mm: page_alloc: reduce cost of the fair zone allocation policy
[linux/fpc-iii.git] / mm / mmap.c
blob085bcd890ad2dd1e0d252eb860a91f578c868297
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
46 #include "internal.h"
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags) (0)
50 #endif
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len) (addr)
54 #endif
56 static void unmap_region(struct mm_struct *mm,
57 struct vm_area_struct *vma, struct vm_area_struct *prev,
58 unsigned long start, unsigned long end);
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
86 EXPORT_SYMBOL(vm_get_page_prot);
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
96 * other variables. It can be updated by several CPUs frequently.
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
101 * The global memory commitment made in the system can be a metric
102 * that can be used to drive ballooning decisions when Linux is hosted
103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104 * balancing memory across competing virtual machines that are hosted.
105 * Several metrics drive this policy engine including the guest reported
106 * memory commitment.
108 unsigned long vm_memory_committed(void)
110 return percpu_counter_read_positive(&vm_committed_as);
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
115 * Check that a process has enough memory to allocate a new virtual
116 * mapping. 0 means there is enough memory for the allocation to
117 * succeed and -ENOMEM implies there is not.
119 * We currently support three overcommit policies, which are set via the
120 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123 * Additional code 2002 Jul 20 by Robert Love.
125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
127 * Note this is a helper function intended to be used by LSMs which
128 * wish to use this logic.
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
132 unsigned long free, allowed, reserve;
134 vm_acct_memory(pages);
137 * Sometimes we want to use more memory than we have
139 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 return 0;
142 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143 free = global_page_state(NR_FREE_PAGES);
144 free += global_page_state(NR_FILE_PAGES);
147 * shmem pages shouldn't be counted as free in this
148 * case, they can't be purged, only swapped out, and
149 * that won't affect the overall amount of available
150 * memory in the system.
152 free -= global_page_state(NR_SHMEM);
154 free += get_nr_swap_pages();
157 * Any slabs which are created with the
158 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159 * which are reclaimable, under pressure. The dentry
160 * cache and most inode caches should fall into this
162 free += global_page_state(NR_SLAB_RECLAIMABLE);
165 * Leave reserved pages. The pages are not for anonymous pages.
167 if (free <= totalreserve_pages)
168 goto error;
169 else
170 free -= totalreserve_pages;
173 * Reserve some for root
175 if (!cap_sys_admin)
176 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
178 if (free > pages)
179 return 0;
181 goto error;
184 allowed = vm_commit_limit();
186 * Reserve some for root
188 if (!cap_sys_admin)
189 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
192 * Don't let a single process grow so big a user can't recover
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
204 return -ENOMEM;
208 * Requires inode->i_mapping->i_mmap_mutex
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
230 void unlink_file_vma(struct vm_area_struct *vma)
232 struct file *file = vma->vm_file;
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
243 * Close a vm structure and free it, returning the next.
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
247 struct vm_area_struct *next = vma->vm_next;
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
269 down_write(&mm->mmap_sem);
271 #ifdef CONFIG_COMPAT_BRK
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
350 return max;
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
394 return bug ? -1 : i;
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
399 struct rb_node *nd;
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409 void validate_mm(struct mm_struct *mm)
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
439 BUG_ON(bug);
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
454 static void vma_gap_update(struct vm_area_struct *vma)
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
478 validate_mm_rb(root, vma);
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
505 struct anon_vma_chain *avc;
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
514 struct anon_vma_chain *avc;
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
572 if (vma->vm_start > end)
573 break;
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
579 return nr_pages;
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
606 static void __vma_link_file(struct vm_area_struct *vma)
608 struct file *file;
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
641 struct address_space *mapping = NULL;
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
655 mm->map_count++;
656 validate_mm(mm);
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
679 struct vm_area_struct *next;
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
686 /* Kill the cache */
687 vmacache_invalidate(mm);
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
697 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
700 struct mm_struct *mm = vma->vm_mm;
701 struct vm_area_struct *next = vma->vm_next;
702 struct vm_area_struct *importer = NULL;
703 struct address_space *mapping = NULL;
704 struct rb_root *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
709 int remove_next = 0;
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL;
714 if (end >= next->vm_end) {
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
719 again: remove_next = 1 + (end > next->vm_end);
720 end = next->vm_end;
721 exporter = next;
722 importer = vma;
723 } else if (end > next->vm_start) {
725 * vma expands, overlapping part of the next:
726 * mprotect case 5 shifting the boundary up.
728 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729 exporter = next;
730 importer = vma;
731 } else if (end < vma->vm_end) {
733 * vma shrinks, and !insert tells it's not
734 * split_vma inserting another: so it must be
735 * mprotect case 4 shifting the boundary down.
737 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738 exporter = vma;
739 importer = next;
743 * Easily overlooked: when mprotect shifts the boundary,
744 * make sure the expanding vma has anon_vma set if the
745 * shrinking vma had, to cover any anon pages imported.
747 if (exporter && exporter->anon_vma && !importer->anon_vma) {
748 int error;
750 error = anon_vma_clone(importer, exporter);
751 if (error)
752 return error;
753 importer->anon_vma = exporter->anon_vma;
757 if (file) {
758 mapping = file->f_mapping;
759 if (!(vma->vm_flags & VM_NONLINEAR)) {
760 root = &mapping->i_mmap;
761 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
763 if (adjust_next)
764 uprobe_munmap(next, next->vm_start,
765 next->vm_end);
768 mutex_lock(&mapping->i_mmap_mutex);
769 if (insert) {
771 * Put into interval tree now, so instantiated pages
772 * are visible to arm/parisc __flush_dcache_page
773 * throughout; but we cannot insert into address
774 * space until vma start or end is updated.
776 __vma_link_file(insert);
780 vma_adjust_trans_huge(vma, start, end, adjust_next);
782 anon_vma = vma->anon_vma;
783 if (!anon_vma && adjust_next)
784 anon_vma = next->anon_vma;
785 if (anon_vma) {
786 VM_BUG_ON(adjust_next && next->anon_vma &&
787 anon_vma != next->anon_vma);
788 anon_vma_lock_write(anon_vma);
789 anon_vma_interval_tree_pre_update_vma(vma);
790 if (adjust_next)
791 anon_vma_interval_tree_pre_update_vma(next);
794 if (root) {
795 flush_dcache_mmap_lock(mapping);
796 vma_interval_tree_remove(vma, root);
797 if (adjust_next)
798 vma_interval_tree_remove(next, root);
801 if (start != vma->vm_start) {
802 vma->vm_start = start;
803 start_changed = true;
805 if (end != vma->vm_end) {
806 vma->vm_end = end;
807 end_changed = true;
809 vma->vm_pgoff = pgoff;
810 if (adjust_next) {
811 next->vm_start += adjust_next << PAGE_SHIFT;
812 next->vm_pgoff += adjust_next;
815 if (root) {
816 if (adjust_next)
817 vma_interval_tree_insert(next, root);
818 vma_interval_tree_insert(vma, root);
819 flush_dcache_mmap_unlock(mapping);
822 if (remove_next) {
824 * vma_merge has merged next into vma, and needs
825 * us to remove next before dropping the locks.
827 __vma_unlink(mm, next, vma);
828 if (file)
829 __remove_shared_vm_struct(next, file, mapping);
830 } else if (insert) {
832 * split_vma has split insert from vma, and needs
833 * us to insert it before dropping the locks
834 * (it may either follow vma or precede it).
836 __insert_vm_struct(mm, insert);
837 } else {
838 if (start_changed)
839 vma_gap_update(vma);
840 if (end_changed) {
841 if (!next)
842 mm->highest_vm_end = end;
843 else if (!adjust_next)
844 vma_gap_update(next);
848 if (anon_vma) {
849 anon_vma_interval_tree_post_update_vma(vma);
850 if (adjust_next)
851 anon_vma_interval_tree_post_update_vma(next);
852 anon_vma_unlock_write(anon_vma);
854 if (mapping)
855 mutex_unlock(&mapping->i_mmap_mutex);
857 if (root) {
858 uprobe_mmap(vma);
860 if (adjust_next)
861 uprobe_mmap(next);
864 if (remove_next) {
865 if (file) {
866 uprobe_munmap(next, next->vm_start, next->vm_end);
867 fput(file);
869 if (next->anon_vma)
870 anon_vma_merge(vma, next);
871 mm->map_count--;
872 mpol_put(vma_policy(next));
873 kmem_cache_free(vm_area_cachep, next);
875 * In mprotect's case 6 (see comments on vma_merge),
876 * we must remove another next too. It would clutter
877 * up the code too much to do both in one go.
879 next = vma->vm_next;
880 if (remove_next == 2)
881 goto again;
882 else if (next)
883 vma_gap_update(next);
884 else
885 mm->highest_vm_end = end;
887 if (insert && file)
888 uprobe_mmap(insert);
890 validate_mm(mm);
892 return 0;
896 * If the vma has a ->close operation then the driver probably needs to release
897 * per-vma resources, so we don't attempt to merge those.
899 static inline int is_mergeable_vma(struct vm_area_struct *vma,
900 struct file *file, unsigned long vm_flags)
903 * VM_SOFTDIRTY should not prevent from VMA merging, if we
904 * match the flags but dirty bit -- the caller should mark
905 * merged VMA as dirty. If dirty bit won't be excluded from
906 * comparison, we increase pressue on the memory system forcing
907 * the kernel to generate new VMAs when old one could be
908 * extended instead.
