Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / acpi / cppc_acpi.c
blob75aaf94ae0a90acea242017ef470a6159d84b784
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42 #include <linux/topology.h>
44 #include <acpi/cppc_acpi.h>
46 struct cppc_pcc_data {
47 struct mbox_chan *pcc_channel;
48 void __iomem *pcc_comm_addr;
49 bool pcc_channel_acquired;
50 unsigned int deadline_us;
51 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
53 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
54 bool platform_owns_pcc; /* Ownership of PCC subspace */
55 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
58 * Lock to provide controlled access to the PCC channel.
60 * For performance critical usecases(currently cppc_set_perf)
61 * We need to take read_lock and check if channel belongs to OSPM
62 * before reading or writing to PCC subspace
63 * We need to take write_lock before transferring the channel
64 * ownership to the platform via a Doorbell
65 * This allows us to batch a number of CPPC requests if they happen
66 * to originate in about the same time
68 * For non-performance critical usecases(init)
69 * Take write_lock for all purposes which gives exclusive access
71 struct rw_semaphore pcc_lock;
73 /* Wait queue for CPUs whose requests were batched */
74 wait_queue_head_t pcc_write_wait_q;
75 ktime_t last_cmd_cmpl_time;
76 ktime_t last_mpar_reset;
77 int mpar_count;
78 int refcount;
81 /* Array to represent the PCC channel per subspace ID */
82 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
83 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
84 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
97 0x8 + (offs))
99 /* Check if a CPC register is in PCC */
100 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
101 (cpc)->cpc_entry.reg.space_id == \
102 ACPI_ADR_SPACE_PLATFORM_COMM)
104 /* Evalutes to True if reg is a NULL register descriptor */
105 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
106 (reg)->address == 0 && \
107 (reg)->bit_width == 0 && \
108 (reg)->bit_offset == 0 && \
109 (reg)->access_width == 0)
111 /* Evalutes to True if an optional cpc field is supported */
112 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
113 !!(cpc)->cpc_entry.int_value : \
114 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
116 * Arbitrary Retries in case the remote processor is slow to respond
117 * to PCC commands. Keeping it high enough to cover emulators where
118 * the processors run painfully slow.
120 #define NUM_RETRIES 500ULL
122 struct cppc_attr {
123 struct attribute attr;
124 ssize_t (*show)(struct kobject *kobj,
125 struct attribute *attr, char *buf);
126 ssize_t (*store)(struct kobject *kobj,
127 struct attribute *attr, const char *c, ssize_t count);
130 #define define_one_cppc_ro(_name) \
131 static struct cppc_attr _name = \
132 __ATTR(_name, 0444, show_##_name, NULL)
134 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
136 #define show_cppc_data(access_fn, struct_name, member_name) \
137 static ssize_t show_##member_name(struct kobject *kobj, \
138 struct attribute *attr, char *buf) \
140 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
141 struct struct_name st_name = {0}; \
142 int ret; \
144 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
145 if (ret) \
146 return ret; \
148 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
149 (u64)st_name.member_name); \
151 define_one_cppc_ro(member_name)
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
163 static ssize_t show_feedback_ctrs(struct kobject *kobj,
164 struct attribute *attr, char *buf)
166 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
167 struct cppc_perf_fb_ctrs fb_ctrs = {0};
168 int ret;
170 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
171 if (ret)
172 return ret;
174 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
175 fb_ctrs.reference, fb_ctrs.delivered);
177 define_one_cppc_ro(feedback_ctrs);
179 static struct attribute *cppc_attrs[] = {
180 &feedback_ctrs.attr,
181 &reference_perf.attr,
182 &wraparound_time.attr,
183 &highest_perf.attr,
184 &lowest_perf.attr,
185 &lowest_nonlinear_perf.attr,
186 &nominal_perf.attr,
187 &nominal_freq.attr,
188 &lowest_freq.attr,
189 NULL
192 static struct kobj_type cppc_ktype = {
193 .sysfs_ops = &kobj_sysfs_ops,
194 .default_attrs = cppc_attrs,
197 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
199 int ret, status;
200 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
201 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
202 pcc_ss_data->pcc_comm_addr;
204 if (!pcc_ss_data->platform_owns_pcc)
205 return 0;
208 * Poll PCC status register every 3us(delay_us) for maximum of
209 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
211 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
212 status & PCC_CMD_COMPLETE_MASK, 3,
213 pcc_ss_data->deadline_us);
215 if (likely(!ret)) {
216 pcc_ss_data->platform_owns_pcc = false;
217 if (chk_err_bit && (status & PCC_ERROR_MASK))
218 ret = -EIO;
221 if (unlikely(ret))
222 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
223 pcc_ss_id, ret);
225 return ret;
229 * This function transfers the ownership of the PCC to the platform
230 * So it must be called while holding write_lock(pcc_lock)
232 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
234 int ret = -EIO, i;
235 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
236 struct acpi_pcct_shared_memory *generic_comm_base =
