mmc: core: Reset HPI enabled state during re-init and in case of errors
[linux/fpc-iii.git] / drivers / rtc / interface.c
blob612a83d3ddcc0ee3da82acf113527ea6308d3885
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/rtc.h>
23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
28 time64_t secs;
30 if (!rtc->offset_secs)
31 return;
33 secs = rtc_tm_to_time64(tm);
36 * Since the reading time values from RTC device are always in the RTC
37 * original valid range, but we need to skip the overlapped region
38 * between expanded range and original range, which is no need to add
39 * the offset.
41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
42 (rtc->start_secs < rtc->range_min &&
43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
44 return;
46 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
51 time64_t secs;
53 if (!rtc->offset_secs)
54 return;
56 secs = rtc_tm_to_time64(tm);
59 * If the setting time values are in the valid range of RTC hardware
60 * device, then no need to subtract the offset when setting time to RTC
61 * device. Otherwise we need to subtract the offset to make the time
62 * values are valid for RTC hardware device.
64 if (secs >= rtc->range_min && secs <= rtc->range_max)
65 return;
67 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
72 if (rtc->range_min != rtc->range_max) {
73 time64_t time = rtc_tm_to_time64(tm);
74 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
75 rtc->range_min;
76 time64_t range_max = rtc->set_start_time ?
77 (rtc->start_secs + rtc->range_max - rtc->range_min) :
78 rtc->range_max;
80 if (time < range_min || time > range_max)
81 return -ERANGE;
84 return 0;
87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
89 int err;
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (!rtc->ops->read_time)
93 err = -EINVAL;
94 else {
95 memset(tm, 0, sizeof(struct rtc_time));
96 err = rtc->ops->read_time(rtc->dev.parent, tm);
97 if (err < 0) {
98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
99 err);
100 return err;
103 rtc_add_offset(rtc, tm);
105 err = rtc_valid_tm(tm);
106 if (err < 0)
107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
109 return err;
112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
114 int err;
116 err = mutex_lock_interruptible(&rtc->ops_lock);
117 if (err)
118 return err;
120 err = __rtc_read_time(rtc, tm);
121 mutex_unlock(&rtc->ops_lock);
123 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
124 return err;
126 EXPORT_SYMBOL_GPL(rtc_read_time);
128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
130 int err;
132 err = rtc_valid_tm(tm);
133 if (err != 0)
134 return err;
136 err = rtc_valid_range(rtc, tm);
137 if (err)
138 return err;
140 rtc_subtract_offset(rtc, tm);
142 err = mutex_lock_interruptible(&rtc->ops_lock);
143 if (err)
144 return err;
146 if (!rtc->ops)
147 err = -ENODEV;
148 else if (rtc->ops->set_time)
149 err = rtc->ops->set_time(rtc->dev.parent, tm);
150 else if (rtc->ops->set_mmss64) {
151 time64_t secs64 = rtc_tm_to_time64(tm);
153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
154 } else if (rtc->ops->set_mmss) {
155 time64_t secs64 = rtc_tm_to_time64(tm);
156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
157 } else
158 err = -EINVAL;
160 pm_stay_awake(rtc->dev.parent);
161 mutex_unlock(&rtc->ops_lock);
162 /* A timer might have just expired */
163 schedule_work(&rtc->irqwork);
165 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
166 return err;
168 EXPORT_SYMBOL_GPL(rtc_set_time);
170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
172 int err;
174 err = mutex_lock_interruptible(&rtc->ops_lock);
175 if (err)
176 return err;
178 if (rtc->ops == NULL)
179 err = -ENODEV;
180 else if (!rtc->ops->read_alarm)
181 err = -EINVAL;
182 else {
183 alarm->enabled = 0;
184 alarm->pending = 0;
185 alarm->time.tm_sec = -1;
186 alarm->time.tm_min = -1;
187 alarm->time.tm_hour = -1;
188 alarm->time.tm_mday = -1;
189 alarm->time.tm_mon = -1;
190 alarm->time.tm_year = -1;
191 alarm->time.tm_wday = -1;
192 alarm->time.tm_yday = -1;
193 alarm->time.tm_isdst = -1;
194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
197 mutex_unlock(&rtc->ops_lock);
199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
200 return err;
203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
205 int err;
206 struct rtc_time before, now;
207 int first_time = 1;
208 time64_t t_now, t_alm;
209 enum { none, day, month, year } missing = none;
210 unsigned days;
212 /* The lower level RTC driver may return -1 in some fields,
213 * creating invalid alarm->time values, for reasons like:
215 * - The hardware may not be capable of filling them in;
216 * many alarms match only on time-of-day fields, not
217 * day/month/year calendar data.
