5303 * indefinitely. Workqueue stalls can be very difficult to debug as the
5304 * usual warning mechanisms don't trigger and internal workqueue state is
5305 * largely opaque.
5307 * Workqueue watchdog monitors all worker pools periodically and dumps
5308 * state if some pools failed to make forward progress for a while where
5309 * forward progress is defined as the first item on ->worklist changing.
5311 * This mechanism is controlled through the kernel parameter
5312 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5313 * corresponding sysfs parameter file.
5315 #ifdef CONFIG_WQ_WATCHDOG
5317 static void wq_watchdog_timer_fn(unsigned long data);
5319 static unsigned long wq_watchdog_thresh = 30;
5320 static struct timer_list wq_watchdog_timer =
5321 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5323 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5324 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5326 static void wq_watchdog_reset_touched(void)
5328 int cpu;
5330 wq_watchdog_touched = jiffies;
5331 for_each_possible_cpu(cpu)
5332 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5335 static void wq_watchdog_timer_fn(unsigned long data)
5337 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5338 bool lockup_detected = false;
5339 struct worker_pool *pool;
5340 int pi;
5342 if (!thresh)
5343 return;
5345 rcu_read_lock();
5347 for_each_pool(pool, pi) {
5348 unsigned long pool_ts, touched, ts;
5350 if (list_empty(&pool->worklist))
5351 continue;
5353 /* get the latest of pool and touched timestamps */
5354 pool_ts = READ_ONCE(pool->watchdog_ts);
5355 touched = READ_ONCE(wq_watchdog_touched);
5357 if (time_after(pool_ts, touched))
5358 ts = pool_ts;
5359 else
5360 ts = touched;
5362 if (pool->cpu >= 0) {
5363 unsigned long cpu_touched =
5364 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5365 pool->cpu));
5366 if (time_after(cpu_touched, ts))
5367 ts = cpu_touched;
5370 /* did we stall? */
5371 if (time_after(jiffies, ts + thresh)) {
5372 lockup_detected = true;
5373 pr_emerg("BUG: workqueue lockup - pool");
5374 pr_cont_pool_info(pool);
5375 pr_cont(" stuck for %us!\n",
5376 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5380 rcu_read_unlock();
5382 if (lockup_detected)
5383 show_workqueue_state();
5385 wq_watchdog_reset_touched();
5386 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5389 void wq_watchdog_touch(int cpu)
5391 if (cpu >= 0)
5392 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5393 else
5394 wq_watchdog_touched = jiffies;
5397 static void wq_watchdog_set_thresh(unsigned long thresh)
5399 wq_watchdog_thresh = 0;
5400 del_timer_sync(&wq_watchdog_timer);
5402 if (thresh) {
5403 wq_watchdog_thresh = thresh;
5404 wq_watchdog_reset_touched();
5405 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5409 static int wq_watchdog_param_set_thresh(const char *val,
5410 const struct kernel_param *kp)
5412 unsigned long thresh;
5413 int ret;
5415 ret = kstrtoul(val, 0, &thresh);
5416 if (ret)
5417 return ret;
5419 if (system_wq)
5420 wq_watchdog_set_thresh(thresh);
5421 else
5422 wq_watchdog_thresh = thresh;
5424 return 0;
5427 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5428 .set = wq_watchdog_param_set_thresh,
5429 .get = param_get_ulong,
5432 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5433 0644);
5435 static void wq_watchdog_init(void)
5437 wq_watchdog_set_thresh(wq_watchdog_thresh);
5440 #else /* CONFIG_WQ_WATCHDOG */
5442 static inline void wq_watchdog_init(void) { }
5444 #endif /* CONFIG_WQ_WATCHDOG */
5446 static void __init wq_numa_init(void)
5448 cpumask_var_t *tbl;
5449 int node, cpu;
5451 if (num_possible_nodes() <= 1)
5452 return;
5454 if (wq_disable_numa) {
5455 pr_info("workqueue: NUMA affinity support disabled\n");
5456 return;
5459 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5460 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5463 * We want masks of possible CPUs of each node which isn't readily
5464 * available. Build one from cpu_to_node() which should have been
5465 * fully initialized by now.
