Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / acpi / acpi_lpss.c
blobbe73974ce449acaecd88bfe31973d2d930e9efb0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
27 #include "internal.h"
29 #ifdef CONFIG_X86_INTEL_LPSS
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37 #define LPSS_CLK_SIZE 0x04
38 #define LPSS_LTR_SIZE 0x18
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
42 #define LPSS_RESETS 0x04
43 #define LPSS_RESETS_RESET_FUNC BIT(0)
44 #define LPSS_RESETS_RESET_APB BIT(1)
45 #define LPSS_GENERAL 0x08
46 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
48 #define LPSS_SW_LTR 0x10
49 #define LPSS_AUTO_LTR 0x14
50 #define LPSS_LTR_SNOOP_REQ BIT(15)
51 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US 0x800
53 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
56 #define LPSS_LTR_MAX_VAL 0x3FF
57 #define LPSS_TX_INT 0x20
58 #define LPSS_TX_INT_MASK BIT(1)
60 #define LPSS_PRV_REG_COUNT 9
62 /* LPSS Flags */
63 #define LPSS_CLK BIT(0)
64 #define LPSS_CLK_GATE BIT(1)
65 #define LPSS_CLK_DIVIDER BIT(2)
66 #define LPSS_LTR BIT(3)
67 #define LPSS_SAVE_CTX BIT(4)
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
75 #define LPSS_SAVE_CTX_ONCE BIT(5)
76 #define LPSS_NO_D3_DELAY BIT(6)
78 struct lpss_private_data;
80 struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
90 static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
94 struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
122 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR 0xF4
126 #define LPSS_UART_CPR_AFCE BIT(4)
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 unsigned int offset;
131 u32 val;
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 unsigned int offset;
149 u32 val;
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 struct acpi_device *adev = pdata->adev;
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
175 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
178 #define LPSS_I2C_ENABLE 0x6c
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 const char *uid_str = acpi_device_uid(pdata->adev);
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
185 acpi_status status;
186 long uid = 0;
188 /* Expected to always be true, but better safe then sorry */
189 if (uid_str)
190 uid = simple_strtol(uid_str, NULL, 10);
192 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
193 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194 if (ACPI_SUCCESS(status) && shared_host && uid)
195 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
197 lpss_deassert_reset(pdata);
199 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200 pdata->fixed_clk_rate = 133000000;
202 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 "pwm-lpss-platform"),
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
214 struct acpi_device *adev = pdata->adev;
216 /* Only call pwm_add_table for the first PWM controller */
217 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218 return;
220 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
223 static const struct lpss_device_desc lpt_dev_desc = {
224 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225 | LPSS_SAVE_CTX,
226 .prv_offset = 0x800,
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231 .prv_offset = 0x800,
234 static struct property_entry uart_properties[] = {
235 PROPERTY_ENTRY_U32("reg-io-width", 4),
236 PROPERTY_ENTRY_U32("reg-shift", 2),
237 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238 { },
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243 | LPSS_SAVE_CTX,
244 .clk_con_id = "baudclk",
245 .prv_offset = 0x800,
246 .setup = lpss_uart_setup,
247 .properties = uart_properties,
250 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251 .flags = LPSS_LTR,
252 .prv_offset = 0x1000,
253 .prv_size_override = 0x1018,
256 static const struct lpss_device_desc byt_pwm_dev_desc = {
257 .flags = LPSS_SAVE_CTX,
258 .prv_offset = 0x800,
259 .setup = byt_pwm_setup,
262 static const struct lpss_device_desc bsw_pwm_dev_desc = {
263 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264 .prv_offset = 0x800,
265 .setup = bsw_pwm_setup,
266 .resume_from_noirq = true,
269 static const struct lpss_device_desc byt_uart_dev_desc = {
270 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271 .clk_con_id = "baudclk",
272 .prv_offset = 0x800,
273 .setup = lpss_uart_setup,
274 .properties = uart_properties,
