1 // SPDX-License-Identifier: GPL-2.0
3 * linux/arch/parisc/mm/init.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
15 #include <linux/module.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages */
26 #include <linux/compat.h>
28 #include <asm/pgalloc.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
36 extern int data_start
;
37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42 * guarantee that global objects will be laid out in memory in the same order
43 * as the order of declaration, so put these in different sections and use
44 * the linker script to order them. */
45 pmd_t pmd0
[PTRS_PER_PMD
] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE
)));
48 pgd_t swapper_pg_dir
[PTRS_PER_PGD
] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE
)));
49 pte_t pg0
[PT_INITIAL
* PTRS_PER_PTE
] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE
)));
51 static struct resource data_resource
= {
52 .name
= "Kernel data",
53 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
56 static struct resource code_resource
= {
57 .name
= "Kernel code",
58 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
61 static struct resource pdcdata_resource
= {
62 .name
= "PDC data (Page Zero)",
65 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
68 static struct resource sysram_resources
[MAX_PHYSMEM_RANGES
] __ro_after_init
;
70 /* The following array is initialized from the firmware specific
71 * information retrieved in kernel/inventory.c.
74 physmem_range_t pmem_ranges
[MAX_PHYSMEM_RANGES
] __initdata
;
75 int npmem_ranges __initdata
;
78 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
79 #else /* !CONFIG_64BIT */
80 #define MAX_MEM (3584U*1024U*1024U)
81 #endif /* !CONFIG_64BIT */
83 static unsigned long mem_limit __read_mostly
= MAX_MEM
;
85 static void __init
mem_limit_func(void)
90 /* We need this before __setup() functions are called */
93 for (cp
= boot_command_line
; *cp
; ) {
94 if (memcmp(cp
, "mem=", 4) == 0) {
96 limit
= memparse(cp
, &end
);
101 while (*cp
!= ' ' && *cp
)
108 if (limit
< mem_limit
)
112 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
114 static void __init
setup_bootmem(void)
116 unsigned long mem_max
;
117 #ifndef CONFIG_SPARSEMEM
118 physmem_range_t pmem_holes
[MAX_PHYSMEM_RANGES
- 1];
121 int i
, sysram_resource_count
;
123 disable_sr_hashing(); /* Turn off space register hashing */
126 * Sort the ranges. Since the number of ranges is typically
127 * small, and performance is not an issue here, just do
128 * a simple insertion sort.
131 for (i
= 1; i
< npmem_ranges
; i
++) {
134 for (j
= i
; j
> 0; j
--) {
137 if (pmem_ranges
[j
-1].start_pfn
<
138 pmem_ranges
[j
].start_pfn
) {
142 tmp
= pmem_ranges
[j
-1];
143 pmem_ranges
[j
-1] = pmem_ranges
[j
];
144 pmem_ranges
[j
] = tmp
;
148 #ifndef CONFIG_SPARSEMEM
150 * Throw out ranges that are too far apart (controlled by
154 for (i
= 1; i
< npmem_ranges
; i
++) {
155 if (pmem_ranges
[i
].start_pfn
-
156 (pmem_ranges
[i
-1].start_pfn
+
157 pmem_ranges
[i
-1].pages
) > MAX_GAP
) {
159 printk("Large gap in memory detected (%ld pages). "
160 "Consider turning on CONFIG_SPARSEMEM\n",
161 pmem_ranges
[i
].start_pfn
-
162 (pmem_ranges
[i
-1].start_pfn
+
163 pmem_ranges
[i
-1].pages
));
169 /* Print the memory ranges */
170 pr_info("Memory Ranges:\n");
172 for (i
= 0; i
< npmem_ranges
; i
++) {
173 struct resource
*res
= &sysram_resources
[i
];
177 size
= (pmem_ranges
[i
].pages
<< PAGE_SHIFT
);
178 start
= (pmem_ranges
[i
].start_pfn
<< PAGE_SHIFT
);
179 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 i
, start
, start
+ (size
- 1), size
>> 20);
182 /* request memory resource */
183 res
->name
= "System RAM";
185 res
->end
= start
+ size
- 1;
186 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
187 request_resource(&iomem_resource
, res
);
190 sysram_resource_count
= npmem_ranges
;
193 * For 32 bit kernels we limit the amount of memory we can
194 * support, in order to preserve enough kernel address space
195 * for other purposes. For 64 bit kernels we don't normally
196 * limit the memory, but this mechanism can be used to
197 * artificially limit the amount of memory (and it is written
198 * to work with multiple memory ranges).