910 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
911 return 0;
912 if (vma->vm_file != file)
913 return 0;
914 if (vma->vm_ops && vma->vm_ops->close)
915 return 0;
916 return 1;
919 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
920 struct anon_vma *anon_vma2,
921 struct vm_area_struct *vma)
924 * The list_is_singular() test is to avoid merging VMA cloned from
925 * parents. This can improve scalability caused by anon_vma lock.
927 if ((!anon_vma1 || !anon_vma2) && (!vma ||
928 list_is_singular(&vma->anon_vma_chain)))
929 return 1;
930 return anon_vma1 == anon_vma2;
934 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
935 * in front of (at a lower virtual address and file offset than) the vma.
937 * We cannot merge two vmas if they have differently assigned (non-NULL)
938 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
940 * We don't check here for the merged mmap wrapping around the end of pagecache
941 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
942 * wrap, nor mmaps which cover the final page at index -1UL.
944 static int
945 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
946 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
948 if (is_mergeable_vma(vma, file, vm_flags) &&
949 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
950 if (vma->vm_pgoff == vm_pgoff)
951 return 1;
953 return 0;
957 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
958 * beyond (at a higher virtual address and file offset than) the vma.
960 * We cannot merge two vmas if they have differently assigned (non-NULL)
961 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
963 static int
964 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
965 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
967 if (is_mergeable_vma(vma, file, vm_flags) &&
968 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
969 pgoff_t vm_pglen;
970 vm_pglen = vma_pages(vma);
971 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
972 return 1;
974 return 0;
978 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
979 * whether that can be merged with its predecessor or its successor.
980 * Or both (it neatly fills a hole).
982 * In most cases - when called for mmap, brk or mremap - [addr,end) is
983 * certain not to be mapped by the time vma_merge is called; but when
984 * called for mprotect, it is certain to be already mapped (either at
985 * an offset within prev, or at the start of next), and the flags of
986 * this area are about to be changed to vm_flags - and the no-change
987 * case has already been eliminated.
989 * The following mprotect cases have to be considered, where AAAA is
990 * the area passed down from mprotect_fixup, never extending beyond one
991 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
993 * AAAA AAAA AAAA AAAA
994 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
995 * cannot merge might become might become might become
996 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
997 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
998 * mremap move: PPPPNNNNNNNN 8
999 * AAAA
1000 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1001 * might become case 1 below case 2 below case 3 below
1003 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1004 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1006 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1007 struct vm_area_struct *prev, unsigned long addr,
1008 unsigned long end, unsigned long vm_flags,
1009 struct anon_vma *anon_vma, struct file *file,
1010 pgoff_t pgoff, struct mempolicy *policy)
1012 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1013 struct vm_area_struct *area, *next;
1014 int err;
1017 * We later require that vma->vm_flags == vm_flags,
1018 * so this tests vma->vm_flags & VM_SPECIAL, too.
1020 if (vm_flags & VM_SPECIAL)
1021 return NULL;
1023 if (prev)
1024 next = prev->vm_next;
1025 else
1026 next = mm->mmap;
1027 area = next;
1028 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1029 next = next->vm_next;
1032 * Can it merge with the predecessor?
1034 if (prev && prev->vm_end == addr &&
1035 mpol_equal(vma_policy(prev), policy) &&
1036 can_vma_merge_after(prev, vm_flags,
1037 anon_vma, file, pgoff)) {
1039 * OK, it can. Can we now merge in the successor as well?
1041 if (next && end == next->vm_start &&
1042 mpol_equal(policy, vma_policy(next)) &&
1043 can_vma_merge_before(next, vm_flags,
1044 anon_vma, file, pgoff+pglen) &&
1045 is_mergeable_anon_vma(prev->anon_vma,
1046 next->anon_vma, NULL)) {
1047 /* cases 1, 6 */
1048 err = vma_adjust(prev, prev->vm_start,
1049 next->vm_end, prev->vm_pgoff, NULL);
1050 } else /* cases 2, 5, 7 */
1051 err = vma_adjust(prev, prev->vm_start,
1052 end, prev->vm_pgoff, NULL);
1053 if (err)
1054 return NULL;
1055 khugepaged_enter_vma_merge(prev);
1056 return prev;
1060 * Can this new request be merged in front of next?
1062 if (next && end == next->vm_start &&
1063 mpol_equal(policy, vma_policy(next)) &&
1064 can_vma_merge_before(next, vm_flags,
1065 anon_vma, file, pgoff+pglen)) {
1066 if (prev && addr < prev->vm_end) /* case 4 */
1067 err = vma_adjust(prev, prev->vm_start,
1068 addr, prev->vm_pgoff, NULL);
1069 else /* cases 3, 8 */
1070 err = vma_adjust(area, addr, next->vm_end,
1071 next->vm_pgoff - pglen, NULL);
1072 if (err)
1073 return NULL;
1074 khugepaged_enter_vma_merge(area);
1075 return area;
1078 return NULL;
1082 * Rough compatbility check to quickly see if it's even worth looking
1083 * at sharing an anon_vma.
1085 * They need to have the same vm_file, and the flags can only differ
1086 * in things that mprotect may change.
1088 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1089 * we can merge the two vma's. For example, we refuse to merge a vma if
1090 * there is a vm_ops->close() function, because that indicates that the
1091 * driver is doing some kind of reference counting. But that doesn't
1092 * really matter for the anon_vma sharing case.
1094 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1096 return a->vm_end == b->vm_start &&
1097 mpol_equal(vma_policy(a), vma_policy(b)) &&
1098 a->vm_file == b->vm_file &&
1099 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1100 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1104 * Do some basic sanity checking to see if we can re-use the anon_vma
1105 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1106 * the same as 'old', the other will be the new one that is trying
1107 * to share the anon_vma.
1109 * NOTE! This runs with mm_sem held for reading, so it is possible that
1110 * the anon_vma of 'old' is concurrently in the process of being set up
1111 * by another page fault trying to merge _that_. But that's ok: if it
1112 * is being set up, that automatically means that it will be a singleton
1113 * acceptable for merging, so we can do all of this optimistically. But
1114 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1116 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1117 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1118 * is to return an anon_vma that is "complex" due to having gone through
1119 * a fork).
1121 * We also make sure that the two vma's are compatible (adjacent,
1122 * and with the same memory policies). That's all stable, even with just
1123 * a read lock on the mm_sem.
1125 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1127 if (anon_vma_compatible(a, b)) {
1128 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1130 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1131 return anon_vma;
1133 return NULL;
1137 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1138 * neighbouring vmas for a suitable anon_vma, before it goes off
1139 * to allocate a new anon_vma. It checks because a repetitive
1140 * sequence of mprotects and faults may otherwise lead to distinct
1141 * anon_vmas being allocated, preventing vma merge in subsequent
1142 * mprotect.
1144 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1146 struct anon_vma *anon_vma;
1147 struct vm_area_struct *near;
1149 near = vma->vm_next;
1150 if (!near)
1151 goto try_prev;
1153 anon_vma = reusable_anon_vma(near, vma, near);
1154 if (anon_vma)
1155 return anon_vma;
1156 try_prev:
1157 near = vma->vm_prev;
1158 if (!near)
1159 goto none;
1161 anon_vma = reusable_anon_vma(near, near, vma);
1162 if (anon_vma)
1163 return anon_vma;
1164 none:
1166 * There's no absolute need to look only at touching neighbours:
1167 * we could search further afield for "compatible" anon_vmas.
1168 * But it would probably just be a waste of time searching,
1169 * or lead to too many vmas hanging off the same anon_vma.
1170 * We're trying to allow mprotect remerging later on,
1171 * not trying to minimize memory used for anon_vmas.
1173 return NULL;
1176 #ifdef CONFIG_PROC_FS
1177 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1178 struct file *file, long pages)
1180 const unsigned long stack_flags
1181 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1183 mm->total_vm += pages;
1185 if (file) {
1186 mm->shared_vm += pages;
1187 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1188 mm->exec_vm += pages;
1189 } else if (flags & stack_flags)
1190 mm->stack_vm += pages;
1192 #endif /* CONFIG_PROC_FS */
1195 * If a hint addr is less than mmap_min_addr change hint to be as
1196 * low as possible but still greater than mmap_min_addr
1198 static inline unsigned long round_hint_to_min(unsigned long hint)
1200 hint &= PAGE_MASK;
1201 if (((void *)hint != NULL) &&
1202 (hint < mmap_min_addr))
1203 return PAGE_ALIGN(mmap_min_addr);
1204 return hint;
1207 static inline int mlock_future_check(struct mm_struct *mm,
1208 unsigned long flags,
1209 unsigned long len)
1211 unsigned long locked, lock_limit;
1213 /* mlock MCL_FUTURE? */
1214 if (flags & VM_LOCKED) {
1215 locked = len >> PAGE_SHIFT;
1216 locked += mm->locked_vm;
1217 lock_limit = rlimit(RLIMIT_MEMLOCK);
1218 lock_limit >>= PAGE_SHIFT;
1219 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1220 return -EAGAIN;
1222 return 0;
1226 * The caller must hold down_write(&current->mm->mmap_sem).
1229 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1230 unsigned long len, unsigned long prot,
1231 unsigned long flags, unsigned long pgoff,
1232 unsigned long *populate)
1234 struct mm_struct * mm = current->mm;
1235 vm_flags_t vm_flags;
1237 *populate = 0;
1240 * Does the application expect PROT_READ to imply PROT_EXEC?
