mmc: core: Reset HPI enabled state during re-init and in case of errors
[linux/fpc-iii.git] / drivers / net / ethernet / renesas / sh_eth.c
blobf27a0dc8c56331db3f7063c251333b04716f0365
1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
35 #include "sh_eth.h"
37 #define SH_ETH_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR| \
41 NETIF_MSG_TX_ERR)
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 SH_ETH_OFFSET_DEFAULTS,
51 [EDSR] = 0x0000,
52 [EDMR] = 0x0400,
53 [EDTRR] = 0x0408,
54 [EDRRR] = 0x0410,
55 [EESR] = 0x0428,
56 [EESIPR] = 0x0430,
57 [TDLAR] = 0x0010,
58 [TDFAR] = 0x0014,
59 [TDFXR] = 0x0018,
60 [TDFFR] = 0x001c,
61 [RDLAR] = 0x0030,
62 [RDFAR] = 0x0034,
63 [RDFXR] = 0x0038,
64 [RDFFR] = 0x003c,
65 [TRSCER] = 0x0438,
66 [RMFCR] = 0x0440,
67 [TFTR] = 0x0448,
68 [FDR] = 0x0450,
69 [RMCR] = 0x0458,
70 [RPADIR] = 0x0460,
71 [FCFTR] = 0x0468,
72 [CSMR] = 0x04E4,
74 [ECMR] = 0x0500,
75 [ECSR] = 0x0510,
76 [ECSIPR] = 0x0518,
77 [PIR] = 0x0520,
78 [PSR] = 0x0528,
79 [PIPR] = 0x052c,
80 [RFLR] = 0x0508,
81 [APR] = 0x0554,
82 [MPR] = 0x0558,
83 [PFTCR] = 0x055c,
84 [PFRCR] = 0x0560,
85 [TPAUSER] = 0x0564,
86 [GECMR] = 0x05b0,
87 [BCULR] = 0x05b4,
88 [MAHR] = 0x05c0,
89 [MALR] = 0x05c8,
90 [TROCR] = 0x0700,
91 [CDCR] = 0x0708,
92 [LCCR] = 0x0710,
93 [CEFCR] = 0x0740,
94 [FRECR] = 0x0748,
95 [TSFRCR] = 0x0750,
96 [TLFRCR] = 0x0758,
97 [RFCR] = 0x0760,
98 [CERCR] = 0x0768,
99 [CEECR] = 0x0770,
100 [MAFCR] = 0x0778,
101 [RMII_MII] = 0x0790,
103 [ARSTR] = 0x0000,
104 [TSU_CTRST] = 0x0004,
105 [TSU_FWEN0] = 0x0010,
106 [TSU_FWEN1] = 0x0014,
107 [TSU_FCM] = 0x0018,
108 [TSU_BSYSL0] = 0x0020,
109 [TSU_BSYSL1] = 0x0024,
110 [TSU_PRISL0] = 0x0028,
111 [TSU_PRISL1] = 0x002c,
112 [TSU_FWSL0] = 0x0030,
113 [TSU_FWSL1] = 0x0034,
114 [TSU_FWSLC] = 0x0038,
115 [TSU_QTAGM0] = 0x0040,
116 [TSU_QTAGM1] = 0x0044,
117 [TSU_FWSR] = 0x0050,
118 [TSU_FWINMK] = 0x0054,
119 [TSU_ADQT0] = 0x0048,
120 [TSU_ADQT1] = 0x004c,
121 [TSU_VTAG0] = 0x0058,
122 [TSU_VTAG1] = 0x005c,
123 [TSU_ADSBSY] = 0x0060,
124 [TSU_TEN] = 0x0064,
125 [TSU_POST1] = 0x0070,
126 [TSU_POST2] = 0x0074,
127 [TSU_POST3] = 0x0078,
128 [TSU_POST4] = 0x007c,
129 [TSU_ADRH0] = 0x0100,
131 [TXNLCR0] = 0x0080,
132 [TXALCR0] = 0x0084,
133 [RXNLCR0] = 0x0088,
134 [RXALCR0] = 0x008c,
135 [FWNLCR0] = 0x0090,
136 [FWALCR0] = 0x0094,
137 [TXNLCR1] = 0x00a0,
138 [TXALCR1] = 0x00a4,
139 [RXNLCR1] = 0x00a8,
140 [RXALCR1] = 0x00ac,
141 [FWNLCR1] = 0x00b0,
142 [FWALCR1] = 0x00b4,
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 SH_ETH_OFFSET_DEFAULTS,
148 [EDSR] = 0x0000,
149 [EDMR] = 0x0400,
150 [EDTRR] = 0x0408,
151 [EDRRR] = 0x0410,
152 [EESR] = 0x0428,
153 [EESIPR] = 0x0430,
154 [TDLAR] = 0x0010,
155 [TDFAR] = 0x0014,
156 [TDFXR] = 0x0018,
157 [TDFFR] = 0x001c,
158 [RDLAR] = 0x0030,
159 [RDFAR] = 0x0034,
160 [RDFXR] = 0x0038,
161 [RDFFR] = 0x003c,
162 [TRSCER] = 0x0438,
163 [RMFCR] = 0x0440,
164 [TFTR] = 0x0448,
165 [FDR] = 0x0450,
166 [RMCR] = 0x0458,
167 [RPADIR] = 0x0460,
168 [FCFTR] = 0x0468,
169 [CSMR] = 0x04E4,
171 [ECMR] = 0x0500,
172 [RFLR] = 0x0508,
173 [ECSR] = 0x0510,
174 [ECSIPR] = 0x0518,
175 [PIR] = 0x0520,
176 [APR] = 0x0554,
177 [MPR] = 0x0558,
178 [PFTCR] = 0x055c,
179 [PFRCR] = 0x0560,
180 [TPAUSER] = 0x0564,
181 [MAHR] = 0x05c0,
182 [MALR] = 0x05c8,
183 [CEFCR] = 0x0740,
184 [FRECR] = 0x0748,
185 [TSFRCR] = 0x0750,
186 [TLFRCR] = 0x0758,
187 [RFCR] = 0x0760,
188 [MAFCR] = 0x0778,
190 [ARSTR] = 0x0000,
191 [TSU_CTRST] = 0x0004,
192 [TSU_FWSLC] = 0x0038,
193 [TSU_VTAG0] = 0x0058,
194 [TSU_ADSBSY] = 0x0060,
195 [TSU_TEN] = 0x0064,
196 [TSU_POST1] = 0x0070,
197 [TSU_POST2] = 0x0074,
198 [TSU_POST3] = 0x0078,
199 [TSU_POST4] = 0x007c,
200 [TSU_ADRH0] = 0x0100,
202 [TXNLCR0] = 0x0080,
203 [TXALCR0] = 0x0084,
204 [RXNLCR0] = 0x0088,
205 [RXALCR0] = 0x008C,
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 SH_ETH_OFFSET_DEFAULTS,
211 [ECMR] = 0x0300,
212 [RFLR] = 0x0308,
213 [ECSR] = 0x0310,
214 [ECSIPR] = 0x0318,
215 [PIR] = 0x0320,
216 [PSR] = 0x0328,
217 [RDMLR] = 0x0340,
218 [IPGR] = 0x0350,
219 [APR] = 0x0354,
220 [MPR] = 0x0358,
221 [RFCF] = 0x0360,
222 [TPAUSER] = 0x0364,
223 [TPAUSECR] = 0x0368,
224 [MAHR] = 0x03c0,
225 [MALR] = 0x03c8,
226 [TROCR] = 0x03d0,
227 [CDCR] = 0x03d4,
228 [LCCR] = 0x03d8,
229 [CNDCR] = 0x03dc,
230 [CEFCR] = 0x03e4,
231 [FRECR] = 0x03e8,
232 [TSFRCR] = 0x03ec,
233 [TLFRCR] = 0x03f0,
234 [RFCR] = 0x03f4,
235 [MAFCR] = 0x03f8,
237 [EDMR] = 0x0200,
238 [EDTRR] = 0x0208,
239 [EDRRR] = 0x0210,
240 [TDLAR] = 0x0218,
241 [RDLAR] = 0x0220,
242 [EESR] = 0x0228,
243 [EESIPR] = 0x0230,
244 [TRSCER] = 0x0238,
245 [RMFCR] = 0x0240,
246 [TFTR] = 0x0248,
247 [FDR] = 0x0250,
248 [RMCR] = 0x0258,
249 [TFUCR] = 0x0264,
250 [RFOCR] = 0x0268,
251 [RMIIMODE] = 0x026c,
252 [FCFTR] = 0x0270,
253 [TRIMD] = 0x027c,
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 SH_ETH_OFFSET_DEFAULTS,
259 [ECMR] = 0x0100,
260 [RFLR] = 0x0108,
261 [ECSR] = 0x0110,
262 [ECSIPR] = 0x0118,
263 [PIR] = 0x0120,
264 [PSR] = 0x0128,
265 [RDMLR] = 0x0140,
266 [IPGR] = 0x0150,
267 [APR] = 0x0154,
268 [MPR] = 0x0158,
269 [TPAUSER] = 0x0164,
270 [RFCF] = 0x0160,
271 [TPAUSECR] = 0x0168,
272 [BCFRR] = 0x016c,
273 [MAHR] = 0x01c0,
274 [MALR] = 0x01c8,
275 [TROCR] = 0x01d0,
276 [CDCR] = 0x01d4,
277 [LCCR] = 0x01d8,
278 [CNDCR] = 0x01dc,
279 [CEFCR] = 0x01e4,
280 [FRECR] = 0x01e8,
281 [TSFRCR] = 0x01ec,
282 [TLFRCR] = 0x01f0,
283 [RFCR] = 0x01f4,
284 [MAFCR] = 0x01f8,
285 [RTRATE] = 0x01fc,
287 [EDMR] = 0x0000,
288 [EDTRR] = 0x0008,
289 [EDRRR] = 0x0010,
290 [TDLAR] = 0x0018,
291 [RDLAR] = 0x0020,
292 [EESR] = 0x0028,
293 [EESIPR] = 0x0030,
294 [TRSCER] = 0x0038,
295 [RMFCR] = 0x0040,
296 [TFTR] = 0x0048,
297 [FDR] = 0x0050,
298 [RMCR] = 0x0058,
299 [TFUCR] = 0x0064,
300 [RFOCR] = 0x0068,
301 [FCFTR] = 0x0070,
302 [RPADIR] = 0x0078,
303 [TRIMD] = 0x007c,
304 [RBWAR] = 0x00c8,
305 [RDFAR] = 0x00cc,
306 [TBRAR] = 0x00d4,
307 [TDFAR] = 0x00d8,
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 SH_ETH_OFFSET_DEFAULTS,
313 [EDMR] = 0x0000,
314 [EDTRR] = 0x0004,
315 [EDRRR] = 0x0008,
316 [TDLAR] = 0x000c,
317 [RDLAR] = 0x0010,
318 [EESR] = 0x0014,
319 [EESIPR] = 0x0018,
320 [TRSCER] = 0x001c,
321 [RMFCR] = 0x0020,
322 [TFTR] = 0x0024,
323 [FDR] = 0x0028,
324 [RMCR] = 0x002c,
325 [EDOCR] = 0x0030,
326 [FCFTR] = 0x0034,
327 [RPADIR] = 0x0038,
328 [TRIMD] = 0x003c,
329 [RBWAR] = 0x0040,
330 [RDFAR] = 0x0044,
331 [TBRAR] = 0x004c,
332 [TDFAR] = 0x0050,
334 [ECMR] = 0x0160,
335 [ECSR] = 0x0164,
336 [ECSIPR] = 0x0168,
337 [PIR] = 0x016c,
338 [MAHR] = 0x0170,
339 [MALR] = 0x0174,
340 [RFLR] = 0x0178,
341 [PSR] = 0x017c,
342 [TROCR] = 0x0180,
343 [CDCR] = 0x0184,
344 [LCCR] = 0x0188,
345 [CNDCR] = 0x018c,
346 [CEFCR] = 0x0194,
347 [FRECR] = 0x0198,
348 [TSFRCR] = 0x019c,
349 [TLFRCR] = 0x01a0,
350 [RFCR] = 0x01a4,
351 [MAFCR] = 0x01a8,
352 [IPGR] = 0x01b4,
353 [APR] = 0x01b8,
354 [MPR] = 0x01bc,
355 [TPAUSER] = 0x01c4,
356 [BCFR] = 0x01cc,
358 [ARSTR] = 0x0000,
359 [TSU_CTRST] = 0x0004,
360 [TSU_FWEN0] = 0x0010,
361 [TSU_FWEN1] = 0x0014,
362 [TSU_FCM] = 0x0018,
363 [TSU_BSYSL0] = 0x0020,
364 [TSU_BSYSL1] = 0x0024,
365 [TSU_PRISL0] = 0x0028,
366 [TSU_PRISL1] = 0x002c,
367 [TSU_FWSL0] = 0x0030,
368 [TSU_FWSL1] = 0x0034,
369 [TSU_FWSLC] = 0x0038,
370 [TSU_QTAGM0] = 0x0040,
371 [TSU_QTAGM1] = 0x0044,
372 [TSU_ADQT0] = 0x0048,
373 [TSU_ADQT1] = 0x004c,
374 [TSU_FWSR] = 0x0050,
375 [TSU_FWINMK] = 0x0054,
376 [TSU_ADSBSY] = 0x0060,
377 [TSU_TEN] = 0x0064,
378 [TSU_POST1] = 0x0070,
379 [TSU_POST2] = 0x0074,
380 [TSU_POST3] = 0x0078,
381 [TSU_POST4] = 0x007c,
383 [TXNLCR0] = 0x0080,
384 [TXALCR0] = 0x0084,
385 [RXNLCR0] = 0x0088,
386 [RXALCR0] = 0x008c,
387 [FWNLCR0] = 0x0090,
388 [FWALCR0] = 0x0094,
389 [TXNLCR1] = 0x00a0,
390 [TXALCR1] = 0x00a4,
391 [RXNLCR1] = 0x00a8,
392 [RXALCR1] = 0x00ac,
393 [FWNLCR1] = 0x00b0,
394 [FWALCR1] = 0x00b4,
396 [TSU_ADRH0] = 0x0100,
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
404 struct sh_eth_private *mdp = netdev_priv(ndev);
405 u16 offset = mdp->reg_offset[enum_index];
407 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 return;
410 iowrite32(data, mdp->addr + offset);
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
415 struct sh_eth_private *mdp = netdev_priv(ndev);
416 u16 offset = mdp->reg_offset[enum_index];
418 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 return ~0U;
421 return ioread32(mdp->addr + offset);
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 u32 set)
427 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 enum_index);
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
433 return mdp->reg_offset[enum_index];
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 int enum_index)
439 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
441 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 return;
444 iowrite32(data, mdp->tsu_addr + offset);
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
449 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
451 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 return ~0U;
454 return ioread32(mdp->tsu_addr + offset);
457 static void sh_eth_soft_swap(char *src, int len)
459 #ifdef __LITTLE_ENDIAN
460 u32 *p = (u32 *)src;
461 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
463 for (; p < maxp; p++)
464 *p = swab32(*p);
465 #endif
468 static void sh_eth_select_mii(struct net_device *ndev)
470 struct sh_eth_private *mdp = netdev_priv(ndev);
471 u32 value;
473 switch (mdp->phy_interface) {
474 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 value = 0x3;
476 break;