219 * - Some hardware uses illegal values as "wildcard" match
220 * values, which non-Linux firmware (like a BIOS) may try
221 * to set up as e.g. "alarm 15 minutes after each hour".
222 * Linux uses only oneshot alarms.
224 * When we see that here, we deal with it by using values from
225 * a current RTC timestamp for any missing (-1) values. The
226 * RTC driver prevents "periodic alarm" modes.
228 * But this can be racey, because some fields of the RTC timestamp
229 * may have wrapped in the interval since we read the RTC alarm,
230 * which would lead to us inserting inconsistent values in place
231 * of the -1 fields.
233 * Reading the alarm and timestamp in the reverse sequence
234 * would have the same race condition, and not solve the issue.
236 * So, we must first read the RTC timestamp,
237 * then read the RTC alarm value,
238 * and then read a second RTC timestamp.
240 * If any fields of the second timestamp have changed
241 * when compared with the first timestamp, then we know
242 * our timestamp may be inconsistent with that used by
243 * the low-level rtc_read_alarm_internal() function.
245 * So, when the two timestamps disagree, we just loop and do
246 * the process again to get a fully consistent set of values.
248 * This could all instead be done in the lower level driver,
249 * but since more than one lower level RTC implementation needs it,
250 * then it's probably best best to do it here instead of there..
253 /* Get the "before" timestamp */
254 err = rtc_read_time(rtc, &before);
255 if (err < 0)
256 return err;
257 do {
258 if (!first_time)
259 memcpy(&before, &now, sizeof(struct rtc_time));
260 first_time = 0;
262 /* get the RTC alarm values, which may be incomplete */
263 err = rtc_read_alarm_internal(rtc, alarm);
264 if (err)
265 return err;
267 /* full-function RTCs won't have such missing fields */
268 if (rtc_valid_tm(&alarm->time) == 0) {
269 rtc_add_offset(rtc, &alarm->time);
270 return 0;
273 /* get the "after" timestamp, to detect wrapped fields */
274 err = rtc_read_time(rtc, &now);
275 if (err < 0)
276 return err;
278 /* note that tm_sec is a "don't care" value here: */
279 } while ( before.tm_min != now.tm_min
280 || before.tm_hour != now.tm_hour
281 || before.tm_mon != now.tm_mon
282 || before.tm_year != now.tm_year);
284 /* Fill in the missing alarm fields using the timestamp; we
285 * know there's at least one since alarm->time is invalid.
287 if (alarm->time.tm_sec == -1)
288 alarm->time.tm_sec = now.tm_sec;
289 if (alarm->time.tm_min == -1)
290 alarm->time.tm_min = now.tm_min;
291 if (alarm->time.tm_hour == -1)
292 alarm->time.tm_hour = now.tm_hour;
294 /* For simplicity, only support date rollover for now */
295 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
296 alarm->time.tm_mday = now.tm_mday;
297 missing = day;
299 if ((unsigned)alarm->time.tm_mon >= 12) {
300 alarm->time.tm_mon = now.tm_mon;
301 if (missing == none)
302 missing = month;
304 if (alarm->time.tm_year == -1) {
305 alarm->time.tm_year = now.tm_year;
306 if (missing == none)
307 missing = year;
310 /* Can't proceed if alarm is still invalid after replacing
311 * missing fields.