201 mem_limit_func(); /* check for "mem=" argument */
204 for (i
= 0; i
< npmem_ranges
; i
++) {
207 rsize
= pmem_ranges
[i
].pages
<< PAGE_SHIFT
;
208 if ((mem_max
+ rsize
) > mem_limit
) {
209 printk(KERN_WARNING
"Memory truncated to %ld MB\n", mem_limit
>> 20);
210 if (mem_max
== mem_limit
)
213 pmem_ranges
[i
].pages
= (mem_limit
>> PAGE_SHIFT
)
214 - (mem_max
>> PAGE_SHIFT
);
215 npmem_ranges
= i
+ 1;
223 printk(KERN_INFO
"Total Memory: %ld MB\n",mem_max
>> 20);
225 #ifndef CONFIG_SPARSEMEM
226 /* Merge the ranges, keeping track of the holes */
228 unsigned long end_pfn
;
229 unsigned long hole_pages
;
232 end_pfn
= pmem_ranges
[0].start_pfn
+ pmem_ranges
[0].pages
;
233 for (i
= 1; i
< npmem_ranges
; i
++) {
235 hole_pages
= pmem_ranges
[i
].start_pfn
- end_pfn
;
237 pmem_holes
[npmem_holes
].start_pfn
= end_pfn
;
238 pmem_holes
[npmem_holes
++].pages
= hole_pages
;
239 end_pfn
+= hole_pages
;
241 end_pfn
+= pmem_ranges
[i
].pages
;
244 pmem_ranges
[0].pages
= end_pfn
- pmem_ranges
[0].start_pfn
;
250 * Initialize and free the full range of memory in each range.
254 for (i
= 0; i
< npmem_ranges
; i
++) {
255 unsigned long start_pfn
;
256 unsigned long npages
;
260 start_pfn
= pmem_ranges
[i
].start_pfn
;
261 npages
= pmem_ranges
[i
].pages
;
263 start
= start_pfn
<< PAGE_SHIFT
;
264 size
= npages
<< PAGE_SHIFT
;
266 /* add system RAM memblock */
267 memblock_add(start
, size
);
269 if ((start_pfn
+ npages
) > max_pfn
)
270 max_pfn
= start_pfn
+ npages
;
274 * We can't use memblock top-down allocations because we only
275 * created the initial mapping up to KERNEL_INITIAL_SIZE in
276 * the assembly bootup code.
278 memblock_set_bottom_up(true);
280 /* IOMMU is always used to access "high mem" on those boxes
281 * that can support enough mem that a PCI device couldn't
282 * directly DMA to any physical addresses.
283 * ISA DMA support will need to revisit this.