277 static const struct lpss_device_desc bsw_uart_dev_desc = {
278 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279 | LPSS_NO_D3_DELAY,
280 .clk_con_id = "baudclk",
281 .prv_offset = 0x800,
282 .setup = lpss_uart_setup,
283 .properties = uart_properties,
286 static const struct lpss_device_desc byt_spi_dev_desc = {
287 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288 .prv_offset = 0x400,
291 static const struct lpss_device_desc byt_sdio_dev_desc = {
292 .flags = LPSS_CLK,
295 static const struct lpss_device_desc byt_i2c_dev_desc = {
296 .flags = LPSS_CLK | LPSS_SAVE_CTX,
297 .prv_offset = 0x800,
298 .setup = byt_i2c_setup,
299 .resume_from_noirq = true,
302 static const struct lpss_device_desc bsw_i2c_dev_desc = {
303 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304 .prv_offset = 0x800,
305 .setup = byt_i2c_setup,
306 .resume_from_noirq = true,
309 static const struct lpss_device_desc bsw_spi_dev_desc = {
310 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311 | LPSS_NO_D3_DELAY,
312 .prv_offset = 0x400,
313 .setup = lpss_deassert_reset,
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
318 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
322 #else
324 #define LPSS_ADDR(desc) (0UL)
326 #endif /* CONFIG_X86_INTEL_LPSS */
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
375 #ifdef CONFIG_X86_INTEL_LPSS
377 static int is_memory(struct acpi_resource *res, void *not_used)
379 struct resource r;
380 return !acpi_dev_resource_memory(res, &r);
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
386 static inline void lpt_register_clock_device(void)
388 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
391 static int register_device_clock(struct acpi_device *adev,
392 struct lpss_private_data *pdata)
394 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 const char *devname = dev_name(&adev->dev);
396 struct clk *clk;
397 struct lpss_clk_data *clk_data;
398 const char *parent, *clk_name;
399 void __iomem *prv_base;
401 if (!lpss_clk_dev)
402 lpt_register_clock_device();
404 clk_data = platform_get_drvdata(lpss_clk_dev);
405 if (!clk_data)
406 return -ENODEV;
407 clk = clk_data->clk;
409 if (!pdata->mmio_base
410 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411 return -ENODATA;
413 parent = clk_data->name;
414 prv_base = pdata->mmio_base + dev_desc->prv_offset;
416 if (pdata->fixed_clk_rate) {
417 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418 pdata->fixed_clk_rate);
419 goto out;
422 if (dev_desc->flags & LPSS_CLK_GATE) {
423 clk = clk_register_gate(NULL, devname, parent, 0,
424 prv_base, 0, 0, NULL);
425 parent = devname;
428 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429 /* Prevent division by zero */
430 if (!readl(prv_base))
431 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
433 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434 if (!clk_name)
435 return -ENOMEM;
436 clk = clk_register_fractional_divider(NULL, clk_name, parent,
437 0, prv_base,
438 1, 15, 16, 15, 0, NULL);
439 parent = clk_name;
441 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442 if (!clk_name) {
443 kfree(parent);
444 return -ENOMEM;
446 clk = clk_register_gate(NULL, clk_name, parent,
447 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448 prv_base, 31, 0, NULL);
449 kfree(parent);
450 kfree(clk_name);
452 out:
453 if (IS_ERR(clk))
454 return PTR_ERR(clk);
456 pdata->clk = clk;
457 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458 return 0;
461 struct lpss_device_links {
462 const char *supplier_hid;
463 const char *supplier_uid;
464 const char *consumer_hid;
465 const char *consumer_uid;
466 u32 flags;
467 const struct dmi_system_id *dep_missing_ids;
470 /* Please keep this list sorted alphabetically by vendor and model */
471 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
473 .matches = {
474 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
475 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
482 * The _DEP method is used to identify dependencies but instead of creating
483 * device links for every handle in _DEP, only links in the following list are
484 * created. That is necessary because, in the general case, _DEP can refer to
485 * devices that might not have drivers, or that are on different buses, or where
486 * the supplier is not enumerated until after the consumer is probed.
