mmc: core: Reset HPI enabled state during re-init and in case of errors
[linux/fpc-iii.git] / drivers / net / ethernet / renesas / ravb_main.c
blobdefed0d0c51d33cf842b8e326fcde405dbfedb92
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
4 * Copyright (C) 2014-2015 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
8 * Based on the SuperH Ethernet driver
9 */
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
33 #include <asm/div64.h>
35 #include "ravb.h"
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 "ch0", /* RAVB_BE */
45 "ch1", /* RAVB_NC */
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 "ch18", /* RAVB_BE */
50 "ch19", /* RAVB_NC */
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 u32 set)
56 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
61 int i;
63 for (i = 0; i < 10000; i++) {
64 if ((ravb_read(ndev, reg) & mask) == value)
65 return 0;
66 udelay(10);
68 return -ETIMEDOUT;
71 static int ravb_config(struct net_device *ndev)
73 int error;
75 /* Set config mode */
76 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 /* Check if the operating mode is changed to the config mode */
78 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 if (error)
80 netdev_err(ndev, "failed to switch device to config mode\n");
82 return error;
85 static void ravb_set_duplex(struct net_device *ndev)
87 struct ravb_private *priv = netdev_priv(ndev);
89 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 static void ravb_set_rate(struct net_device *ndev)
94 struct ravb_private *priv = netdev_priv(ndev);
96 switch (priv->speed) {
97 case 100: /* 100BASE */
98 ravb_write(ndev, GECMR_SPEED_100, GECMR);
99 break;
100 case 1000: /* 1000BASE */
101 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
102 break;
106 static void ravb_set_buffer_align(struct sk_buff *skb)
108 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
110 if (reserve)
111 skb_reserve(skb, RAVB_ALIGN - reserve);
114 /* Get MAC address from the MAC address registers
116 * Ethernet AVB device doesn't have ROM for MAC address.
117 * This function gets the MAC address that was used by a bootloader.
119 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
121 if (mac) {
122 ether_addr_copy(ndev->dev_addr, mac);
123 } else {
124 u32 mahr = ravb_read(ndev, MAHR);
125 u32 malr = ravb_read(ndev, MALR);
127 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
128 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
129 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
130 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
131 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
132 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
136 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
138 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
139 mdiobb);
141 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 /* MDC pin control */
145 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
147 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 /* Data I/O pin control */
151 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
153 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 /* Set data bit */
157 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
159 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 /* Get data bit */
163 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
165 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 mdiobb);
168 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 /* MDIO bus control struct */
172 static struct mdiobb_ops bb_ops = {
173 .owner = THIS_MODULE,
174 .set_mdc = ravb_set_mdc,
175 .set_mdio_dir = ravb_set_mdio_dir,
176 .set_mdio_data = ravb_set_mdio_data,
177 .get_mdio_data = ravb_get_mdio_data,
180 /* Free TX skb function for AVB-IP */
181 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
183 struct ravb_private *priv = netdev_priv(ndev);
184 struct net_device_stats *stats = &priv->stats[q];
185 int num_tx_desc = priv->num_tx_desc;
186 struct ravb_tx_desc *desc;
187 int free_num = 0;
188 int entry;
189 u32 size;
191 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
192 bool txed;
194 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
195 num_tx_desc);
196 desc = &priv->tx_ring[q][entry];
197 txed = desc->die_dt == DT_FEMPTY;
198 if (free_txed_only && !txed)
199 break;
200 /* Descriptor type must be checked before all other reads */
201 dma_rmb();
202 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
203 /* Free the original skb. */
204 if (priv->tx_skb[q][entry / num_tx_desc]) {
205 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
206 size, DMA_TO_DEVICE);
207 /* Last packet descriptor? */
208 if (entry % num_tx_desc == num_tx_desc - 1) {
209 entry /= num_tx_desc;
210 dev_kfree_skb_any(priv->tx_skb[q][entry]);
211 priv->tx_skb[q][entry] = NULL;
212 if (txed)
213 stats->tx_packets++;
215 free_num++;
217 if (txed)
218 stats->tx_bytes += size;
219 desc->die_dt = DT_EEMPTY;
221 return free_num;
224 /* Free skb's and DMA buffers for Ethernet AVB */
225 static void ravb_ring_free(struct net_device *ndev, int q)
227 struct ravb_private *priv = netdev_priv(ndev);
228 int num_tx_desc = priv->num_tx_desc;
229 int ring_size;
230 int i;
232 if (priv->rx_ring[q]) {
233 for (i = 0; i < priv->num_rx_ring[q]; i++) {
234 struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
236 if (!dma_mapping_error(ndev->dev.parent,
237 le32_to_cpu(desc->dptr)))
238 dma_unmap_single(ndev->dev.parent,
239 le32_to_cpu(desc->dptr),
240 priv->rx_buf_sz,
241 DMA_FROM_DEVICE);
243 ring_size = sizeof(struct ravb_ex_rx_desc) *
244 (priv->num_rx_ring[q] + 1);
245 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
246 priv->rx_desc_dma[q]);
247 priv->rx_ring[q] = NULL;
250 if (priv->tx_ring[q]) {
251 ravb_tx_free(ndev, q, false);
253 ring_size = sizeof(struct ravb_tx_desc) *
254 (priv->num_tx_ring[q] * num_tx_desc + 1);
255 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
256 priv->tx_desc_dma[q]);
257 priv->tx_ring[q] = NULL;
260 /* Free RX skb ringbuffer */
261 if (priv->rx_skb[q]) {
262 for (i = 0; i < priv->num_rx_ring[q]; i++)
263 dev_kfree_skb(priv->rx_skb[q][i]);
265 kfree(priv->rx_skb[q]);
266 priv->rx_skb[q] = NULL;
268 /* Free aligned TX buffers */
269 kfree(priv->tx_align[q]);
270 priv->tx_align[q] = NULL;
272 /* Free TX skb ringbuffer.
273 * SKBs are freed by ravb_tx_free() call above.
275 kfree(priv->tx_skb[q]);
276 priv->tx_skb[q] = NULL;
279 /* Format skb and descriptor buffer for Ethernet AVB */
280 static void ravb_ring_format(struct net_device *ndev, int q)
282 struct ravb_private *priv = netdev_priv(ndev);
283 int num_tx_desc = priv->num_tx_desc;
284 struct ravb_ex_rx_desc *rx_desc;
285 struct ravb_tx_desc *tx_desc;
286 struct ravb_desc *desc;
287 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
288 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
289 num_tx_desc;
290 dma_addr_t dma_addr;
291 int i;
293 priv->cur_rx[q] = 0;
294 priv->cur_tx[q] = 0;
295 priv->dirty_rx[q] = 0;
296 priv->dirty_tx[q] = 0;
298 memset(priv->rx_ring[q], 0, rx_ring_size);
299 /* Build RX ring buffer */
300 for (i = 0; i < priv->num_rx_ring[q]; i++) {
301 /* RX descriptor */
302 rx_desc = &priv->rx_ring[q][i];
303 rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
304 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
305 priv->rx_buf_sz,
306 DMA_FROM_DEVICE);
307 /* We just set the data size to 0 for a failed mapping which
308 * should prevent DMA from happening...