1242 * (the exception is when the underlying filesystem is noexec
1243 * mounted, in which case we dont add PROT_EXEC.)
1245 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1246 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1247 prot |= PROT_EXEC;
1249 if (!len)
1250 return -EINVAL;
1252 if (!(flags & MAP_FIXED))
1253 addr = round_hint_to_min(addr);
1255 /* Careful about overflows.. */
1256 len = PAGE_ALIGN(len);
1257 if (!len)
1258 return -ENOMEM;
1260 /* offset overflow? */
1261 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1262 return -EOVERFLOW;
1264 /* Too many mappings? */
1265 if (mm->map_count > sysctl_max_map_count)
1266 return -ENOMEM;
1268 /* Obtain the address to map to. we verify (or select) it and ensure
1269 * that it represents a valid section of the address space.
1271 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1272 if (addr & ~PAGE_MASK)
1273 return addr;
1275 /* Do simple checking here so the lower-level routines won't have
1276 * to. we assume access permissions have been handled by the open
1277 * of the memory object, so we don't do any here.
1279 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1280 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1282 if (flags & MAP_LOCKED)
1283 if (!can_do_mlock())
1284 return -EPERM;
1286 if (mlock_future_check(mm, vm_flags, len))
1287 return -EAGAIN;
1289 if (file) {
1290 struct inode *inode = file_inode(file);
1292 switch (flags & MAP_TYPE) {
1293 case MAP_SHARED:
1294 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1295 return -EACCES;
1298 * Make sure we don't allow writing to an append-only
1299 * file..
1301 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1302 return -EACCES;
1305 * Make sure there are no mandatory locks on the file.
1307 if (locks_verify_locked(inode))
1308 return -EAGAIN;
1310 vm_flags |= VM_SHARED | VM_MAYSHARE;
1311 if (!(file->f_mode & FMODE_WRITE))
1312 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1314 /* fall through */
1315 case MAP_PRIVATE:
1316 if (!(file->f_mode & FMODE_READ))
1317 return -EACCES;
1318 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1319 if (vm_flags & VM_EXEC)
1320 return -EPERM;
1321 vm_flags &= ~VM_MAYEXEC;
1324 if (!file->f_op->mmap)
1325 return -ENODEV;
1326 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1327 return -EINVAL;
1328 break;
1330 default:
1331 return -EINVAL;
1333 } else {
1334 switch (flags & MAP_TYPE) {
1335 case MAP_SHARED:
1336 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337 return -EINVAL;
1339 * Ignore pgoff.
1341 pgoff = 0;
1342 vm_flags |= VM_SHARED | VM_MAYSHARE;
1343 break;
1344 case MAP_PRIVATE:
1346 * Set pgoff according to addr for anon_vma.
1348 pgoff = addr >> PAGE_SHIFT;
1349 break;
1350 default:
1351 return -EINVAL;
1356 * Set 'VM_NORESERVE' if we should not account for the
1357 * memory use of this mapping.
1359 if (flags & MAP_NORESERVE) {
1360 /* We honor MAP_NORESERVE if allowed to overcommit */
1361 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1362 vm_flags |= VM_NORESERVE;
1364 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1365 if (file && is_file_hugepages(file))
1366 vm_flags |= VM_NORESERVE;
1369 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1370 if (!IS_ERR_VALUE(addr) &&
1371 ((vm_flags & VM_LOCKED) ||
1372 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1373 *populate = len;
1374 return addr;
1377 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1378 unsigned long, prot, unsigned long, flags,
1379 unsigned long, fd, unsigned long, pgoff)
1381 struct file *file = NULL;
1382 unsigned long retval = -EBADF;
1384 if (!(flags & MAP_ANONYMOUS)) {
1385 audit_mmap_fd(fd, flags);
1386 file = fget(fd);
1387 if (!file)
1388 goto out;
1389 if (is_file_hugepages(file))
1390 len = ALIGN(len, huge_page_size(hstate_file(file)));
1391 retval = -EINVAL;
1392 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1393 goto out_fput;
1394 } else if (flags & MAP_HUGETLB) {
1395 struct user_struct *user = NULL;
1396 struct hstate *hs;
1398 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1399 if (!hs)
1400 return -EINVAL;
1402 len = ALIGN(len, huge_page_size(hs));
1404 * VM_NORESERVE is used because the reservations will be
1405 * taken when vm_ops->mmap() is called
1406 * A dummy user value is used because we are not locking
1407 * memory so no accounting is necessary
1409 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1410 VM_NORESERVE,
1411 &user, HUGETLB_ANONHUGE_INODE,
1412 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1413 if (IS_ERR(file))
1414 return PTR_ERR(file);
1417 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1419 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1420 out_fput:
1421 if (file)
1422 fput(file);
1423 out:
1424 return retval;
1427 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1428 struct mmap_arg_struct {
1429 unsigned long addr;
1430 unsigned long len;
1431 unsigned long prot;
1432 unsigned long flags;
1433 unsigned long fd;
1434 unsigned long offset;
1437 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1439 struct mmap_arg_struct a;
1441 if (copy_from_user(&a, arg, sizeof(a)))
1442 return -EFAULT;
1443 if (a.offset & ~PAGE_MASK)
1444 return -EINVAL;
1446 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1447 a.offset >> PAGE_SHIFT);
1449 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1452 * Some shared mappigns will want the pages marked read-only
1453 * to track write events. If so, we'll downgrade vm_page_prot
1454 * to the private version (using protection_map[] without the
1455 * VM_SHARED bit).
1457 int vma_wants_writenotify(struct vm_area_struct *vma)
1459 vm_flags_t vm_flags = vma->vm_flags;
1461 /* If it was private or non-writable, the write bit is already clear */
1462 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1463 return 0;
1465 /* The backer wishes to know when pages are first written to? */
1466 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1467 return 1;
1469 /* The open routine did something to the protections already? */
1470 if (pgprot_val(vma->vm_page_prot) !=
1471 pgprot_val(vm_get_page_prot(vm_flags)))
1472 return 0;
1474 /* Specialty mapping? */
1475 if (vm_flags & VM_PFNMAP)
1476 return 0;
1478 /* Can the mapping track the dirty pages? */
1479 return vma->vm_file && vma->vm_file->f_mapping &&
1480 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1484 * We account for memory if it's a private writeable mapping,
1485 * not hugepages and VM_NORESERVE wasn't set.
1487 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1490 * hugetlb has its own accounting separate from the core VM
1491 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1493 if (file && is_file_hugepages(file))
1494 return 0;
1496 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1499 unsigned long mmap_region(struct file *file, unsigned long addr,
1500 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1502 struct mm_struct *mm = current->mm;
1503 struct vm_area_struct *vma, *prev;
1504 int error;
1505 struct rb_node **rb_link, *rb_parent;
1506 unsigned long charged = 0;
1508 /* Check against address space limit. */
1509 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1510 unsigned long nr_pages;
1513 * MAP_FIXED may remove pages of mappings that intersects with
1514 * requested mapping. Account for the pages it would unmap.
1516 if (!(vm_flags & MAP_FIXED))
1517 return -ENOMEM;
1519 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1521 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1522 return -ENOMEM;
1525 /* Clear old maps */
1526 error = -ENOMEM;
1527 munmap_back:
1528 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1529 if (do_munmap(mm, addr, len))
1530 return -ENOMEM;
1531 goto munmap_back;
1535 * Private writable mapping: check memory availability
1537 if (accountable_mapping(file, vm_flags)) {
1538 charged = len >> PAGE_SHIFT;
1539 if (security_vm_enough_memory_mm(mm, charged))
1540 return -ENOMEM;
1541 vm_flags |= VM_ACCOUNT;
1545 * Can we just expand an old mapping?
1547 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1548 if (vma)
1549 goto out;
1552 * Determine the object being mapped and call the appropriate
1553 * specific mapper. the address has already been validated, but
1554 * not unmapped, but the maps are removed from the list.
1556 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1557 if (!vma) {
1558 error = -ENOMEM;
1559 goto unacct_error;
1562 vma->vm_mm = mm;
1563 vma->vm_start = addr;
1564 vma->vm_end = addr + len;
1565 vma->vm_flags = vm_flags;
1566 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1567 vma->vm_pgoff = pgoff;
1568 INIT_LIST_HEAD(&vma->anon_vma_chain);
1570 if (file) {
1571 if (vm_flags & VM_DENYWRITE) {
1572 error = deny_write_access(file);
1573 if (error)
1574 goto free_vma;
1576 vma->vm_file = get_file(file);
1577 error = file->f_op->mmap(file, vma);
1578 if (error)
1579 goto unmap_and_free_vma;
1581 /* Can addr have changed??
1583 * Answer: Yes, several device drivers can do it in their
1584 * f_op->mmap method. -DaveM
1585 * Bug: If addr is changed, prev, rb_link, rb_parent should
1586 * be updated for vma_link()
1588 WARN_ON_ONCE(addr != vma->vm_start);
1590 addr = vma->vm_start;
1591 vm_flags = vma->vm_flags;
1592 } else if (vm_flags & VM_SHARED) {
1593 error = shmem_zero_setup(vma);
1594 if (error)
1595 goto free_vma;
1598 if (vma_wants_writenotify(vma)) {
1599 pgprot_t pprot = vma->vm_page_prot;
1601 /* Can vma->vm_page_prot have changed??