477 case PHY_INTERFACE_MODE_GMII:
478 value = 0x2;
479 break;
480 case PHY_INTERFACE_MODE_MII:
481 value = 0x1;
482 break;
483 case PHY_INTERFACE_MODE_RMII:
484 value = 0x0;
485 break;
486 default:
487 netdev_warn(ndev,
488 "PHY interface mode was not setup. Set to MII.\n");
489 value = 0x1;
490 break;
493 sh_eth_write(ndev, value, RMII_MII);
496 static void sh_eth_set_duplex(struct net_device *ndev)
498 struct sh_eth_private *mdp = netdev_priv(ndev);
500 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
503 static void sh_eth_chip_reset(struct net_device *ndev)
505 struct sh_eth_private *mdp = netdev_priv(ndev);
507 /* reset device */
508 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 mdelay(1);
512 static int sh_eth_soft_reset(struct net_device *ndev)
514 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 mdelay(3);
516 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
518 return 0;
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
523 int cnt;
525 for (cnt = 100; cnt > 0; cnt--) {
526 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 return 0;
528 mdelay(1);
531 netdev_err(ndev, "Device reset failed\n");
532 return -ETIMEDOUT;
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
537 struct sh_eth_private *mdp = netdev_priv(ndev);
538 int ret;
540 sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
543 ret = sh_eth_check_soft_reset(ndev);
544 if (ret)
545 return ret;
547 /* Table Init */
548 sh_eth_write(ndev, 0, TDLAR);
549 sh_eth_write(ndev, 0, TDFAR);
550 sh_eth_write(ndev, 0, TDFXR);
551 sh_eth_write(ndev, 0, TDFFR);
552 sh_eth_write(ndev, 0, RDLAR);
553 sh_eth_write(ndev, 0, RDFAR);
554 sh_eth_write(ndev, 0, RDFXR);
555 sh_eth_write(ndev, 0, RDFFR);
557 /* Reset HW CRC register */
558 if (mdp->cd->hw_checksum)
559 sh_eth_write(ndev, 0, CSMR);
561 /* Select MII mode */
562 if (mdp->cd->select_mii)
563 sh_eth_select_mii(ndev);
565 return ret;
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
570 struct sh_eth_private *mdp = netdev_priv(ndev);
572 switch (mdp->speed) {
573 case 10: /* 10BASE */
574 sh_eth_write(ndev, GECMR_10, GECMR);
575 break;
576 case 100:/* 100BASE */
577 sh_eth_write(ndev, GECMR_100, GECMR);
578 break;
579 case 1000: /* 1000BASE */
580 sh_eth_write(ndev, GECMR_1000, GECMR);
581 break;
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 .soft_reset = sh_eth_soft_reset_gether,
590 .chip_reset = sh_eth_chip_reset,
591 .set_duplex = sh_eth_set_duplex,
593 .register_type = SH_ETH_REG_FAST_RZ,
595 .edtrr_trns = EDTRR_TRNS_GETHER,
596 .ecsr_value = ECSR_ICD,
597 .ecsipr_value = ECSIPR_ICDIP,
598 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 EESIPR_ECIIP |
601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 EESIPR_RMAFIP | EESIPR_RRFIP |
604 EESIPR_RTLFIP | EESIPR_RTSFIP |
605 EESIPR_PREIP | EESIPR_CERFIP,
607 .tx_check = EESR_TC1 | EESR_FTC,
608 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 EESR_TDE,
611 .fdr_value = 0x0000070f,
613 .no_psr = 1,
614 .apr = 1,
615 .mpr = 1,
616 .tpauser = 1,
617 .hw_swap = 1,
618 .rpadir = 1,
619 .no_trimd = 1,
620 .no_ade = 1,
621 .xdfar_rw = 1,
622 .hw_checksum = 1,
623 .tsu = 1,
624 .no_tx_cntrs = 1,
627 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
629 sh_eth_chip_reset(ndev);
631 sh_eth_select_mii(ndev);
634 /* R8A7740 */
635 static struct sh_eth_cpu_data r8a7740_data = {
636 .soft_reset = sh_eth_soft_reset_gether,
638 .chip_reset = sh_eth_chip_reset_r8a7740,
639 .set_duplex = sh_eth_set_duplex,
640 .set_rate = sh_eth_set_rate_gether,
642 .register_type = SH_ETH_REG_GIGABIT,
644 .edtrr_trns = EDTRR_TRNS_GETHER,
645 .ecsr_value = ECSR_ICD | ECSR_MPD,
646 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
647 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
648 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
649 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
650 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
651 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
652 EESIPR_CEEFIP | EESIPR_CELFIP |
653 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
654 EESIPR_PREIP | EESIPR_CERFIP,
656 .tx_check = EESR_TC1 | EESR_FTC,
657 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
658 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
659 EESR_TDE,
660 .fdr_value = 0x0000070f,
662 .apr = 1,
663 .mpr = 1,
664 .tpauser = 1,
665 .bculr = 1,
666 .hw_swap = 1,
667 .rpadir = 1,
668 .no_trimd = 1,
669 .no_ade = 1,
670 .xdfar_rw = 1,
671 .hw_checksum = 1,
672 .tsu = 1,
673 .select_mii = 1,
674 .magic = 1,
675 .cexcr = 1,
678 /* There is CPU dependent code */
679 static void sh_eth_set_rate_rcar(struct net_device *ndev)
681 struct sh_eth_private *mdp = netdev_priv(ndev);
683 switch (mdp->speed) {
684 case 10: /* 10BASE */
685 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
686 break;
687 case 100:/* 100BASE */
688 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
689 break;
693 /* R-Car Gen1 */
694 static struct sh_eth_cpu_data rcar_gen1_data = {
695 .soft_reset = sh_eth_soft_reset,
697 .set_duplex = sh_eth_set_duplex,
698 .set_rate = sh_eth_set_rate_rcar,
700 .register_type = SH_ETH_REG_FAST_RCAR,
702 .edtrr_trns = EDTRR_TRNS_ETHER,
703 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
704 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
705 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
706 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
707 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
708 EESIPR_RMAFIP | EESIPR_RRFIP |
709 EESIPR_RTLFIP | EESIPR_RTSFIP |
710 EESIPR_PREIP | EESIPR_CERFIP,
712 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
713 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
714 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
715 .fdr_value = 0x00000f0f,
717 .apr = 1,
718 .mpr = 1,
719 .tpauser = 1,
720 .hw_swap = 1,
721 .no_xdfar = 1,
724 /* R-Car Gen2 and RZ/G1 */
725 static struct sh_eth_cpu_data rcar_gen2_data = {
726 .soft_reset = sh_eth_soft_reset,
728 .set_duplex = sh_eth_set_duplex,
729 .set_rate = sh_eth_set_rate_rcar,
731 .register_type = SH_ETH_REG_FAST_RCAR,
733 .edtrr_trns = EDTRR_TRNS_ETHER,
734 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
735 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
736 ECSIPR_MPDIP,
737 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
738 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
739 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
740 EESIPR_RMAFIP | EESIPR_RRFIP |
741 EESIPR_RTLFIP | EESIPR_RTSFIP |
742 EESIPR_PREIP | EESIPR_CERFIP,
744 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
745 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
746 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
747 .fdr_value = 0x00000f0f,
749 .trscer_err_mask = DESC_I_RINT8,
751 .apr = 1,
752 .mpr = 1,
753 .tpauser = 1,
754 .hw_swap = 1,
755 .no_xdfar = 1,
756 .rmiimode = 1,
757 .magic = 1,
760 /* R8A77980 */
761 static struct sh_eth_cpu_data r8a77980_data = {
762 .soft_reset = sh_eth_soft_reset_gether,
764 .set_duplex = sh_eth_set_duplex,
765 .set_rate = sh_eth_set_rate_gether,
767 .register_type = SH_ETH_REG_GIGABIT,
769 .edtrr_trns = EDTRR_TRNS_GETHER,
770 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
771 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
772 ECSIPR_MPDIP,
773 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
774 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
775 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
776 EESIPR_RMAFIP | EESIPR_RRFIP |
777 EESIPR_RTLFIP | EESIPR_RTSFIP |
778 EESIPR_PREIP | EESIPR_CERFIP,
780 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
781 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
782 EESR_RFE | EESR_RDE | EESR_RFRMER |
783 EESR_TFE | EESR_TDE | EESR_ECI,
784 .fdr_value = 0x0000070f,
786 .apr = 1,
787 .mpr = 1,
788 .tpauser = 1,
789 .bculr = 1,
790 .hw_swap = 1,
791 .nbst = 1,
792 .rpadir = 1,
793 .no_trimd = 1,
794 .no_ade = 1,
795 .xdfar_rw = 1,
796 .hw_checksum = 1,
797 .select_mii = 1,
798 .magic = 1,
799 .cexcr = 1,
802 /* R7S9210 */
803 static struct sh_eth_cpu_data r7s9210_data = {
804 .soft_reset = sh_eth_soft_reset,
806 .set_duplex = sh_eth_set_duplex,
807 .set_rate = sh_eth_set_rate_rcar,
809 .register_type = SH_ETH_REG_FAST_SH4,
811 .edtrr_trns = EDTRR_TRNS_ETHER,
812 .ecsr_value = ECSR_ICD,
813 .ecsipr_value = ECSIPR_ICDIP,
814 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
815 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
816 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
817 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
818 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
819 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
820 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
822 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
823 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
824 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
826 .fdr_value = 0x0000070f,
828 .apr = 1,
829 .mpr = 1,
830 .tpauser = 1,
831 .hw_swap = 1,
832 .rpadir = 1,
833 .no_ade = 1,
834 .xdfar_rw = 1,
836 #endif /* CONFIG_OF */
838 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
840 struct sh_eth_private *mdp = netdev_priv(ndev);
842 switch (mdp->speed) {
843 case 10: /* 10BASE */
844 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
845 break;
846 case 100:/* 100BASE */
847 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
848 break;
852 /* SH7724 */
853 static struct sh_eth_cpu_data sh7724_data = {