310 if (dma_mapping_error(ndev->dev.parent, dma_addr))
311 rx_desc->ds_cc = cpu_to_le16(0);
312 rx_desc->dptr = cpu_to_le32(dma_addr);
313 rx_desc->die_dt = DT_FEMPTY;
315 rx_desc = &priv->rx_ring[q][i];
316 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
317 rx_desc->die_dt = DT_LINKFIX; /* type */
319 memset(priv->tx_ring[q], 0, tx_ring_size);
320 /* Build TX ring buffer */
321 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
322 i++, tx_desc++) {
323 tx_desc->die_dt = DT_EEMPTY;
324 if (num_tx_desc > 1) {
325 tx_desc++;
326 tx_desc->die_dt = DT_EEMPTY;
329 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
330 tx_desc->die_dt = DT_LINKFIX; /* type */
332 /* RX descriptor base address for best effort */
333 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
334 desc->die_dt = DT_LINKFIX; /* type */
335 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
337 /* TX descriptor base address for best effort */
338 desc = &priv->desc_bat[q];
339 desc->die_dt = DT_LINKFIX; /* type */
340 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
343 /* Init skb and descriptor buffer for Ethernet AVB */
344 static int ravb_ring_init(struct net_device *ndev, int q)
346 struct ravb_private *priv = netdev_priv(ndev);
347 int num_tx_desc = priv->num_tx_desc;
348 struct sk_buff *skb;
349 int ring_size;
350 int i;
352 priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
353 ETH_HLEN + VLAN_HLEN;
355 /* Allocate RX and TX skb rings */
356 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
357 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
358 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
359 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
360 if (!priv->rx_skb[q] || !priv->tx_skb[q])
361 goto error;
363 for (i = 0; i < priv->num_rx_ring[q]; i++) {
364 skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
365 if (!skb)
366 goto error;
367 ravb_set_buffer_align(skb);
368 priv->rx_skb[q][i] = skb;
371 if (num_tx_desc > 1) {
372 /* Allocate rings for the aligned buffers */
373 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
374 DPTR_ALIGN - 1, GFP_KERNEL);
375 if (!priv->tx_align[q])
376 goto error;
379 /* Allocate all RX descriptors. */
380 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
381 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
382 &priv->rx_desc_dma[q],
383 GFP_KERNEL);
384 if (!priv->rx_ring[q])
385 goto error;
387 priv->dirty_rx[q] = 0;
389 /* Allocate all TX descriptors. */
390 ring_size = sizeof(struct ravb_tx_desc) *
391 (priv->num_tx_ring[q] * num_tx_desc + 1);
392 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
393 &priv->tx_desc_dma[q],
394 GFP_KERNEL);
395 if (!priv->tx_ring[q])
396 goto error;
398 return 0;
400 error:
401 ravb_ring_free(ndev, q);
403 return -ENOMEM;
406 /* E-MAC init function */
407 static void ravb_emac_init(struct net_device *ndev)
409 struct ravb_private *priv = netdev_priv(ndev);
411 /* Receive frame limit set register */
412 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
414 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
415 ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
416 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
417 ECMR_TE | ECMR_RE, ECMR);
419 ravb_set_rate(ndev);
421 /* Set MAC address */
422 ravb_write(ndev,
423 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
424 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
425 ravb_write(ndev,
426 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
428 /* E-MAC status register clear */
429 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
431 /* E-MAC interrupt enable register */
432 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
435 /* Device init function for Ethernet AVB */
436 static int ravb_dmac_init(struct net_device *ndev)
438 struct ravb_private *priv = netdev_priv(ndev);
439 int error;
441 /* Set CONFIG mode */
442 error = ravb_config(ndev);
443 if (error)
444 return error;
446 error = ravb_ring_init(ndev, RAVB_BE);
447 if (error)
448 return error;
449 error = ravb_ring_init(ndev, RAVB_NC);
450 if (error) {
451 ravb_ring_free(ndev, RAVB_BE);
452 return error;
455 /* Descriptor format */
456 ravb_ring_format(ndev, RAVB_BE);
457 ravb_ring_format(ndev, RAVB_NC);
459 #if defined(__LITTLE_ENDIAN)
460 ravb_modify(ndev, CCC, CCC_BOC, 0);
461 #else
462 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
463 #endif
465 /* Set AVB RX */
466 ravb_write(ndev,
467 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
469 /* Set FIFO size */
470 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
472 /* Timestamp enable */
473 ravb_write(ndev, TCCR_TFEN, TCCR);
475 /* Interrupt init: */
476 if (priv->chip_id == RCAR_GEN3) {
477 /* Clear DIL.DPLx */
478 ravb_write(ndev, 0, DIL);
479 /* Set queue specific interrupt */
480 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
482 /* Frame receive */
483 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
484 /* Disable FIFO full warning */
485 ravb_write(ndev, 0, RIC1);
486 /* Receive FIFO full error, descriptor empty */
487 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
488 /* Frame transmitted, timestamp FIFO updated */
489 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
491 /* Setting the control will start the AVB-DMAC process. */
492 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
494 return 0;
497 static void ravb_get_tx_tstamp(struct net_device *ndev)
499 struct ravb_private *priv = netdev_priv(ndev);
500 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
501 struct skb_shared_hwtstamps shhwtstamps;
502 struct sk_buff *skb;
503 struct timespec64 ts;
504 u16 tag, tfa_tag;
505 int count;
506 u32 tfa2;
508 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
509 while (count--) {
510 tfa2 = ravb_read(ndev, TFA2);
511 tfa_tag = (tfa2 & TFA2_TST) >> 16;
512 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
513 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
514 ravb_read(ndev, TFA1);
515 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
516 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
517 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
518 list) {
519 skb = ts_skb->skb;
520 tag = ts_skb->tag;
521 list_del(&ts_skb->list);
522 kfree(ts_skb);
523 if (tag == tfa_tag) {
524 skb_tstamp_tx(skb, &shhwtstamps);
525 break;
528 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
532 static void ravb_rx_csum(struct sk_buff *skb)
534 u8 *hw_csum;
536 /* The hardware checksum is 2 bytes appended to packet data */
537 if (unlikely(skb->len < 2))
538 return;
539 hw_csum = skb_tail_pointer(skb) - 2;
540 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
541 skb->ip_summed = CHECKSUM_COMPLETE;
542 skb_trim(skb, skb->len - 2);
545 /* Packet receive function for Ethernet AVB */
546 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
548 struct ravb_private *priv = netdev_priv(ndev);
549 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
550 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
551 priv->cur_rx[q];
552 struct net_device_stats *stats = &priv->stats[q];
553 struct ravb_ex_rx_desc *desc;
554 struct sk_buff *skb;
555 dma_addr_t dma_addr;
556 struct timespec64 ts;
557 u8 desc_status;
558 u16 pkt_len;
559 int limit;
561 boguscnt = min(boguscnt, *quota);
562 limit = boguscnt;
563 desc = &priv->rx_ring[q][entry];
564 while (desc->die_dt != DT_FEMPTY) {
565 /* Descriptor type must be checked before all other reads */
566 dma_rmb();
567 desc_status = desc->msc;
568 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
570 if (--boguscnt < 0)
571 break;
573 /* We use 0-byte descriptors to mark the DMA mapping errors */
574 if (!pkt_len)
575 continue;
577 if (desc_status & MSC_MC)
578 stats->multicast++;
580 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
581 MSC_CEEF)) {
582 stats->rx_errors++;
583 if (desc_status & MSC_CRC)
584 stats->rx_crc_errors++;
585 if (desc_status & MSC_RFE)
586 stats->rx_frame_errors++;
587 if (desc_status & (MSC_RTLF | MSC_RTSF))
588 stats->rx_length_errors++;
589 if (desc_status & MSC_CEEF)
590 stats->rx_missed_errors++;
591 } else {
592 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
594 skb = priv->rx_skb[q][entry];
595 priv->rx_skb[q][entry] = NULL;
596 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
597 priv->rx_buf_sz,
598 DMA_FROM_DEVICE);
599 get_ts &= (q == RAVB_NC) ?
600 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
601 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
602 if (get_ts) {
603 struct skb_shared_hwtstamps *shhwtstamps;
605 shhwtstamps = skb_hwtstamps(skb);
606 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
607 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
608 32) | le32_to_cpu(desc->ts_sl);
609 ts.tv_nsec = le32_to_cpu(desc->ts_n);
610 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
613 skb_put(skb, pkt_len);
614 skb->protocol = eth_type_trans(skb, ndev);
615 if (ndev->features & NETIF_F_RXCSUM)
616 ravb_rx_csum(skb);
617 napi_gro_receive(&priv->napi[q], skb);
618 stats->rx_packets++;
619 stats->rx_bytes += pkt_len;
622 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
623 desc = &priv->rx_ring[q][entry];
626 /* Refill the RX ring buffers. */
627 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
628 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
629 desc = &priv->rx_ring[q][entry];
630 desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
632 if (!priv->rx_skb[q][entry]) {
633 skb = netdev_alloc_skb(ndev,
634 priv->rx_buf_sz +
635 RAVB_ALIGN - 1);
636 if (!skb)
637 break; /* Better luck next round. */
638 ravb_set_buffer_align(skb);
639 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
640 le16_to_cpu(desc->ds_cc),
641 DMA_FROM_DEVICE);
642 skb_checksum_none_assert(skb);
643 /* We just set the data size to 0 for a failed mapping
644 * which should prevent DMA from happening...