1603 * Answer: Yes, drivers may have changed it in their
1604 * f_op->mmap method.
1606 * Ensures that vmas marked as uncached stay that way.
1608 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1609 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1610 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1613 vma_link(mm, vma, prev, rb_link, rb_parent);
1614 /* Once vma denies write, undo our temporary denial count */
1615 if (vm_flags & VM_DENYWRITE)
1616 allow_write_access(file);
1617 file = vma->vm_file;
1618 out:
1619 perf_event_mmap(vma);
1621 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1622 if (vm_flags & VM_LOCKED) {
1623 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1624 vma == get_gate_vma(current->mm)))
1625 mm->locked_vm += (len >> PAGE_SHIFT);
1626 else
1627 vma->vm_flags &= ~VM_LOCKED;
1630 if (file)
1631 uprobe_mmap(vma);
1634 * New (or expanded) vma always get soft dirty status.
1635 * Otherwise user-space soft-dirty page tracker won't
1636 * be able to distinguish situation when vma area unmapped,
1637 * then new mapped in-place (which must be aimed as
1638 * a completely new data area).
1640 vma->vm_flags |= VM_SOFTDIRTY;
1642 return addr;
1644 unmap_and_free_vma:
1645 if (vm_flags & VM_DENYWRITE)
1646 allow_write_access(file);
1647 vma->vm_file = NULL;
1648 fput(file);
1650 /* Undo any partial mapping done by a device driver. */
1651 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1652 charged = 0;
1653 free_vma:
1654 kmem_cache_free(vm_area_cachep, vma);
1655 unacct_error:
1656 if (charged)
1657 vm_unacct_memory(charged);
1658 return error;
1661 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1664 * We implement the search by looking for an rbtree node that
1665 * immediately follows a suitable gap. That is,
1666 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1667 * - gap_end = vma->vm_start >= info->low_limit + length;
1668 * - gap_end - gap_start >= length
1671 struct mm_struct *mm = current->mm;
1672 struct vm_area_struct *vma;
1673 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1675 /* Adjust search length to account for worst case alignment overhead */
1676 length = info->length + info->align_mask;
1677 if (length < info->length)
1678 return -ENOMEM;
1680 /* Adjust search limits by the desired length */
1681 if (info->high_limit < length)
1682 return -ENOMEM;
1683 high_limit = info->high_limit - length;
1685 if (info->low_limit > high_limit)
1686 return -ENOMEM;
1687 low_limit = info->low_limit + length;
1689 /* Check if rbtree root looks promising */
1690 if (RB_EMPTY_ROOT(&mm->mm_rb))
1691 goto check_highest;
1692 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1693 if (vma->rb_subtree_gap < length)
1694 goto check_highest;
1696 while (true) {
1697 /* Visit left subtree if it looks promising */
1698 gap_end = vma->vm_start;
1699 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1700 struct vm_area_struct *left =
1701 rb_entry(vma->vm_rb.rb_left,
1702 struct vm_area_struct, vm_rb);
1703 if (left->rb_subtree_gap >= length) {
1704 vma = left;
1705 continue;
1709 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1710 check_current:
1711 /* Check if current node has a suitable gap */
1712 if (gap_start > high_limit)
1713 return -ENOMEM;
1714 if (gap_end >= low_limit && gap_end - gap_start >= length)
1715 goto found;
1717 /* Visit right subtree if it looks promising */
1718 if (vma->vm_rb.rb_right) {
1719 struct vm_area_struct *right =
1720 rb_entry(vma->vm_rb.rb_right,
1721 struct vm_area_struct, vm_rb);
1722 if (right->rb_subtree_gap >= length) {
1723 vma = right;
1724 continue;
1728 /* Go back up the rbtree to find next candidate node */
1729 while (true) {
1730 struct rb_node *prev = &vma->vm_rb;
1731 if (!rb_parent(prev))
1732 goto check_highest;
1733 vma = rb_entry(rb_parent(prev),
1734 struct vm_area_struct, vm_rb);
1735 if (prev == vma->vm_rb.rb_left) {
1736 gap_start = vma->vm_prev->vm_end;
1737 gap_end = vma->vm_start;
1738 goto check_current;
1743 check_highest:
1744 /* Check highest gap, which does not precede any rbtree node */
1745 gap_start = mm->highest_vm_end;
1746 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1747 if (gap_start > high_limit)
1748 return -ENOMEM;
1750 found:
1751 /* We found a suitable gap. Clip it with the original low_limit. */
1752 if (gap_start < info->low_limit)
1753 gap_start = info->low_limit;
1755 /* Adjust gap address to the desired alignment */
1756 gap_start += (info->align_offset - gap_start) & info->align_mask;
1758 VM_BUG_ON(gap_start + info->length > info->high_limit);
1759 VM_BUG_ON(gap_start + info->length > gap_end);
1760 return gap_start;
1763 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1765 struct mm_struct *mm = current->mm;
1766 struct vm_area_struct *vma;
1767 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1769 /* Adjust search length to account for worst case alignment overhead */
1770 length = info->length + info->align_mask;
1771 if (length < info->length)
1772 return -ENOMEM;
1775 * Adjust search limits by the desired length.
1776 * See implementation comment at top of unmapped_area().
1778 gap_end = info->high_limit;
1779 if (gap_end < length)
1780 return -ENOMEM;
1781 high_limit = gap_end - length;
1783 if (info->low_limit > high_limit)
1784 return -ENOMEM;
1785 low_limit = info->low_limit + length;
1787 /* Check highest gap, which does not precede any rbtree node */
1788 gap_start = mm->highest_vm_end;
1789 if (gap_start <= high_limit)
1790 goto found_highest;
1792 /* Check if rbtree root looks promising */
1793 if (RB_EMPTY_ROOT(&mm->mm_rb))
1794 return -ENOMEM;
1795 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1796 if (vma->rb_subtree_gap < length)
1797 return -ENOMEM;
1799 while (true) {
1800 /* Visit right subtree if it looks promising */
1801 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1802 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1803 struct vm_area_struct *right =
1804 rb_entry(vma->vm_rb.rb_right,
1805 struct vm_area_struct, vm_rb);
1806 if (right->rb_subtree_gap >= length) {
1807 vma = right;
1808 continue;
1812 check_current:
1813 /* Check if current node has a suitable gap */
1814 gap_end = vma->vm_start;
1815 if (gap_end < low_limit)
1816 return -ENOMEM;
1817 if (gap_start <= high_limit && gap_end - gap_start >= length)
1818 goto found;
1820 /* Visit left subtree if it looks promising */
1821 if (vma->vm_rb.rb_left) {
1822 struct vm_area_struct *left =
1823 rb_entry(vma->vm_rb.rb_left,
1824 struct vm_area_struct, vm_rb);
1825 if (left->rb_subtree_gap >= length) {
1826 vma = left;
1827 continue;
1831 /* Go back up the rbtree to find next candidate node */
1832 while (true) {
1833 struct rb_node *prev = &vma->vm_rb;
1834 if (!rb_parent(prev))
1835 return -ENOMEM;
1836 vma = rb_entry(rb_parent(prev),
1837 struct vm_area_struct, vm_rb);
1838 if (prev == vma->vm_rb.rb_right) {
1839 gap_start = vma->vm_prev ?
1840 vma->vm_prev->vm_end : 0;
1841 goto check_current;
1846 found:
1847 /* We found a suitable gap. Clip it with the original high_limit. */
1848 if (gap_end > info->high_limit)
1849 gap_end = info->high_limit;
1851 found_highest:
1852 /* Compute highest gap address at the desired alignment */
1853 gap_end -= info->length;
1854 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1856 VM_BUG_ON(gap_end < info->low_limit);
1857 VM_BUG_ON(gap_end < gap_start);
1858 return gap_end;
1861 /* Get an address range which is currently unmapped.
1862 * For shmat() with addr=0.
1864 * Ugly calling convention alert:
1865 * Return value with the low bits set means error value,
1866 * ie
1867 * if (ret & ~PAGE_MASK)
1868 * error = ret;
1870 * This function "knows" that -ENOMEM has the bits set.
1872 #ifndef HAVE_ARCH_UNMAPPED_AREA
1873 unsigned long
1874 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1875 unsigned long len, unsigned long pgoff, unsigned long flags)
1877 struct mm_struct *mm = current->mm;
1878 struct vm_area_struct *vma;
1879 struct vm_unmapped_area_info info;
1881 if (len > TASK_SIZE - mmap_min_addr)
1882 return -ENOMEM;
1884 if (flags & MAP_FIXED)
1885 return addr;
1887 if (addr) {
1888 addr = PAGE_ALIGN(addr);
1889 vma = find_vma(mm, addr);
1890 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1891 (!vma || addr + len <= vma->vm_start))
1892 return addr;
1895 info.flags = 0;
1896 info.length = len;
1897 info.low_limit = mm->mmap_base;
1898 info.high_limit = TASK_SIZE;
1899 info.align_mask = 0;
1900 return vm_unmapped_area(&info);
1902 #endif
1905 * This mmap-allocator allocates new areas top-down from below the
1906 * stack's low limit (the base):
1908 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1909 unsigned long
1910 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1911 const unsigned long len, const unsigned long pgoff,
1912 const unsigned long flags)
1914 struct vm_area_struct *vma;
1915 struct mm_struct *mm = current->mm;
1916 unsigned long addr = addr0;
1917 struct vm_unmapped_area_info info;
1919 /* requested length too big for entire address space */
1920 if (len > TASK_SIZE - mmap_min_addr)
1921 return -ENOMEM;
1923 if (flags & MAP_FIXED)
1924 return addr;
1926 /* requesting a specific address */
1927 if (addr) {
1928 addr = PAGE_ALIGN(addr);
1929 vma = find_vma(mm, addr);
1930 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1931 (!vma || addr + len <= vma->vm_start))
1932 return addr;
1935 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1936 info.length = len;
1937 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1938 info.high_limit = mm->mmap_base;
1939 info.align_mask = 0;
1940 addr = vm_unmapped_area(&info);
1943 * A failed mmap() very likely causes application failure,
1944 * so fall back to the bottom-up function here. This scenario
1945 * can happen with large stack limits and large mmap()
1946 * allocations.