854 .soft_reset = sh_eth_soft_reset,
856 .set_duplex = sh_eth_set_duplex,
857 .set_rate = sh_eth_set_rate_sh7724,
859 .register_type = SH_ETH_REG_FAST_SH4,
861 .edtrr_trns = EDTRR_TRNS_ETHER,
862 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
863 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
864 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
865 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
866 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
867 EESIPR_RMAFIP | EESIPR_RRFIP |
868 EESIPR_RTLFIP | EESIPR_RTSFIP |
869 EESIPR_PREIP | EESIPR_CERFIP,
871 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
872 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
873 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
875 .apr = 1,
876 .mpr = 1,
877 .tpauser = 1,
878 .hw_swap = 1,
879 .rpadir = 1,
882 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
884 struct sh_eth_private *mdp = netdev_priv(ndev);
886 switch (mdp->speed) {
887 case 10: /* 10BASE */
888 sh_eth_write(ndev, 0, RTRATE);
889 break;
890 case 100:/* 100BASE */
891 sh_eth_write(ndev, 1, RTRATE);
892 break;
896 /* SH7757 */
897 static struct sh_eth_cpu_data sh7757_data = {
898 .soft_reset = sh_eth_soft_reset,
900 .set_duplex = sh_eth_set_duplex,
901 .set_rate = sh_eth_set_rate_sh7757,
903 .register_type = SH_ETH_REG_FAST_SH4,
905 .edtrr_trns = EDTRR_TRNS_ETHER,
906 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
907 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
908 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
909 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
910 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
911 EESIPR_CEEFIP | EESIPR_CELFIP |
912 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
913 EESIPR_PREIP | EESIPR_CERFIP,
915 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
916 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
917 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
919 .irq_flags = IRQF_SHARED,
920 .apr = 1,
921 .mpr = 1,
922 .tpauser = 1,
923 .hw_swap = 1,
924 .no_ade = 1,
925 .rpadir = 1,
926 .rtrate = 1,
927 .dual_port = 1,
930 #define SH_GIGA_ETH_BASE 0xfee00000UL
931 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
932 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
933 static void sh_eth_chip_reset_giga(struct net_device *ndev)
935 u32 mahr[2], malr[2];
936 int i;
938 /* save MAHR and MALR */
939 for (i = 0; i < 2; i++) {
940 malr[i] = ioread32((void *)GIGA_MALR(i));
941 mahr[i] = ioread32((void *)GIGA_MAHR(i));
944 sh_eth_chip_reset(ndev);
946 /* restore MAHR and MALR */
947 for (i = 0; i < 2; i++) {
948 iowrite32(malr[i], (void *)GIGA_MALR(i));
949 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
953 static void sh_eth_set_rate_giga(struct net_device *ndev)
955 struct sh_eth_private *mdp = netdev_priv(ndev);
957 switch (mdp->speed) {
958 case 10: /* 10BASE */
959 sh_eth_write(ndev, 0x00000000, GECMR);
960 break;
961 case 100:/* 100BASE */
962 sh_eth_write(ndev, 0x00000010, GECMR);
963 break;
964 case 1000: /* 1000BASE */
965 sh_eth_write(ndev, 0x00000020, GECMR);
966 break;
970 /* SH7757(GETHERC) */
971 static struct sh_eth_cpu_data sh7757_data_giga = {
972 .soft_reset = sh_eth_soft_reset_gether,
974 .chip_reset = sh_eth_chip_reset_giga,
975 .set_duplex = sh_eth_set_duplex,
976 .set_rate = sh_eth_set_rate_giga,
978 .register_type = SH_ETH_REG_GIGABIT,
980 .edtrr_trns = EDTRR_TRNS_GETHER,
981 .ecsr_value = ECSR_ICD | ECSR_MPD,
982 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
983 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
984 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
985 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
986 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
987 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
988 EESIPR_CEEFIP | EESIPR_CELFIP |
989 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
990 EESIPR_PREIP | EESIPR_CERFIP,
992 .tx_check = EESR_TC1 | EESR_FTC,
993 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
994 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
995 EESR_TDE,
996 .fdr_value = 0x0000072f,
998 .irq_flags = IRQF_SHARED,
999 .apr = 1,
1000 .mpr = 1,
1001 .tpauser = 1,
1002 .bculr = 1,
1003 .hw_swap = 1,
1004 .rpadir = 1,
1005 .no_trimd = 1,
1006 .no_ade = 1,
1007 .xdfar_rw = 1,
1008 .tsu = 1,
1009 .cexcr = 1,
1010 .dual_port = 1,
1013 /* SH7734 */
1014 static struct sh_eth_cpu_data sh7734_data = {
1015 .soft_reset = sh_eth_soft_reset_gether,
1017 .chip_reset = sh_eth_chip_reset,
1018 .set_duplex = sh_eth_set_duplex,
1019 .set_rate = sh_eth_set_rate_gether,
1021 .register_type = SH_ETH_REG_GIGABIT,
1023 .edtrr_trns = EDTRR_TRNS_GETHER,
1024 .ecsr_value = ECSR_ICD | ECSR_MPD,
1025 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1026 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1027 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1028 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1029 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1030 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1031 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1032 EESIPR_PREIP | EESIPR_CERFIP,
1034 .tx_check = EESR_TC1 | EESR_FTC,
1035 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1036 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1037 EESR_TDE,
1039 .apr = 1,
1040 .mpr = 1,
1041 .tpauser = 1,
1042 .bculr = 1,
1043 .hw_swap = 1,
1044 .no_trimd = 1,
1045 .no_ade = 1,
1046 .xdfar_rw = 1,
1047 .tsu = 1,
1048 .hw_checksum = 1,
1049 .select_mii = 1,
1050 .magic = 1,
1051 .cexcr = 1,
1054 /* SH7763 */
1055 static struct sh_eth_cpu_data sh7763_data = {
1056 .soft_reset = sh_eth_soft_reset_gether,
1058 .chip_reset = sh_eth_chip_reset,
1059 .set_duplex = sh_eth_set_duplex,
1060 .set_rate = sh_eth_set_rate_gether,
1062 .register_type = SH_ETH_REG_GIGABIT,
1064 .edtrr_trns = EDTRR_TRNS_GETHER,
1065 .ecsr_value = ECSR_ICD | ECSR_MPD,
1066 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1067 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1068 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1069 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1070 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1071 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1072 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1073 EESIPR_PREIP | EESIPR_CERFIP,
1075 .tx_check = EESR_TC1 | EESR_FTC,
1076 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1077 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1079 .apr = 1,
1080 .mpr = 1,
1081 .tpauser = 1,
1082 .bculr = 1,
1083 .hw_swap = 1,
1084 .no_trimd = 1,
1085 .no_ade = 1,
1086 .xdfar_rw = 1,
1087 .tsu = 1,
1088 .irq_flags = IRQF_SHARED,
1089 .magic = 1,
1090 .cexcr = 1,
1091 .dual_port = 1,
1094 static struct sh_eth_cpu_data sh7619_data = {
1095 .soft_reset = sh_eth_soft_reset,
1097 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1099 .edtrr_trns = EDTRR_TRNS_ETHER,
1100 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1101 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1102 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1103 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1104 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1105 EESIPR_CEEFIP | EESIPR_CELFIP |
1106 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1107 EESIPR_PREIP | EESIPR_CERFIP,
1109 .apr = 1,
1110 .mpr = 1,
1111 .tpauser = 1,
1112 .hw_swap = 1,
1115 static struct sh_eth_cpu_data sh771x_data = {
1116 .soft_reset = sh_eth_soft_reset,
1118 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1120 .edtrr_trns = EDTRR_TRNS_ETHER,
1121 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1122 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1123 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1124 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1125 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1126 EESIPR_CEEFIP | EESIPR_CELFIP |
1127 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1128 EESIPR_PREIP | EESIPR_CERFIP,
1129 .tsu = 1,
1130 .dual_port = 1,
1133 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1135 if (!cd->ecsr_value)
1136 cd->ecsr_value = DEFAULT_ECSR_INIT;
1138 if (!cd->ecsipr_value)
1139 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1141 if (!cd->fcftr_value)
1142 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1143 DEFAULT_FIFO_F_D_RFD;
1145 if (!cd->fdr_value)
1146 cd->fdr_value = DEFAULT_FDR_INIT;
1148 if (!cd->tx_check)
1149 cd->tx_check = DEFAULT_TX_CHECK;
1151 if (!cd->eesr_err_check)
1152 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1154 if (!cd->trscer_err_mask)
1155 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1158 static void sh_eth_set_receive_align(struct sk_buff *skb)
1160 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1162 if (reserve)
1163 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1166 /* Program the hardware MAC address from dev->dev_addr. */
1167 static void update_mac_address(struct net_device *ndev)
1169 sh_eth_write(ndev,
1170 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1171 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1172 sh_eth_write(ndev,
1173 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1176 /* Get MAC address from SuperH MAC address register
1178 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1179 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1180 * When you want use this device, you must set MAC address in bootloader.