646 if (dma_mapping_error(ndev->dev.parent, dma_addr))
647 desc->ds_cc = cpu_to_le16(0);
648 desc->dptr = cpu_to_le32(dma_addr);
649 priv->rx_skb[q][entry] = skb;
651 /* Descriptor type must be set after all the above writes */
652 dma_wmb();
653 desc->die_dt = DT_FEMPTY;
656 *quota -= limit - (++boguscnt);
658 return boguscnt <= 0;
661 static void ravb_rcv_snd_disable(struct net_device *ndev)
663 /* Disable TX and RX */
664 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
667 static void ravb_rcv_snd_enable(struct net_device *ndev)
669 /* Enable TX and RX */
670 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
673 /* function for waiting dma process finished */
674 static int ravb_stop_dma(struct net_device *ndev)
676 int error;
678 /* Wait for stopping the hardware TX process */
679 error = ravb_wait(ndev, TCCR,
680 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
681 if (error)
682 return error;
684 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
686 if (error)
687 return error;
689 /* Stop the E-MAC's RX/TX processes. */
690 ravb_rcv_snd_disable(ndev);
692 /* Wait for stopping the RX DMA process */
693 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
694 if (error)
695 return error;
697 /* Stop AVB-DMAC process */
698 return ravb_config(ndev);
701 /* E-MAC interrupt handler */
702 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
704 struct ravb_private *priv = netdev_priv(ndev);
705 u32 ecsr, psr;
707 ecsr = ravb_read(ndev, ECSR);
708 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
710 if (ecsr & ECSR_MPD)
711 pm_wakeup_event(&priv->pdev->dev, 0);
712 if (ecsr & ECSR_ICD)
713 ndev->stats.tx_carrier_errors++;
714 if (ecsr & ECSR_LCHNG) {
715 /* Link changed */
716 if (priv->no_avb_link)
717 return;
718 psr = ravb_read(ndev, PSR);
719 if (priv->avb_link_active_low)
720 psr ^= PSR_LMON;
721 if (!(psr & PSR_LMON)) {
722 /* DIsable RX and TX */
723 ravb_rcv_snd_disable(ndev);
724 } else {
725 /* Enable RX and TX */
726 ravb_rcv_snd_enable(ndev);
731 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
733 struct net_device *ndev = dev_id;
734 struct ravb_private *priv = netdev_priv(ndev);
736 spin_lock(&priv->lock);
737 ravb_emac_interrupt_unlocked(ndev);
738 mmiowb();
739 spin_unlock(&priv->lock);
740 return IRQ_HANDLED;
743 /* Error interrupt handler */
744 static void ravb_error_interrupt(struct net_device *ndev)
746 struct ravb_private *priv = netdev_priv(ndev);
747 u32 eis, ris2;
749 eis = ravb_read(ndev, EIS);
750 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
751 if (eis & EIS_QFS) {
752 ris2 = ravb_read(ndev, RIS2);
753 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
754 RIS2);
756 /* Receive Descriptor Empty int */
757 if (ris2 & RIS2_QFF0)
758 priv->stats[RAVB_BE].rx_over_errors++;
760 /* Receive Descriptor Empty int */
761 if (ris2 & RIS2_QFF1)
762 priv->stats[RAVB_NC].rx_over_errors++;
764 /* Receive FIFO Overflow int */
765 if (ris2 & RIS2_RFFF)
766 priv->rx_fifo_errors++;
770 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
772 struct ravb_private *priv = netdev_priv(ndev);
773 u32 ris0 = ravb_read(ndev, RIS0);
774 u32 ric0 = ravb_read(ndev, RIC0);
775 u32 tis = ravb_read(ndev, TIS);
776 u32 tic = ravb_read(ndev, TIC);
778 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
779 if (napi_schedule_prep(&priv->napi[q])) {
780 /* Mask RX and TX interrupts */
781 if (priv->chip_id == RCAR_GEN2) {
782 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
783 ravb_write(ndev, tic & ~BIT(q), TIC);
784 } else {
785 ravb_write(ndev, BIT(q), RID0);
786 ravb_write(ndev, BIT(q), TID);
788 __napi_schedule(&priv->napi[q]);
789 } else {
790 netdev_warn(ndev,
791 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
792 ris0, ric0);
793 netdev_warn(ndev,
794 " tx status 0x%08x, tx mask 0x%08x.\n",
795 tis, tic);
797 return true;
799 return false;
802 static bool ravb_timestamp_interrupt(struct net_device *ndev)
804 u32 tis = ravb_read(ndev, TIS);
806 if (tis & TIS_TFUF) {
807 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
808 ravb_get_tx_tstamp(ndev);
809 return true;
811 return false;
814 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
816 struct net_device *ndev = dev_id;
817 struct ravb_private *priv = netdev_priv(ndev);
818 irqreturn_t result = IRQ_NONE;
819 u32 iss;
821 spin_lock(&priv->lock);
822 /* Get interrupt status */
823 iss = ravb_read(ndev, ISS);
825 /* Received and transmitted interrupts */
826 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
827 int q;
829 /* Timestamp updated */
830 if (ravb_timestamp_interrupt(ndev))
831 result = IRQ_HANDLED;
833 /* Network control and best effort queue RX/TX */
834 for (q = RAVB_NC; q >= RAVB_BE; q--) {
835 if (ravb_queue_interrupt(ndev, q))
836 result = IRQ_HANDLED;
840 /* E-MAC status summary */
841 if (iss & ISS_MS) {
842 ravb_emac_interrupt_unlocked(ndev);
843 result = IRQ_HANDLED;
846 /* Error status summary */
847 if (iss & ISS_ES) {
848 ravb_error_interrupt(ndev);
849 result = IRQ_HANDLED;
852 /* gPTP interrupt status summary */
853 if (iss & ISS_CGIS) {
854 ravb_ptp_interrupt(ndev);
855 result = IRQ_HANDLED;
858 mmiowb();
859 spin_unlock(&priv->lock);
860 return result;
863 /* Timestamp/Error/gPTP interrupt handler */
864 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
866 struct net_device *ndev = dev_id;
867 struct ravb_private *priv = netdev_priv(ndev);
868 irqreturn_t result = IRQ_NONE;
869 u32 iss;
871 spin_lock(&priv->lock);
872 /* Get interrupt status */
873 iss = ravb_read(ndev, ISS);
875 /* Timestamp updated */
876 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
877 result = IRQ_HANDLED;
879 /* Error status summary */
880 if (iss & ISS_ES) {
881 ravb_error_interrupt(ndev);
882 result = IRQ_HANDLED;
885 /* gPTP interrupt status summary */
886 if (iss & ISS_CGIS) {
887 ravb_ptp_interrupt(ndev);
888 result = IRQ_HANDLED;
891 mmiowb();
892 spin_unlock(&priv->lock);
893 return result;
896 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
898 struct net_device *ndev = dev_id;
899 struct ravb_private *priv = netdev_priv(ndev);
900 irqreturn_t result = IRQ_NONE;
902 spin_lock(&priv->lock);
904 /* Network control/Best effort queue RX/TX */
905 if (ravb_queue_interrupt(ndev, q))
906 result = IRQ_HANDLED;
908 mmiowb();
909 spin_unlock(&priv->lock);
910 return result;
913 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
915 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
918 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
920 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
923 static int ravb_poll(struct napi_struct *napi, int budget)
925 struct net_device *ndev = napi->dev;
926 struct ravb_private *priv = netdev_priv(ndev);
927 unsigned long flags;
928 int q = napi - priv->napi;
929 int mask = BIT(q);
930 int quota = budget;
931 u32 ris0, tis;
933 for (;;) {
934 tis = ravb_read(ndev, TIS);
935 ris0 = ravb_read(ndev, RIS0);
936 if (!((ris0 & mask) || (tis & mask)))
937 break;
939 /* Processing RX Descriptor Ring */
940 if (ris0 & mask) {
941 /* Clear RX interrupt */
942 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
943 if (ravb_rx(ndev, &quota, q))
944 goto out;
946 /* Processing TX Descriptor Ring */
947 if (tis & mask) {
948 spin_lock_irqsave(&priv->lock, flags);
949 /* Clear TX interrupt */
950 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
951 ravb_tx_free(ndev, q, true);
952 netif_wake_subqueue(ndev, q);
953 mmiowb();
954 spin_unlock_irqrestore(&priv->lock, flags);
958 napi_complete(napi);
960 /* Re-enable RX/TX interrupts */
961 spin_lock_irqsave(&priv->lock, flags);
962 if (priv->chip_id == RCAR_GEN2) {
963 ravb_modify(ndev, RIC0, mask, mask);