285 max_low_pfn
= max_pfn
;
287 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
289 #define PDC_CONSOLE_IO_IODC_SIZE 32768
291 memblock_reserve(0UL, (unsigned long)(PAGE0
->mem_free
+
292 PDC_CONSOLE_IO_IODC_SIZE
));
293 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START
),
294 (unsigned long)(_end
- KERNEL_BINARY_TEXT_START
));
296 #ifndef CONFIG_SPARSEMEM
298 /* reserve the holes */
300 for (i
= 0; i
< npmem_holes
; i
++) {
301 memblock_reserve((pmem_holes
[i
].start_pfn
<< PAGE_SHIFT
),
302 (pmem_holes
[i
].pages
<< PAGE_SHIFT
));
306 #ifdef CONFIG_BLK_DEV_INITRD
308 printk(KERN_INFO
"initrd: %08lx-%08lx\n", initrd_start
, initrd_end
);
309 if (__pa(initrd_start
) < mem_max
) {
310 unsigned long initrd_reserve
;
312 if (__pa(initrd_end
) > mem_max
) {
313 initrd_reserve
= mem_max
- __pa(initrd_start
);
315 initrd_reserve
= initrd_end
- initrd_start
;
317 initrd_below_start_ok
= 1;
318 printk(KERN_INFO
"initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start
), __pa(initrd_start
) + initrd_reserve
, mem_max
);
320 memblock_reserve(__pa(initrd_start
), initrd_reserve
);
325 data_resource
.start
= virt_to_phys(&data_start
);
326 data_resource
.end
= virt_to_phys(_end
) - 1;
327 code_resource
.start
= virt_to_phys(_text
);
328 code_resource
.end
= virt_to_phys(&data_start
)-1;
330 /* We don't know which region the kernel will be in, so try
333 for (i
= 0; i
< sysram_resource_count
; i
++) {
334 struct resource
*res
= &sysram_resources
[i
];
335 request_resource(res
, &code_resource
);
336 request_resource(res
, &data_resource
);
338 request_resource(&sysram_resources
[0], &pdcdata_resource
);
340 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
343 memblock_allow_resize();
347 static bool kernel_set_to_readonly
;
349 static void __init
map_pages(unsigned long start_vaddr
,
350 unsigned long start_paddr
, unsigned long size
,
351 pgprot_t pgprot
, int force
)
355 unsigned long end_paddr
;
356 unsigned long start_pmd
;
357 unsigned long start_pte
;
360 unsigned long address
;
362 unsigned long ro_start
;
363 unsigned long ro_end
;
364 unsigned long kernel_start
, kernel_end
;
366 ro_start
= __pa((unsigned long)_text
);
367 ro_end
= __pa((unsigned long)&data_start
);
368 kernel_start
= __pa((unsigned long)&__init_begin
);
369 kernel_end
= __pa((unsigned long)&_end
);
371 end_paddr
= start_paddr
+ size
;
373 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
374 start_pmd
= ((start_vaddr
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
375 start_pte
= ((start_vaddr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
377 address
= start_paddr
;
379 while (address
< end_paddr
) {
380 pgd_t
*pgd
= pgd_offset_k(vaddr
);
381 p4d_t
*p4d
= p4d_offset(pgd
, vaddr
);
382 pud_t
*pud
= pud_offset(p4d
, vaddr
);
384 #if CONFIG_PGTABLE_LEVELS == 3
385 if (pud_none(*pud
)) {
386 pmd
= memblock_alloc(PAGE_SIZE
<< PMD_ORDER
,
387 PAGE_SIZE
<< PMD_ORDER
);
389 panic("pmd allocation failed.\n");
390 pud_populate(NULL
, pud
, pmd
);
394 pmd
= pmd_offset(pud
, vaddr
);
395 for (tmp1
= start_pmd
; tmp1
< PTRS_PER_PMD
; tmp1
++, pmd
++) {
396 if (pmd_none(*pmd
)) {
397 pg_table
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
399 panic("page table allocation failed\n");
400 pmd_populate_kernel(NULL
, pmd
, pg_table
);
403 pg_table
= pte_offset_kernel(pmd
, vaddr
);
404 for (tmp2
= start_pte
; tmp2
< PTRS_PER_PTE
; tmp2
++, pg_table
++) {
411 } else if (address
< kernel_start
|| address
>= kernel_end
) {
412 /* outside kernel memory */
414 } else if (!kernel_set_to_readonly
) {
415 /* still initializing, allow writing to RO memory */
416 prot
= PAGE_KERNEL_RWX
;
418 } else if (address
>= ro_start
) {
419 /* Code (ro) and Data areas */
420 prot
= (address
< ro_end
) ?
421 PAGE_KERNEL_EXEC
: PAGE_KERNEL
;
427 pte
= __mk_pte(address
, prot
);
429 pte
= pte_mkhuge(pte
);
431 if (address
>= end_paddr
)
434 set_pte(pg_table
, pte
);
436 address
+= PAGE_SIZE
;
441 if (address
>= end_paddr
)
448 void __init
set_kernel_text_rw(int enable_read_write
)
450 unsigned long start
= (unsigned long) __init_begin
;
451 unsigned long end
= (unsigned long) &data_start
;
453 map_pages(start
, __pa(start
), end
-start
,
454 PAGE_KERNEL_RWX
, enable_read_write
? 1:0);
456 /* force the kernel to see the new page table entries */
461 void __ref
free_initmem(void)
463 unsigned long init_begin
= (unsigned long)__init_begin
;
464 unsigned long init_end
= (unsigned long)__init_end
;
465 unsigned long kernel_end
= (unsigned long)&_end
;
467 /* Remap kernel text and data, but do not touch init section yet. */
468 kernel_set_to_readonly
= true;
469 map_pages(init_end
, __pa(init_end
), kernel_end
- init_end
,
472 /* The init text pages are marked R-X. We have to
473 * flush the icache and mark them RW-
475 * This is tricky, because map_pages is in the init section.