5467 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5468 BUG_ON(!tbl);
5470 for_each_node(node)
5471 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5472 node_online(node) ? node : NUMA_NO_NODE));
5474 for_each_possible_cpu(cpu) {
5475 node = cpu_to_node(cpu);
5476 if (WARN_ON(node == NUMA_NO_NODE)) {
5477 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5478 /* happens iff arch is bonkers, let's just proceed */
5479 return;
5481 cpumask_set_cpu(cpu, tbl[node]);
5484 wq_numa_possible_cpumask = tbl;
5485 wq_numa_enabled = true;
5489 * workqueue_init_early - early init for workqueue subsystem
5491 * This is the first half of two-staged workqueue subsystem initialization
5492 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5493 * idr are up. It sets up all the data structures and system workqueues
5494 * and allows early boot code to create workqueues and queue/cancel work
5495 * items. Actual work item execution starts only after kthreads can be
5496 * created and scheduled right before early initcalls.
5498 int __init workqueue_init_early(void)
5500 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5501 int i, cpu;
5503 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5505 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5506 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5508 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5510 /* initialize CPU pools */
5511 for_each_possible_cpu(cpu) {
5512 struct worker_pool *pool;
5514 i = 0;
5515 for_each_cpu_worker_pool(pool, cpu) {
5516 BUG_ON(init_worker_pool(pool));
5517 pool->cpu = cpu;
5518 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5519 pool->attrs->nice = std_nice[i++];
5520 pool->node = cpu_to_node(cpu);
5522 /* alloc pool ID */
5523 mutex_lock(&wq_pool_mutex);
5524 BUG_ON(worker_pool_assign_id(pool));
5525 mutex_unlock(&wq_pool_mutex);
5529 /* create default unbound and ordered wq attrs */
5530 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5531 struct workqueue_attrs *attrs;
5533 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5534 attrs->nice = std_nice[i];
5535 unbound_std_wq_attrs[i] = attrs;
5538 * An ordered wq should have only one pwq as ordering is
5539 * guaranteed by max_active which is enforced by pwqs.
5540 * Turn off NUMA so that dfl_pwq is used for all nodes.
5542 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5543 attrs->nice = std_nice[i];
5544 attrs->no_numa = true;
5545 ordered_wq_attrs[i] = attrs;
5548 system_wq = alloc_workqueue("events", 0, 0);
5549 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5550 system_long_wq = alloc_workqueue("events_long", 0, 0);
5551 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5552 WQ_UNBOUND_MAX_ACTIVE);
5553 system_freezable_wq = alloc_workqueue("events_freezable",
5554 WQ_FREEZABLE, 0);
5555 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5556 WQ_POWER_EFFICIENT, 0);
5557 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5558 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5560 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5561 !system_unbound_wq || !system_freezable_wq ||
5562 !system_power_efficient_wq ||
5563 !system_freezable_power_efficient_wq);
5565 return 0;
5569 * workqueue_init - bring workqueue subsystem fully online
5571 * This is the latter half of two-staged workqueue subsystem initialization
5572 * and invoked as soon as kthreads can be created and scheduled.
5573 * Workqueues have been created and work items queued on them, but there
5574 * are no kworkers executing the work items yet. Populate the worker pools
5575 * with the initial workers and enable future kworker creations.
5577 int __init workqueue_init(void)
5579 struct workqueue_struct *wq;
5580 struct worker_pool *pool;
5581 int cpu, bkt;
5584 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5585 * CPU to node mapping may not be available that early on some
5586 * archs such as power and arm64. As per-cpu pools created
5587 * previously could be missing node hint and unbound pools NUMA
5588 * affinity, fix them up.
5590 wq_numa_init();
5592 mutex_lock(&wq_pool_mutex);
5594 for_each_possible_cpu(cpu) {
5595 for_each_cpu_worker_pool(pool, cpu) {
5596 pool->node = cpu_to_node(cpu);
5600 list_for_each_entry(wq, &workqueues, list)
5601 wq_update_unbound_numa(wq, smp_processor_id(), true);
5603 mutex_unlock(&wq_pool_mutex);
5605 /* create the initial workers */
5606 for_each_online_cpu(cpu) {
5607 for_each_cpu_worker_pool(pool, cpu) {
5608 pool->flags &= ~POOL_DISASSOCIATED;
5609 BUG_ON(!create_worker(pool));
5613 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5614 BUG_ON(!create_worker(pool));
5616 wq_online = true;
5617 wq_watchdog_init();
5619 return 0;