1183 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1185 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1186 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1187 } else {
1188 u32 mahr = sh_eth_read(ndev, MAHR);
1189 u32 malr = sh_eth_read(ndev, MALR);
1191 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1192 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1193 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1194 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1195 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1196 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1200 struct bb_info {
1201 void (*set_gate)(void *addr);
1202 struct mdiobb_ctrl ctrl;
1203 void *addr;
1206 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1208 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1209 u32 pir;
1211 if (bitbang->set_gate)
1212 bitbang->set_gate(bitbang->addr);
1214 pir = ioread32(bitbang->addr);
1215 if (set)
1216 pir |= mask;
1217 else
1218 pir &= ~mask;
1219 iowrite32(pir, bitbang->addr);
1222 /* Data I/O pin control */
1223 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1225 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1228 /* Set bit data*/
1229 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1231 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1234 /* Get bit data*/
1235 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1237 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1239 if (bitbang->set_gate)
1240 bitbang->set_gate(bitbang->addr);
1242 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1245 /* MDC pin control */
1246 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1248 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1251 /* mdio bus control struct */
1252 static struct mdiobb_ops bb_ops = {
1253 .owner = THIS_MODULE,
1254 .set_mdc = sh_mdc_ctrl,
1255 .set_mdio_dir = sh_mmd_ctrl,
1256 .set_mdio_data = sh_set_mdio,
1257 .get_mdio_data = sh_get_mdio,
1260 /* free Tx skb function */
1261 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1263 struct sh_eth_private *mdp = netdev_priv(ndev);
1264 struct sh_eth_txdesc *txdesc;
1265 int free_num = 0;
1266 int entry;
1267 bool sent;
1269 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1270 entry = mdp->dirty_tx % mdp->num_tx_ring;
1271 txdesc = &mdp->tx_ring[entry];
1272 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1273 if (sent_only && !sent)
1274 break;
1275 /* TACT bit must be checked before all the following reads */
1276 dma_rmb();
1277 netif_info(mdp, tx_done, ndev,
1278 "tx entry %d status 0x%08x\n",
1279 entry, le32_to_cpu(txdesc->status));
1280 /* Free the original skb. */
1281 if (mdp->tx_skbuff[entry]) {
1282 dma_unmap_single(&mdp->pdev->dev,
1283 le32_to_cpu(txdesc->addr),
1284 le32_to_cpu(txdesc->len) >> 16,
1285 DMA_TO_DEVICE);
1286 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1287 mdp->tx_skbuff[entry] = NULL;
1288 free_num++;
1290 txdesc->status = cpu_to_le32(TD_TFP);
1291 if (entry >= mdp->num_tx_ring - 1)
1292 txdesc->status |= cpu_to_le32(TD_TDLE);
1294 if (sent) {
1295 ndev->stats.tx_packets++;
1296 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1299 return free_num;
1302 /* free skb and descriptor buffer */
1303 static void sh_eth_ring_free(struct net_device *ndev)
1305 struct sh_eth_private *mdp = netdev_priv(ndev);
1306 int ringsize, i;
1308 if (mdp->rx_ring) {
1309 for (i = 0; i < mdp->num_rx_ring; i++) {
1310 if (mdp->rx_skbuff[i]) {
1311 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1313 dma_unmap_single(&mdp->pdev->dev,
1314 le32_to_cpu(rxdesc->addr),
1315 ALIGN(mdp->rx_buf_sz, 32),
1316 DMA_FROM_DEVICE);
1319 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1320 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1321 mdp->rx_desc_dma);
1322 mdp->rx_ring = NULL;
1325 /* Free Rx skb ringbuffer */
1326 if (mdp->rx_skbuff) {
1327 for (i = 0; i < mdp->num_rx_ring; i++)
1328 dev_kfree_skb(mdp->rx_skbuff[i]);
1330 kfree(mdp->rx_skbuff);
1331 mdp->rx_skbuff = NULL;
1333 if (mdp->tx_ring) {
1334 sh_eth_tx_free(ndev, false);
1336 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1337 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1338 mdp->tx_desc_dma);
1339 mdp->tx_ring = NULL;
1342 /* Free Tx skb ringbuffer */
1343 kfree(mdp->tx_skbuff);
1344 mdp->tx_skbuff = NULL;
1347 /* format skb and descriptor buffer */
1348 static void sh_eth_ring_format(struct net_device *ndev)
1350 struct sh_eth_private *mdp = netdev_priv(ndev);
1351 int i;
1352 struct sk_buff *skb;
1353 struct sh_eth_rxdesc *rxdesc = NULL;
1354 struct sh_eth_txdesc *txdesc = NULL;
1355 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1356 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1357 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1358 dma_addr_t dma_addr;
1359 u32 buf_len;
1361 mdp->cur_rx = 0;
1362 mdp->cur_tx = 0;
1363 mdp->dirty_rx = 0;
1364 mdp->dirty_tx = 0;
1366 memset(mdp->rx_ring, 0, rx_ringsize);
1368 /* build Rx ring buffer */
1369 for (i = 0; i < mdp->num_rx_ring; i++) {
1370 /* skb */
1371 mdp->rx_skbuff[i] = NULL;
1372 skb = netdev_alloc_skb(ndev, skbuff_size);
1373 if (skb == NULL)
1374 break;
1375 sh_eth_set_receive_align(skb);
1377 /* The size of the buffer is a multiple of 32 bytes. */
1378 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1379 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1380 DMA_FROM_DEVICE);
1381 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1382 kfree_skb(skb);
1383 break;
1385 mdp->rx_skbuff[i] = skb;
1387 /* RX descriptor */
1388 rxdesc = &mdp->rx_ring[i];
1389 rxdesc->len = cpu_to_le32(buf_len << 16);
1390 rxdesc->addr = cpu_to_le32(dma_addr);
1391 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1393 /* Rx descriptor address set */
1394 if (i == 0) {
1395 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1396 if (mdp->cd->xdfar_rw)
1397 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1401 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1403 /* Mark the last entry as wrapping the ring. */
1404 if (rxdesc)
1405 rxdesc->status |= cpu_to_le32(RD_RDLE);
1407 memset(mdp->tx_ring, 0, tx_ringsize);
1409 /* build Tx ring buffer */
1410 for (i = 0; i < mdp->num_tx_ring; i++) {
1411 mdp->tx_skbuff[i] = NULL;
1412 txdesc = &mdp->tx_ring[i];
1413 txdesc->status = cpu_to_le32(TD_TFP);
1414 txdesc->len = cpu_to_le32(0);
1415 if (i == 0) {
1416 /* Tx descriptor address set */
1417 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1418 if (mdp->cd->xdfar_rw)
1419 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1423 txdesc->status |= cpu_to_le32(TD_TDLE);
1426 /* Get skb and descriptor buffer */
1427 static int sh_eth_ring_init(struct net_device *ndev)
1429 struct sh_eth_private *mdp = netdev_priv(ndev);
1430 int rx_ringsize, tx_ringsize;
1432 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1433 * card needs room to do 8 byte alignment, +2 so we can reserve
1434 * the first 2 bytes, and +16 gets room for the status word from the
1435 * card.
1437 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1438 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1439 if (mdp->cd->rpadir)
1440 mdp->rx_buf_sz += NET_IP_ALIGN;
1442 /* Allocate RX and TX skb rings */
1443 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1444 GFP_KERNEL);
1445 if (!mdp->rx_skbuff)
1446 return -ENOMEM;
1448 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1449 GFP_KERNEL);
1450 if (!mdp->tx_skbuff)
1451 goto ring_free;
1453 /* Allocate all Rx descriptors. */
1454 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1455 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1456 &mdp->rx_desc_dma, GFP_KERNEL);
1457 if (!mdp->rx_ring)
1458 goto ring_free;
1460 mdp->dirty_rx = 0;
1462 /* Allocate all Tx descriptors. */
1463 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1464 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1465 &mdp->tx_desc_dma, GFP_KERNEL);
1466 if (!mdp->tx_ring)
1467 goto ring_free;
1468 return 0;
1470 ring_free:
1471 /* Free Rx and Tx skb ring buffer and DMA buffer */
1472 sh_eth_ring_free(ndev);
1474 return -ENOMEM;
1477 static int sh_eth_dev_init(struct net_device *ndev)
1479 struct sh_eth_private *mdp = netdev_priv(ndev);
1480 int ret;
1482 /* Soft Reset */
1483 ret = mdp->cd->soft_reset(ndev);
1484 if (ret)
1485 return ret;
1487 if (mdp->cd->rmiimode)
1488 sh_eth_write(ndev, 0x1, RMIIMODE);
1490 /* Descriptor format */
1491 sh_eth_ring_format(ndev);
1492 if (mdp->cd->rpadir)
1493 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1495 /* all sh_eth int mask */
1496 sh_eth_write(ndev, 0, EESIPR);
1498 #if defined(__LITTLE_ENDIAN)
1499 if (mdp->cd->hw_swap)
1500 sh_eth_write(ndev, EDMR_EL, EDMR);
1501 else
1502 #endif
1503 sh_eth_write(ndev, 0, EDMR);
1505 /* FIFO size set */
1506 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1507 sh_eth_write(ndev, 0, TFTR);
1509 /* Frame recv control (enable multiple-packets per rx irq) */
1510 sh_eth_write(ndev, RMCR_RNC, RMCR);
1512 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1514 /* DMA transfer burst mode */
1515 if (mdp->cd->nbst)
1516 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1518 /* Burst cycle count upper-limit */
1519 if (mdp->cd->bculr)
1520 sh_eth_write(ndev, 0x800, BCULR);
1522 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1524 if (!mdp->cd->no_trimd)
1525 sh_eth_write(ndev, 0, TRIMD);
1527 /* Recv frame limit set register */
1528 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1529 RFLR);
1531 sh_eth_modify(ndev, EESR, 0, 0);
1532 mdp->irq_enabled = true;
1533 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1535 /* PAUSE Prohibition */
1536 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1537 ECMR_TE | ECMR_RE, ECMR);
1539 if (mdp->cd->set_rate)
1540 mdp->cd->set_rate(ndev);
1542 /* E-MAC Status Register clear */
1543 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1545 /* E-MAC Interrupt Enable register */
1546 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1548 /* Set MAC address */
1549 update_mac_address(ndev);
1551 /* mask reset */
1552 if (mdp->cd->apr)
1553 sh_eth_write(ndev, 1, APR);
1554 if (mdp->cd->mpr)
1555 sh_eth_write(ndev, 1, MPR);
1556 if (mdp->cd->tpauser)
1557 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1559 /* Setting the Rx mode will start the Rx process. */
1560 sh_eth_write(ndev, EDRRR_R, EDRRR);
1562 return ret;
1565 static void sh_eth_dev_exit(struct net_device *ndev)
1567 struct sh_eth_private *mdp = netdev_priv(ndev);
1568 int i;
1570 /* Deactivate all TX descriptors, so DMA should stop at next
1571 * packet boundary if it's currently running
1573 for (i = 0; i < mdp->num_tx_ring; i++)
1574 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1576 /* Disable TX FIFO egress to MAC */
1577 sh_eth_rcv_snd_disable(ndev);
1579 /* Stop RX DMA at next packet boundary */
1580 sh_eth_write(ndev, 0, EDRRR);
1582 /* Aside from TX DMA, we can't tell when the hardware is
1583 * really stopped, so we need to reset to make sure.
1584 * Before doing that, wait for long enough to *probably*
1585 * finish transmitting the last packet and poll stats.
1587 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1588 sh_eth_get_stats(ndev);
1589 mdp->cd->soft_reset(ndev);
1591 /* Set MAC address again */
1592 update_mac_address(ndev);
1595 /* Packet receive function */
1596 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1598 struct sh_eth_private *mdp = netdev_priv(ndev);
1599 struct sh_eth_rxdesc *rxdesc;
1601 int entry = mdp->cur_rx % mdp->num_rx_ring;
1602 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1603 int limit;
1604 struct sk_buff *skb;
1605 u32 desc_status;
1606 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1607 dma_addr_t dma_addr;
1608 u16 pkt_len;
1609 u32 buf_len;
1611 boguscnt = min(boguscnt, *quota);
1612 limit = boguscnt;
1613 rxdesc = &mdp->rx_ring[entry];
1614 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1615 /* RACT bit must be checked before all the following reads */
1616 dma_rmb();
1617 desc_status = le32_to_cpu(rxdesc->status);
1618 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1620 if (--boguscnt < 0)
1621 break;
1623 netif_info(mdp, rx_status, ndev,
1624 "rx entry %d status 0x%08x len %d\n",
1625 entry, desc_status, pkt_len);
1627 if (!(desc_status & RDFEND))
1628 ndev->stats.rx_length_errors++;
1630 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1631 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1632 * bit 0. However, in case of the R8A7740 and R7S72100
1633 * the RFS bits are from bit 25 to bit 16. So, the
1634 * driver needs right shifting by 16.