313 err = rtc_valid_tm(&alarm->time);
314 if (err)
315 goto done;
317 /* with luck, no rollover is needed */
318 t_now = rtc_tm_to_time64(&now);
319 t_alm = rtc_tm_to_time64(&alarm->time);
320 if (t_now < t_alm)
321 goto done;
323 switch (missing) {
325 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
326 * that will trigger at 5am will do so at 5am Tuesday, which
327 * could also be in the next month or year. This is a common
328 * case, especially for PCs.
330 case day:
331 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
332 t_alm += 24 * 60 * 60;
333 rtc_time64_to_tm(t_alm, &alarm->time);
334 break;
336 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
337 * be next month. An alarm matching on the 30th, 29th, or 28th
338 * may end up in the month after that! Many newer PCs support
339 * this type of alarm.
341 case month:
342 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
343 do {
344 if (alarm->time.tm_mon < 11)
345 alarm->time.tm_mon++;
346 else {
347 alarm->time.tm_mon = 0;
348 alarm->time.tm_year++;
350 days = rtc_month_days(alarm->time.tm_mon,
351 alarm->time.tm_year);
352 } while (days < alarm->time.tm_mday);
353 break;
355 /* Year rollover ... easy except for leap years! */
356 case year:
357 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
358 do {
359 alarm->time.tm_year++;
360 } while (!is_leap_year(alarm->time.tm_year + 1900)
361 && rtc_valid_tm(&alarm->time) != 0);
362 break;
364 default:
365 dev_warn(&rtc->dev, "alarm rollover not handled\n");
368 err = rtc_valid_tm(&alarm->time);
370 done:
371 if (err) {
372 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
373 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
374 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
375 alarm->time.tm_sec);
378 return err;
381 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
383 int err;
385 err = mutex_lock_interruptible(&rtc->ops_lock);
386 if (err)
387 return err;
388 if (rtc->ops == NULL)
389 err = -ENODEV;
390 else if (!rtc->ops->read_alarm)
391 err = -EINVAL;
392 else {
393 memset(alarm, 0, sizeof(struct rtc_wkalrm));
394 alarm->enabled = rtc->aie_timer.enabled;
395 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
397 mutex_unlock(&rtc->ops_lock);
399 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
400 return err;
402 EXPORT_SYMBOL_GPL(rtc_read_alarm);
404 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
406 struct rtc_time tm;
407 time64_t now, scheduled;
408 int err;
410 err = rtc_valid_tm(&alarm->time);
411 if (err)
412 return err;
414 scheduled = rtc_tm_to_time64(&alarm->time);
416 /* Make sure we're not setting alarms in the past */
417 err = __rtc_read_time(rtc, &tm);
418 if (err)
419 return err;
420 now = rtc_tm_to_time64(&tm);
421 if (scheduled <= now)
422 return -ETIME;
424 * XXX - We just checked to make sure the alarm time is not
425 * in the past, but there is still a race window where if
426 * the is alarm set for the next second and the second ticks
427 * over right here, before we set the alarm.