237 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
238 unsigned int time_delta;
241 * For CMD_WRITE we know for a fact the caller should have checked
242 * the channel before writing to PCC space
244 if (cmd == CMD_READ) {
246 * If there are pending cpc_writes, then we stole the channel
247 * before write completion, so first send a WRITE command to
248 * platform
250 if (pcc_ss_data->pending_pcc_write_cmd)
251 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
253 ret = check_pcc_chan(pcc_ss_id, false);
254 if (ret)
255 goto end;
256 } else /* CMD_WRITE */
257 pcc_ss_data->pending_pcc_write_cmd = FALSE;
260 * Handle the Minimum Request Turnaround Time(MRTT)
261 * "The minimum amount of time that OSPM must wait after the completion
262 * of a command before issuing the next command, in microseconds"
264 if (pcc_ss_data->pcc_mrtt) {
265 time_delta = ktime_us_delta(ktime_get(),
266 pcc_ss_data->last_cmd_cmpl_time);
267 if (pcc_ss_data->pcc_mrtt > time_delta)
268 udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
273 * "The maximum number of periodic requests that the subspace channel can
274 * support, reported in commands per minute. 0 indicates no limitation."
276 * This parameter should be ideally zero or large enough so that it can
277 * handle maximum number of requests that all the cores in the system can
278 * collectively generate. If it is not, we will follow the spec and just
279 * not send the request to the platform after hitting the MPAR limit in
280 * any 60s window
282 if (pcc_ss_data->pcc_mpar) {
283 if (pcc_ss_data->mpar_count == 0) {
284 time_delta = ktime_ms_delta(ktime_get(),
285 pcc_ss_data->last_mpar_reset);
286 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
287 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
288 pcc_ss_id);
289 ret = -EIO;
290 goto end;
292 pcc_ss_data->last_mpar_reset = ktime_get();
293 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
295 pcc_ss_data->mpar_count--;
298 /* Write to the shared comm region. */
299 writew_relaxed(cmd, &generic_comm_base->command);
301 /* Flip CMD COMPLETE bit */
302 writew_relaxed(0, &generic_comm_base->status);
304 pcc_ss_data->platform_owns_pcc = true;
306 /* Ring doorbell */
307 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
308 if (ret < 0) {
309 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
310 pcc_ss_id, cmd, ret);
311 goto end;
314 /* wait for completion and check for PCC errro bit */
315 ret = check_pcc_chan(pcc_ss_id, true);
317 if (pcc_ss_data->pcc_mrtt)
318 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
320 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
321 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
322 else
323 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
325 end:
326 if (cmd == CMD_WRITE) {
327 if (unlikely(ret)) {
328 for_each_possible_cpu(i) {
329 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
330 if (!desc)
331 continue;
333 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
334 desc->write_cmd_status = ret;
337 pcc_ss_data->pcc_write_cnt++;
338 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
341 return ret;
344 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
346 if (ret < 0)
347 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
348 *(u16 *)msg, ret);
349 else
350 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
351 *(u16 *)msg, ret);
354 static struct mbox_client cppc_mbox_cl = {
355 .tx_done = cppc_chan_tx_done,
356 .knows_txdone = true,
359 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
361 int result = -EFAULT;
362 acpi_status status = AE_OK;
363 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
364 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
365 struct acpi_buffer state = {0, NULL};
366 union acpi_object *psd = NULL;
367 struct acpi_psd_package *pdomain;
369 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
370 &buffer, ACPI_TYPE_PACKAGE);
371 if (status == AE_NOT_FOUND) /* _PSD is optional */
372 return 0;
373 if (ACPI_FAILURE(status))
374 return -ENODEV;
376 psd = buffer.pointer;
377 if (!psd || psd->package.count != 1) {
378 pr_debug("Invalid _PSD data\n");
379 goto end;
382 pdomain = &(cpc_ptr->domain_info);
384 state.length = sizeof(struct acpi_psd_package);
385 state.pointer = pdomain;
387 status = acpi_extract_package(&(psd->package.elements[0]),
388 &format, &state);
389 if (ACPI_FAILURE(status)) {
390 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
391 goto end;
394 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
395 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
396 goto end;
399 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
400 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
401 goto end;
404 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
405 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
406 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
407 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
408 goto end;
411 result = 0;
412 end:
413 kfree(buffer.pointer);
414 return result;
417 bool acpi_cpc_valid(void)
419 struct cpc_desc *cpc_ptr;
420 int cpu;
422 for_each_possible_cpu(cpu) {
423 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
424 if (!cpc_ptr)
425 return false;
428 return true;
430 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
433 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
434 * @cpu: Find all CPUs that share a domain with cpu.