964 ravb_modify(ndev, TIC, mask, mask);
965 } else {
966 ravb_write(ndev, mask, RIE0);
967 ravb_write(ndev, mask, TIE);
969 mmiowb();
970 spin_unlock_irqrestore(&priv->lock, flags);
972 /* Receive error message handling */
973 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
974 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
975 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
976 ndev->stats.rx_over_errors = priv->rx_over_errors;
977 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
978 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
979 out:
980 return budget - quota;
983 /* PHY state control function */
984 static void ravb_adjust_link(struct net_device *ndev)
986 struct ravb_private *priv = netdev_priv(ndev);
987 struct phy_device *phydev = ndev->phydev;
988 bool new_state = false;
989 unsigned long flags;
991 spin_lock_irqsave(&priv->lock, flags);
993 /* Disable TX and RX right over here, if E-MAC change is ignored */
994 if (priv->no_avb_link)
995 ravb_rcv_snd_disable(ndev);
997 if (phydev->link) {
998 if (phydev->duplex != priv->duplex) {
999 new_state = true;
1000 priv->duplex = phydev->duplex;
1001 ravb_set_duplex(ndev);
1004 if (phydev->speed != priv->speed) {
1005 new_state = true;
1006 priv->speed = phydev->speed;
1007 ravb_set_rate(ndev);
1009 if (!priv->link) {
1010 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1011 new_state = true;
1012 priv->link = phydev->link;
1014 } else if (priv->link) {
1015 new_state = true;
1016 priv->link = 0;
1017 priv->speed = 0;
1018 priv->duplex = -1;
1021 /* Enable TX and RX right over here, if E-MAC change is ignored */
1022 if (priv->no_avb_link && phydev->link)
1023 ravb_rcv_snd_enable(ndev);
1025 mmiowb();
1026 spin_unlock_irqrestore(&priv->lock, flags);
1028 if (new_state && netif_msg_link(priv))
1029 phy_print_status(phydev);
1032 static const struct soc_device_attribute r8a7795es10[] = {
1033 { .soc_id = "r8a7795", .revision = "ES1.0", },
1034 { /* sentinel */ }
1037 /* PHY init function */
1038 static int ravb_phy_init(struct net_device *ndev)
1040 struct device_node *np = ndev->dev.parent->of_node;
1041 struct ravb_private *priv = netdev_priv(ndev);
1042 struct phy_device *phydev;
1043 struct device_node *pn;
1044 int err;
1046 priv->link = 0;
1047 priv->speed = 0;
1048 priv->duplex = -1;
1050 /* Try connecting to PHY */
1051 pn = of_parse_phandle(np, "phy-handle", 0);
1052 if (!pn) {
1053 /* In the case of a fixed PHY, the DT node associated
1054 * to the PHY is the Ethernet MAC DT node.
1056 if (of_phy_is_fixed_link(np)) {
1057 err = of_phy_register_fixed_link(np);
1058 if (err)
1059 return err;
1061 pn = of_node_get(np);
1063 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1064 priv->phy_interface);
1065 of_node_put(pn);
1066 if (!phydev) {
1067 netdev_err(ndev, "failed to connect PHY\n");
1068 err = -ENOENT;
1069 goto err_deregister_fixed_link;
1072 /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1073 * at this time.
1075 if (soc_device_match(r8a7795es10)) {
1076 err = phy_set_max_speed(phydev, SPEED_100);
1077 if (err) {
1078 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1079 goto err_phy_disconnect;
1082 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1085 /* 10BASE, Pause and Asym Pause is not supported */
1086 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1087 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1088 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1089 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1091 phy_attached_info(phydev);
1093 return 0;
1095 err_phy_disconnect:
1096 phy_disconnect(phydev);
1097 err_deregister_fixed_link:
1098 if (of_phy_is_fixed_link(np))
1099 of_phy_deregister_fixed_link(np);
1101 return err;
1104 /* PHY control start function */
1105 static int ravb_phy_start(struct net_device *ndev)
1107 int error;
1109 error = ravb_phy_init(ndev);
1110 if (error)
1111 return error;
1113 phy_start(ndev->phydev);
1115 return 0;
1118 static u32 ravb_get_msglevel(struct net_device *ndev)
1120 struct ravb_private *priv = netdev_priv(ndev);
1122 return priv->msg_enable;
1125 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1127 struct ravb_private *priv = netdev_priv(ndev);
1129 priv->msg_enable = value;
1132 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1133 "rx_queue_0_current",
1134 "tx_queue_0_current",
1135 "rx_queue_0_dirty",
1136 "tx_queue_0_dirty",
1137 "rx_queue_0_packets",
1138 "tx_queue_0_packets",
1139 "rx_queue_0_bytes",
1140 "tx_queue_0_bytes",
1141 "rx_queue_0_mcast_packets",
1142 "rx_queue_0_errors",
1143 "rx_queue_0_crc_errors",
1144 "rx_queue_0_frame_errors",
1145 "rx_queue_0_length_errors",
1146 "rx_queue_0_missed_errors",
1147 "rx_queue_0_over_errors",
1149 "rx_queue_1_current",
1150 "tx_queue_1_current",
1151 "rx_queue_1_dirty",
1152 "tx_queue_1_dirty",
1153 "rx_queue_1_packets",
1154 "tx_queue_1_packets",
1155 "rx_queue_1_bytes",
1156 "tx_queue_1_bytes",
1157 "rx_queue_1_mcast_packets",
1158 "rx_queue_1_errors",
1159 "rx_queue_1_crc_errors",
1160 "rx_queue_1_frame_errors",
1161 "rx_queue_1_length_errors",
1162 "rx_queue_1_missed_errors",
1163 "rx_queue_1_over_errors",
1166 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1168 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1170 switch (sset) {
1171 case ETH_SS_STATS:
1172 return RAVB_STATS_LEN;
1173 default:
1174 return -EOPNOTSUPP;
1178 static void ravb_get_ethtool_stats(struct net_device *ndev,
1179 struct ethtool_stats *estats, u64 *data)
1181 struct ravb_private *priv = netdev_priv(ndev);
1182 int i = 0;
1183 int q;
1185 /* Device-specific stats */
1186 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1187 struct net_device_stats *stats = &priv->stats[q];
1189 data[i++] = priv->cur_rx[q];
1190 data[i++] = priv->cur_tx[q];
1191 data[i++] = priv->dirty_rx[q];
1192 data[i++] = priv->dirty_tx[q];
1193 data[i++] = stats->rx_packets;
1194 data[i++] = stats->tx_packets;
1195 data[i++] = stats->rx_bytes;
1196 data[i++] = stats->tx_bytes;
1197 data[i++] = stats->multicast;
1198 data[i++] = stats->rx_errors;
1199 data[i++] = stats->rx_crc_errors;
1200 data[i++] = stats->rx_frame_errors;
1201 data[i++] = stats->rx_length_errors;
1202 data[i++] = stats->rx_missed_errors;
1203 data[i++] = stats->rx_over_errors;
1207 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1209 switch (stringset) {
1210 case ETH_SS_STATS:
1211 memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1212 break;
1216 static void ravb_get_ringparam(struct net_device *ndev,
1217 struct ethtool_ringparam *ring)
1219 struct ravb_private *priv = netdev_priv(ndev);
1221 ring->rx_max_pending = BE_RX_RING_MAX;
1222 ring->tx_max_pending = BE_TX_RING_MAX;
1223 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1224 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1227 static int ravb_set_ringparam(struct net_device *ndev,
1228 struct ethtool_ringparam *ring)
1230 struct ravb_private *priv = netdev_priv(ndev);
1231 int error;
1233 if (ring->tx_pending > BE_TX_RING_MAX ||
1234 ring->rx_pending > BE_RX_RING_MAX ||
1235 ring->tx_pending < BE_TX_RING_MIN ||
1236 ring->rx_pending < BE_RX_RING_MIN)
1237 return -EINVAL;
1238 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1239 return -EINVAL;
1241 if (netif_running(ndev)) {
1242 netif_device_detach(ndev);
1243 /* Stop PTP Clock driver */
1244 if (priv->chip_id == RCAR_GEN2)
1245 ravb_ptp_stop(ndev);
1246 /* Wait for DMA stopping */
1247 error = ravb_stop_dma(ndev);
1248 if (error) {
1249 netdev_err(ndev,
1250 "cannot set ringparam! Any AVB processes are still running?\n");
1251 return error;
1253 synchronize_irq(ndev->irq);
1255 /* Free all the skb's in the RX queue and the DMA buffers. */