430 rtc_subtract_offset(rtc, &alarm->time);
432 if (!rtc->ops)
433 err = -ENODEV;
434 else if (!rtc->ops->set_alarm)
435 err = -EINVAL;
436 else
437 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
439 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
440 return err;
443 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
445 int err;
447 if (!rtc->ops)
448 return -ENODEV;
449 else if (!rtc->ops->set_alarm)
450 return -EINVAL;
452 err = rtc_valid_tm(&alarm->time);
453 if (err != 0)
454 return err;
456 err = rtc_valid_range(rtc, &alarm->time);
457 if (err)
458 return err;
460 err = mutex_lock_interruptible(&rtc->ops_lock);
461 if (err)
462 return err;
463 if (rtc->aie_timer.enabled)
464 rtc_timer_remove(rtc, &rtc->aie_timer);
466 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
467 rtc->aie_timer.period = 0;
468 if (alarm->enabled)
469 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
471 mutex_unlock(&rtc->ops_lock);
473 return err;
475 EXPORT_SYMBOL_GPL(rtc_set_alarm);
477 /* Called once per device from rtc_device_register */
478 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
480 int err;
481 struct rtc_time now;
483 err = rtc_valid_tm(&alarm->time);
484 if (err != 0)
485 return err;
487 err = rtc_read_time(rtc, &now);
488 if (err)
489 return err;
491 err = mutex_lock_interruptible(&rtc->ops_lock);
492 if (err)
493 return err;
495 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
496 rtc->aie_timer.period = 0;
498 /* Alarm has to be enabled & in the future for us to enqueue it */
499 if (alarm->enabled && (rtc_tm_to_ktime(now) <
500 rtc->aie_timer.node.expires)) {
502 rtc->aie_timer.enabled = 1;
503 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
504 trace_rtc_timer_enqueue(&rtc->aie_timer);
506 mutex_unlock(&rtc->ops_lock);
507 return err;
509 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
511 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
513 int err = mutex_lock_interruptible(&rtc->ops_lock);
514 if (err)
515 return err;
517 if (rtc->aie_timer.enabled != enabled) {
518 if (enabled)
519 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
520 else
521 rtc_timer_remove(rtc, &rtc->aie_timer);
524 if (err)
525 /* nothing */;
526 else if (!rtc->ops)
527 err = -ENODEV;
528 else if (!rtc->ops->alarm_irq_enable)
529 err = -EINVAL;
530 else
531 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
533 mutex_unlock(&rtc->ops_lock);
535 trace_rtc_alarm_irq_enable(enabled, err);
536 return err;
538 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
540 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
542 int err = mutex_lock_interruptible(&rtc->ops_lock);
543 if (err)
544 return err;
546 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
547 if (enabled == 0 && rtc->uie_irq_active) {
548 mutex_unlock(&rtc->ops_lock);
549 return rtc_dev_update_irq_enable_emul(rtc, 0);
551 #endif
552 /* make sure we're changing state */
553 if (rtc->uie_rtctimer.enabled == enabled)
554 goto out;
556 if (rtc->uie_unsupported) {
557 err = -EINVAL;
558 goto out;
561 if (enabled) {
562 struct rtc_time tm;
563 ktime_t now, onesec;
565 __rtc_read_time(rtc, &tm);
566 onesec = ktime_set(1, 0);
567 now = rtc_tm_to_ktime(tm);
568 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
569 rtc->uie_rtctimer.period = ktime_set(1, 0);
570 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
571 } else
572 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
574 out:
575 mutex_unlock(&rtc->ops_lock);
576 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
578 * Enable emulation if the driver did not provide
579 * the update_irq_enable function pointer or if returned
580 * -EINVAL to signal that it has been configured without
581 * interrupts or that are not available at the moment.
583 if (err == -EINVAL)
584 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
585 #endif
586 return err;
589 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
593 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
594 * @rtc: pointer to the rtc device
596 * This function is called when an AIE, UIE or PIE mode interrupt
597 * has occurred (or been emulated).
600 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
602 unsigned long flags;
604 /* mark one irq of the appropriate mode */
605 spin_lock_irqsave(&rtc->irq_lock, flags);
606 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
607 spin_unlock_irqrestore(&rtc->irq_lock, flags);
609 wake_up_interruptible(&rtc->irq_queue);
610 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
615 * rtc_aie_update_irq - AIE mode rtctimer hook
616 * @private: pointer to the rtc_device
618 * This functions is called when the aie_timer expires.
620 void rtc_aie_update_irq(void *private)
622 struct rtc_device *rtc = (struct rtc_device *)private;
623 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
628 * rtc_uie_update_irq - UIE mode rtctimer hook
629 * @private: pointer to the rtc_device
631 * This functions is called when the uie_timer expires.