435 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
437 * Return: 0 for success or negative value for err.
439 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
441 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
442 struct acpi_psd_package *match_pdomain;
443 struct acpi_psd_package *pdomain;
444 int count_target, i;
447 * Now that we have _PSD data from all CPUs, let's setup P-state
448 * domain info.
450 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451 if (!cpc_ptr)
452 return -EFAULT;
454 pdomain = &(cpc_ptr->domain_info);
455 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
456 if (pdomain->num_processors <= 1)
457 return 0;
459 /* Validate the Domain info */
460 count_target = pdomain->num_processors;
461 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
462 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
463 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
464 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
465 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
466 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
468 for_each_possible_cpu(i) {
469 if (i == cpu)
470 continue;
472 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
473 if (!match_cpc_ptr)
474 goto err_fault;
476 match_pdomain = &(match_cpc_ptr->domain_info);
477 if (match_pdomain->domain != pdomain->domain)
478 continue;
480 /* Here i and cpu are in the same domain */
481 if (match_pdomain->num_processors != count_target)
482 goto err_fault;
484 if (pdomain->coord_type != match_pdomain->coord_type)
485 goto err_fault;
487 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
490 return 0;
492 err_fault:
493 /* Assume no coordination on any error parsing domain info */
494 cpumask_clear(cpu_data->shared_cpu_map);
495 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
496 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
498 return -EFAULT;
500 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
502 static int register_pcc_channel(int pcc_ss_idx)
504 struct acpi_pcct_hw_reduced *cppc_ss;
505 u64 usecs_lat;
507 if (pcc_ss_idx >= 0) {
508 pcc_data[pcc_ss_idx]->pcc_channel =
509 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
511 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
512 pr_err("Failed to find PCC channel for subspace %d\n",
513 pcc_ss_idx);
514 return -ENODEV;
518 * The PCC mailbox controller driver should
519 * have parsed the PCCT (global table of all
520 * PCC channels) and stored pointers to the
521 * subspace communication region in con_priv.
523 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
525 if (!cppc_ss) {
526 pr_err("No PCC subspace found for %d CPPC\n",
527 pcc_ss_idx);
528 return -ENODEV;
532 * cppc_ss->latency is just a Nominal value. In reality
533 * the remote processor could be much slower to reply.
534 * So add an arbitrary amount of wait on top of Nominal.
536 usecs_lat = NUM_RETRIES * cppc_ss->latency;
537 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
538 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
539 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
540 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
542 pcc_data[pcc_ss_idx]->pcc_comm_addr =
543 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
544 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
545 pr_err("Failed to ioremap PCC comm region mem for %d\n",
546 pcc_ss_idx);
547 return -ENOMEM;
550 /* Set flag so that we don't come here for each CPU. */
551 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
554 return 0;
558 * cpc_ffh_supported() - check if FFH reading supported
560 * Check if the architecture has support for functional fixed hardware
561 * read/write capability.
563 * Return: true for supported, false for not supported
565 bool __weak cpc_ffh_supported(void)
567 return false;
571 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
573 * Check and allocate the cppc_pcc_data memory.
574 * In some processor configurations it is possible that same subspace
575 * is shared between multiple CPUs. This is seen especially in CPUs
576 * with hardware multi-threading support.