1256 ravb_ring_free(ndev, RAVB_BE);
1257 ravb_ring_free(ndev, RAVB_NC);
1260 /* Set new parameters */
1261 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1262 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1264 if (netif_running(ndev)) {
1265 error = ravb_dmac_init(ndev);
1266 if (error) {
1267 netdev_err(ndev,
1268 "%s: ravb_dmac_init() failed, error %d\n",
1269 __func__, error);
1270 return error;
1273 ravb_emac_init(ndev);
1275 /* Initialise PTP Clock driver */
1276 if (priv->chip_id == RCAR_GEN2)
1277 ravb_ptp_init(ndev, priv->pdev);
1279 netif_device_attach(ndev);
1282 return 0;
1285 static int ravb_get_ts_info(struct net_device *ndev,
1286 struct ethtool_ts_info *info)
1288 struct ravb_private *priv = netdev_priv(ndev);
1290 info->so_timestamping =
1291 SOF_TIMESTAMPING_TX_SOFTWARE |
1292 SOF_TIMESTAMPING_RX_SOFTWARE |
1293 SOF_TIMESTAMPING_SOFTWARE |
1294 SOF_TIMESTAMPING_TX_HARDWARE |
1295 SOF_TIMESTAMPING_RX_HARDWARE |
1296 SOF_TIMESTAMPING_RAW_HARDWARE;
1297 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1298 info->rx_filters =
1299 (1 << HWTSTAMP_FILTER_NONE) |
1300 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1301 (1 << HWTSTAMP_FILTER_ALL);
1302 info->phc_index = ptp_clock_index(priv->ptp.clock);
1304 return 0;
1307 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1309 struct ravb_private *priv = netdev_priv(ndev);
1311 wol->supported = WAKE_MAGIC;
1312 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1315 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1317 struct ravb_private *priv = netdev_priv(ndev);
1319 if (wol->wolopts & ~WAKE_MAGIC)
1320 return -EOPNOTSUPP;
1322 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1324 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1326 return 0;
1329 static const struct ethtool_ops ravb_ethtool_ops = {
1330 .nway_reset = phy_ethtool_nway_reset,
1331 .get_msglevel = ravb_get_msglevel,
1332 .set_msglevel = ravb_set_msglevel,
1333 .get_link = ethtool_op_get_link,
1334 .get_strings = ravb_get_strings,
1335 .get_ethtool_stats = ravb_get_ethtool_stats,
1336 .get_sset_count = ravb_get_sset_count,
1337 .get_ringparam = ravb_get_ringparam,
1338 .set_ringparam = ravb_set_ringparam,
1339 .get_ts_info = ravb_get_ts_info,
1340 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1341 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1342 .get_wol = ravb_get_wol,
1343 .set_wol = ravb_set_wol,
1346 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1347 struct net_device *ndev, struct device *dev,
1348 const char *ch)
1350 char *name;
1351 int error;
1353 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1354 if (!name)
1355 return -ENOMEM;
1356 error = request_irq(irq, handler, 0, name, ndev);
1357 if (error)
1358 netdev_err(ndev, "cannot request IRQ %s\n", name);
1360 return error;
1363 /* Network device open function for Ethernet AVB */
1364 static int ravb_open(struct net_device *ndev)
1366 struct ravb_private *priv = netdev_priv(ndev);
1367 struct platform_device *pdev = priv->pdev;
1368 struct device *dev = &pdev->dev;
1369 int error;
1371 napi_enable(&priv->napi[RAVB_BE]);
1372 napi_enable(&priv->napi[RAVB_NC]);
1374 if (priv->chip_id == RCAR_GEN2) {
1375 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1376 ndev->name, ndev);
1377 if (error) {
1378 netdev_err(ndev, "cannot request IRQ\n");
1379 goto out_napi_off;
1381 } else {
1382 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1383 dev, "ch22:multi");
1384 if (error)
1385 goto out_napi_off;
1386 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1387 dev, "ch24:emac");
1388 if (error)
1389 goto out_free_irq;
1390 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1391 ndev, dev, "ch0:rx_be");
1392 if (error)
1393 goto out_free_irq_emac;
1394 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1395 ndev, dev, "ch18:tx_be");
1396 if (error)
1397 goto out_free_irq_be_rx;
1398 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1399 ndev, dev, "ch1:rx_nc");
1400 if (error)
1401 goto out_free_irq_be_tx;
1402 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1403 ndev, dev, "ch19:tx_nc");
1404 if (error)
1405 goto out_free_irq_nc_rx;
1408 /* Device init */
1409 error = ravb_dmac_init(ndev);
1410 if (error)
1411 goto out_free_irq_nc_tx;
1412 ravb_emac_init(ndev);
1414 /* Initialise PTP Clock driver */
1415 if (priv->chip_id == RCAR_GEN2)
1416 ravb_ptp_init(ndev, priv->pdev);
1418 netif_tx_start_all_queues(ndev);
1420 /* PHY control start */
1421 error = ravb_phy_start(ndev);
1422 if (error)
1423 goto out_ptp_stop;
1425 return 0;
1427 out_ptp_stop:
1428 /* Stop PTP Clock driver */
1429 if (priv->chip_id == RCAR_GEN2)
1430 ravb_ptp_stop(ndev);
1431 out_free_irq_nc_tx:
1432 if (priv->chip_id == RCAR_GEN2)
1433 goto out_free_irq;
1434 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1435 out_free_irq_nc_rx:
1436 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1437 out_free_irq_be_tx:
1438 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1439 out_free_irq_be_rx:
1440 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1441 out_free_irq_emac:
1442 free_irq(priv->emac_irq, ndev);
1443 out_free_irq:
1444 free_irq(ndev->irq, ndev);
1445 out_napi_off:
1446 napi_disable(&priv->napi[RAVB_NC]);
1447 napi_disable(&priv->napi[RAVB_BE]);
1448 return error;
1451 /* Timeout function for Ethernet AVB */
1452 static void ravb_tx_timeout(struct net_device *ndev)
1454 struct ravb_private *priv = netdev_priv(ndev);
1456 netif_err(priv, tx_err, ndev,
1457 "transmit timed out, status %08x, resetting...\n",
1458 ravb_read(ndev, ISS));
1460 /* tx_errors count up */
1461 ndev->stats.tx_errors++;
1463 schedule_work(&priv->work);
1466 static void ravb_tx_timeout_work(struct work_struct *work)
1468 struct ravb_private *priv = container_of(work, struct ravb_private,
1469 work);
1470 struct net_device *ndev = priv->ndev;
1472 netif_tx_stop_all_queues(ndev);
1474 /* Stop PTP Clock driver */
1475 if (priv->chip_id == RCAR_GEN2)
1476 ravb_ptp_stop(ndev);
1478 /* Wait for DMA stopping */
1479 ravb_stop_dma(ndev);
1481 ravb_ring_free(ndev, RAVB_BE);
1482 ravb_ring_free(ndev, RAVB_NC);
1484 /* Device init */
1485 ravb_dmac_init(ndev);
1486 ravb_emac_init(ndev);
1488 /* Initialise PTP Clock driver */
1489 if (priv->chip_id == RCAR_GEN2)
1490 ravb_ptp_init(ndev, priv->pdev);
1492 netif_tx_start_all_queues(ndev);
1495 /* Packet transmit function for Ethernet AVB */
1496 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1498 struct ravb_private *priv = netdev_priv(ndev);
1499 int num_tx_desc = priv->num_tx_desc;
1500 u16 q = skb_get_queue_mapping(skb);
1501 struct ravb_tstamp_skb *ts_skb;
1502 struct ravb_tx_desc *desc;
1503 unsigned long flags;
1504 u32 dma_addr;
1505 void *buffer;
1506 u32 entry;
1507 u32 len;
1509 spin_lock_irqsave(&priv->lock, flags);
1510 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1511 num_tx_desc) {
1512 netif_err(priv, tx_queued, ndev,
1513 "still transmitting with the full ring!\n");
1514 netif_stop_subqueue(ndev, q);
1515 spin_unlock_irqrestore(&priv->lock, flags);
1516 return NETDEV_TX_BUSY;
1519 if (skb_put_padto(skb, ETH_ZLEN))
1520 goto exit;
1522 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1523 priv->tx_skb[q][entry / num_tx_desc] = skb;
1525 if (num_tx_desc > 1) {
1526 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1527 entry / num_tx_desc * DPTR_ALIGN;
1528 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1530 /* Zero length DMA descriptors are problematic as they seem
1531 * to terminate DMA transfers. Avoid them by simply using a
1532 * length of DPTR_ALIGN (4) when skb data is aligned to
1533 * DPTR_ALIGN.