488 static const struct lpss_device_links lpss_device_links[] = {
489 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
490 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
491 /* CHT iGPU depends on PMIC I2C controller */
492 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
493 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
494 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
495 i2c1_dep_missing_dmi_ids},
496 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
497 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
498 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
499 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
502 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
503 const struct lpss_device_links *link)
505 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
508 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
509 const struct lpss_device_links *link)
511 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
514 struct hid_uid {
515 const char *hid;
516 const char *uid;
519 static int match_hid_uid(struct device *dev, const void *data)
521 struct acpi_device *adev = ACPI_COMPANION(dev);
522 const struct hid_uid *id = data;
524 if (!adev)
525 return 0;
527 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
530 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
532 struct device *dev;
534 struct hid_uid data = {
535 .hid = hid,
536 .uid = uid,
539 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
540 if (dev)
541 return dev;
543 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
546 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
548 struct acpi_handle_list dep_devices;
549 acpi_status status;
550 int i;
552 if (!acpi_has_method(adev->handle, "_DEP"))
553 return false;
555 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
556 &dep_devices);
557 if (ACPI_FAILURE(status)) {
558 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
559 return false;
562 for (i = 0; i < dep_devices.count; i++) {
563 if (dep_devices.handles[i] == handle)
564 return true;
567 return false;
570 static void acpi_lpss_link_consumer(struct device *dev1,
571 const struct lpss_device_links *link)
573 struct device *dev2;
575 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
576 if (!dev2)
577 return;
579 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
580 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
581 device_link_add(dev2, dev1, link->flags);
583 put_device(dev2);
586 static void acpi_lpss_link_supplier(struct device *dev1,
587 const struct lpss_device_links *link)
589 struct device *dev2;
591 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
592 if (!dev2)
593 return;
595 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
596 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
597 device_link_add(dev1, dev2, link->flags);
599 put_device(dev2);
602 static void acpi_lpss_create_device_links(struct acpi_device *adev,
603 struct platform_device *pdev)
605 int i;
607 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
608 const struct lpss_device_links *link = &lpss_device_links[i];
610 if (acpi_lpss_is_supplier(adev, link))
611 acpi_lpss_link_consumer(&pdev->dev, link);
613 if (acpi_lpss_is_consumer(adev, link))
614 acpi_lpss_link_supplier(&pdev->dev, link);
618 static int acpi_lpss_create_device(struct acpi_device *adev,
619 const struct acpi_device_id *id)
621 const struct lpss_device_desc *dev_desc;
622 struct lpss_private_data *pdata;
623 struct resource_entry *rentry;
624 struct list_head resource_list;
625 struct platform_device *pdev;
626 int ret;
628 dev_desc = (const struct lpss_device_desc *)id->driver_data;
629 if (!dev_desc) {
630 pdev = acpi_create_platform_device(adev, NULL);
631 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
633 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
634 if (!pdata)
635 return -ENOMEM;
637 INIT_LIST_HEAD(&resource_list);
638 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
639 if (ret < 0)
640 goto err_out;
642 list_for_each_entry(rentry, &resource_list, node)
643 if (resource_type(rentry->res) == IORESOURCE_MEM) {
644 if (dev_desc->prv_size_override)
645 pdata->mmio_size = dev_desc->prv_size_override;
646 else
647 pdata->mmio_size = resource_size(rentry->res);
648 pdata->mmio_base = ioremap(rentry->res->start,
649 pdata->mmio_size);
650 break;
653 acpi_dev_free_resource_list(&resource_list);
655 if (!pdata->mmio_base) {
656 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
657 adev->pnp.type.platform_id = 0;
658 /* Skip the device, but continue the namespace scan. */
659 ret = 0;
660 goto err_out;
663 pdata->adev = adev;
664 pdata->dev_desc = dev_desc;
666 if (dev_desc->setup)
667 dev_desc->setup(pdata);
669 if (dev_desc->flags & LPSS_CLK) {
670 ret = register_device_clock(adev, pdata);
671 if (ret) {
672 /* Skip the device, but continue the namespace scan. */
673 ret = 0;
674 goto err_out;
679 * This works around a known issue in ACPI tables where LPSS devices
680 * have _PS0 and _PS3 without _PSC (and no power resources), so
681 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
683 acpi_device_fix_up_power(adev);
685 adev->driver_data = pdata;
686 pdev = acpi_create_platform_device(adev, dev_desc->properties);
687 if (!IS_ERR_OR_NULL(pdev)) {
688 acpi_lpss_create_device_links(adev, pdev);
689 return 1;