578 * Return: 0 for success, errno for failure
580 static int pcc_data_alloc(int pcc_ss_id)
582 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
583 return -EINVAL;
585 if (pcc_data[pcc_ss_id]) {
586 pcc_data[pcc_ss_id]->refcount++;
587 } else {
588 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
589 GFP_KERNEL);
590 if (!pcc_data[pcc_ss_id])
591 return -ENOMEM;
592 pcc_data[pcc_ss_id]->refcount++;
595 return 0;
598 /* Check if CPPC revision + num_ent combination is supported */
599 static bool is_cppc_supported(int revision, int num_ent)
601 int expected_num_ent;
603 switch (revision) {
604 case CPPC_V2_REV:
605 expected_num_ent = CPPC_V2_NUM_ENT;
606 break;
607 case CPPC_V3_REV:
608 expected_num_ent = CPPC_V3_NUM_ENT;
609 break;
610 default:
611 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
612 revision);
613 return false;
616 if (expected_num_ent != num_ent) {
617 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
618 num_ent, expected_num_ent, revision);
619 return false;
622 return true;
626 * An example CPC table looks like the following.
628 * Name(_CPC, Package()
630 * 17,
631 * NumEntries
632 * 1,
633 * // Revision
634 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
635 * // Highest Performance
636 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
637 * // Nominal Performance
638 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
639 * // Lowest Nonlinear Performance
640 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
641 * // Lowest Performance
642 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
643 * // Guaranteed Performance Register
644 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
645 * // Desired Performance Register
646 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
647 * ..
648 * ..
649 * ..
652 * Each Register() encodes how to access that specific register.
653 * e.g. a sample PCC entry has the following encoding:
655 * Register (
656 * PCC,
657 * AddressSpaceKeyword
658 * 8,
659 * //RegisterBitWidth
660 * 8,
661 * //RegisterBitOffset
662 * 0x30,
663 * //RegisterAddress
665 * //AccessSize (subspace ID)
671 #ifndef init_freq_invariance_cppc
672 static inline void init_freq_invariance_cppc(void) { }
673 #endif
676 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
677 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
679 * Return: 0 for success or negative value for err.
681 int acpi_cppc_processor_probe(struct acpi_processor *pr)
683 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
684 union acpi_object *out_obj, *cpc_obj;
685 struct cpc_desc *cpc_ptr;
686 struct cpc_reg *gas_t;
687 struct device *cpu_dev;
688 acpi_handle handle = pr->handle;
689 unsigned int num_ent, i, cpc_rev;
690 int pcc_subspace_id = -1;
691 acpi_status status;
692 int ret = -EFAULT;
694 /* Parse the ACPI _CPC table for this CPU. */
695 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
696 ACPI_TYPE_PACKAGE);
697 if (ACPI_FAILURE(status)) {
698 ret = -ENODEV;
699 goto out_buf_free;
702 out_obj = (union acpi_object *) output.pointer;
704 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
705 if (!cpc_ptr) {
706 ret = -ENOMEM;
707 goto out_buf_free;
710 /* First entry is NumEntries. */
711 cpc_obj = &out_obj->package.elements[0];
712 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
713 num_ent = cpc_obj->integer.value;
714 } else {
715 pr_debug("Unexpected entry type(%d) for NumEntries\n",
716 cpc_obj->type);
717 goto out_free;
719 cpc_ptr->num_entries = num_ent;
721 /* Second entry should be revision. */
722 cpc_obj = &out_obj->package.elements[1];
723 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
724 cpc_rev = cpc_obj->integer.value;
725 } else {
726 pr_debug("Unexpected entry type(%d) for Revision\n",
727 cpc_obj->type);
728 goto out_free;
730 cpc_ptr->version = cpc_rev;
732 if (!is_cppc_supported(cpc_rev, num_ent))
733 goto out_free;
735 /* Iterate through remaining entries in _CPC */
736 for (i = 2; i < num_ent; i++) {
737 cpc_obj = &out_obj->package.elements[i];
739 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
740 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
741 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
742 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
743 gas_t = (struct cpc_reg *)
744 cpc_obj->buffer.pointer;
747 * The PCC Subspace index is encoded inside
748 * the CPC table entries. The same PCC index
749 * will be used for all the PCC entries,
750 * so extract it only once.
752 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
753 if (pcc_subspace_id < 0) {
754 pcc_subspace_id = gas_t->access_width;
755 if (pcc_data_alloc(pcc_subspace_id))
756 goto out_free;
757 } else if (pcc_subspace_id != gas_t->access_width) {
758 pr_debug("Mismatched PCC ids.\n");
759 goto out_free;
761 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
762 if (gas_t->address) {
763 void __iomem *addr;
765 addr = ioremap(gas_t->address, gas_t->bit_width/8);
766 if (!addr)
767 goto out_free;
768 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
770 } else {
771 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
772 /* Support only PCC ,SYS MEM and FFH type regs */
773 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
774 goto out_free;
778 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
779 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
780 } else {
781 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
782 goto out_free;
785 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
788 * Initialize the remaining cpc_regs as unsupported.