1535 * As skb is guaranteed to have at least ETH_ZLEN (60)
1536 * bytes of data by the call to skb_put_padto() above this
1537 * is safe with respect to both the length of the first DMA
1538 * descriptor (len) overflowing the available data and the
1539 * length of the second DMA descriptor (skb->len - len)
1540 * being negative.
1542 if (len == 0)
1543 len = DPTR_ALIGN;
1545 memcpy(buffer, skb->data, len);
1546 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1547 DMA_TO_DEVICE);
1548 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1549 goto drop;
1551 desc = &priv->tx_ring[q][entry];
1552 desc->ds_tagl = cpu_to_le16(len);
1553 desc->dptr = cpu_to_le32(dma_addr);
1555 buffer = skb->data + len;
1556 len = skb->len - len;
1557 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1558 DMA_TO_DEVICE);
1559 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1560 goto unmap;
1562 desc++;
1563 } else {
1564 desc = &priv->tx_ring[q][entry];
1565 len = skb->len;
1566 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1567 DMA_TO_DEVICE);
1568 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1569 goto drop;
1571 desc->ds_tagl = cpu_to_le16(len);
1572 desc->dptr = cpu_to_le32(dma_addr);
1574 /* TX timestamp required */
1575 if (q == RAVB_NC) {
1576 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1577 if (!ts_skb) {
1578 if (num_tx_desc > 1) {
1579 desc--;
1580 dma_unmap_single(ndev->dev.parent, dma_addr,
1581 len, DMA_TO_DEVICE);
1583 goto unmap;
1585 ts_skb->skb = skb;
1586 ts_skb->tag = priv->ts_skb_tag++;
1587 priv->ts_skb_tag &= 0x3ff;
1588 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1590 /* TAG and timestamp required flag */
1591 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1592 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1593 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1596 skb_tx_timestamp(skb);
1597 /* Descriptor type must be set after all the above writes */
1598 dma_wmb();
1599 if (num_tx_desc > 1) {
1600 desc->die_dt = DT_FEND;
1601 desc--;
1602 desc->die_dt = DT_FSTART;
1603 } else {
1604 desc->die_dt = DT_FSINGLE;
1606 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1608 priv->cur_tx[q] += num_tx_desc;
1609 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1610 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1611 !ravb_tx_free(ndev, q, true))
1612 netif_stop_subqueue(ndev, q);
1614 exit:
1615 mmiowb();
1616 spin_unlock_irqrestore(&priv->lock, flags);
1617 return NETDEV_TX_OK;
1619 unmap:
1620 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1621 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1622 drop:
1623 dev_kfree_skb_any(skb);
1624 priv->tx_skb[q][entry / num_tx_desc] = NULL;
1625 goto exit;
1628 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1629 struct net_device *sb_dev,
1630 select_queue_fallback_t fallback)
1632 /* If skb needs TX timestamp, it is handled in network control queue */
1633 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1634 RAVB_BE;
1638 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1640 struct ravb_private *priv = netdev_priv(ndev);
1641 struct net_device_stats *nstats, *stats0, *stats1;
1643 nstats = &ndev->stats;
1644 stats0 = &priv->stats[RAVB_BE];
1645 stats1 = &priv->stats[RAVB_NC];
1647 nstats->tx_dropped += ravb_read(ndev, TROCR);
1648 ravb_write(ndev, 0, TROCR); /* (write clear) */
1649 nstats->collisions += ravb_read(ndev, CDCR);
1650 ravb_write(ndev, 0, CDCR); /* (write clear) */
1651 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1652 ravb_write(ndev, 0, LCCR); /* (write clear) */
1654 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1655 ravb_write(ndev, 0, CERCR); /* (write clear) */
1656 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1657 ravb_write(ndev, 0, CEECR); /* (write clear) */
1659 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1660 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1661 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1662 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1663 nstats->multicast = stats0->multicast + stats1->multicast;
1664 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1665 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1666 nstats->rx_frame_errors =
1667 stats0->rx_frame_errors + stats1->rx_frame_errors;
1668 nstats->rx_length_errors =
1669 stats0->rx_length_errors + stats1->rx_length_errors;
1670 nstats->rx_missed_errors =
1671 stats0->rx_missed_errors + stats1->rx_missed_errors;
1672 nstats->rx_over_errors =
1673 stats0->rx_over_errors + stats1->rx_over_errors;
1675 return nstats;
1678 /* Update promiscuous bit */
1679 static void ravb_set_rx_mode(struct net_device *ndev)
1681 struct ravb_private *priv = netdev_priv(ndev);
1682 unsigned long flags;
1684 spin_lock_irqsave(&priv->lock, flags);
1685 ravb_modify(ndev, ECMR, ECMR_PRM,
1686 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1687 mmiowb();
1688 spin_unlock_irqrestore(&priv->lock, flags);
1691 /* Device close function for Ethernet AVB */
1692 static int ravb_close(struct net_device *ndev)
1694 struct device_node *np = ndev->dev.parent->of_node;
1695 struct ravb_private *priv = netdev_priv(ndev);
1696 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1698 netif_tx_stop_all_queues(ndev);
1700 /* Disable interrupts by clearing the interrupt masks. */
1701 ravb_write(ndev, 0, RIC0);
1702 ravb_write(ndev, 0, RIC2);
1703 ravb_write(ndev, 0, TIC);
1705 /* Stop PTP Clock driver */
1706 if (priv->chip_id == RCAR_GEN2)
1707 ravb_ptp_stop(ndev);
1709 /* Set the config mode to stop the AVB-DMAC's processes */
1710 if (ravb_stop_dma(ndev) < 0)
1711 netdev_err(ndev,
1712 "device will be stopped after h/w processes are done.\n");
1714 /* Clear the timestamp list */
1715 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1716 list_del(&ts_skb->list);
1717 kfree(ts_skb);
1720 /* PHY disconnect */
1721 if (ndev->phydev) {
1722 phy_stop(ndev->phydev);
1723 phy_disconnect(ndev->phydev);
1724 if (of_phy_is_fixed_link(np))
1725 of_phy_deregister_fixed_link(np);
1728 if (priv->chip_id != RCAR_GEN2) {
1729 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1730 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1731 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1732 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1733 free_irq(priv->emac_irq, ndev);
1735 free_irq(ndev->irq, ndev);
1737 napi_disable(&priv->napi[RAVB_NC]);
1738 napi_disable(&priv->napi[RAVB_BE]);
1740 /* Free all the skb's in the RX queue and the DMA buffers. */
1741 ravb_ring_free(ndev, RAVB_BE);
1742 ravb_ring_free(ndev, RAVB_NC);
1744 return 0;
1747 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1749 struct ravb_private *priv = netdev_priv(ndev);
1750 struct hwtstamp_config config;
1752 config.flags = 0;
1753 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1754 HWTSTAMP_TX_OFF;
1755 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1756 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1757 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1758 config.rx_filter = HWTSTAMP_FILTER_ALL;
1759 else
1760 config.rx_filter = HWTSTAMP_FILTER_NONE;
1762 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1763 -EFAULT : 0;
1766 /* Control hardware time stamping */
1767 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1769 struct ravb_private *priv = netdev_priv(ndev);
1770 struct hwtstamp_config config;
1771 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1772 u32 tstamp_tx_ctrl;
1774 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1775 return -EFAULT;
1777 /* Reserved for future extensions */
1778 if (config.flags)
1779 return -EINVAL;