633 void rtc_uie_update_irq(void *private)
635 struct rtc_device *rtc = (struct rtc_device *)private;
636 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
641 * rtc_pie_update_irq - PIE mode hrtimer hook
642 * @timer: pointer to the pie mode hrtimer
644 * This function is used to emulate PIE mode interrupts
645 * using an hrtimer. This function is called when the periodic
646 * hrtimer expires.
648 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
650 struct rtc_device *rtc;
651 ktime_t period;
652 int count;
653 rtc = container_of(timer, struct rtc_device, pie_timer);
655 period = NSEC_PER_SEC / rtc->irq_freq;
656 count = hrtimer_forward_now(timer, period);
658 rtc_handle_legacy_irq(rtc, count, RTC_PF);
660 return HRTIMER_RESTART;
664 * rtc_update_irq - Triggered when a RTC interrupt occurs.
665 * @rtc: the rtc device
666 * @num: how many irqs are being reported (usually one)
667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
668 * Context: any
670 void rtc_update_irq(struct rtc_device *rtc,
671 unsigned long num, unsigned long events)
673 if (IS_ERR_OR_NULL(rtc))
674 return;
676 pm_stay_awake(rtc->dev.parent);
677 schedule_work(&rtc->irqwork);
679 EXPORT_SYMBOL_GPL(rtc_update_irq);
681 static int __rtc_match(struct device *dev, const void *data)
683 const char *name = data;
685 if (strcmp(dev_name(dev), name) == 0)
686 return 1;
687 return 0;
690 struct rtc_device *rtc_class_open(const char *name)
692 struct device *dev;
693 struct rtc_device *rtc = NULL;
695 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
696 if (dev)
697 rtc = to_rtc_device(dev);
699 if (rtc) {
700 if (!try_module_get(rtc->owner)) {
701 put_device(dev);
702 rtc = NULL;
706 return rtc;
708 EXPORT_SYMBOL_GPL(rtc_class_open);
710 void rtc_class_close(struct rtc_device *rtc)
712 module_put(rtc->owner);
713 put_device(&rtc->dev);
715 EXPORT_SYMBOL_GPL(rtc_class_close);
717 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
720 * We always cancel the timer here first, because otherwise
721 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
722 * when we manage to start the timer before the callback
723 * returns HRTIMER_RESTART.
725 * We cannot use hrtimer_cancel() here as a running callback
726 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
727 * would spin forever.
729 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
730 return -1;
732 if (enabled) {
733 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
735 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
737 return 0;
741 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
742 * @rtc: the rtc device
743 * @enabled: true to enable periodic IRQs
744 * Context: any
746 * Note that rtc_irq_set_freq() should previously have been used to
747 * specify the desired frequency of periodic IRQ.
749 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
751 int err = 0;
753 while (rtc_update_hrtimer(rtc, enabled) < 0)
754 cpu_relax();
756 rtc->pie_enabled = enabled;
758 trace_rtc_irq_set_state(enabled, err);
759 return err;
763 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
764 * @rtc: the rtc device
765 * @freq: positive frequency
766 * Context: any
768 * Note that rtc_irq_set_state() is used to enable or disable the
769 * periodic IRQs.
771 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
773 int err = 0;
775 if (freq <= 0 || freq > RTC_MAX_FREQ)
776 return -EINVAL;
778 rtc->irq_freq = freq;
779 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
780 cpu_relax();
782 trace_rtc_irq_set_freq(freq, err);
783 return err;
787 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
788 * @rtc rtc device
789 * @timer timer being added.
791 * Enqueues a timer onto the rtc devices timerqueue and sets
792 * the next alarm event appropriately.
794 * Sets the enabled bit on the added timer.