692 ret = PTR_ERR(pdev);
693 adev->driver_data = NULL;
695 err_out:
696 kfree(pdata);
697 return ret;
700 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
702 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
705 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
706 unsigned int reg)
708 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
711 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
713 struct acpi_device *adev;
714 struct lpss_private_data *pdata;
715 unsigned long flags;
716 int ret;
718 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
719 if (WARN_ON(ret))
720 return ret;
722 spin_lock_irqsave(&dev->power.lock, flags);
723 if (pm_runtime_suspended(dev)) {
724 ret = -EAGAIN;
725 goto out;
727 pdata = acpi_driver_data(adev);
728 if (WARN_ON(!pdata || !pdata->mmio_base)) {
729 ret = -ENODEV;
730 goto out;
732 *val = __lpss_reg_read(pdata, reg);
734 out:
735 spin_unlock_irqrestore(&dev->power.lock, flags);
736 return ret;
739 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
740 char *buf)
742 u32 ltr_value = 0;
743 unsigned int reg;
744 int ret;
746 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
747 ret = lpss_reg_read(dev, reg, &ltr_value);
748 if (ret)
749 return ret;
751 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
754 static ssize_t lpss_ltr_mode_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
757 u32 ltr_mode = 0;
758 char *outstr;
759 int ret;
761 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
762 if (ret)
763 return ret;
765 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
766 return sprintf(buf, "%s\n", outstr);
769 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
770 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
771 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
773 static struct attribute *lpss_attrs[] = {
774 &dev_attr_auto_ltr.attr,
775 &dev_attr_sw_ltr.attr,
776 &dev_attr_ltr_mode.attr,
777 NULL,
780 static const struct attribute_group lpss_attr_group = {
781 .attrs = lpss_attrs,
782 .name = "lpss_ltr",
785 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
787 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
788 u32 ltr_mode, ltr_val;
790 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
791 if (val < 0) {
792 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
793 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
794 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
796 return;
798 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
799 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
800 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
801 val = LPSS_LTR_MAX_VAL;
802 } else if (val > LPSS_LTR_MAX_VAL) {
803 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
804 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
805 } else {
806 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
808 ltr_val |= val;
809 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
810 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
811 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
812 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
816 #ifdef CONFIG_PM
818 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
819 * @dev: LPSS device
820 * @pdata: pointer to the private data of the LPSS device
822 * Most LPSS devices have private registers which may loose their context when
823 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
824 * prv_reg_ctx array.
826 static void acpi_lpss_save_ctx(struct device *dev,
827 struct lpss_private_data *pdata)
829 unsigned int i;
831 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
832 unsigned long offset = i * sizeof(u32);
834 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
835 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
836 pdata->prv_reg_ctx[i], offset);
841 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
842 * @dev: LPSS device
843 * @pdata: pointer to the private data of the LPSS device
845 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
847 static void acpi_lpss_restore_ctx(struct device *dev,
848 struct lpss_private_data *pdata)
850 unsigned int i;
852 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
853 unsigned long offset = i * sizeof(u32);
855 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
856 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
857 pdata->prv_reg_ctx[i], offset);
861 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
864 * The following delay is needed or the subsequent write operations may
865 * fail. The LPSS devices are actually PCI devices and the PCI spec
866 * expects 10ms delay before the device can be accessed after D3 to D0
867 * transition. However some platforms like BSW does not need this delay.
869 unsigned int delay = 10; /* default 10ms delay */
871 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
872 delay = 0;
874 msleep(delay);
877 static int acpi_lpss_activate(struct device *dev)
879 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
880 int ret;
882 ret = acpi_dev_resume(dev);
883 if (ret)
884 return ret;
886 acpi_lpss_d3_to_d0_delay(pdata);
889 * This is called only on ->probe() stage where a device is either in
890 * known state defined by BIOS or most likely powered off. Due to this
891 * we have to deassert reset line to be sure that ->probe() will
892 * recognize the device.