1781 switch (config.tx_type) {
1782 case HWTSTAMP_TX_OFF:
1783 tstamp_tx_ctrl = 0;
1784 break;
1785 case HWTSTAMP_TX_ON:
1786 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1787 break;
1788 default:
1789 return -ERANGE;
1792 switch (config.rx_filter) {
1793 case HWTSTAMP_FILTER_NONE:
1794 tstamp_rx_ctrl = 0;
1795 break;
1796 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1797 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1798 break;
1799 default:
1800 config.rx_filter = HWTSTAMP_FILTER_ALL;
1801 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1804 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1805 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1807 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1808 -EFAULT : 0;
1811 /* ioctl to device function */
1812 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1814 struct phy_device *phydev = ndev->phydev;
1816 if (!netif_running(ndev))
1817 return -EINVAL;
1819 if (!phydev)
1820 return -ENODEV;
1822 switch (cmd) {
1823 case SIOCGHWTSTAMP:
1824 return ravb_hwtstamp_get(ndev, req);
1825 case SIOCSHWTSTAMP:
1826 return ravb_hwtstamp_set(ndev, req);
1829 return phy_mii_ioctl(phydev, req, cmd);
1832 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1834 if (netif_running(ndev))
1835 return -EBUSY;
1837 ndev->mtu = new_mtu;
1838 netdev_update_features(ndev);
1840 return 0;
1843 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1845 struct ravb_private *priv = netdev_priv(ndev);
1846 unsigned long flags;
1848 spin_lock_irqsave(&priv->lock, flags);
1850 /* Disable TX and RX */
1851 ravb_rcv_snd_disable(ndev);
1853 /* Modify RX Checksum setting */
1854 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1856 /* Enable TX and RX */
1857 ravb_rcv_snd_enable(ndev);
1859 spin_unlock_irqrestore(&priv->lock, flags);
1862 static int ravb_set_features(struct net_device *ndev,
1863 netdev_features_t features)
1865 netdev_features_t changed = ndev->features ^ features;
1867 if (changed & NETIF_F_RXCSUM)
1868 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1870 ndev->features = features;
1872 return 0;
1875 static const struct net_device_ops ravb_netdev_ops = {
1876 .ndo_open = ravb_open,
1877 .ndo_stop = ravb_close,
1878 .ndo_start_xmit = ravb_start_xmit,
1879 .ndo_select_queue = ravb_select_queue,
1880 .ndo_get_stats = ravb_get_stats,
1881 .ndo_set_rx_mode = ravb_set_rx_mode,
1882 .ndo_tx_timeout = ravb_tx_timeout,
1883 .ndo_do_ioctl = ravb_do_ioctl,
1884 .ndo_change_mtu = ravb_change_mtu,
1885 .ndo_validate_addr = eth_validate_addr,
1886 .ndo_set_mac_address = eth_mac_addr,
1887 .ndo_set_features = ravb_set_features,
1890 /* MDIO bus init function */
1891 static int ravb_mdio_init(struct ravb_private *priv)
1893 struct platform_device *pdev = priv->pdev;
1894 struct device *dev = &pdev->dev;
1895 int error;
1897 /* Bitbang init */
1898 priv->mdiobb.ops = &bb_ops;
1900 /* MII controller setting */
1901 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1902 if (!priv->mii_bus)
1903 return -ENOMEM;
1905 /* Hook up MII support for ethtool */
1906 priv->mii_bus->name = "ravb_mii";
1907 priv->mii_bus->parent = dev;
1908 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1909 pdev->name, pdev->id);
1911 /* Register MDIO bus */
1912 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1913 if (error)
1914 goto out_free_bus;
1916 return 0;
1918 out_free_bus:
1919 free_mdio_bitbang(priv->mii_bus);
1920 return error;
1923 /* MDIO bus release function */
1924 static int ravb_mdio_release(struct ravb_private *priv)
1926 /* Unregister mdio bus */
1927 mdiobus_unregister(priv->mii_bus);
1929 /* Free bitbang info */
1930 free_mdio_bitbang(priv->mii_bus);
1932 return 0;
1935 static const struct of_device_id ravb_match_table[] = {
1936 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1937 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1938 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1939 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1940 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1943 MODULE_DEVICE_TABLE(of, ravb_match_table);
1945 static int ravb_set_gti(struct net_device *ndev)
1947 struct ravb_private *priv = netdev_priv(ndev);
1948 struct device *dev = ndev->dev.parent;
1949 unsigned long rate;
1950 uint64_t inc;
1952 rate = clk_get_rate(priv->clk);
1953 if (!rate)
1954 return -EINVAL;
1956 inc = 1000000000ULL << 20;
1957 do_div(inc, rate);
1959 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1960 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1961 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1962 return -EINVAL;
1965 ravb_write(ndev, inc, GTI);
1967 return 0;
1970 static void ravb_set_config_mode(struct net_device *ndev)
1972 struct ravb_private *priv = netdev_priv(ndev);
1974 if (priv->chip_id == RCAR_GEN2) {
1975 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1976 /* Set CSEL value */
1977 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1978 } else {
1979 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1980 CCC_GAC | CCC_CSEL_HPB);
1984 /* Set tx and rx clock internal delay modes */
1985 static void ravb_set_delay_mode(struct net_device *ndev)
1987 struct ravb_private *priv = netdev_priv(ndev);
1988 int set = 0;
1990 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1991 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1992 set |= APSR_DM_RDM;
1994 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1995 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1996 set |= APSR_DM_TDM;
1998 ravb_modify(ndev, APSR, APSR_DM, set);
2001 static int ravb_probe(struct platform_device *pdev)
2003 struct device_node *np = pdev->dev.of_node;
2004 struct ravb_private *priv;
2005 enum ravb_chip_id chip_id;
2006 struct net_device *ndev;
2007 int error, irq, q;
2008 struct resource *res;
2009 int i;
2011 if (!np) {
2012 dev_err(&pdev->dev,
2013 "this driver is required to be instantiated from device tree\n");
2014 return -EINVAL;
2017 /* Get base address */
2018 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2019 if (!res) {
2020 dev_err(&pdev->dev, "invalid resource\n");
2021 return -EINVAL;
2024 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2025 NUM_TX_QUEUE, NUM_RX_QUEUE);
2026 if (!ndev)
2027 return -ENOMEM;
2029 ndev->features = NETIF_F_RXCSUM;
2030 ndev->hw_features = NETIF_F_RXCSUM;
2032 pm_runtime_enable(&pdev->dev);
2033 pm_runtime_get_sync(&pdev->dev);
2035 /* The Ether-specific entries in the device structure. */
2036 ndev->base_addr = res->start;
2038 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2040 if (chip_id == RCAR_GEN3)
2041 irq = platform_get_irq_byname(pdev, "ch22");
2042 else
2043 irq = platform_get_irq(pdev, 0);
2044 if (irq < 0) {
2045 error = irq;
2046 goto out_release;
2048 ndev->irq = irq;
2050 SET_NETDEV_DEV(ndev, &pdev->dev);
2052 priv = netdev_priv(ndev);
2053 priv->ndev = ndev;
2054 priv->pdev = pdev;
2055 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2056 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2057 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2058 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2059 priv->addr = devm_ioremap_resource(&pdev->dev, res);
2060 if (IS_ERR(priv->addr)) {
2061 error = PTR_ERR(priv->addr);
2062 goto out_release;
2065 spin_lock_init(&priv->lock);
2066 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2068 priv->phy_interface = of_get_phy_mode(np);
2070 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2071 priv->avb_link_active_low =
2072 of_property_read_bool(np, "renesas,ether-link-active-low");
2074 if (chip_id == RCAR_GEN3) {
2075 irq = platform_get_irq_byname(pdev, "ch24");