1636 if (mdp->cd->hw_checksum)
1637 desc_status >>= 16;
1639 skb = mdp->rx_skbuff[entry];
1640 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1641 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1642 ndev->stats.rx_errors++;
1643 if (desc_status & RD_RFS1)
1644 ndev->stats.rx_crc_errors++;
1645 if (desc_status & RD_RFS2)
1646 ndev->stats.rx_frame_errors++;
1647 if (desc_status & RD_RFS3)
1648 ndev->stats.rx_length_errors++;
1649 if (desc_status & RD_RFS4)
1650 ndev->stats.rx_length_errors++;
1651 if (desc_status & RD_RFS6)
1652 ndev->stats.rx_missed_errors++;
1653 if (desc_status & RD_RFS10)
1654 ndev->stats.rx_over_errors++;
1655 } else if (skb) {
1656 dma_addr = le32_to_cpu(rxdesc->addr);
1657 if (!mdp->cd->hw_swap)
1658 sh_eth_soft_swap(
1659 phys_to_virt(ALIGN(dma_addr, 4)),
1660 pkt_len + 2);
1661 mdp->rx_skbuff[entry] = NULL;
1662 if (mdp->cd->rpadir)
1663 skb_reserve(skb, NET_IP_ALIGN);
1664 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1665 ALIGN(mdp->rx_buf_sz, 32),
1666 DMA_FROM_DEVICE);
1667 skb_put(skb, pkt_len);
1668 skb->protocol = eth_type_trans(skb, ndev);
1669 netif_receive_skb(skb);
1670 ndev->stats.rx_packets++;
1671 ndev->stats.rx_bytes += pkt_len;
1672 if (desc_status & RD_RFS8)
1673 ndev->stats.multicast++;
1675 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1676 rxdesc = &mdp->rx_ring[entry];
1679 /* Refill the Rx ring buffers. */
1680 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1681 entry = mdp->dirty_rx % mdp->num_rx_ring;
1682 rxdesc = &mdp->rx_ring[entry];
1683 /* The size of the buffer is 32 byte boundary. */
1684 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1685 rxdesc->len = cpu_to_le32(buf_len << 16);
1687 if (mdp->rx_skbuff[entry] == NULL) {
1688 skb = netdev_alloc_skb(ndev, skbuff_size);
1689 if (skb == NULL)
1690 break; /* Better luck next round. */
1691 sh_eth_set_receive_align(skb);
1692 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1693 buf_len, DMA_FROM_DEVICE);
1694 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1695 kfree_skb(skb);
1696 break;
1698 mdp->rx_skbuff[entry] = skb;
1700 skb_checksum_none_assert(skb);
1701 rxdesc->addr = cpu_to_le32(dma_addr);
1703 dma_wmb(); /* RACT bit must be set after all the above writes */
1704 if (entry >= mdp->num_rx_ring - 1)
1705 rxdesc->status |=
1706 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1707 else
1708 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1711 /* Restart Rx engine if stopped. */
1712 /* If we don't need to check status, don't. -KDU */
1713 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1714 /* fix the values for the next receiving if RDE is set */
1715 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1716 u32 count = (sh_eth_read(ndev, RDFAR) -
1717 sh_eth_read(ndev, RDLAR)) >> 4;
1719 mdp->cur_rx = count;
1720 mdp->dirty_rx = count;
1722 sh_eth_write(ndev, EDRRR_R, EDRRR);
1725 *quota -= limit - boguscnt - 1;
1727 return *quota <= 0;
1730 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1732 /* disable tx and rx */
1733 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1736 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1738 /* enable tx and rx */
1739 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1742 /* E-MAC interrupt handler */
1743 static void sh_eth_emac_interrupt(struct net_device *ndev)
1745 struct sh_eth_private *mdp = netdev_priv(ndev);
1746 u32 felic_stat;
1747 u32 link_stat;
1749 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1750 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1751 if (felic_stat & ECSR_ICD)
1752 ndev->stats.tx_carrier_errors++;
1753 if (felic_stat & ECSR_MPD)
1754 pm_wakeup_event(&mdp->pdev->dev, 0);
1755 if (felic_stat & ECSR_LCHNG) {
1756 /* Link Changed */
1757 if (mdp->cd->no_psr || mdp->no_ether_link)
1758 return;
1759 link_stat = sh_eth_read(ndev, PSR);
1760 if (mdp->ether_link_active_low)
1761 link_stat = ~link_stat;
1762 if (!(link_stat & PHY_ST_LINK)) {
1763 sh_eth_rcv_snd_disable(ndev);
1764 } else {
1765 /* Link Up */
1766 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1767 /* clear int */
1768 sh_eth_modify(ndev, ECSR, 0, 0);
1769 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1770 /* enable tx and rx */
1771 sh_eth_rcv_snd_enable(ndev);
1776 /* error control function */
1777 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1779 struct sh_eth_private *mdp = netdev_priv(ndev);
1780 u32 mask;
1782 if (intr_status & EESR_TWB) {
1783 /* Unused write back interrupt */
1784 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1785 ndev->stats.tx_aborted_errors++;
1786 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1790 if (intr_status & EESR_RABT) {
1791 /* Receive Abort int */
1792 if (intr_status & EESR_RFRMER) {
1793 /* Receive Frame Overflow int */
1794 ndev->stats.rx_frame_errors++;
1798 if (intr_status & EESR_TDE) {
1799 /* Transmit Descriptor Empty int */
1800 ndev->stats.tx_fifo_errors++;
1801 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1804 if (intr_status & EESR_TFE) {
1805 /* FIFO under flow */
1806 ndev->stats.tx_fifo_errors++;
1807 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1810 if (intr_status & EESR_RDE) {
1811 /* Receive Descriptor Empty int */
1812 ndev->stats.rx_over_errors++;
1815 if (intr_status & EESR_RFE) {
1816 /* Receive FIFO Overflow int */
1817 ndev->stats.rx_fifo_errors++;
1820 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1821 /* Address Error */
1822 ndev->stats.tx_fifo_errors++;
1823 netif_err(mdp, tx_err, ndev, "Address Error\n");
1826 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1827 if (mdp->cd->no_ade)
1828 mask &= ~EESR_ADE;
1829 if (intr_status & mask) {
1830 /* Tx error */
1831 u32 edtrr = sh_eth_read(ndev, EDTRR);
1833 /* dmesg */
1834 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1835 intr_status, mdp->cur_tx, mdp->dirty_tx,
1836 (u32)ndev->state, edtrr);
1837 /* dirty buffer free */
1838 sh_eth_tx_free(ndev, true);
1840 /* SH7712 BUG */
1841 if (edtrr ^ mdp->cd->edtrr_trns) {
1842 /* tx dma start */
1843 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1845 /* wakeup */
1846 netif_wake_queue(ndev);
1850 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1852 struct net_device *ndev = netdev;
1853 struct sh_eth_private *mdp = netdev_priv(ndev);
1854 struct sh_eth_cpu_data *cd = mdp->cd;
1855 irqreturn_t ret = IRQ_NONE;
1856 u32 intr_status, intr_enable;
1858 spin_lock(&mdp->lock);
1860 /* Get interrupt status */
1861 intr_status = sh_eth_read(ndev, EESR);
1862 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1863 * enabled since it's the one that comes thru regardless of the mask,
1864 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1865 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1866 * bit...
1868 intr_enable = sh_eth_read(ndev, EESIPR);
1869 intr_status &= intr_enable | EESIPR_ECIIP;
1870 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1871 cd->eesr_err_check))
1872 ret = IRQ_HANDLED;
1873 else
1874 goto out;
1876 if (unlikely(!mdp->irq_enabled)) {
1877 sh_eth_write(ndev, 0, EESIPR);
1878 goto out;
1881 if (intr_status & EESR_RX_CHECK) {
1882 if (napi_schedule_prep(&mdp->napi)) {
1883 /* Mask Rx interrupts */
1884 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1885 EESIPR);
1886 __napi_schedule(&mdp->napi);
1887 } else {
1888 netdev_warn(ndev,
1889 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1890 intr_status, intr_enable);
1894 /* Tx Check */
1895 if (intr_status & cd->tx_check) {
1896 /* Clear Tx interrupts */
1897 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1899 sh_eth_tx_free(ndev, true);
1900 netif_wake_queue(ndev);
1903 /* E-MAC interrupt */
1904 if (intr_status & EESR_ECI)
1905 sh_eth_emac_interrupt(ndev);
1907 if (intr_status & cd->eesr_err_check) {
1908 /* Clear error interrupts */
1909 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1911 sh_eth_error(ndev, intr_status);
1914 out:
1915 spin_unlock(&mdp->lock);
1917 return ret;
1920 static int sh_eth_poll(struct napi_struct *napi, int budget)
1922 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1923 napi);
1924 struct net_device *ndev = napi->dev;
1925 int quota = budget;
1926 u32 intr_status;
1928 for (;;) {
1929 intr_status = sh_eth_read(ndev, EESR);
1930 if (!(intr_status & EESR_RX_CHECK))
1931 break;
1932 /* Clear Rx interrupts */
1933 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1935 if (sh_eth_rx(ndev, intr_status, &quota))
1936 goto out;
1939 napi_complete(napi);
1941 /* Reenable Rx interrupts */
1942 if (mdp->irq_enabled)
1943 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1944 out:
1945 return budget - quota;
1948 /* PHY state control function */
1949 static void sh_eth_adjust_link(struct net_device *ndev)
1951 struct sh_eth_private *mdp = netdev_priv(ndev);
1952 struct phy_device *phydev = ndev->phydev;
1953 unsigned long flags;
1954 int new_state = 0;
1956 spin_lock_irqsave(&mdp->lock, flags);
1958 /* Disable TX and RX right over here, if E-MAC change is ignored */
1959 if (mdp->cd->no_psr || mdp->no_ether_link)
1960 sh_eth_rcv_snd_disable(ndev);
1962 if (phydev->link) {
1963 if (phydev->duplex != mdp->duplex) {
1964 new_state = 1;
1965 mdp->duplex = phydev->duplex;
1966 if (mdp->cd->set_duplex)
1967 mdp->cd->set_duplex(ndev);
1970 if (phydev->speed != mdp->speed) {
1971 new_state = 1;
1972 mdp->speed = phydev->speed;
1973 if (mdp->cd->set_rate)
1974 mdp->cd->set_rate(ndev);
1976 if (!mdp->link) {
1977 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1978 new_state = 1;
1979 mdp->link = phydev->link;
1981 } else if (mdp->link) {
1982 new_state = 1;
1983 mdp->link = 0;
1984 mdp->speed = 0;
1985 mdp->duplex = -1;
1988 /* Enable TX and RX right over here, if E-MAC change is ignored */
1989 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1990 sh_eth_rcv_snd_enable(ndev);
1992 mmiowb();
1993 spin_unlock_irqrestore(&mdp->lock, flags);
1995 if (new_state && netif_msg_link(mdp))
1996 phy_print_status(phydev);
1999 /* PHY init function */
2000 static int sh_eth_phy_init(struct net_device *ndev)
2002 struct device_node *np = ndev->dev.parent->of_node;
2003 struct sh_eth_private *mdp = netdev_priv(ndev);
2004 struct phy_device *phydev;
2006 mdp->link = 0;
2007 mdp->speed = 0;
2008 mdp->duplex = -1;
2010 /* Try connect to PHY */
2011 if (np) {
2012 struct device_node *pn;
2014 pn = of_parse_phandle(np, "phy-handle", 0);
2015 phydev = of_phy_connect(ndev, pn,
2016 sh_eth_adjust_link, 0,
2017 mdp->phy_interface);
2019 of_node_put(pn);
2020 if (!phydev)
2021 phydev = ERR_PTR(-ENOENT);
2022 } else {
2023 char phy_id[MII_BUS_ID_SIZE + 3];
2025 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2026 mdp->mii_bus->id, mdp->phy_id);
2028 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2029 mdp->phy_interface);
2032 if (IS_ERR(phydev)) {
2033 netdev_err(ndev, "failed to connect PHY\n");
2034 return PTR_ERR(phydev);
2037 /* mask with MAC supported features */
2038 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2039 int err = phy_set_max_speed(phydev, SPEED_100);
2040 if (err) {
2041 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2042 phy_disconnect(phydev);
2043 return err;
2047 phy_attached_info(phydev);
2049 return 0;
2052 /* PHY control start function */
2053 static int sh_eth_phy_start(struct net_device *ndev)
2055 int ret;
2057 ret = sh_eth_phy_init(ndev);
2058 if (ret)
2059 return ret;
2061 phy_start(ndev->phydev);
2063 return 0;
2066 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2067 * version must be bumped as well. Just adding registers up to that
2068 * limit is fine, as long as the existing register indices don't
2069 * change.
2071 #define SH_ETH_REG_DUMP_VERSION 1
2072 #define SH_ETH_REG_DUMP_MAX_REGS 256
2074 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2076 struct sh_eth_private *mdp = netdev_priv(ndev);
2077 struct sh_eth_cpu_data *cd = mdp->cd;
2078 u32 *valid_map;
2079 size_t len;
2081 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2083 /* Dump starts with a bitmap that tells ethtool which
2084 * registers are defined for this chip.
2086 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2087 if (buf) {
2088 valid_map = buf;
2089 buf += len;
2090 } else {
2091 valid_map = NULL;
2094 /* Add a register to the dump, if it has a defined offset.
2095 * This automatically skips most undefined registers, but for
2096 * some it is also necessary to check a capability flag in
2097 * struct sh_eth_cpu_data.
