2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head
*pid_hash
;
45 static unsigned int pidhash_shift
= 4;
46 struct pid init_struct_pid
= INIT_STRUCT_PID
;
48 int pid_max
= PID_MAX_DEFAULT
;
50 #define RESERVED_PIDS 300
52 int pid_max_min
= RESERVED_PIDS
+ 1;
53 int pid_max_max
= PID_MAX_LIMIT
;
55 static inline int mk_pid(struct pid_namespace
*pid_ns
,
56 struct pidmap
*map
, int off
)
58 return (map
- pid_ns
->pidmap
)*BITS_PER_PAGE
+ off
;
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
70 struct pid_namespace init_pid_ns
= {
72 .refcount
= ATOMIC_INIT(2),
75 [ 0 ... PIDMAP_ENTRIES
-1] = { ATOMIC_INIT(BITS_PER_PAGE
), NULL
}
78 .nr_hashed
= PIDNS_HASH_ADDING
,
80 .child_reaper
= &init_task
,
81 .user_ns
= &init_user_ns
,
82 .proc_inum
= PROC_PID_INIT_INO
,
84 EXPORT_SYMBOL_GPL(init_pid_ns
);
87 * Note: disable interrupts while the pidmap_lock is held as an
88 * interrupt might come in and do read_lock(&tasklist_lock).
90 * If we don't disable interrupts there is a nasty deadlock between
91 * detach_pid()->free_pid() and another cpu that does
92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
93 * read_lock(&tasklist_lock);
95 * After we clean up the tasklist_lock and know there are no
96 * irq handlers that take it we can leave the interrupts enabled.
97 * For now it is easier to be safe than to prove it can't happen.
100 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
102 static void free_pidmap(struct upid
*upid
)
105 struct pidmap
*map
= upid
->ns
->pidmap
+ nr
/ BITS_PER_PAGE
;
106 int offset
= nr
& BITS_PER_PAGE_MASK
;
108 clear_bit(offset
, map
->page
);
109 atomic_inc(&map
->nr_free
);
113 * If we started walking pids at 'base', is 'a' seen before 'b'?
115 static int pid_before(int base
, int a
, int b
)
118 * This is the same as saying
120 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121 * and that mapping orders 'a' and 'b' with respect to 'base'.
123 return (unsigned)(a
- base
) < (unsigned)(b
- base
);
127 * We might be racing with someone else trying to set pid_ns->last_pid
128 * at the pid allocation time (there's also a sysctl for this, but racing
129 * with this one is OK, see comment in kernel/pid_namespace.c about it).
130 * We want the winner to have the "later" value, because if the
131 * "earlier" value prevails, then a pid may get reused immediately.
133 * Since pids rollover, it is not sufficient to just pick the bigger
134 * value. We have to consider where we started counting from.
136 * 'base' is the value of pid_ns->last_pid that we observed when
137 * we started looking for a pid.
139 * 'pid' is the pid that we eventually found.
141 static void set_last_pid(struct pid_namespace
*pid_ns
, int base
, int pid
)
144 int last_write
= base
;
147 last_write
= cmpxchg(&pid_ns
->last_pid
, prev
, pid
);
148 } while ((prev
!= last_write
) && (pid_before(base
, last_write
, pid
)));
151 static int alloc_pidmap(struct pid_namespace
*pid_ns
)
153 int i
, offset
, max_scan
, pid
, last
= pid_ns
->last_pid
;
159 offset
= pid
& BITS_PER_PAGE_MASK
;
160 map
= &pid_ns
->pidmap
[pid
/BITS_PER_PAGE
];
162 * If last_pid points into the middle of the map->page we
163 * want to scan this bitmap block twice, the second time
164 * we start with offset == 0 (or RESERVED_PIDS).