894 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
895 lpss_deassert_reset(pdata);
897 #ifdef CONFIG_PM
898 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
899 acpi_lpss_save_ctx(dev, pdata);
900 #endif
902 return 0;
905 static void acpi_lpss_dismiss(struct device *dev)
907 acpi_dev_suspend(dev, false);
910 /* IOSF SB for LPSS island */
911 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
912 #define LPSS_IOSF_UNIT_LPIO1 0xAB
913 #define LPSS_IOSF_UNIT_LPIO2 0xAC
915 #define LPSS_IOSF_PMCSR 0x84
916 #define LPSS_PMCSR_D0 0
917 #define LPSS_PMCSR_D3hot 3
918 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
920 #define LPSS_IOSF_GPIODEF0 0x154
921 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
922 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
923 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
924 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
926 static DEFINE_MUTEX(lpss_iosf_mutex);
927 static bool lpss_iosf_d3_entered = true;
929 static void lpss_iosf_enter_d3_state(void)
931 u32 value1 = 0;
932 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
933 u32 value2 = LPSS_PMCSR_D3hot;
934 u32 mask2 = LPSS_PMCSR_Dx_MASK;
936 * PMC provides an information about actual status of the LPSS devices.
937 * Here we read the values related to LPSS power island, i.e. LPSS
938 * devices, excluding both LPSS DMA controllers, along with SCC domain.
940 u32 func_dis, d3_sts_0, pmc_status;
941 int ret;
943 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
944 if (ret)
945 return;
947 mutex_lock(&lpss_iosf_mutex);
949 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
950 if (ret)
951 goto exit;
954 * Get the status of entire LPSS power island per device basis.
955 * Shutdown both LPSS DMA controllers if and only if all other devices
956 * are already in D3hot.
958 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
959 if (pmc_status)
960 goto exit;
962 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
963 LPSS_IOSF_PMCSR, value2, mask2);
965 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
966 LPSS_IOSF_PMCSR, value2, mask2);
968 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
969 LPSS_IOSF_GPIODEF0, value1, mask1);
971 lpss_iosf_d3_entered = true;
973 exit:
974 mutex_unlock(&lpss_iosf_mutex);
977 static void lpss_iosf_exit_d3_state(void)
979 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
980 LPSS_GPIODEF0_DMA_LLP;
981 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
982 u32 value2 = LPSS_PMCSR_D0;
983 u32 mask2 = LPSS_PMCSR_Dx_MASK;
985 mutex_lock(&lpss_iosf_mutex);
987 if (!lpss_iosf_d3_entered)
988 goto exit;
990 lpss_iosf_d3_entered = false;
992 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
993 LPSS_IOSF_GPIODEF0, value1, mask1);
995 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
996 LPSS_IOSF_PMCSR, value2, mask2);
998 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
999 LPSS_IOSF_PMCSR, value2, mask2);
1001 exit:
1002 mutex_unlock(&lpss_iosf_mutex);
1005 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1007 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1008 int ret;
1010 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1011 acpi_lpss_save_ctx(dev, pdata);
1013 ret = acpi_dev_suspend(dev, wakeup);
1016 * This call must be last in the sequence, otherwise PMC will return
1017 * wrong status for devices being about to be powered off. See
1018 * lpss_iosf_enter_d3_state() for further information.
1020 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1021 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1022 lpss_iosf_enter_d3_state();
1024 return ret;
1027 static int acpi_lpss_resume(struct device *dev)
1029 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1030 int ret;
1033 * This call is kept first to be in symmetry with
1034 * acpi_lpss_runtime_suspend() one.