2076 if (irq < 0) {
2077 error = irq;
2078 goto out_release;
2080 priv->emac_irq = irq;
2081 for (i = 0; i < NUM_RX_QUEUE; i++) {
2082 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2083 if (irq < 0) {
2084 error = irq;
2085 goto out_release;
2087 priv->rx_irqs[i] = irq;
2089 for (i = 0; i < NUM_TX_QUEUE; i++) {
2090 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2091 if (irq < 0) {
2092 error = irq;
2093 goto out_release;
2095 priv->tx_irqs[i] = irq;
2099 priv->chip_id = chip_id;
2101 priv->clk = devm_clk_get(&pdev->dev, NULL);
2102 if (IS_ERR(priv->clk)) {
2103 error = PTR_ERR(priv->clk);
2104 goto out_release;
2107 ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2108 ndev->min_mtu = ETH_MIN_MTU;
2110 priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2111 NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2113 /* Set function */
2114 ndev->netdev_ops = &ravb_netdev_ops;
2115 ndev->ethtool_ops = &ravb_ethtool_ops;
2117 /* Set AVB config mode */
2118 ravb_set_config_mode(ndev);
2120 /* Set GTI value */
2121 error = ravb_set_gti(ndev);
2122 if (error)
2123 goto out_release;
2125 /* Request GTI loading */
2126 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2128 if (priv->chip_id != RCAR_GEN2)
2129 ravb_set_delay_mode(ndev);
2131 /* Allocate descriptor base address table */
2132 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2133 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2134 &priv->desc_bat_dma, GFP_KERNEL);
2135 if (!priv->desc_bat) {
2136 dev_err(&pdev->dev,
2137 "Cannot allocate desc base address table (size %d bytes)\n",
2138 priv->desc_bat_size);
2139 error = -ENOMEM;
2140 goto out_release;
2142 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2143 priv->desc_bat[q].die_dt = DT_EOS;
2144 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2146 /* Initialise HW timestamp list */
2147 INIT_LIST_HEAD(&priv->ts_skb_list);
2149 /* Initialise PTP Clock driver */
2150 if (chip_id != RCAR_GEN2)
2151 ravb_ptp_init(ndev, pdev);
2153 /* Debug message level */
2154 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2156 /* Read and set MAC address */
2157 ravb_read_mac_address(ndev, of_get_mac_address(np));
2158 if (!is_valid_ether_addr(ndev->dev_addr)) {
2159 dev_warn(&pdev->dev,
2160 "no valid MAC address supplied, using a random one\n");
2161 eth_hw_addr_random(ndev);
2164 /* MDIO bus init */
2165 error = ravb_mdio_init(priv);
2166 if (error) {
2167 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2168 goto out_dma_free;
2171 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2172 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2174 /* Network device register */
2175 error = register_netdev(ndev);
2176 if (error)
2177 goto out_napi_del;
2179 device_set_wakeup_capable(&pdev->dev, 1);
2181 /* Print device information */
2182 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2183 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2185 platform_set_drvdata(pdev, ndev);
2187 return 0;
2189 out_napi_del:
2190 netif_napi_del(&priv->napi[RAVB_NC]);
2191 netif_napi_del(&priv->napi[RAVB_BE]);
2192 ravb_mdio_release(priv);
2193 out_dma_free:
2194 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2195 priv->desc_bat_dma);
2197 /* Stop PTP Clock driver */
2198 if (chip_id != RCAR_GEN2)
2199 ravb_ptp_stop(ndev);
2200 out_release:
2201 free_netdev(ndev);
2203 pm_runtime_put(&pdev->dev);
2204 pm_runtime_disable(&pdev->dev);
2205 return error;
2208 static int ravb_remove(struct platform_device *pdev)
2210 struct net_device *ndev = platform_get_drvdata(pdev);
2211 struct ravb_private *priv = netdev_priv(ndev);
2213 /* Stop PTP Clock driver */
2214 if (priv->chip_id != RCAR_GEN2)
2215 ravb_ptp_stop(ndev);
2217 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2218 priv->desc_bat_dma);
2219 /* Set reset mode */
2220 ravb_write(ndev, CCC_OPC_RESET, CCC);
2221 pm_runtime_put_sync(&pdev->dev);
2222 unregister_netdev(ndev);
2223 netif_napi_del(&priv->napi[RAVB_NC]);
2224 netif_napi_del(&priv->napi[RAVB_BE]);
2225 ravb_mdio_release(priv);
2226 pm_runtime_disable(&pdev->dev);
2227 free_netdev(ndev);
2228 platform_set_drvdata(pdev, NULL);
2230 return 0;
2233 static int ravb_wol_setup(struct net_device *ndev)
2235 struct ravb_private *priv = netdev_priv(ndev);
2237 /* Disable interrupts by clearing the interrupt masks. */
2238 ravb_write(ndev, 0, RIC0);
2239 ravb_write(ndev, 0, RIC2);
2240 ravb_write(ndev, 0, TIC);
2242 /* Only allow ECI interrupts */
2243 synchronize_irq(priv->emac_irq);
2244 napi_disable(&priv->napi[RAVB_NC]);
2245 napi_disable(&priv->napi[RAVB_BE]);
2246 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2248 /* Enable MagicPacket */
2249 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2251 return enable_irq_wake(priv->emac_irq);
2254 static int ravb_wol_restore(struct net_device *ndev)
2256 struct ravb_private *priv = netdev_priv(ndev);
2257 int ret;
2259 napi_enable(&priv->napi[RAVB_NC]);
2260 napi_enable(&priv->napi[RAVB_BE]);
2262 /* Disable MagicPacket */
2263 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2265 ret = ravb_close(ndev);
2266 if (ret < 0)
2267 return ret;
2269 return disable_irq_wake(priv->emac_irq);
2272 static int __maybe_unused ravb_suspend(struct device *dev)
2274 struct net_device *ndev = dev_get_drvdata(dev);
2275 struct ravb_private *priv = netdev_priv(ndev);
2276 int ret;
2278 if (!netif_running(ndev))
2279 return 0;
2281 netif_device_detach(ndev);
2283 if (priv->wol_enabled)
2284 ret = ravb_wol_setup(ndev);
2285 else
2286 ret = ravb_close(ndev);
2288 return ret;
2291 static int __maybe_unused ravb_resume(struct device *dev)
2293 struct net_device *ndev = dev_get_drvdata(dev);
2294 struct ravb_private *priv = netdev_priv(ndev);
2295 int ret = 0;
2297 /* If WoL is enabled set reset mode to rearm the WoL logic */
2298 if (priv->wol_enabled)
2299 ravb_write(ndev, CCC_OPC_RESET, CCC);
2301 /* All register have been reset to default values.
2302 * Restore all registers which where setup at probe time and
2303 * reopen device if it was running before system suspended.
2306 /* Set AVB config mode */
2307 ravb_set_config_mode(ndev);
2309 /* Set GTI value */
2310 ret = ravb_set_gti(ndev);
2311 if (ret)
2312 return ret;
2314 /* Request GTI loading */
2315 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2317 if (priv->chip_id != RCAR_GEN2)
2318 ravb_set_delay_mode(ndev);
2320 /* Restore descriptor base address table */
2321 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2323 if (netif_running(ndev)) {
2324 if (priv->wol_enabled) {
2325 ret = ravb_wol_restore(ndev);
2326 if (ret)
2327 return ret;
2329 ret = ravb_open(ndev);
2330 if (ret < 0)
2331 return ret;
2332 netif_device_attach(ndev);
2335 return ret;
2338 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2340 /* Runtime PM callback shared between ->runtime_suspend()
2341 * and ->runtime_resume(). Simply returns success.
2343 * This driver re-initializes all registers after
2344 * pm_runtime_get_sync() anyway so there is no need
2345 * to save and restore registers here.
2347 return 0;
2350 static const struct dev_pm_ops ravb_dev_pm_ops = {
2351 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2352 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2355 static struct platform_driver ravb_driver = {
2356 .probe = ravb_probe,
2357 .remove = ravb_remove,
2358 .driver = {
2359 .name = "ravb",
2360 .pm = &ravb_dev_pm_ops,
2361 .of_match_table = ravb_match_table,
2365 module_platform_driver(ravb_driver);
2367 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2368 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2369 MODULE_LICENSE("GPL v2");