789 * Example: In case FW exposes CPPC v2, the below loop will initialize
790 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
792 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
793 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
794 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
798 /* Store CPU Logical ID */
799 cpc_ptr->cpu_id = pr->id;
801 /* Parse PSD data for this CPU */
802 ret = acpi_get_psd(cpc_ptr, handle);
803 if (ret)
804 goto out_free;
806 /* Register PCC channel once for all PCC subspace ID. */
807 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
808 ret = register_pcc_channel(pcc_subspace_id);
809 if (ret)
810 goto out_free;
812 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
813 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
816 /* Everything looks okay */
817 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
819 /* Add per logical CPU nodes for reading its feedback counters. */
820 cpu_dev = get_cpu_device(pr->id);
821 if (!cpu_dev) {
822 ret = -EINVAL;
823 goto out_free;
826 /* Plug PSD data into this CPU's CPC descriptor. */
827 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
829 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
830 "acpi_cppc");
831 if (ret) {
832 per_cpu(cpc_desc_ptr, pr->id) = NULL;
833 kobject_put(&cpc_ptr->kobj);
834 goto out_free;
837 init_freq_invariance_cppc();
839 kfree(output.pointer);
840 return 0;
842 out_free:
843 /* Free all the mapped sys mem areas for this CPU */
844 for (i = 2; i < cpc_ptr->num_entries; i++) {
845 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
847 if (addr)
848 iounmap(addr);
850 kfree(cpc_ptr);
852 out_buf_free:
853 kfree(output.pointer);
854 return ret;
856 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
859 * acpi_cppc_processor_exit - Cleanup CPC structs.
860 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
862 * Return: Void
864 void acpi_cppc_processor_exit(struct acpi_processor *pr)
866 struct cpc_desc *cpc_ptr;
867 unsigned int i;
868 void __iomem *addr;
869 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
871 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
872 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
873 pcc_data[pcc_ss_id]->refcount--;
874 if (!pcc_data[pcc_ss_id]->refcount) {
875 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
876 kfree(pcc_data[pcc_ss_id]);
877 pcc_data[pcc_ss_id] = NULL;
882 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
883 if (!cpc_ptr)
884 return;
886 /* Free all the mapped sys mem areas for this CPU */
887 for (i = 2; i < cpc_ptr->num_entries; i++) {
888 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
889 if (addr)
890 iounmap(addr);
893 kobject_put(&cpc_ptr->kobj);
894 kfree(cpc_ptr);
896 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
899 * cpc_read_ffh() - Read FFH register
900 * @cpunum: CPU number to read
901 * @reg: cppc register information
902 * @val: place holder for return value
904 * Read bit_width bits from a specified address and bit_offset
906 * Return: 0 for success and error code
908 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
910 return -ENOTSUPP;
914 * cpc_write_ffh() - Write FFH register
915 * @cpunum: CPU number to write
916 * @reg: cppc register information
917 * @val: value to write
919 * Write value of bit_width bits to a specified address and bit_offset
921 * Return: 0 for success and error code
923 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
925 return -ENOTSUPP;
929 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
930 * as fast as possible. We have already mapped the PCC subspace during init, so
931 * we can directly write to it.
934 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
936 int ret_val = 0;
937 void __iomem *vaddr = 0;
938 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
939 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
941 if (reg_res->type == ACPI_TYPE_INTEGER) {
942 *val = reg_res->cpc_entry.int_value;
943 return ret_val;
946 *val = 0;
947 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
948 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
949 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
950 vaddr = reg_res->sys_mem_vaddr;
951 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
952 return cpc_read_ffh(cpu, reg, val);
953 else
954 return acpi_os_read_memory((acpi_physical_address)reg->address,
955 val, reg->bit_width);
957 switch (reg->bit_width) {
958 case 8:
959 *val = readb_relaxed(vaddr);
960 break;
961 case 16:
962 *val = readw_relaxed(vaddr);
963 break;
964 case 32:
965 *val = readl_relaxed(vaddr);
966 break;
967 case 64:
968 *val = readq_relaxed(vaddr);
969 break;
970 default:
971 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
972 reg->bit_width, pcc_ss_id);
973 ret_val = -EFAULT;
976 return ret_val;
979 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
981 int ret_val = 0;
982 void __iomem *vaddr = 0;
983 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
986 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
987 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
988 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
989 vaddr = reg_res->sys_mem_vaddr;
990 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
991 return cpc_write_ffh(cpu, reg, val);
992 else
993 return acpi_os_write_memory((acpi_physical_address)reg->address,
994 val, reg->bit_width);
996 switch (reg->bit_width) {
997 case 8:
998 writeb_relaxed(val, vaddr);
999 break;
1000 case 16:
1001 writew_relaxed(val, vaddr);
1002 break;
1003 case 32:
1004 writel_relaxed(val, vaddr);
1005 break;
1006 case 64:
1007 writeq_relaxed(val, vaddr);
1008 break;
1009 default:
1010 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1011 reg->bit_width, pcc_ss_id);
1012 ret_val = -EFAULT;
1013 break;
1016 return ret_val;
1020 * cppc_get_desired_perf - Get the value of desired performance register.