1036 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1037 lpss_iosf_exit_d3_state();
1039 ret = acpi_dev_resume(dev);
1040 if (ret)
1041 return ret;
1043 acpi_lpss_d3_to_d0_delay(pdata);
1045 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1046 acpi_lpss_restore_ctx(dev, pdata);
1048 return 0;
1051 #ifdef CONFIG_PM_SLEEP
1052 static int acpi_lpss_do_suspend_late(struct device *dev)
1054 int ret;
1056 if (dev_pm_skip_suspend(dev))
1057 return 0;
1059 ret = pm_generic_suspend_late(dev);
1060 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1063 static int acpi_lpss_suspend_late(struct device *dev)
1065 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1067 if (pdata->dev_desc->resume_from_noirq)
1068 return 0;
1070 return acpi_lpss_do_suspend_late(dev);
1073 static int acpi_lpss_suspend_noirq(struct device *dev)
1075 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1076 int ret;
1078 if (pdata->dev_desc->resume_from_noirq) {
1080 * The driver's ->suspend_late callback will be invoked by
1081 * acpi_lpss_do_suspend_late(), with the assumption that the
1082 * driver really wanted to run that code in ->suspend_noirq, but
1083 * it could not run after acpi_dev_suspend() and the driver
1084 * expected the latter to be called in the "late" phase.
1086 ret = acpi_lpss_do_suspend_late(dev);
1087 if (ret)
1088 return ret;
1091 return acpi_subsys_suspend_noirq(dev);
1094 static int acpi_lpss_do_resume_early(struct device *dev)
1096 int ret = acpi_lpss_resume(dev);
1098 return ret ? ret : pm_generic_resume_early(dev);
1101 static int acpi_lpss_resume_early(struct device *dev)
1103 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105 if (pdata->dev_desc->resume_from_noirq)
1106 return 0;
1108 if (dev_pm_skip_resume(dev))
1109 return 0;
1111 return acpi_lpss_do_resume_early(dev);
1114 static int acpi_lpss_resume_noirq(struct device *dev)
1116 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1117 int ret;
1119 /* Follow acpi_subsys_resume_noirq(). */
1120 if (dev_pm_skip_resume(dev))
1121 return 0;
1123 ret = pm_generic_resume_noirq(dev);
1124 if (ret)
1125 return ret;
1127 if (!pdata->dev_desc->resume_from_noirq)
1128 return 0;
1131 * The driver's ->resume_early callback will be invoked by
1132 * acpi_lpss_do_resume_early(), with the assumption that the driver
1133 * really wanted to run that code in ->resume_noirq, but it could not
1134 * run before acpi_dev_resume() and the driver expected the latter to be
1135 * called in the "early" phase.
1137 return acpi_lpss_do_resume_early(dev);
1140 static int acpi_lpss_do_restore_early(struct device *dev)
1142 int ret = acpi_lpss_resume(dev);
1144 return ret ? ret : pm_generic_restore_early(dev);
1147 static int acpi_lpss_restore_early(struct device *dev)
1149 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1151 if (pdata->dev_desc->resume_from_noirq)
1152 return 0;
1154 return acpi_lpss_do_restore_early(dev);
1157 static int acpi_lpss_restore_noirq(struct device *dev)
1159 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1160 int ret;
1162 ret = pm_generic_restore_noirq(dev);
1163 if (ret)
1164 return ret;
1166 if (!pdata->dev_desc->resume_from_noirq)
1167 return 0;
1169 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1170 return acpi_lpss_do_restore_early(dev);
1173 static int acpi_lpss_do_poweroff_late(struct device *dev)
1175 int ret = pm_generic_poweroff_late(dev);
1177 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1180 static int acpi_lpss_poweroff_late(struct device *dev)
1182 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184 if (dev_pm_skip_suspend(dev))
1185 return 0;
1187 if (pdata->dev_desc->resume_from_noirq)
1188 return 0;
1190 return acpi_lpss_do_poweroff_late(dev);
1193 static int acpi_lpss_poweroff_noirq(struct device *dev)
1195 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1197 if (dev_pm_skip_suspend(dev))
1198 return 0;
1200 if (pdata->dev_desc->resume_from_noirq) {
1201 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1202 int ret = acpi_lpss_do_poweroff_late(dev);
1203 if (ret)
1204 return ret;