476 * Do a dummy remap of the data section first (the data
477 * section is already PAGE_KERNEL) to pull in the TLB entries
479 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
481 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
483 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
486 /* force the kernel to see the new TLB entries */
487 __flush_tlb_range(0, init_begin
, kernel_end
);
489 /* finally dump all the instructions which were cached, since the
490 * pages are no-longer executable */
491 flush_icache_range(init_begin
, init_end
);
493 free_initmem_default(POISON_FREE_INITMEM
);
495 /* set up a new led state on systems shipped LED State panel */
496 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE
);
500 #ifdef CONFIG_STRICT_KERNEL_RWX
501 void mark_rodata_ro(void)
503 /* rodata memory was already mapped with KERNEL_RO access rights by
504 pagetable_init() and map_pages(). No need to do additional stuff here */
505 unsigned long roai_size
= __end_ro_after_init
- __start_ro_after_init
;
507 pr_info("Write protected read-only-after-init data: %luk\n", roai_size
>> 10);
513 * Just an arbitrary offset to serve as a "hole" between mapping areas
514 * (between top of physical memory and a potential pcxl dma mapping
515 * area, and below the vmalloc mapping area).
517 * The current 32K value just means that there will be a 32K "hole"
518 * between mapping areas. That means that any out-of-bounds memory
519 * accesses will hopefully be caught. The vmalloc() routines leaves
520 * a hole of 4kB between each vmalloced area for the same reason.
523 /* Leave room for gateway page expansion */
524 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
525 #error KERNEL_MAP_START is in gateway reserved region
527 #define MAP_START (KERNEL_MAP_START)
529 #define VM_MAP_OFFSET (32*1024)
530 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
531 & ~(VM_MAP_OFFSET-1)))
533 void *parisc_vmalloc_start __ro_after_init
;
534 EXPORT_SYMBOL(parisc_vmalloc_start
);
537 unsigned long pcxl_dma_start __ro_after_init
;
540 void __init
mem_init(void)
542 /* Do sanity checks on IPC (compat) structures */
543 BUILD_BUG_ON(sizeof(struct ipc64_perm
) != 48);
545 BUILD_BUG_ON(sizeof(struct semid64_ds
) != 80);
546 BUILD_BUG_ON(sizeof(struct msqid64_ds
) != 104);
547 BUILD_BUG_ON(sizeof(struct shmid64_ds
) != 104);
550 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm
) != sizeof(struct ipc64_perm
));
551 BUILD_BUG_ON(sizeof(struct compat_semid64_ds
) != 80);
552 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds
) != 104);
553 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds
) != 104);
556 /* Do sanity checks on page table constants */
557 BUILD_BUG_ON(PTE_ENTRY_SIZE
!= sizeof(pte_t
));
558 BUILD_BUG_ON(PMD_ENTRY_SIZE
!= sizeof(pmd_t
));
559 BUILD_BUG_ON(PGD_ENTRY_SIZE
!= sizeof(pgd_t
));
560 BUILD_BUG_ON(PAGE_SHIFT
+ BITS_PER_PTE
+ BITS_PER_PMD
+ BITS_PER_PGD
563 high_memory
= __va((max_pfn
<< PAGE_SHIFT
));
564 set_max_mapnr(max_low_pfn
);
568 if (boot_cpu_data
.cpu_type
== pcxl2
|| boot_cpu_data
.cpu_type
== pcxl
) {
569 pcxl_dma_start
= (unsigned long)SET_MAP_OFFSET(MAP_START
);
570 parisc_vmalloc_start
= SET_MAP_OFFSET(pcxl_dma_start
571 + PCXL_DMA_MAP_SIZE
);
574 parisc_vmalloc_start
= SET_MAP_OFFSET(MAP_START
);
576 mem_init_print_info(NULL
);
580 * Do not expose the virtual kernel memory layout to userspace.