1948 if (addr & ~PAGE_MASK) {
1949 VM_BUG_ON(addr != -ENOMEM);
1950 info.flags = 0;
1951 info.low_limit = TASK_UNMAPPED_BASE;
1952 info.high_limit = TASK_SIZE;
1953 addr = vm_unmapped_area(&info);
1956 return addr;
1958 #endif
1960 unsigned long
1961 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1962 unsigned long pgoff, unsigned long flags)
1964 unsigned long (*get_area)(struct file *, unsigned long,
1965 unsigned long, unsigned long, unsigned long);
1967 unsigned long error = arch_mmap_check(addr, len, flags);
1968 if (error)
1969 return error;
1971 /* Careful about overflows.. */
1972 if (len > TASK_SIZE)
1973 return -ENOMEM;
1975 get_area = current->mm->get_unmapped_area;
1976 if (file && file->f_op->get_unmapped_area)
1977 get_area = file->f_op->get_unmapped_area;
1978 addr = get_area(file, addr, len, pgoff, flags);
1979 if (IS_ERR_VALUE(addr))
1980 return addr;
1982 if (addr > TASK_SIZE - len)
1983 return -ENOMEM;
1984 if (addr & ~PAGE_MASK)
1985 return -EINVAL;
1987 addr = arch_rebalance_pgtables(addr, len);
1988 error = security_mmap_addr(addr);
1989 return error ? error : addr;
1992 EXPORT_SYMBOL(get_unmapped_area);
1994 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1995 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1997 struct rb_node *rb_node;
1998 struct vm_area_struct *vma;
2000 /* Check the cache first. */
2001 vma = vmacache_find(mm, addr);
2002 if (likely(vma))
2003 return vma;
2005 rb_node = mm->mm_rb.rb_node;
2006 vma = NULL;
2008 while (rb_node) {
2009 struct vm_area_struct *tmp;
2011 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2013 if (tmp->vm_end > addr) {
2014 vma = tmp;
2015 if (tmp->vm_start <= addr)
2016 break;
2017 rb_node = rb_node->rb_left;
2018 } else
2019 rb_node = rb_node->rb_right;
2022 if (vma)
2023 vmacache_update(addr, vma);
2024 return vma;
2027 EXPORT_SYMBOL(find_vma);
2030 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2032 struct vm_area_struct *
2033 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2034 struct vm_area_struct **pprev)
2036 struct vm_area_struct *vma;
2038 vma = find_vma(mm, addr);
2039 if (vma) {
2040 *pprev = vma->vm_prev;
2041 } else {
2042 struct rb_node *rb_node = mm->mm_rb.rb_node;
2043 *pprev = NULL;
2044 while (rb_node) {
2045 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2046 rb_node = rb_node->rb_right;
2049 return vma;
2053 * Verify that the stack growth is acceptable and
2054 * update accounting. This is shared with both the
2055 * grow-up and grow-down cases.
2057 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2059 struct mm_struct *mm = vma->vm_mm;
2060 struct rlimit *rlim = current->signal->rlim;
2061 unsigned long new_start, actual_size;
2063 /* address space limit tests */
2064 if (!may_expand_vm(mm, grow))
2065 return -ENOMEM;
2067 /* Stack limit test */
2068 actual_size = size;
2069 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2070 actual_size -= PAGE_SIZE;
2071 if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2072 return -ENOMEM;
2074 /* mlock limit tests */
2075 if (vma->vm_flags & VM_LOCKED) {
2076 unsigned long locked;
2077 unsigned long limit;
2078 locked = mm->locked_vm + grow;
2079 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2080 limit >>= PAGE_SHIFT;
2081 if (locked > limit && !capable(CAP_IPC_LOCK))
2082 return -ENOMEM;
2085 /* Check to ensure the stack will not grow into a hugetlb-only region */
2086 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2087 vma->vm_end - size;
2088 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2089 return -EFAULT;
2092 * Overcommit.. This must be the final test, as it will
2093 * update security statistics.
2095 if (security_vm_enough_memory_mm(mm, grow))
2096 return -ENOMEM;
2098 /* Ok, everything looks good - let it rip */
2099 if (vma->vm_flags & VM_LOCKED)
2100 mm->locked_vm += grow;
2101 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2102 return 0;
2105 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2107 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2108 * vma is the last one with address > vma->vm_end. Have to extend vma.
2110 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2112 int error;
2114 if (!(vma->vm_flags & VM_GROWSUP))
2115 return -EFAULT;
2118 * We must make sure the anon_vma is allocated
2119 * so that the anon_vma locking is not a noop.
2121 if (unlikely(anon_vma_prepare(vma)))
2122 return -ENOMEM;
2123 vma_lock_anon_vma(vma);
2126 * vma->vm_start/vm_end cannot change under us because the caller
2127 * is required to hold the mmap_sem in read mode. We need the
2128 * anon_vma lock to serialize against concurrent expand_stacks.
2129 * Also guard against wrapping around to address 0.
2131 if (address < PAGE_ALIGN(address+4))
2132 address = PAGE_ALIGN(address+4);
2133 else {
2134 vma_unlock_anon_vma(vma);
2135 return -ENOMEM;
2137 error = 0;
2139 /* Somebody else might have raced and expanded it already */
2140 if (address > vma->vm_end) {
2141 unsigned long size, grow;
2143 size = address - vma->vm_start;
2144 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2146 error = -ENOMEM;
2147 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2148 error = acct_stack_growth(vma, size, grow);
2149 if (!error) {
2151 * vma_gap_update() doesn't support concurrent
2152 * updates, but we only hold a shared mmap_sem
2153 * lock here, so we need to protect against
2154 * concurrent vma expansions.
2155 * vma_lock_anon_vma() doesn't help here, as
2156 * we don't guarantee that all growable vmas
2157 * in a mm share the same root anon vma.
2158 * So, we reuse mm->page_table_lock to guard
2159 * against concurrent vma expansions.
2161 spin_lock(&vma->vm_mm->page_table_lock);
2162 anon_vma_interval_tree_pre_update_vma(vma);
2163 vma->vm_end = address;
2164 anon_vma_interval_tree_post_update_vma(vma);
2165 if (vma->vm_next)
2166 vma_gap_update(vma->vm_next);
2167 else
2168 vma->vm_mm->highest_vm_end = address;
2169 spin_unlock(&vma->vm_mm->page_table_lock);
2171 perf_event_mmap(vma);
2175 vma_unlock_anon_vma(vma);
2176 khugepaged_enter_vma_merge(vma);
2177 validate_mm(vma->vm_mm);
2178 return error;
2180 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2183 * vma is the first one with address < vma->vm_start. Have to extend vma.
2185 int expand_downwards(struct vm_area_struct *vma,
2186 unsigned long address)
2188 int error;
2191 * We must make sure the anon_vma is allocated
2192 * so that the anon_vma locking is not a noop.
2194 if (unlikely(anon_vma_prepare(vma)))
2195 return -ENOMEM;
2197 address &= PAGE_MASK;
2198 error = security_mmap_addr(address);
2199 if (error)
2200 return error;
2202 vma_lock_anon_vma(vma);
2205 * vma->vm_start/vm_end cannot change under us because the caller
2206 * is required to hold the mmap_sem in read mode. We need the
2207 * anon_vma lock to serialize against concurrent expand_stacks.
2210 /* Somebody else might have raced and expanded it already */
2211 if (address < vma->vm_start) {
2212 unsigned long size, grow;
2214 size = vma->vm_end - address;
2215 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2217 error = -ENOMEM;
2218 if (grow <= vma->vm_pgoff) {
2219 error = acct_stack_growth(vma, size, grow);
2220 if (!error) {
2222 * vma_gap_update() doesn't support concurrent
2223 * updates, but we only hold a shared mmap_sem
2224 * lock here, so we need to protect against
2225 * concurrent vma expansions.
2226 * vma_lock_anon_vma() doesn't help here, as
2227 * we don't guarantee that all growable vmas
2228 * in a mm share the same root anon vma.
2229 * So, we reuse mm->page_table_lock to guard
2230 * against concurrent vma expansions.