1207 return pm_generic_poweroff_noirq(dev);
1209 #endif /* CONFIG_PM_SLEEP */
1211 static int acpi_lpss_runtime_suspend(struct device *dev)
1213 int ret = pm_generic_runtime_suspend(dev);
1215 return ret ? ret : acpi_lpss_suspend(dev, true);
1218 static int acpi_lpss_runtime_resume(struct device *dev)
1220 int ret = acpi_lpss_resume(dev);
1222 return ret ? ret : pm_generic_runtime_resume(dev);
1224 #endif /* CONFIG_PM */
1226 static struct dev_pm_domain acpi_lpss_pm_domain = {
1227 #ifdef CONFIG_PM
1228 .activate = acpi_lpss_activate,
1229 .dismiss = acpi_lpss_dismiss,
1230 #endif
1231 .ops = {
1232 #ifdef CONFIG_PM
1233 #ifdef CONFIG_PM_SLEEP
1234 .prepare = acpi_subsys_prepare,
1235 .complete = acpi_subsys_complete,
1236 .suspend = acpi_subsys_suspend,
1237 .suspend_late = acpi_lpss_suspend_late,
1238 .suspend_noirq = acpi_lpss_suspend_noirq,
1239 .resume_noirq = acpi_lpss_resume_noirq,
1240 .resume_early = acpi_lpss_resume_early,
1241 .freeze = acpi_subsys_freeze,
1242 .poweroff = acpi_subsys_poweroff,
1243 .poweroff_late = acpi_lpss_poweroff_late,
1244 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1245 .restore_noirq = acpi_lpss_restore_noirq,
1246 .restore_early = acpi_lpss_restore_early,
1247 #endif
1248 .runtime_suspend = acpi_lpss_runtime_suspend,
1249 .runtime_resume = acpi_lpss_runtime_resume,
1250 #endif
1254 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1255 unsigned long action, void *data)
1257 struct platform_device *pdev = to_platform_device(data);
1258 struct lpss_private_data *pdata;
1259 struct acpi_device *adev;
1260 const struct acpi_device_id *id;
1262 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1263 if (!id || !id->driver_data)
1264 return 0;
1266 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1267 return 0;
1269 pdata = acpi_driver_data(adev);
1270 if (!pdata)
1271 return 0;
1273 if (pdata->mmio_base &&
1274 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1275 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1276 return 0;
1279 switch (action) {
1280 case BUS_NOTIFY_BIND_DRIVER:
1281 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1282 break;
1283 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1284 case BUS_NOTIFY_UNBOUND_DRIVER:
1285 dev_pm_domain_set(&pdev->dev, NULL);
1286 break;
1287 case BUS_NOTIFY_ADD_DEVICE:
1288 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1289 if (pdata->dev_desc->flags & LPSS_LTR)
1290 return sysfs_create_group(&pdev->dev.kobj,
1291 &lpss_attr_group);
1292 break;
1293 case BUS_NOTIFY_DEL_DEVICE:
1294 if (pdata->dev_desc->flags & LPSS_LTR)
1295 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1296 dev_pm_domain_set(&pdev->dev, NULL);
1297 break;
1298 default:
1299 break;
1302 return 0;
1305 static struct notifier_block acpi_lpss_nb = {
1306 .notifier_call = acpi_lpss_platform_notify,
1309 static void acpi_lpss_bind(struct device *dev)
1311 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1313 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1314 return;
1316 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1317 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1318 else
1319 dev_err(dev, "MMIO size insufficient to access LTR\n");
1322 static void acpi_lpss_unbind(struct device *dev)
1324 dev->power.set_latency_tolerance = NULL;
1327 static struct acpi_scan_handler lpss_handler = {
1328 .ids = acpi_lpss_device_ids,
1329 .attach = acpi_lpss_create_device,
1330 .bind = acpi_lpss_bind,
1331 .unbind = acpi_lpss_unbind,
1334 void __init acpi_lpss_init(void)
1336 const struct x86_cpu_id *id;
1337 int ret;
1339 ret = lpt_clk_init();
1340 if (ret)
1341 return;
1343 id = x86_match_cpu(lpss_cpu_ids);
1344 if (id)
1345 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1347 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1348 acpi_scan_add_handler(&lpss_handler);
1351 #else
1353 static struct acpi_scan_handler lpss_handler = {
1354 .ids = acpi_lpss_device_ids,
1357 void __init acpi_lpss_init(void)
1359 acpi_scan_add_handler(&lpss_handler);
1362 #endif /* CONFIG_X86_INTEL_LPSS */