166 max_scan
= DIV_ROUND_UP(pid_max
, BITS_PER_PAGE
) - !offset
;
167 for (i
= 0; i
<= max_scan
; ++i
) {
168 if (unlikely(!map
->page
)) {
169 void *page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
171 * Free the page if someone raced with us
174 spin_lock_irq(&pidmap_lock
);
179 spin_unlock_irq(&pidmap_lock
);
181 if (unlikely(!map
->page
))
184 if (likely(atomic_read(&map
->nr_free
))) {
186 if (!test_and_set_bit(offset
, map
->page
)) {
187 atomic_dec(&map
->nr_free
);
188 set_last_pid(pid_ns
, last
, pid
);
191 offset
= find_next_offset(map
, offset
);
192 if (offset
>= BITS_PER_PAGE
)
194 pid
= mk_pid(pid_ns
, map
, offset
);
199 if (map
< &pid_ns
->pidmap
[(pid_max
-1)/BITS_PER_PAGE
]) {
203 map
= &pid_ns
->pidmap
[0];
204 offset
= RESERVED_PIDS
;
205 if (unlikely(last
== offset
))
208 pid
= mk_pid(pid_ns
, map
, offset
);
213 int next_pidmap(struct pid_namespace
*pid_ns
, unsigned int last
)
216 struct pidmap
*map
, *end
;
218 if (last
>= PID_MAX_LIMIT
)
221 offset
= (last
+ 1) & BITS_PER_PAGE_MASK
;
222 map
= &pid_ns
->pidmap
[(last
+ 1)/BITS_PER_PAGE
];
223 end
= &pid_ns
->pidmap
[PIDMAP_ENTRIES
];
224 for (; map
< end
; map
++, offset
= 0) {
225 if (unlikely(!map
->page
))
227 offset
= find_next_bit((map
)->page
, BITS_PER_PAGE
, offset
);
228 if (offset
< BITS_PER_PAGE
)
229 return mk_pid(pid_ns
, map
, offset
);
234 void put_pid(struct pid
*pid
)
236 struct pid_namespace
*ns
;
241 ns
= pid
->numbers
[pid
->level
].ns
;
242 if ((atomic_read(&pid
->count
) == 1) ||
243 atomic_dec_and_test(&pid
->count
)) {
244 kmem_cache_free(ns
->pid_cachep
, pid
);
248 EXPORT_SYMBOL_GPL(put_pid
);
250 static void delayed_put_pid(struct rcu_head
*rhp
)
252 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
256 void free_pid(struct pid
*pid
)
258 /* We can be called with write_lock_irq(&tasklist_lock) held */
262 spin_lock_irqsave(&pidmap_lock
, flags
);
263 for (i
= 0; i
<= pid
->level
; i
++) {
264 struct upid
*upid
= pid
->numbers
+ i
;
265 struct pid_namespace
*ns
= upid
->ns
;
266 hlist_del_rcu(&upid
->pid_chain
);
267 switch(--ns
->nr_hashed
) {
270 /* When all that is left in the pid namespace
271 * is the reaper wake up the reaper. The reaper
272 * may be sleeping in zap_pid_ns_processes().
274 wake_up_process(ns
->child_reaper
);
276 case PIDNS_HASH_ADDING
:
277 /* Handle a fork failure of the first process */
278 WARN_ON(ns
->child_reaper
);
282 schedule_work(&ns
->proc_work
);
286 spin_unlock_irqrestore(&pidmap_lock
, flags
);
288 for (i
= 0; i
<= pid
->level
; i
++)
289 free_pidmap(pid
->numbers
+ i
);
291 call_rcu(&pid
->rcu
, delayed_put_pid
);
294 struct pid
*alloc_pid(struct pid_namespace
*ns
)
299 struct pid_namespace
*tmp
;
302 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
307 pid
->level
= ns
->level
;
308 for (i
= ns
->level
; i
>= 0; i
--) {
309 nr
= alloc_pidmap(tmp
);
313 pid
->numbers
[i
].nr
= nr
;
314 pid
->numbers
[i
].ns
= tmp
;
318 if (unlikely(is_child_reaper(pid
))) {
319 if (pid_ns_prepare_proc(ns
))
324 atomic_set(&pid
->count
, 1);
325 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
326 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
328 upid
= pid
->numbers
+ ns
->level
;
329 spin_lock_irq(&pidmap_lock
);
330 if (!(ns
->nr_hashed
& PIDNS_HASH_ADDING
))
332 for ( ; upid
>= pid
->numbers
; --upid
) {
333 hlist_add_head_rcu(&upid
->pid_chain
,
334 &pid_hash
[pid_hashfn(upid
->nr
, upid
->ns
)]);
335 upid
->ns
->nr_hashed
++;
337 spin_unlock_irq(&pidmap_lock
);
343 spin_unlock_irq(&pidmap_lock
);
347 while (++i
<= ns
->level
)
348 free_pidmap(pid
->numbers
+ i
);
350 kmem_cache_free(ns
->pid_cachep
, pid
);
355 void disable_pid_allocation(struct pid_namespace
*ns
)
357 spin_lock_irq(&pidmap_lock
);
358 ns
->nr_hashed
&= ~PIDNS_HASH_ADDING
;
359 spin_unlock_irq(&pidmap_lock
);
362 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
366 hlist_for_each_entry_rcu(pnr
,
367 &pid_hash
[pid_hashfn(nr
, ns
)], pid_chain
)
368 if (pnr
->nr
== nr
&& pnr
->ns
== ns
)
369 return container_of(pnr
, struct pid
,
374 EXPORT_SYMBOL_GPL(find_pid_ns
);
376 struct pid
*find_vpid(int nr
)
378 return find_pid_ns(nr
, task_active_pid_ns(current
));
380 EXPORT_SYMBOL_GPL(find_vpid
);
383 * attach_pid() must be called with the tasklist_lock write-held.