2099 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2100 #define add_reg_from(reg, read_expr) do { \
2101 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2102 if (buf) { \
2103 mark_reg_valid(reg); \
2104 *buf++ = read_expr; \
2106 ++len; \
2108 } while (0)
2109 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2110 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2112 add_reg(EDSR);
2113 add_reg(EDMR);
2114 add_reg(EDTRR);
2115 add_reg(EDRRR);
2116 add_reg(EESR);
2117 add_reg(EESIPR);
2118 add_reg(TDLAR);
2119 add_reg(TDFAR);
2120 add_reg(TDFXR);
2121 add_reg(TDFFR);
2122 add_reg(RDLAR);
2123 add_reg(RDFAR);
2124 add_reg(RDFXR);
2125 add_reg(RDFFR);
2126 add_reg(TRSCER);
2127 add_reg(RMFCR);
2128 add_reg(TFTR);
2129 add_reg(FDR);
2130 add_reg(RMCR);
2131 add_reg(TFUCR);
2132 add_reg(RFOCR);
2133 if (cd->rmiimode)
2134 add_reg(RMIIMODE);
2135 add_reg(FCFTR);
2136 if (cd->rpadir)
2137 add_reg(RPADIR);
2138 if (!cd->no_trimd)
2139 add_reg(TRIMD);
2140 add_reg(ECMR);
2141 add_reg(ECSR);
2142 add_reg(ECSIPR);
2143 add_reg(PIR);
2144 if (!cd->no_psr)
2145 add_reg(PSR);
2146 add_reg(RDMLR);
2147 add_reg(RFLR);
2148 add_reg(IPGR);
2149 if (cd->apr)
2150 add_reg(APR);
2151 if (cd->mpr)
2152 add_reg(MPR);
2153 add_reg(RFCR);
2154 add_reg(RFCF);
2155 if (cd->tpauser)
2156 add_reg(TPAUSER);
2157 add_reg(TPAUSECR);
2158 add_reg(GECMR);
2159 if (cd->bculr)
2160 add_reg(BCULR);
2161 add_reg(MAHR);
2162 add_reg(MALR);
2163 add_reg(TROCR);
2164 add_reg(CDCR);
2165 add_reg(LCCR);
2166 add_reg(CNDCR);
2167 add_reg(CEFCR);
2168 add_reg(FRECR);
2169 add_reg(TSFRCR);
2170 add_reg(TLFRCR);
2171 add_reg(CERCR);
2172 add_reg(CEECR);
2173 add_reg(MAFCR);
2174 if (cd->rtrate)
2175 add_reg(RTRATE);
2176 if (cd->hw_checksum)
2177 add_reg(CSMR);
2178 if (cd->select_mii)
2179 add_reg(RMII_MII);
2180 if (cd->tsu) {
2181 add_tsu_reg(ARSTR);
2182 add_tsu_reg(TSU_CTRST);
2183 add_tsu_reg(TSU_FWEN0);
2184 add_tsu_reg(TSU_FWEN1);
2185 add_tsu_reg(TSU_FCM);
2186 add_tsu_reg(TSU_BSYSL0);
2187 add_tsu_reg(TSU_BSYSL1);
2188 add_tsu_reg(TSU_PRISL0);
2189 add_tsu_reg(TSU_PRISL1);
2190 add_tsu_reg(TSU_FWSL0);
2191 add_tsu_reg(TSU_FWSL1);
2192 add_tsu_reg(TSU_FWSLC);
2193 add_tsu_reg(TSU_QTAGM0);
2194 add_tsu_reg(TSU_QTAGM1);
2195 add_tsu_reg(TSU_FWSR);
2196 add_tsu_reg(TSU_FWINMK);
2197 add_tsu_reg(TSU_ADQT0);
2198 add_tsu_reg(TSU_ADQT1);
2199 add_tsu_reg(TSU_VTAG0);
2200 add_tsu_reg(TSU_VTAG1);
2201 add_tsu_reg(TSU_ADSBSY);
2202 add_tsu_reg(TSU_TEN);
2203 add_tsu_reg(TSU_POST1);
2204 add_tsu_reg(TSU_POST2);
2205 add_tsu_reg(TSU_POST3);
2206 add_tsu_reg(TSU_POST4);
2207 /* This is the start of a table, not just a single register. */
2208 if (buf) {
2209 unsigned int i;
2211 mark_reg_valid(TSU_ADRH0);
2212 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2213 *buf++ = ioread32(mdp->tsu_addr +
2214 mdp->reg_offset[TSU_ADRH0] +
2215 i * 4);
2217 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2220 #undef mark_reg_valid
2221 #undef add_reg_from
2222 #undef add_reg
2223 #undef add_tsu_reg
2225 return len * 4;
2228 static int sh_eth_get_regs_len(struct net_device *ndev)
2230 return __sh_eth_get_regs(ndev, NULL);
2233 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2234 void *buf)
2236 struct sh_eth_private *mdp = netdev_priv(ndev);
2238 regs->version = SH_ETH_REG_DUMP_VERSION;
2240 pm_runtime_get_sync(&mdp->pdev->dev);
2241 __sh_eth_get_regs(ndev, buf);
2242 pm_runtime_put_sync(&mdp->pdev->dev);
2245 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2247 struct sh_eth_private *mdp = netdev_priv(ndev);
2248 return mdp->msg_enable;
2251 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2253 struct sh_eth_private *mdp = netdev_priv(ndev);
2254 mdp->msg_enable = value;
2257 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2258 "rx_current", "tx_current",
2259 "rx_dirty", "tx_dirty",
2261 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2263 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2265 switch (sset) {
2266 case ETH_SS_STATS:
2267 return SH_ETH_STATS_LEN;
2268 default:
2269 return -EOPNOTSUPP;
2273 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2274 struct ethtool_stats *stats, u64 *data)
2276 struct sh_eth_private *mdp = netdev_priv(ndev);
2277 int i = 0;
2279 /* device-specific stats */
2280 data[i++] = mdp->cur_rx;
2281 data[i++] = mdp->cur_tx;
2282 data[i++] = mdp->dirty_rx;
2283 data[i++] = mdp->dirty_tx;
2286 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2288 switch (stringset) {
2289 case ETH_SS_STATS:
2290 memcpy(data, *sh_eth_gstrings_stats,
2291 sizeof(sh_eth_gstrings_stats));
2292 break;
2296 static void sh_eth_get_ringparam(struct net_device *ndev,
2297 struct ethtool_ringparam *ring)
2299 struct sh_eth_private *mdp = netdev_priv(ndev);
2301 ring->rx_max_pending = RX_RING_MAX;
2302 ring->tx_max_pending = TX_RING_MAX;
2303 ring->rx_pending = mdp->num_rx_ring;
2304 ring->tx_pending = mdp->num_tx_ring;
2307 static int sh_eth_set_ringparam(struct net_device *ndev,
2308 struct ethtool_ringparam *ring)
2310 struct sh_eth_private *mdp = netdev_priv(ndev);
2311 int ret;
2313 if (ring->tx_pending > TX_RING_MAX ||
2314 ring->rx_pending > RX_RING_MAX ||
2315 ring->tx_pending < TX_RING_MIN ||
2316 ring->rx_pending < RX_RING_MIN)
2317 return -EINVAL;
2318 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2319 return -EINVAL;
2321 if (netif_running(ndev)) {
2322 netif_device_detach(ndev);
2323 netif_tx_disable(ndev);
2325 /* Serialise with the interrupt handler and NAPI, then
2326 * disable interrupts. We have to clear the
2327 * irq_enabled flag first to ensure that interrupts
2328 * won't be re-enabled.
2330 mdp->irq_enabled = false;
2331 synchronize_irq(ndev->irq);
2332 napi_synchronize(&mdp->napi);
2333 sh_eth_write(ndev, 0x0000, EESIPR);
2335 sh_eth_dev_exit(ndev);
2337 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2338 sh_eth_ring_free(ndev);
2341 /* Set new parameters */
2342 mdp->num_rx_ring = ring->rx_pending;
2343 mdp->num_tx_ring = ring->tx_pending;
2345 if (netif_running(ndev)) {
2346 ret = sh_eth_ring_init(ndev);
2347 if (ret < 0) {
2348 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2349 __func__);
2350 return ret;
2352 ret = sh_eth_dev_init(ndev);
2353 if (ret < 0) {
2354 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2355 __func__);
2356 return ret;
2359 netif_device_attach(ndev);
2362 return 0;
2365 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2367 struct sh_eth_private *mdp = netdev_priv(ndev);
2369 wol->supported = 0;
2370 wol->wolopts = 0;
2372 if (mdp->cd->magic) {
2373 wol->supported = WAKE_MAGIC;
2374 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2378 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2380 struct sh_eth_private *mdp = netdev_priv(ndev);
2382 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2383 return -EOPNOTSUPP;
2385 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2387 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2389 return 0;
2392 static const struct ethtool_ops sh_eth_ethtool_ops = {
2393 .get_regs_len = sh_eth_get_regs_len,
2394 .get_regs = sh_eth_get_regs,
2395 .nway_reset = phy_ethtool_nway_reset,
2396 .get_msglevel = sh_eth_get_msglevel,
2397 .set_msglevel = sh_eth_set_msglevel,
2398 .get_link = ethtool_op_get_link,
2399 .get_strings = sh_eth_get_strings,
2400 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2401 .get_sset_count = sh_eth_get_sset_count,
2402 .get_ringparam = sh_eth_get_ringparam,
2403 .set_ringparam = sh_eth_set_ringparam,
2404 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2405 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2406 .get_wol = sh_eth_get_wol,
2407 .set_wol = sh_eth_set_wol,
2410 /* network device open function */
2411 static int sh_eth_open(struct net_device *ndev)
2413 struct sh_eth_private *mdp = netdev_priv(ndev);
2414 int ret;
2416 pm_runtime_get_sync(&mdp->pdev->dev);
2418 napi_enable(&mdp->napi);
2420 ret = request_irq(ndev->irq, sh_eth_interrupt,
2421 mdp->cd->irq_flags, ndev->name, ndev);
2422 if (ret) {
2423 netdev_err(ndev, "Can not assign IRQ number\n");
2424 goto out_napi_off;
2427 /* Descriptor set */
2428 ret = sh_eth_ring_init(ndev);
2429 if (ret)
2430 goto out_free_irq;
2432 /* device init */
2433 ret = sh_eth_dev_init(ndev);
2434 if (ret)
2435 goto out_free_irq;
2437 /* PHY control start*/
2438 ret = sh_eth_phy_start(ndev);
2439 if (ret)
2440 goto out_free_irq;
2442 netif_start_queue(ndev);
2444 mdp->is_opened = 1;
2446 return ret;
2448 out_free_irq:
2449 free_irq(ndev->irq, ndev);
2450 out_napi_off:
2451 napi_disable(&mdp->napi);
2452 pm_runtime_put_sync(&mdp->pdev->dev);
2453 return ret;
2456 /* Timeout function */
2457 static void sh_eth_tx_timeout(struct net_device *ndev)
2459 struct sh_eth_private *mdp = netdev_priv(ndev);
2460 struct sh_eth_rxdesc *rxdesc;
2461 int i;
2463 netif_stop_queue(ndev);
2465 netif_err(mdp, timer, ndev,
2466 "transmit timed out, status %8.8x, resetting...\n",
2467 sh_eth_read(ndev, EESR));
2469 /* tx_errors count up */
2470 ndev->stats.tx_errors++;
2472 /* Free all the skbuffs in the Rx queue. */
2473 for (i = 0; i < mdp->num_rx_ring; i++) {
2474 rxdesc = &mdp->rx_ring[i];
2475 rxdesc->status = cpu_to_le32(0);
2476 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2477 dev_kfree_skb(mdp->rx_skbuff[i]);
2478 mdp->rx_skbuff[i] = NULL;
2480 for (i = 0; i < mdp->num_tx_ring; i++) {
2481 dev_kfree_skb(mdp->tx_skbuff[i]);
2482 mdp->tx_skbuff[i] = NULL;
2485 /* device init */
2486 sh_eth_dev_init(ndev);
2488 netif_start_queue(ndev);
2491 /* Packet transmit function */
2492 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2494 struct sh_eth_private *mdp = netdev_priv(ndev);
2495 struct sh_eth_txdesc *txdesc;
2496 dma_addr_t dma_addr;
2497 u32 entry;
2498 unsigned long flags;
2500 spin_lock_irqsave(&mdp->lock, flags);
2501 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2502 if (!sh_eth_tx_free(ndev, true)) {
2503 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2504 netif_stop_queue(ndev);
2505 spin_unlock_irqrestore(&mdp->lock, flags);
2506 return NETDEV_TX_BUSY;
2509 spin_unlock_irqrestore(&mdp->lock, flags);
2511 if (skb_put_padto(skb, ETH_ZLEN))
2512 return NETDEV_TX_OK;
2514 entry = mdp->cur_tx % mdp->num_tx_ring;
2515 mdp->tx_skbuff[entry] = skb;
2516 txdesc = &mdp->tx_ring[entry];
2517 /* soft swap. */
2518 if (!mdp->cd->hw_swap)
2519 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2520 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2521 DMA_TO_DEVICE);
2522 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2523 kfree_skb(skb);
2524 return NETDEV_TX_OK;
2526 txdesc->addr = cpu_to_le32(dma_addr);
2527 txdesc->len = cpu_to_le32(skb->len << 16);
2529 dma_wmb(); /* TACT bit must be set after all the above writes */
2530 if (entry >= mdp->num_tx_ring - 1)
2531 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2532 else
2533 txdesc->status |= cpu_to_le32(TD_TACT);
2535 mdp->cur_tx++;
2537 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2538 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2540 return NETDEV_TX_OK;
2543 /* The statistics registers have write-clear behaviour, which means we
2544 * will lose any increment between the read and write. We mitigate
2545 * this by only clearing when we read a non-zero value, so we will
2546 * never falsely report a total of zero.