2232 spin_lock(&vma->vm_mm->page_table_lock);
2233 anon_vma_interval_tree_pre_update_vma(vma);
2234 vma->vm_start = address;
2235 vma->vm_pgoff -= grow;
2236 anon_vma_interval_tree_post_update_vma(vma);
2237 vma_gap_update(vma);
2238 spin_unlock(&vma->vm_mm->page_table_lock);
2240 perf_event_mmap(vma);
2244 vma_unlock_anon_vma(vma);
2245 khugepaged_enter_vma_merge(vma);
2246 validate_mm(vma->vm_mm);
2247 return error;
2251 * Note how expand_stack() refuses to expand the stack all the way to
2252 * abut the next virtual mapping, *unless* that mapping itself is also
2253 * a stack mapping. We want to leave room for a guard page, after all
2254 * (the guard page itself is not added here, that is done by the
2255 * actual page faulting logic)
2257 * This matches the behavior of the guard page logic (see mm/memory.c:
2258 * check_stack_guard_page()), which only allows the guard page to be
2259 * removed under these circumstances.
2261 #ifdef CONFIG_STACK_GROWSUP
2262 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2264 struct vm_area_struct *next;
2266 address &= PAGE_MASK;
2267 next = vma->vm_next;
2268 if (next && next->vm_start == address + PAGE_SIZE) {
2269 if (!(next->vm_flags & VM_GROWSUP))
2270 return -ENOMEM;
2272 return expand_upwards(vma, address);
2275 struct vm_area_struct *
2276 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2278 struct vm_area_struct *vma, *prev;
2280 addr &= PAGE_MASK;
2281 vma = find_vma_prev(mm, addr, &prev);
2282 if (vma && (vma->vm_start <= addr))
2283 return vma;
2284 if (!prev || expand_stack(prev, addr))
2285 return NULL;
2286 if (prev->vm_flags & VM_LOCKED)
2287 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2288 return prev;
2290 #else
2291 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2293 struct vm_area_struct *prev;
2295 address &= PAGE_MASK;
2296 prev = vma->vm_prev;
2297 if (prev && prev->vm_end == address) {
2298 if (!(prev->vm_flags & VM_GROWSDOWN))
2299 return -ENOMEM;
2301 return expand_downwards(vma, address);
2304 struct vm_area_struct *
2305 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2307 struct vm_area_struct * vma;
2308 unsigned long start;
2310 addr &= PAGE_MASK;
2311 vma = find_vma(mm,addr);
2312 if (!vma)
2313 return NULL;
2314 if (vma->vm_start <= addr)
2315 return vma;
2316 if (!(vma->vm_flags & VM_GROWSDOWN))
2317 return NULL;
2318 start = vma->vm_start;
2319 if (expand_stack(vma, addr))
2320 return NULL;
2321 if (vma->vm_flags & VM_LOCKED)
2322 __mlock_vma_pages_range(vma, addr, start, NULL);
2323 return vma;
2325 #endif
2328 * Ok - we have the memory areas we should free on the vma list,
2329 * so release them, and do the vma updates.
2331 * Called with the mm semaphore held.
2333 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2335 unsigned long nr_accounted = 0;
2337 /* Update high watermark before we lower total_vm */
2338 update_hiwater_vm(mm);
2339 do {
2340 long nrpages = vma_pages(vma);
2342 if (vma->vm_flags & VM_ACCOUNT)
2343 nr_accounted += nrpages;
2344 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2345 vma = remove_vma(vma);
2346 } while (vma);
2347 vm_unacct_memory(nr_accounted);
2348 validate_mm(mm);
2352 * Get rid of page table information in the indicated region.
2354 * Called with the mm semaphore held.
2356 static void unmap_region(struct mm_struct *mm,
2357 struct vm_area_struct *vma, struct vm_area_struct *prev,
2358 unsigned long start, unsigned long end)
2360 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2361 struct mmu_gather tlb;
2363 lru_add_drain();
2364 tlb_gather_mmu(&tlb, mm, start, end);
2365 update_hiwater_rss(mm);
2366 unmap_vmas(&tlb, vma, start, end);
2367 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2368 next ? next->vm_start : USER_PGTABLES_CEILING);
2369 tlb_finish_mmu(&tlb, start, end);
2373 * Create a list of vma's touched by the unmap, removing them from the mm's
2374 * vma list as we go..
2376 static void
2377 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2378 struct vm_area_struct *prev, unsigned long end)
2380 struct vm_area_struct **insertion_point;
2381 struct vm_area_struct *tail_vma = NULL;
2383 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2384 vma->vm_prev = NULL;
2385 do {
2386 vma_rb_erase(vma, &mm->mm_rb);
2387 mm->map_count--;
2388 tail_vma = vma;
2389 vma = vma->vm_next;
2390 } while (vma && vma->vm_start < end);
2391 *insertion_point = vma;
2392 if (vma) {
2393 vma->vm_prev = prev;
2394 vma_gap_update(vma);
2395 } else
2396 mm->highest_vm_end = prev ? prev->vm_end : 0;
2397 tail_vma->vm_next = NULL;
2399 /* Kill the cache */
2400 vmacache_invalidate(mm);
2404 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2405 * munmap path where it doesn't make sense to fail.
2407 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2408 unsigned long addr, int new_below)
2410 struct vm_area_struct *new;
2411 int err = -ENOMEM;
2413 if (is_vm_hugetlb_page(vma) && (addr &
2414 ~(huge_page_mask(hstate_vma(vma)))))
2415 return -EINVAL;
2417 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2418 if (!new)
2419 goto out_err;
2421 /* most fields are the same, copy all, and then fixup */
2422 *new = *vma;
2424 INIT_LIST_HEAD(&new->anon_vma_chain);
2426 if (new_below)
2427 new->vm_end = addr;
2428 else {
2429 new->vm_start = addr;
2430 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2433 err = vma_dup_policy(vma, new);
2434 if (err)
2435 goto out_free_vma;
2437 err = anon_vma_clone(new, vma);
2438 if (err)
2439 goto out_free_mpol;
2441 if (new->vm_file)
2442 get_file(new->vm_file);
2444 if (new->vm_ops && new->vm_ops->open)
2445 new->vm_ops->open(new);
2447 if (new_below)
2448 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2449 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2450 else
2451 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2453 /* Success. */
2454 if (!err)
2455 return 0;
2457 /* Clean everything up if vma_adjust failed. */
2458 if (new->vm_ops && new->vm_ops->close)
2459 new->vm_ops->close(new);
2460 if (new->vm_file)
2461 fput(new->vm_file);
2462 unlink_anon_vmas(new);
2463 out_free_mpol:
2464 mpol_put(vma_policy(new));
2465 out_free_vma:
2466 kmem_cache_free(vm_area_cachep, new);
2467 out_err:
2468 return err;
2472 * Split a vma into two pieces at address 'addr', a new vma is allocated
2473 * either for the first part or the tail.
2475 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2476 unsigned long addr, int new_below)
2478 if (mm->map_count >= sysctl_max_map_count)
2479 return -ENOMEM;
2481 return __split_vma(mm, vma, addr, new_below);
2484 /* Munmap is split into 2 main parts -- this part which finds
2485 * what needs doing, and the areas themselves, which do the
2486 * work. This now handles partial unmappings.
2487 * Jeremy Fitzhardinge <jeremy@goop.org>
2489 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2491 unsigned long end;
2492 struct vm_area_struct *vma, *prev, *last;
2494 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2495 return -EINVAL;
2497 if ((len = PAGE_ALIGN(len)) == 0)
2498 return -EINVAL;
2500 /* Find the first overlapping VMA */
2501 vma = find_vma(mm, start);
2502 if (!vma)
2503 return 0;
2504 prev = vma->vm_prev;
2505 /* we have start < vma->vm_end */
2507 /* if it doesn't overlap, we have nothing.. */
2508 end = start + len;
2509 if (vma->vm_start >= end)
2510 return 0;
2513 * If we need to split any vma, do it now to save pain later.
2515 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2516 * unmapped vm_area_struct will remain in use: so lower split_vma
2517 * places tmp vma above, and higher split_vma places tmp vma below.
2519 if (start > vma->vm_start) {
2520 int error;
2523 * Make sure that map_count on return from munmap() will
2524 * not exceed its limit; but let map_count go just above
2525 * its limit temporarily, to help free resources as expected.
2527 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2528 return -ENOMEM;
2530 error = __split_vma(mm, vma, start, 0);
2531 if (error)
2532 return error;
2533 prev = vma;
2536 /* Does it split the last one? */
2537 last = find_vma(mm, end);
2538 if (last && end > last->vm_start) {
2539 int error = __split_vma(mm, last, end, 1);
2540 if (error)
2541 return error;
2543 vma = prev? prev->vm_next: mm->mmap;
2546 * unlock any mlock()ed ranges before detaching vmas
2548 if (mm->locked_vm) {
2549 struct vm_area_struct *tmp = vma;
2550 while (tmp && tmp->vm_start < end) {
2551 if (tmp->vm_flags & VM_LOCKED) {
2552 mm->locked_vm -= vma_pages(tmp);
2553 munlock_vma_pages_all(tmp);
2555 tmp = tmp->vm_next;
2560 * Remove the vma's, and unmap the actual pages
2562 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2563 unmap_region(mm, vma, prev, start, end);
2565 /* Fix up all other VM information */
2566 remove_vma_list(mm, vma);
2568 return 0;
2571 int vm_munmap(unsigned long start, size_t len)
2573 int ret;
2574 struct mm_struct *mm = current->mm;
2576 down_write(&mm->mmap_sem);
2577 ret = do_munmap(mm, start, len);
2578 up_write(&mm->mmap_sem);
2579 return ret;
2581 EXPORT_SYMBOL(vm_munmap);
2583 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2585 profile_munmap(addr);
2586 return vm_munmap(addr, len);
2589 static inline void verify_mm_writelocked(struct mm_struct *mm)
2591 #ifdef CONFIG_DEBUG_VM
2592 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2593 WARN_ON(1);
2594 up_read(&mm->mmap_sem);
2596 #endif
2600 * this is really a simplified "do_mmap". it only handles
2601 * anonymous maps. eventually we may be able to do some
2602 * brk-specific accounting here.