581 * But keep code for debugging purposes.
583 printk("virtual kernel memory layout:\n"
584 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
585 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
586 " memory : 0x%px - 0x%px (%4ld MB)\n"
587 " .init : 0x%px - 0x%px (%4ld kB)\n"
588 " .data : 0x%px - 0x%px (%4ld kB)\n"
589 " .text : 0x%px - 0x%px (%4ld kB)\n",
591 (void*)VMALLOC_START
, (void*)VMALLOC_END
,
592 (VMALLOC_END
- VMALLOC_START
) >> 20,
594 (void *)FIXMAP_START
, (void *)(FIXMAP_START
+ FIXMAP_SIZE
),
595 (unsigned long)(FIXMAP_SIZE
/ 1024),
597 __va(0), high_memory
,
598 ((unsigned long)high_memory
- (unsigned long)__va(0)) >> 20,
600 __init_begin
, __init_end
,
601 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10,
604 ((unsigned long)_edata
- (unsigned long)_etext
) >> 10,
607 ((unsigned long)_etext
- (unsigned long)_text
) >> 10);
611 unsigned long *empty_zero_page __ro_after_init
;
612 EXPORT_SYMBOL(empty_zero_page
);
615 * pagetable_init() sets up the page tables
617 * Note that gateway_init() places the Linux gateway page at page 0.
618 * Since gateway pages cannot be dereferenced this has the desirable
619 * side effect of trapping those pesky NULL-reference errors in the
622 static void __init
pagetable_init(void)
626 /* Map each physical memory range to its kernel vaddr */
628 for (range
= 0; range
< npmem_ranges
; range
++) {
629 unsigned long start_paddr
;
630 unsigned long end_paddr
;
633 start_paddr
= pmem_ranges
[range
].start_pfn
<< PAGE_SHIFT
;
634 size
= pmem_ranges
[range
].pages
<< PAGE_SHIFT
;
635 end_paddr
= start_paddr
+ size
;
637 map_pages((unsigned long)__va(start_paddr
), start_paddr
,
638 size
, PAGE_KERNEL
, 0);
641 #ifdef CONFIG_BLK_DEV_INITRD
642 if (initrd_end
&& initrd_end
> mem_limit
) {
643 printk(KERN_INFO
"initrd: mapping %08lx-%08lx\n", initrd_start
, initrd_end
);
644 map_pages(initrd_start
, __pa(initrd_start
),
645 initrd_end
- initrd_start
, PAGE_KERNEL
, 0);
649 empty_zero_page
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
650 if (!empty_zero_page
)
651 panic("zero page allocation failed.\n");
655 static void __init
gateway_init(void)
657 unsigned long linux_gateway_page_addr
;
658 /* FIXME: This is 'const' in order to trick the compiler
659 into not treating it as DP-relative data. */
660 extern void * const linux_gateway_page
;
662 linux_gateway_page_addr
= LINUX_GATEWAY_ADDR
& PAGE_MASK
;
665 * Setup Linux Gateway page.
667 * The Linux gateway page will reside in kernel space (on virtual
668 * page 0), so it doesn't need to be aliased into user space.
671 map_pages(linux_gateway_page_addr
, __pa(&linux_gateway_page
),
672 PAGE_SIZE
, PAGE_GATEWAY
, 1);
675 static void __init
parisc_bootmem_free(void)
677 unsigned long max_zone_pfn
[MAX_NR_ZONES
] = { 0, };
679 max_zone_pfn
[0] = memblock_end_of_DRAM();
681 free_area_init(max_zone_pfn
);
684 void __init
paging_init(void)
689 flush_cache_all_local(); /* start with known state */
690 flush_tlb_all_local(NULL
);
693 parisc_bootmem_free();
699 * Currently, all PA20 chips have 18 bit protection IDs, which is the
700 * limiting factor (space ids are 32 bits).