2548 static void
2549 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2551 u32 delta = sh_eth_read(ndev, reg);
2553 if (delta) {
2554 *stat += delta;
2555 sh_eth_write(ndev, 0, reg);
2559 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2561 struct sh_eth_private *mdp = netdev_priv(ndev);
2563 if (mdp->cd->no_tx_cntrs)
2564 return &ndev->stats;
2566 if (!mdp->is_opened)
2567 return &ndev->stats;
2569 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2570 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2571 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2573 if (mdp->cd->cexcr) {
2574 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2575 CERCR);
2576 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577 CEECR);
2578 } else {
2579 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2580 CNDCR);
2583 return &ndev->stats;
2586 /* device close function */
2587 static int sh_eth_close(struct net_device *ndev)
2589 struct sh_eth_private *mdp = netdev_priv(ndev);
2591 netif_stop_queue(ndev);
2593 /* Serialise with the interrupt handler and NAPI, then disable
2594 * interrupts. We have to clear the irq_enabled flag first to
2595 * ensure that interrupts won't be re-enabled.
2597 mdp->irq_enabled = false;
2598 synchronize_irq(ndev->irq);
2599 napi_disable(&mdp->napi);
2600 sh_eth_write(ndev, 0x0000, EESIPR);
2602 sh_eth_dev_exit(ndev);
2604 /* PHY Disconnect */
2605 if (ndev->phydev) {
2606 phy_stop(ndev->phydev);
2607 phy_disconnect(ndev->phydev);
2610 free_irq(ndev->irq, ndev);
2612 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613 sh_eth_ring_free(ndev);
2615 pm_runtime_put_sync(&mdp->pdev->dev);
2617 mdp->is_opened = 0;
2619 return 0;
2622 /* ioctl to device function */
2623 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2625 struct phy_device *phydev = ndev->phydev;
2627 if (!netif_running(ndev))
2628 return -EINVAL;
2630 if (!phydev)
2631 return -ENODEV;
2633 return phy_mii_ioctl(phydev, rq, cmd);
2636 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2638 if (netif_running(ndev))
2639 return -EBUSY;
2641 ndev->mtu = new_mtu;
2642 netdev_update_features(ndev);
2644 return 0;
2647 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2648 static u32 sh_eth_tsu_get_post_mask(int entry)
2650 return 0x0f << (28 - ((entry % 8) * 4));
2653 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2655 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2658 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2659 int entry)
2661 struct sh_eth_private *mdp = netdev_priv(ndev);
2662 int reg = TSU_POST1 + entry / 8;
2663 u32 tmp;
2665 tmp = sh_eth_tsu_read(mdp, reg);
2666 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2669 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2670 int entry)
2672 struct sh_eth_private *mdp = netdev_priv(ndev);
2673 int reg = TSU_POST1 + entry / 8;
2674 u32 post_mask, ref_mask, tmp;
2676 post_mask = sh_eth_tsu_get_post_mask(entry);
2677 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2679 tmp = sh_eth_tsu_read(mdp, reg);
2680 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2682 /* If other port enables, the function returns "true" */
2683 return tmp & ref_mask;
2686 static int sh_eth_tsu_busy(struct net_device *ndev)
2688 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2689 struct sh_eth_private *mdp = netdev_priv(ndev);
2691 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2692 udelay(10);
2693 timeout--;
2694 if (timeout <= 0) {
2695 netdev_err(ndev, "%s: timeout\n", __func__);
2696 return -ETIMEDOUT;
2700 return 0;
2703 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2704 const u8 *addr)
2706 struct sh_eth_private *mdp = netdev_priv(ndev);
2707 u32 val;
2709 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2710 iowrite32(val, mdp->tsu_addr + offset);
2711 if (sh_eth_tsu_busy(ndev) < 0)
2712 return -EBUSY;
2714 val = addr[4] << 8 | addr[5];
2715 iowrite32(val, mdp->tsu_addr + offset + 4);
2716 if (sh_eth_tsu_busy(ndev) < 0)
2717 return -EBUSY;
2719 return 0;
2722 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2724 struct sh_eth_private *mdp = netdev_priv(ndev);
2725 u32 val;
2727 val = ioread32(mdp->tsu_addr + offset);
2728 addr[0] = (val >> 24) & 0xff;
2729 addr[1] = (val >> 16) & 0xff;
2730 addr[2] = (val >> 8) & 0xff;
2731 addr[3] = val & 0xff;
2732 val = ioread32(mdp->tsu_addr + offset + 4);
2733 addr[4] = (val >> 8) & 0xff;
2734 addr[5] = val & 0xff;
2738 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2740 struct sh_eth_private *mdp = netdev_priv(ndev);
2741 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2742 int i;
2743 u8 c_addr[ETH_ALEN];
2745 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2746 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2747 if (ether_addr_equal(addr, c_addr))
2748 return i;
2751 return -ENOENT;
2754 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2756 u8 blank[ETH_ALEN];
2757 int entry;
2759 memset(blank, 0, sizeof(blank));
2760 entry = sh_eth_tsu_find_entry(ndev, blank);
2761 return (entry < 0) ? -ENOMEM : entry;
2764 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2765 int entry)
2767 struct sh_eth_private *mdp = netdev_priv(ndev);
2768 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2769 int ret;
2770 u8 blank[ETH_ALEN];
2772 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2773 ~(1 << (31 - entry)), TSU_TEN);
2775 memset(blank, 0, sizeof(blank));
2776 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2777 if (ret < 0)
2778 return ret;
2779 return 0;
2782 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2784 struct sh_eth_private *mdp = netdev_priv(ndev);
2785 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2786 int i, ret;
2788 if (!mdp->cd->tsu)
2789 return 0;
2791 i = sh_eth_tsu_find_entry(ndev, addr);
2792 if (i < 0) {
2793 /* No entry found, create one */
2794 i = sh_eth_tsu_find_empty(ndev);
2795 if (i < 0)
2796 return -ENOMEM;
2797 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2798 if (ret < 0)
2799 return ret;
2801 /* Enable the entry */
2802 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2803 (1 << (31 - i)), TSU_TEN);
2806 /* Entry found or created, enable POST */
2807 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2809 return 0;
2812 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2814 struct sh_eth_private *mdp = netdev_priv(ndev);
2815 int i, ret;
2817 if (!mdp->cd->tsu)
2818 return 0;
2820 i = sh_eth_tsu_find_entry(ndev, addr);
2821 if (i) {
2822 /* Entry found */
2823 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2824 goto done;
2826 /* Disable the entry if both ports was disabled */
2827 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2828 if (ret < 0)
2829 return ret;
2831 done:
2832 return 0;
2835 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2837 struct sh_eth_private *mdp = netdev_priv(ndev);
2838 int i, ret;
2840 if (!mdp->cd->tsu)
2841 return 0;
2843 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2844 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2845 continue;
2847 /* Disable the entry if both ports was disabled */
2848 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2849 if (ret < 0)
2850 return ret;
2853 return 0;
2856 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2858 struct sh_eth_private *mdp = netdev_priv(ndev);
2859 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2860 u8 addr[ETH_ALEN];
2861 int i;
2863 if (!mdp->cd->tsu)
2864 return;
2866 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2867 sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2868 if (is_multicast_ether_addr(addr))
2869 sh_eth_tsu_del_entry(ndev, addr);
2873 /* Update promiscuous flag and multicast filter */
2874 static void sh_eth_set_rx_mode(struct net_device *ndev)
2876 struct sh_eth_private *mdp = netdev_priv(ndev);
2877 u32 ecmr_bits;
2878 int mcast_all = 0;
2879 unsigned long flags;
2881 spin_lock_irqsave(&mdp->lock, flags);
2882 /* Initial condition is MCT = 1, PRM = 0.
2883 * Depending on ndev->flags, set PRM or clear MCT
2885 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2886 if (mdp->cd->tsu)
2887 ecmr_bits |= ECMR_MCT;
2889 if (!(ndev->flags & IFF_MULTICAST)) {
2890 sh_eth_tsu_purge_mcast(ndev);
2891 mcast_all = 1;
2893 if (ndev->flags & IFF_ALLMULTI) {
2894 sh_eth_tsu_purge_mcast(ndev);
2895 ecmr_bits &= ~ECMR_MCT;
2896 mcast_all = 1;
2899 if (ndev->flags & IFF_PROMISC) {
2900 sh_eth_tsu_purge_all(ndev);
2901 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2902 } else if (mdp->cd->tsu) {
2903 struct netdev_hw_addr *ha;
2904 netdev_for_each_mc_addr(ha, ndev) {
2905 if (mcast_all && is_multicast_ether_addr(ha->addr))
2906 continue;
2908 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2909 if (!mcast_all) {
2910 sh_eth_tsu_purge_mcast(ndev);
2911 ecmr_bits &= ~ECMR_MCT;
2912 mcast_all = 1;
2918 /* update the ethernet mode */
2919 sh_eth_write(ndev, ecmr_bits, ECMR);
2921 spin_unlock_irqrestore(&mdp->lock, flags);
2924 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2926 if (!mdp->port)
2927 return TSU_VTAG0;
2928 else
2929 return TSU_VTAG1;
2932 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2933 __be16 proto, u16 vid)
2935 struct sh_eth_private *mdp = netdev_priv(ndev);
2936 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2938 if (unlikely(!mdp->cd->tsu))
2939 return -EPERM;
2941 /* No filtering if vid = 0 */
2942 if (!vid)
2943 return 0;
2945 mdp->vlan_num_ids++;
2947 /* The controller has one VLAN tag HW filter. So, if the filter is
2948 * already enabled, the driver disables it and the filte
2950 if (mdp->vlan_num_ids > 1) {
2951 /* disable VLAN filter */
2952 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2953 return 0;
2956 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2957 vtag_reg_index);
2959 return 0;
2962 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2963 __be16 proto, u16 vid)
2965 struct sh_eth_private *mdp = netdev_priv(ndev);
2966 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2968 if (unlikely(!mdp->cd->tsu))
2969 return -EPERM;
2971 /* No filtering if vid = 0 */
2972 if (!vid)
2973 return 0;
2975 mdp->vlan_num_ids--;
2976 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2978 return 0;
2981 /* SuperH's TSU register init function */
2982 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2984 if (!mdp->cd->dual_port) {
2985 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2986 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2987 TSU_FWSLC); /* Enable POST registers */
2988 return;
2991 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2992 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2993 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2994 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2995 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2996 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2997 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2998 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2999 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3000 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3001 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
3002 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
3003 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
3004 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
3005 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3006 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
3007 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
3008 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
3009 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
3012 /* MDIO bus release function */
3013 static int sh_mdio_release(struct sh_eth_private *mdp)
3015 /* unregister mdio bus */
3016 mdiobus_unregister(mdp->mii_bus);
3018 /* free bitbang info */
3019 free_mdio_bitbang(mdp->mii_bus);
3021 return 0;
3024 /* MDIO bus init function */
3025 static int sh_mdio_init(struct sh_eth_private *mdp,
3026 struct sh_eth_plat_data *pd)
3028 int ret;
3029 struct bb_info *bitbang;
3030 struct platform_device *pdev = mdp->pdev;
3031 struct device *dev = &mdp->pdev->dev;
3033 /* create bit control struct for PHY */
3034 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3035 if (!bitbang)
3036 return -ENOMEM;
3038 /* bitbang init */
3039 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3040 bitbang->set_gate = pd->set_mdio_gate;
3041 bitbang->ctrl.ops = &bb_ops;
3043 /* MII controller setting */
3044 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3045 if (!mdp->mii_bus)