2604 static unsigned long do_brk(unsigned long addr, unsigned long len)
2606 struct mm_struct * mm = current->mm;
2607 struct vm_area_struct * vma, * prev;
2608 unsigned long flags;
2609 struct rb_node ** rb_link, * rb_parent;
2610 pgoff_t pgoff = addr >> PAGE_SHIFT;
2611 int error;
2613 len = PAGE_ALIGN(len);
2614 if (!len)
2615 return addr;
2617 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2619 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2620 if (error & ~PAGE_MASK)
2621 return error;
2623 error = mlock_future_check(mm, mm->def_flags, len);
2624 if (error)
2625 return error;
2628 * mm->mmap_sem is required to protect against another thread
2629 * changing the mappings in case we sleep.
2631 verify_mm_writelocked(mm);
2634 * Clear old maps. this also does some error checking for us
2636 munmap_back:
2637 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2638 if (do_munmap(mm, addr, len))
2639 return -ENOMEM;
2640 goto munmap_back;
2643 /* Check against address space limits *after* clearing old maps... */
2644 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2645 return -ENOMEM;
2647 if (mm->map_count > sysctl_max_map_count)
2648 return -ENOMEM;
2650 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2651 return -ENOMEM;
2653 /* Can we just expand an old private anonymous mapping? */
2654 vma = vma_merge(mm, prev, addr, addr + len, flags,
2655 NULL, NULL, pgoff, NULL);
2656 if (vma)
2657 goto out;
2660 * create a vma struct for an anonymous mapping
2662 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2663 if (!vma) {
2664 vm_unacct_memory(len >> PAGE_SHIFT);
2665 return -ENOMEM;
2668 INIT_LIST_HEAD(&vma->anon_vma_chain);
2669 vma->vm_mm = mm;
2670 vma->vm_start = addr;
2671 vma->vm_end = addr + len;
2672 vma->vm_pgoff = pgoff;
2673 vma->vm_flags = flags;
2674 vma->vm_page_prot = vm_get_page_prot(flags);
2675 vma_link(mm, vma, prev, rb_link, rb_parent);
2676 out:
2677 perf_event_mmap(vma);
2678 mm->total_vm += len >> PAGE_SHIFT;
2679 if (flags & VM_LOCKED)
2680 mm->locked_vm += (len >> PAGE_SHIFT);
2681 vma->vm_flags |= VM_SOFTDIRTY;
2682 return addr;
2685 unsigned long vm_brk(unsigned long addr, unsigned long len)
2687 struct mm_struct *mm = current->mm;
2688 unsigned long ret;
2689 bool populate;
2691 down_write(&mm->mmap_sem);
2692 ret = do_brk(addr, len);
2693 populate = ((mm->def_flags & VM_LOCKED) != 0);
2694 up_write(&mm->mmap_sem);
2695 if (populate)
2696 mm_populate(addr, len);
2697 return ret;
2699 EXPORT_SYMBOL(vm_brk);
2701 /* Release all mmaps. */
2702 void exit_mmap(struct mm_struct *mm)
2704 struct mmu_gather tlb;
2705 struct vm_area_struct *vma;
2706 unsigned long nr_accounted = 0;
2708 /* mm's last user has gone, and its about to be pulled down */
2709 mmu_notifier_release(mm);
2711 if (mm->locked_vm) {
2712 vma = mm->mmap;
2713 while (vma) {
2714 if (vma->vm_flags & VM_LOCKED)
2715 munlock_vma_pages_all(vma);
2716 vma = vma->vm_next;
2720 arch_exit_mmap(mm);
2722 vma = mm->mmap;
2723 if (!vma) /* Can happen if dup_mmap() received an OOM */
2724 return;
2726 lru_add_drain();
2727 flush_cache_mm(mm);
2728 tlb_gather_mmu(&tlb, mm, 0, -1);
2729 /* update_hiwater_rss(mm) here? but nobody should be looking */
2730 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2731 unmap_vmas(&tlb, vma, 0, -1);
2733 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2734 tlb_finish_mmu(&tlb, 0, -1);
2737 * Walk the list again, actually closing and freeing it,
2738 * with preemption enabled, without holding any MM locks.
2740 while (vma) {
2741 if (vma->vm_flags & VM_ACCOUNT)
2742 nr_accounted += vma_pages(vma);
2743 vma = remove_vma(vma);
2745 vm_unacct_memory(nr_accounted);
2747 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2748 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2751 /* Insert vm structure into process list sorted by address
2752 * and into the inode's i_mmap tree. If vm_file is non-NULL
2753 * then i_mmap_mutex is taken here.
2755 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2757 struct vm_area_struct *prev;
2758 struct rb_node **rb_link, *rb_parent;
2761 * The vm_pgoff of a purely anonymous vma should be irrelevant
2762 * until its first write fault, when page's anon_vma and index
2763 * are set. But now set the vm_pgoff it will almost certainly
2764 * end up with (unless mremap moves it elsewhere before that
2765 * first wfault), so /proc/pid/maps tells a consistent story.
2767 * By setting it to reflect the virtual start address of the
2768 * vma, merges and splits can happen in a seamless way, just
2769 * using the existing file pgoff checks and manipulations.
2770 * Similarly in do_mmap_pgoff and in do_brk.
2772 if (!vma->vm_file) {
2773 BUG_ON(vma->anon_vma);
2774 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2776 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2777 &prev, &rb_link, &rb_parent))
2778 return -ENOMEM;
2779 if ((vma->vm_flags & VM_ACCOUNT) &&
2780 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2781 return -ENOMEM;
2783 vma_link(mm, vma, prev, rb_link, rb_parent);
2784 return 0;
2788 * Copy the vma structure to a new location in the same mm,
2789 * prior to moving page table entries, to effect an mremap move.
2791 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2792 unsigned long addr, unsigned long len, pgoff_t pgoff,
2793 bool *need_rmap_locks)
2795 struct vm_area_struct *vma = *vmap;
2796 unsigned long vma_start = vma->vm_start;
2797 struct mm_struct *mm = vma->vm_mm;
2798 struct vm_area_struct *new_vma, *prev;
2799 struct rb_node **rb_link, *rb_parent;
2800 bool faulted_in_anon_vma = true;
2803 * If anonymous vma has not yet been faulted, update new pgoff
2804 * to match new location, to increase its chance of merging.
2806 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2807 pgoff = addr >> PAGE_SHIFT;
2808 faulted_in_anon_vma = false;
2811 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2812 return NULL; /* should never get here */
2813 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2814 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2815 if (new_vma) {
2817 * Source vma may have been merged into new_vma
2819 if (unlikely(vma_start >= new_vma->vm_start &&
2820 vma_start < new_vma->vm_end)) {
2822 * The only way we can get a vma_merge with
2823 * self during an mremap is if the vma hasn't
2824 * been faulted in yet and we were allowed to
2825 * reset the dst vma->vm_pgoff to the
2826 * destination address of the mremap to allow
2827 * the merge to happen. mremap must change the
2828 * vm_pgoff linearity between src and dst vmas
2829 * (in turn preventing a vma_merge) to be
2830 * safe. It is only safe to keep the vm_pgoff
2831 * linear if there are no pages mapped yet.
2833 VM_BUG_ON(faulted_in_anon_vma);
2834 *vmap = vma = new_vma;
2836 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2837 } else {
2838 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2839 if (new_vma) {
2840 *new_vma = *vma;
2841 new_vma->vm_start = addr;
2842 new_vma->vm_end = addr + len;
2843 new_vma->vm_pgoff = pgoff;
2844 if (vma_dup_policy(vma, new_vma))
2845 goto out_free_vma;
2846 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2847 if (anon_vma_clone(new_vma, vma))
2848 goto out_free_mempol;
2849 if (new_vma->vm_file)
2850 get_file(new_vma->vm_file);
2851 if (new_vma->vm_ops && new_vma->vm_ops->open)
2852 new_vma->vm_ops->open(new_vma);
2853 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2854 *need_rmap_locks = false;
2857 return new_vma;
2859 out_free_mempol:
2860 mpol_put(vma_policy(new_vma));
2861 out_free_vma:
2862 kmem_cache_free(vm_area_cachep, new_vma);
2863 return NULL;
2867 * Return true if the calling process may expand its vm space by the passed
2868 * number of pages
2870 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2872 unsigned long cur = mm->total_vm; /* pages */
2873 unsigned long lim;
2875 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2877 if (cur + npages > lim)
2878 return 0;
2879 return 1;
2883 static int special_mapping_fault(struct vm_area_struct *vma,
2884 struct vm_fault *vmf)
2886 pgoff_t pgoff;
2887 struct page **pages;
2890 * special mappings have no vm_file, and in that case, the mm
2891 * uses vm_pgoff internally. So we have to subtract it from here.
2892 * We are allowed to do this because we are the mm; do not copy
2893 * this code into drivers!