703 #define NR_SPACE_IDS 262144
708 * Currently we have a one-to-one relationship between space IDs and
709 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
710 * support 15 bit protection IDs, so that is the limiting factor.
711 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
712 * probably not worth the effort for a special case here.
715 #define NR_SPACE_IDS 32768
717 #endif /* !CONFIG_PA20 */
719 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
720 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
722 static unsigned long space_id
[SID_ARRAY_SIZE
] = { 1 }; /* disallow space 0 */
723 static unsigned long dirty_space_id
[SID_ARRAY_SIZE
];
724 static unsigned long space_id_index
;
725 static unsigned long free_space_ids
= NR_SPACE_IDS
- 1;
726 static unsigned long dirty_space_ids
= 0;
728 static DEFINE_SPINLOCK(sid_lock
);
730 unsigned long alloc_sid(void)
734 spin_lock(&sid_lock
);
736 if (free_space_ids
== 0) {
737 if (dirty_space_ids
!= 0) {
738 spin_unlock(&sid_lock
);
739 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
740 spin_lock(&sid_lock
);
742 BUG_ON(free_space_ids
== 0);
747 index
= find_next_zero_bit(space_id
, NR_SPACE_IDS
, space_id_index
);
748 space_id
[BIT_WORD(index
)] |= BIT_MASK(index
);
749 space_id_index
= index
;
751 spin_unlock(&sid_lock
);
753 return index
<< SPACEID_SHIFT
;
756 void free_sid(unsigned long spaceid
)
758 unsigned long index
= spaceid
>> SPACEID_SHIFT
;
759 unsigned long *dirty_space_offset
, mask
;
761 dirty_space_offset
= &dirty_space_id
[BIT_WORD(index
)];
762 mask
= BIT_MASK(index
);
764 spin_lock(&sid_lock
);
766 BUG_ON(*dirty_space_offset
& mask
); /* attempt to free space id twice */
768 *dirty_space_offset
|= mask
;
771 spin_unlock(&sid_lock
);
776 static void get_dirty_sids(unsigned long *ndirtyptr
,unsigned long *dirty_array
)
780 /* NOTE: sid_lock must be held upon entry */
782 *ndirtyptr
= dirty_space_ids
;
783 if (dirty_space_ids
!= 0) {
784 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
785 dirty_array
[i
] = dirty_space_id
[i
];
786 dirty_space_id
[i
] = 0;
794 static void recycle_sids(unsigned long ndirty
,unsigned long *dirty_array
)
798 /* NOTE: sid_lock must be held upon entry */
801 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
802 space_id
[i
] ^= dirty_array
[i
];
805 free_space_ids
+= ndirty
;
810 #else /* CONFIG_SMP */
812 static void recycle_sids(void)
816 /* NOTE: sid_lock must be held upon entry */
818 if (dirty_space_ids
!= 0) {
819 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
820 space_id
[i
] ^= dirty_space_id
[i
];
821 dirty_space_id
[i
] = 0;
824 free_space_ids
+= dirty_space_ids
;
832 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
833 * purged, we can safely reuse the space ids that were released but
834 * not flushed from the tlb.
839 static unsigned long recycle_ndirty
;
840 static unsigned long recycle_dirty_array
[SID_ARRAY_SIZE
];
841 static unsigned int recycle_inuse
;
843 void flush_tlb_all(void)
847 __inc_irq_stat(irq_tlb_count
);
849 spin_lock(&sid_lock
);
850 if (dirty_space_ids
> RECYCLE_THRESHOLD
) {
851 BUG_ON(recycle_inuse
); /* FIXME: Use a semaphore/wait queue here */
852 get_dirty_sids(&recycle_ndirty
,recycle_dirty_array
);
856 spin_unlock(&sid_lock
);
857 on_each_cpu(flush_tlb_all_local
, NULL
, 1);
859 spin_lock(&sid_lock
);
860 recycle_sids(recycle_ndirty
,recycle_dirty_array
);
862 spin_unlock(&sid_lock
);
866 void flush_tlb_all(void)
868 __inc_irq_stat(irq_tlb_count
);
869 spin_lock(&sid_lock
);
870 flush_tlb_all_local(NULL
);
872 spin_unlock(&sid_lock
);