3046 return -ENOMEM;
3048 /* Hook up MII support for ethtool */
3049 mdp->mii_bus->name = "sh_mii";
3050 mdp->mii_bus->parent = dev;
3051 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3052 pdev->name, pdev->id);
3054 /* register MDIO bus */
3055 if (pd->phy_irq > 0)
3056 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3058 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3059 if (ret)
3060 goto out_free_bus;
3062 return 0;
3064 out_free_bus:
3065 free_mdio_bitbang(mdp->mii_bus);
3066 return ret;
3069 static const u16 *sh_eth_get_register_offset(int register_type)
3071 const u16 *reg_offset = NULL;
3073 switch (register_type) {
3074 case SH_ETH_REG_GIGABIT:
3075 reg_offset = sh_eth_offset_gigabit;
3076 break;
3077 case SH_ETH_REG_FAST_RZ:
3078 reg_offset = sh_eth_offset_fast_rz;
3079 break;
3080 case SH_ETH_REG_FAST_RCAR:
3081 reg_offset = sh_eth_offset_fast_rcar;
3082 break;
3083 case SH_ETH_REG_FAST_SH4:
3084 reg_offset = sh_eth_offset_fast_sh4;
3085 break;
3086 case SH_ETH_REG_FAST_SH3_SH2:
3087 reg_offset = sh_eth_offset_fast_sh3_sh2;
3088 break;
3091 return reg_offset;
3094 static const struct net_device_ops sh_eth_netdev_ops = {
3095 .ndo_open = sh_eth_open,
3096 .ndo_stop = sh_eth_close,
3097 .ndo_start_xmit = sh_eth_start_xmit,
3098 .ndo_get_stats = sh_eth_get_stats,
3099 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3100 .ndo_tx_timeout = sh_eth_tx_timeout,
3101 .ndo_do_ioctl = sh_eth_do_ioctl,
3102 .ndo_change_mtu = sh_eth_change_mtu,
3103 .ndo_validate_addr = eth_validate_addr,
3104 .ndo_set_mac_address = eth_mac_addr,
3107 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3108 .ndo_open = sh_eth_open,
3109 .ndo_stop = sh_eth_close,
3110 .ndo_start_xmit = sh_eth_start_xmit,
3111 .ndo_get_stats = sh_eth_get_stats,
3112 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3113 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3114 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3115 .ndo_tx_timeout = sh_eth_tx_timeout,
3116 .ndo_do_ioctl = sh_eth_do_ioctl,
3117 .ndo_change_mtu = sh_eth_change_mtu,
3118 .ndo_validate_addr = eth_validate_addr,
3119 .ndo_set_mac_address = eth_mac_addr,
3122 #ifdef CONFIG_OF
3123 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3125 struct device_node *np = dev->of_node;
3126 struct sh_eth_plat_data *pdata;
3127 const char *mac_addr;
3129 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3130 if (!pdata)
3131 return NULL;
3133 pdata->phy_interface = of_get_phy_mode(np);
3135 mac_addr = of_get_mac_address(np);
3136 if (mac_addr)
3137 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3139 pdata->no_ether_link =
3140 of_property_read_bool(np, "renesas,no-ether-link");
3141 pdata->ether_link_active_low =
3142 of_property_read_bool(np, "renesas,ether-link-active-low");
3144 return pdata;
3147 static const struct of_device_id sh_eth_match_table[] = {
3148 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3149 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3150 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3151 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3152 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3153 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3154 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3155 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3156 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3157 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3158 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3159 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3160 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3161 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3164 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3165 #else
3166 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3168 return NULL;
3170 #endif
3172 static int sh_eth_drv_probe(struct platform_device *pdev)
3174 struct resource *res;
3175 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3176 const struct platform_device_id *id = platform_get_device_id(pdev);
3177 struct sh_eth_private *mdp;
3178 struct net_device *ndev;
3179 int ret;
3181 /* get base addr */
3182 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3184 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3185 if (!ndev)
3186 return -ENOMEM;
3188 pm_runtime_enable(&pdev->dev);
3189 pm_runtime_get_sync(&pdev->dev);
3191 ret = platform_get_irq(pdev, 0);
3192 if (ret < 0)
3193 goto out_release;
3194 ndev->irq = ret;
3196 SET_NETDEV_DEV(ndev, &pdev->dev);
3198 mdp = netdev_priv(ndev);
3199 mdp->num_tx_ring = TX_RING_SIZE;
3200 mdp->num_rx_ring = RX_RING_SIZE;
3201 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3202 if (IS_ERR(mdp->addr)) {
3203 ret = PTR_ERR(mdp->addr);
3204 goto out_release;
3207 ndev->base_addr = res->start;
3209 spin_lock_init(&mdp->lock);
3210 mdp->pdev = pdev;
3212 if (pdev->dev.of_node)
3213 pd = sh_eth_parse_dt(&pdev->dev);
3214 if (!pd) {
3215 dev_err(&pdev->dev, "no platform data\n");
3216 ret = -EINVAL;
3217 goto out_release;
3220 /* get PHY ID */
3221 mdp->phy_id = pd->phy;
3222 mdp->phy_interface = pd->phy_interface;
3223 mdp->no_ether_link = pd->no_ether_link;
3224 mdp->ether_link_active_low = pd->ether_link_active_low;
3226 /* set cpu data */
3227 if (id)
3228 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3229 else
3230 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3232 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3233 if (!mdp->reg_offset) {
3234 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3235 mdp->cd->register_type);
3236 ret = -EINVAL;
3237 goto out_release;
3239 sh_eth_set_default_cpu_data(mdp->cd);
3241 /* User's manual states max MTU should be 2048 but due to the
3242 * alignment calculations in sh_eth_ring_init() the practical
3243 * MTU is a bit less. Maybe this can be optimized some more.
3245 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3246 ndev->min_mtu = ETH_MIN_MTU;
3248 /* set function */
3249 if (mdp->cd->tsu)
3250 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3251 else
3252 ndev->netdev_ops = &sh_eth_netdev_ops;
3253 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3254 ndev->watchdog_timeo = TX_TIMEOUT;
3256 /* debug message level */
3257 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3259 /* read and set MAC address */
3260 read_mac_address(ndev, pd->mac_addr);
3261 if (!is_valid_ether_addr(ndev->dev_addr)) {
3262 dev_warn(&pdev->dev,
3263 "no valid MAC address supplied, using a random one.\n");
3264 eth_hw_addr_random(ndev);
3267 if (mdp->cd->tsu) {
3268 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3269 struct resource *rtsu;
3271 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3272 if (!rtsu) {
3273 dev_err(&pdev->dev, "no TSU resource\n");
3274 ret = -ENODEV;
3275 goto out_release;
3277 /* We can only request the TSU region for the first port
3278 * of the two sharing this TSU for the probe to succeed...
3280 if (port == 0 &&
3281 !devm_request_mem_region(&pdev->dev, rtsu->start,
3282 resource_size(rtsu),
3283 dev_name(&pdev->dev))) {
3284 dev_err(&pdev->dev, "can't request TSU resource.\n");
3285 ret = -EBUSY;
3286 goto out_release;
3288 /* ioremap the TSU registers */
3289 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3290 resource_size(rtsu));
3291 if (!mdp->tsu_addr) {
3292 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3293 ret = -ENOMEM;
3294 goto out_release;
3296 mdp->port = port;
3297 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3299 /* Need to init only the first port of the two sharing a TSU */
3300 if (port == 0) {
3301 if (mdp->cd->chip_reset)
3302 mdp->cd->chip_reset(ndev);
3304 /* TSU init (Init only)*/
3305 sh_eth_tsu_init(mdp);
3309 if (mdp->cd->rmiimode)
3310 sh_eth_write(ndev, 0x1, RMIIMODE);
3312 /* MDIO bus init */
3313 ret = sh_mdio_init(mdp, pd);
3314 if (ret) {
3315 if (ret != -EPROBE_DEFER)
3316 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3317 goto out_release;
3320 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3322 /* network device register */
3323 ret = register_netdev(ndev);
3324 if (ret)
3325 goto out_napi_del;
3327 if (mdp->cd->magic)
3328 device_set_wakeup_capable(&pdev->dev, 1);
3330 /* print device information */
3331 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3332 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3334 pm_runtime_put(&pdev->dev);
3335 platform_set_drvdata(pdev, ndev);
3337 return ret;
3339 out_napi_del:
3340 netif_napi_del(&mdp->napi);
3341 sh_mdio_release(mdp);
3343 out_release:
3344 /* net_dev free */
3345 free_netdev(ndev);
3347 pm_runtime_put(&pdev->dev);
3348 pm_runtime_disable(&pdev->dev);
3349 return ret;
3352 static int sh_eth_drv_remove(struct platform_device *pdev)
3354 struct net_device *ndev = platform_get_drvdata(pdev);
3355 struct sh_eth_private *mdp = netdev_priv(ndev);
3357 unregister_netdev(ndev);
3358 netif_napi_del(&mdp->napi);
3359 sh_mdio_release(mdp);
3360 pm_runtime_disable(&pdev->dev);
3361 free_netdev(ndev);
3363 return 0;
3366 #ifdef CONFIG_PM
3367 #ifdef CONFIG_PM_SLEEP
3368 static int sh_eth_wol_setup(struct net_device *ndev)
3370 struct sh_eth_private *mdp = netdev_priv(ndev);
3372 /* Only allow ECI interrupts */
3373 synchronize_irq(ndev->irq);
3374 napi_disable(&mdp->napi);
3375 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3377 /* Enable MagicPacket */
3378 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3380 return enable_irq_wake(ndev->irq);
3383 static int sh_eth_wol_restore(struct net_device *ndev)
3385 struct sh_eth_private *mdp = netdev_priv(ndev);
3386 int ret;
3388 napi_enable(&mdp->napi);
3390 /* Disable MagicPacket */
3391 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3393 /* The device needs to be reset to restore MagicPacket logic
3394 * for next wakeup. If we close and open the device it will
3395 * both be reset and all registers restored. This is what
3396 * happens during suspend and resume without WoL enabled.
3398 ret = sh_eth_close(ndev);
3399 if (ret < 0)
3400 return ret;
3401 ret = sh_eth_open(ndev);
3402 if (ret < 0)
3403 return ret;
3405 return disable_irq_wake(ndev->irq);
3408 static int sh_eth_suspend(struct device *dev)
3410 struct net_device *ndev = dev_get_drvdata(dev);
3411 struct sh_eth_private *mdp = netdev_priv(ndev);
3412 int ret = 0;
3414 if (!netif_running(ndev))
3415 return 0;
3417 netif_device_detach(ndev);
3419 if (mdp->wol_enabled)
3420 ret = sh_eth_wol_setup(ndev);
3421 else
3422 ret = sh_eth_close(ndev);
3424 return ret;
3427 static int sh_eth_resume(struct device *dev)
3429 struct net_device *ndev = dev_get_drvdata(dev);
3430 struct sh_eth_private *mdp = netdev_priv(ndev);
3431 int ret = 0;
3433 if (!netif_running(ndev))
3434 return 0;
3436 if (mdp->wol_enabled)
3437 ret = sh_eth_wol_restore(ndev);
3438 else
3439 ret = sh_eth_open(ndev);
3441 if (ret < 0)
3442 return ret;
3444 netif_device_attach(ndev);
3446 return ret;
3448 #endif
3450 static int sh_eth_runtime_nop(struct device *dev)
3452 /* Runtime PM callback shared between ->runtime_suspend()
3453 * and ->runtime_resume(). Simply returns success.
3455 * This driver re-initializes all registers after
3456 * pm_runtime_get_sync() anyway so there is no need
3457 * to save and restore registers here.
3459 return 0;
3462 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3463 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3464 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3466 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3467 #else
3468 #define SH_ETH_PM_OPS NULL
3469 #endif
3471 static const struct platform_device_id sh_eth_id_table[] = {
3472 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3473 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3474 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3475 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3476 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3477 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3478 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3481 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3483 static struct platform_driver sh_eth_driver = {
3484 .probe = sh_eth_drv_probe,
3485 .remove = sh_eth_drv_remove,
3486 .id_table = sh_eth_id_table,
3487 .driver = {
3488 .name = CARDNAME,
3489 .pm = SH_ETH_PM_OPS,
3490 .of_match_table = of_match_ptr(sh_eth_match_table),
3494 module_platform_driver(sh_eth_driver);
3496 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3497 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3498 MODULE_LICENSE("GPL v2");