796 * Must hold ops_lock for proper serialization of timerqueue
798 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
800 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
801 struct rtc_time tm;
802 ktime_t now;
804 timer->enabled = 1;
805 __rtc_read_time(rtc, &tm);
806 now = rtc_tm_to_ktime(tm);
808 /* Skip over expired timers */
809 while (next) {
810 if (next->expires >= now)
811 break;
812 next = timerqueue_iterate_next(next);
815 timerqueue_add(&rtc->timerqueue, &timer->node);
816 trace_rtc_timer_enqueue(timer);
817 if (!next || ktime_before(timer->node.expires, next->expires)) {
818 struct rtc_wkalrm alarm;
819 int err;
820 alarm.time = rtc_ktime_to_tm(timer->node.expires);
821 alarm.enabled = 1;
822 err = __rtc_set_alarm(rtc, &alarm);
823 if (err == -ETIME) {
824 pm_stay_awake(rtc->dev.parent);
825 schedule_work(&rtc->irqwork);
826 } else if (err) {
827 timerqueue_del(&rtc->timerqueue, &timer->node);
828 trace_rtc_timer_dequeue(timer);
829 timer->enabled = 0;
830 return err;
833 return 0;
836 static void rtc_alarm_disable(struct rtc_device *rtc)
838 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
839 return;
841 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
842 trace_rtc_alarm_irq_enable(0, 0);
846 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
847 * @rtc rtc device
848 * @timer timer being removed.
850 * Removes a timer onto the rtc devices timerqueue and sets
851 * the next alarm event appropriately.
853 * Clears the enabled bit on the removed timer.
855 * Must hold ops_lock for proper serialization of timerqueue
857 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
859 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
860 timerqueue_del(&rtc->timerqueue, &timer->node);
861 trace_rtc_timer_dequeue(timer);
862 timer->enabled = 0;
863 if (next == &timer->node) {
864 struct rtc_wkalrm alarm;
865 int err;
866 next = timerqueue_getnext(&rtc->timerqueue);
867 if (!next) {
868 rtc_alarm_disable(rtc);
869 return;
871 alarm.time = rtc_ktime_to_tm(next->expires);
872 alarm.enabled = 1;
873 err = __rtc_set_alarm(rtc, &alarm);
874 if (err == -ETIME) {
875 pm_stay_awake(rtc->dev.parent);
876 schedule_work(&rtc->irqwork);
882 * rtc_timer_do_work - Expires rtc timers
883 * @rtc rtc device
884 * @timer timer being removed.
886 * Expires rtc timers. Reprograms next alarm event if needed.
887 * Called via worktask.
889 * Serializes access to timerqueue via ops_lock mutex
891 void rtc_timer_do_work(struct work_struct *work)
893 struct rtc_timer *timer;
894 struct timerqueue_node *next;
895 ktime_t now;
896 struct rtc_time tm;
898 struct rtc_device *rtc =
899 container_of(work, struct rtc_device, irqwork);
901 mutex_lock(&rtc->ops_lock);
902 again:
903 __rtc_read_time(rtc, &tm);
904 now = rtc_tm_to_ktime(tm);
905 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
906 if (next->expires > now)
907 break;
909 /* expire timer */
910 timer = container_of(next, struct rtc_timer, node);
911 timerqueue_del(&rtc->timerqueue, &timer->node);
912 trace_rtc_timer_dequeue(timer);
913 timer->enabled = 0;
914 if (timer->func)
915 timer->func(timer->private_data);
917 trace_rtc_timer_fired(timer);
918 /* Re-add/fwd periodic timers */
919 if (ktime_to_ns(timer->period)) {
920 timer->node.expires = ktime_add(timer->node.expires,
921 timer->period);
922 timer->enabled = 1;
923 timerqueue_add(&rtc->timerqueue, &timer->node);
924 trace_rtc_timer_enqueue(timer);
928 /* Set next alarm */
929 if (next) {
930 struct rtc_wkalrm alarm;
931 int err;
932 int retry = 3;
934 alarm.time = rtc_ktime_to_tm(next->expires);
935 alarm.enabled = 1;
936 reprogram:
937 err = __rtc_set_alarm(rtc, &alarm);
938 if (err == -ETIME)
939 goto again;
940 else if (err) {
941 if (retry-- > 0)
942 goto reprogram;
944 timer = container_of(next, struct rtc_timer, node);
945 timerqueue_del(&rtc->timerqueue, &timer->node);
946 trace_rtc_timer_dequeue(timer);
947 timer->enabled = 0;
948 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
949 goto again;
951 } else
952 rtc_alarm_disable(rtc);
954 pm_relax(rtc->dev.parent);
955 mutex_unlock(&rtc->ops_lock);
959 /* rtc_timer_init - Initializes an rtc_timer
960 * @timer: timer to be intiialized
961 * @f: function pointer to be called when timer fires
962 * @data: private data passed to function pointer
964 * Kernel interface to initializing an rtc_timer.