385 void attach_pid(struct task_struct
*task
, enum pid_type type
)
387 struct pid_link
*link
= &task
->pids
[type
];
388 hlist_add_head_rcu(&link
->node
, &link
->pid
->tasks
[type
]);
391 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
394 struct pid_link
*link
;
398 link
= &task
->pids
[type
];
401 hlist_del_rcu(&link
->node
);
404 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
405 if (!hlist_empty(&pid
->tasks
[tmp
]))
411 void detach_pid(struct task_struct
*task
, enum pid_type type
)
413 __change_pid(task
, type
, NULL
);
416 void change_pid(struct task_struct
*task
, enum pid_type type
,
419 __change_pid(task
, type
, pid
);
420 attach_pid(task
, type
);
423 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
424 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
427 new->pids
[type
].pid
= old
->pids
[type
].pid
;
428 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
431 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
433 struct task_struct
*result
= NULL
;
435 struct hlist_node
*first
;
436 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
437 lockdep_tasklist_lock_is_held());
439 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
443 EXPORT_SYMBOL(pid_task
);
446 * Must be called under rcu_read_lock().
448 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
450 rcu_lockdep_assert(rcu_read_lock_held(),
451 "find_task_by_pid_ns() needs rcu_read_lock()"
453 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
456 struct task_struct
*find_task_by_vpid(pid_t vnr
)
458 return find_task_by_pid_ns(vnr
, task_active_pid_ns(current
));
461 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
465 if (type
!= PIDTYPE_PID
)
466 task
= task
->group_leader
;
467 pid
= get_pid(task
->pids
[type
].pid
);
471 EXPORT_SYMBOL_GPL(get_task_pid
);
473 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
475 struct task_struct
*result
;
477 result
= pid_task(pid
, type
);
479 get_task_struct(result
);
483 EXPORT_SYMBOL_GPL(get_pid_task
);
485 struct pid
*find_get_pid(pid_t nr
)
490 pid
= get_pid(find_vpid(nr
));
495 EXPORT_SYMBOL_GPL(find_get_pid
);
497 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
502 if (pid
&& ns
->level
<= pid
->level
) {
503 upid
= &pid
->numbers
[ns
->level
];
509 EXPORT_SYMBOL_GPL(pid_nr_ns
);
511 pid_t
pid_vnr(struct pid
*pid
)
513 return pid_nr_ns(pid
, task_active_pid_ns(current
));
515 EXPORT_SYMBOL_GPL(pid_vnr
);
517 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
518 struct pid_namespace
*ns
)
524 ns
= task_active_pid_ns(current
);
525 if (likely(pid_alive(task
))) {
526 if (type
!= PIDTYPE_PID
)
527 task
= task
->group_leader
;
528 nr
= pid_nr_ns(task
->pids
[type
].pid
, ns
);
534 EXPORT_SYMBOL(__task_pid_nr_ns
);
536 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
538 return pid_nr_ns(task_tgid(tsk
), ns
);
540 EXPORT_SYMBOL(task_tgid_nr_ns
);
542 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
544 return ns_of_pid(task_pid(tsk
));
546 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
549 * Used by proc to find the first pid that is greater than or equal to nr.
551 * If there is a pid at nr this function is exactly the same as find_pid_ns.
553 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
558 pid
= find_pid_ns(nr
, ns
);
561 nr
= next_pidmap(ns
, nr
);
568 * The pid hash table is scaled according to the amount of memory in the
569 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
572 void __init
pidhash_init(void)
574 unsigned int i
, pidhash_size
;
576 pid_hash
= alloc_large_system_hash("PID", sizeof(*pid_hash
), 0, 18,
577 HASH_EARLY
| HASH_SMALL
,
578 &pidhash_shift
, NULL
,
580 pidhash_size
= 1U << pidhash_shift
;
582 for (i
= 0; i
< pidhash_size
; i
++)
583 INIT_HLIST_HEAD(&pid_hash
[i
]);
586 void __init
pidmap_init(void)
588 /* Veryify no one has done anything silly */
589 BUILD_BUG_ON(PID_MAX_LIMIT
>= PIDNS_HASH_ADDING
);
591 /* bump default and minimum pid_max based on number of cpus */
592 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
593 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
594 pid_max_min
= max_t(int, pid_max_min
,
595 PIDS_PER_CPU_MIN
* num_possible_cpus());
596 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
598 init_pid_ns
.pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
599 /* Reserve PID 0. We never call free_pidmap(0) */
600 set_bit(0, init_pid_ns
.pidmap
[0].page
);
601 atomic_dec(&init_pid_ns
.pidmap
[0].nr_free
);
603 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
604 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);