2895 pgoff = vmf->pgoff - vma->vm_pgoff;
2897 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2898 pgoff--;
2900 if (*pages) {
2901 struct page *page = *pages;
2902 get_page(page);
2903 vmf->page = page;
2904 return 0;
2907 return VM_FAULT_SIGBUS;
2911 * Having a close hook prevents vma merging regardless of flags.
2913 static void special_mapping_close(struct vm_area_struct *vma)
2917 static const struct vm_operations_struct special_mapping_vmops = {
2918 .close = special_mapping_close,
2919 .fault = special_mapping_fault,
2923 * Called with mm->mmap_sem held for writing.
2924 * Insert a new vma covering the given region, with the given flags.
2925 * Its pages are supplied by the given array of struct page *.
2926 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2927 * The region past the last page supplied will always produce SIGBUS.
2928 * The array pointer and the pages it points to are assumed to stay alive
2929 * for as long as this mapping might exist.
2931 int install_special_mapping(struct mm_struct *mm,
2932 unsigned long addr, unsigned long len,
2933 unsigned long vm_flags, struct page **pages)
2935 int ret;
2936 struct vm_area_struct *vma;
2938 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2939 if (unlikely(vma == NULL))
2940 return -ENOMEM;
2942 INIT_LIST_HEAD(&vma->anon_vma_chain);
2943 vma->vm_mm = mm;
2944 vma->vm_start = addr;
2945 vma->vm_end = addr + len;
2947 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2948 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2950 vma->vm_ops = &special_mapping_vmops;
2951 vma->vm_private_data = pages;
2953 ret = insert_vm_struct(mm, vma);
2954 if (ret)
2955 goto out;
2957 mm->total_vm += len >> PAGE_SHIFT;
2959 perf_event_mmap(vma);
2961 return 0;
2963 out:
2964 kmem_cache_free(vm_area_cachep, vma);
2965 return ret;
2968 static DEFINE_MUTEX(mm_all_locks_mutex);
2970 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2972 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2974 * The LSB of head.next can't change from under us
2975 * because we hold the mm_all_locks_mutex.
2977 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2979 * We can safely modify head.next after taking the
2980 * anon_vma->root->rwsem. If some other vma in this mm shares
2981 * the same anon_vma we won't take it again.
2983 * No need of atomic instructions here, head.next
2984 * can't change from under us thanks to the
2985 * anon_vma->root->rwsem.
2987 if (__test_and_set_bit(0, (unsigned long *)
2988 &anon_vma->root->rb_root.rb_node))
2989 BUG();
2993 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2995 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2997 * AS_MM_ALL_LOCKS can't change from under us because
2998 * we hold the mm_all_locks_mutex.
3000 * Operations on ->flags have to be atomic because
3001 * even if AS_MM_ALL_LOCKS is stable thanks to the
3002 * mm_all_locks_mutex, there may be other cpus
3003 * changing other bitflags in parallel to us.
3005 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3006 BUG();
3007 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3012 * This operation locks against the VM for all pte/vma/mm related
3013 * operations that could ever happen on a certain mm. This includes
3014 * vmtruncate, try_to_unmap, and all page faults.
3016 * The caller must take the mmap_sem in write mode before calling
3017 * mm_take_all_locks(). The caller isn't allowed to release the
3018 * mmap_sem until mm_drop_all_locks() returns.
3020 * mmap_sem in write mode is required in order to block all operations
3021 * that could modify pagetables and free pages without need of
3022 * altering the vma layout (for example populate_range() with
3023 * nonlinear vmas). It's also needed in write mode to avoid new
3024 * anon_vmas to be associated with existing vmas.
3026 * A single task can't take more than one mm_take_all_locks() in a row
3027 * or it would deadlock.
3029 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3030 * mapping->flags avoid to take the same lock twice, if more than one
3031 * vma in this mm is backed by the same anon_vma or address_space.
3033 * We can take all the locks in random order because the VM code
3034 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3035 * takes more than one of them in a row. Secondly we're protected
3036 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3038 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3039 * that may have to take thousand of locks.
3041 * mm_take_all_locks() can fail if it's interrupted by signals.
3043 int mm_take_all_locks(struct mm_struct *mm)
3045 struct vm_area_struct *vma;
3046 struct anon_vma_chain *avc;
3048 BUG_ON(down_read_trylock(&mm->mmap_sem));
3050 mutex_lock(&mm_all_locks_mutex);
3052 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3053 if (signal_pending(current))
3054 goto out_unlock;
3055 if (vma->vm_file && vma->vm_file->f_mapping)
3056 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3059 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3060 if (signal_pending(current))
3061 goto out_unlock;
3062 if (vma->anon_vma)
3063 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3064 vm_lock_anon_vma(mm, avc->anon_vma);
3067 return 0;
3069 out_unlock:
3070 mm_drop_all_locks(mm);
3071 return -EINTR;
3074 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3076 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3078 * The LSB of head.next can't change to 0 from under
3079 * us because we hold the mm_all_locks_mutex.
3081 * We must however clear the bitflag before unlocking
3082 * the vma so the users using the anon_vma->rb_root will
3083 * never see our bitflag.
3085 * No need of atomic instructions here, head.next
3086 * can't change from under us until we release the
3087 * anon_vma->root->rwsem.
3089 if (!__test_and_clear_bit(0, (unsigned long *)
3090 &anon_vma->root->rb_root.rb_node))
3091 BUG();
3092 anon_vma_unlock_write(anon_vma);
3096 static void vm_unlock_mapping(struct address_space *mapping)
3098 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3100 * AS_MM_ALL_LOCKS can't change to 0 from under us
3101 * because we hold the mm_all_locks_mutex.
3103 mutex_unlock(&mapping->i_mmap_mutex);
3104 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3105 &mapping->flags))
3106 BUG();
3111 * The mmap_sem cannot be released by the caller until
3112 * mm_drop_all_locks() returns.
3114 void mm_drop_all_locks(struct mm_struct *mm)
3116 struct vm_area_struct *vma;
3117 struct anon_vma_chain *avc;
3119 BUG_ON(down_read_trylock(&mm->mmap_sem));
3120 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3122 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3123 if (vma->anon_vma)
3124 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3125 vm_unlock_anon_vma(avc->anon_vma);
3126 if (vma->vm_file && vma->vm_file->f_mapping)
3127 vm_unlock_mapping(vma->vm_file->f_mapping);
3130 mutex_unlock(&mm_all_locks_mutex);
3134 * initialise the VMA slab
3136 void __init mmap_init(void)
3138 int ret;
3140 ret = percpu_counter_init(&vm_committed_as, 0);
3141 VM_BUG_ON(ret);
3145 * Initialise sysctl_user_reserve_kbytes.
3147 * This is intended to prevent a user from starting a single memory hogging
3148 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3149 * mode.
3151 * The default value is min(3% of free memory, 128MB)
3152 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3154 static int init_user_reserve(void)
3156 unsigned long free_kbytes;
3158 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3160 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3161 return 0;
3163 subsys_initcall(init_user_reserve);
3166 * Initialise sysctl_admin_reserve_kbytes.
3168 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3169 * to log in and kill a memory hogging process.
3171 * Systems with more than 256MB will reserve 8MB, enough to recover
3172 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3173 * only reserve 3% of free pages by default.
3175 static int init_admin_reserve(void)
3177 unsigned long free_kbytes;
3179 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3181 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3182 return 0;
3184 subsys_initcall(init_admin_reserve);
3187 * Reinititalise user and admin reserves if memory is added or removed.
3189 * The default user reserve max is 128MB, and the default max for the
3190 * admin reserve is 8MB. These are usually, but not always, enough to
3191 * enable recovery from a memory hogging process using login/sshd, a shell,
3192 * and tools like top. It may make sense to increase or even disable the
3193 * reserve depending on the existence of swap or variations in the recovery
3194 * tools. So, the admin may have changed them.
3196 * If memory is added and the reserves have been eliminated or increased above
3197 * the default max, then we'll trust the admin.
3199 * If memory is removed and there isn't enough free memory, then we
3200 * need to reset the reserves.
3202 * Otherwise keep the reserve set by the admin.
3204 static int reserve_mem_notifier(struct notifier_block *nb,
3205 unsigned long action, void *data)
3207 unsigned long tmp, free_kbytes;
3209 switch (action) {
3210 case MEM_ONLINE:
3211 /* Default max is 128MB. Leave alone if modified by operator. */
3212 tmp = sysctl_user_reserve_kbytes;
3213 if (0 < tmp && tmp < (1UL << 17))
3214 init_user_reserve();
3216 /* Default max is 8MB. Leave alone if modified by operator. */
3217 tmp = sysctl_admin_reserve_kbytes;
3218 if (0 < tmp && tmp < (1UL << 13))
3219 init_admin_reserve();
3221 break;
3222 case MEM_OFFLINE:
3223 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3225 if (sysctl_user_reserve_kbytes > free_kbytes) {
3226 init_user_reserve();
3227 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3228 sysctl_user_reserve_kbytes);
3231 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3232 init_admin_reserve();
3233 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3234 sysctl_admin_reserve_kbytes);
3236 break;
3237 default:
3238 break;
3240 return NOTIFY_OK;
3243 static struct notifier_block reserve_mem_nb = {
3244 .notifier_call = reserve_mem_notifier,
3247 static int __meminit init_reserve_notifier(void)
3249 if (register_hotmemory_notifier(&reserve_mem_nb))
3250 printk("Failed registering memory add/remove notifier for admin reserve");
3252 return 0;
3254 subsys_initcall(init_reserve_notifier);