966 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
968 timerqueue_init(&timer->node);
969 timer->enabled = 0;
970 timer->func = f;
971 timer->private_data = data;
974 /* rtc_timer_start - Sets an rtc_timer to fire in the future
975 * @ rtc: rtc device to be used
976 * @ timer: timer being set
977 * @ expires: time at which to expire the timer
978 * @ period: period that the timer will recur
980 * Kernel interface to set an rtc_timer
982 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
983 ktime_t expires, ktime_t period)
985 int ret = 0;
986 mutex_lock(&rtc->ops_lock);
987 if (timer->enabled)
988 rtc_timer_remove(rtc, timer);
990 timer->node.expires = expires;
991 timer->period = period;
993 ret = rtc_timer_enqueue(rtc, timer);
995 mutex_unlock(&rtc->ops_lock);
996 return ret;
999 /* rtc_timer_cancel - Stops an rtc_timer
1000 * @ rtc: rtc device to be used
1001 * @ timer: timer being set
1003 * Kernel interface to cancel an rtc_timer
1005 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1007 mutex_lock(&rtc->ops_lock);
1008 if (timer->enabled)
1009 rtc_timer_remove(rtc, timer);
1010 mutex_unlock(&rtc->ops_lock);
1014 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1015 * @ rtc: rtc device to be used
1016 * @ offset: the offset in parts per billion
1018 * see below for details.
1020 * Kernel interface to read rtc clock offset
1021 * Returns 0 on success, or a negative number on error.
1022 * If read_offset() is not implemented for the rtc, return -EINVAL
1024 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1026 int ret;
1028 if (!rtc->ops)
1029 return -ENODEV;
1031 if (!rtc->ops->read_offset)
1032 return -EINVAL;
1034 mutex_lock(&rtc->ops_lock);
1035 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1036 mutex_unlock(&rtc->ops_lock);
1038 trace_rtc_read_offset(*offset, ret);
1039 return ret;
1043 * rtc_set_offset - Adjusts the duration of the average second
1044 * @ rtc: rtc device to be used
1045 * @ offset: the offset in parts per billion
1047 * Some rtc's allow an adjustment to the average duration of a second
1048 * to compensate for differences in the actual clock rate due to temperature,
1049 * the crystal, capacitor, etc.
1051 * The adjustment applied is as follows:
1052 * t = t0 * (1 + offset * 1e-9)
1053 * where t0 is the measured length of 1 RTC second with offset = 0
1055 * Kernel interface to adjust an rtc clock offset.
1056 * Return 0 on success, or a negative number on error.
1057 * If the rtc offset is not setable (or not implemented), return -EINVAL
1059 int rtc_set_offset(struct rtc_device *rtc, long offset)
1061 int ret;
1063 if (!rtc->ops)
1064 return -ENODEV;
1066 if (!rtc->ops->set_offset)
1067 return -EINVAL;
1069 mutex_lock(&rtc->ops_lock);
1070 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1071 mutex_unlock(&rtc->ops_lock);
1073 trace_rtc_set_offset(offset, ret);
1074 return ret;