1021 * @cpunum: CPU from which to get desired performance.
1022 * @desired_perf: address of a variable to store the returned desired performance
1024 * Return: 0 for success, -EIO otherwise.
1026 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1028 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1029 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1030 struct cpc_register_resource *desired_reg;
1031 struct cppc_pcc_data *pcc_ss_data = NULL;
1033 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1035 if (CPC_IN_PCC(desired_reg)) {
1036 int ret = 0;
1038 if (pcc_ss_id < 0)
1039 return -EIO;
1041 pcc_ss_data = pcc_data[pcc_ss_id];
1043 down_write(&pcc_ss_data->pcc_lock);
1045 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1046 cpc_read(cpunum, desired_reg, desired_perf);
1047 else
1048 ret = -EIO;
1050 up_write(&pcc_ss_data->pcc_lock);
1052 return ret;
1055 cpc_read(cpunum, desired_reg, desired_perf);
1057 return 0;
1059 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1062 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1063 * @cpunum: CPU from which to get capabilities info.
1064 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1066 * Return: 0 for success with perf_caps populated else -ERRNO.
1068 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1070 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1071 struct cpc_register_resource *highest_reg, *lowest_reg,
1072 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1073 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1074 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1075 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1076 struct cppc_pcc_data *pcc_ss_data = NULL;
1077 int ret = 0, regs_in_pcc = 0;
1079 if (!cpc_desc) {
1080 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1081 return -ENODEV;
1084 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1085 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1086 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1087 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1088 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1089 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1090 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1092 /* Are any of the regs PCC ?*/
1093 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1094 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1095 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1096 if (pcc_ss_id < 0) {
1097 pr_debug("Invalid pcc_ss_id\n");
1098 return -ENODEV;
1100 pcc_ss_data = pcc_data[pcc_ss_id];
1101 regs_in_pcc = 1;
1102 down_write(&pcc_ss_data->pcc_lock);
1103 /* Ring doorbell once to update PCC subspace */
1104 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1105 ret = -EIO;
1106 goto out_err;
1110 cpc_read(cpunum, highest_reg, &high);
1111 perf_caps->highest_perf = high;
1113 cpc_read(cpunum, lowest_reg, &low);
1114 perf_caps->lowest_perf = low;
1116 cpc_read(cpunum, nominal_reg, &nom);
1117 perf_caps->nominal_perf = nom;
1119 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1120 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1121 perf_caps->guaranteed_perf = 0;
1122 } else {
1123 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1124 perf_caps->guaranteed_perf = guaranteed;
1127 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1128 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1130 if (!high || !low || !nom || !min_nonlinear)
1131 ret = -EFAULT;
1133 /* Read optional lowest and nominal frequencies if present */
1134 if (CPC_SUPPORTED(low_freq_reg))
1135 cpc_read(cpunum, low_freq_reg, &low_f);
1137 if (CPC_SUPPORTED(nom_freq_reg))
1138 cpc_read(cpunum, nom_freq_reg, &nom_f);
1140 perf_caps->lowest_freq = low_f;
1141 perf_caps->nominal_freq = nom_f;
1144 out_err:
1145 if (regs_in_pcc)
1146 up_write(&pcc_ss_data->pcc_lock);
1147 return ret;
1149 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1152 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1153 * @cpunum: CPU from which to read counters.
1154 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1156 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1158 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1160 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1161 struct cpc_register_resource *delivered_reg, *reference_reg,
1162 *ref_perf_reg, *ctr_wrap_reg;
1163 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1164 struct cppc_pcc_data *pcc_ss_data = NULL;
1165 u64 delivered, reference, ref_perf, ctr_wrap_time;
1166 int ret = 0, regs_in_pcc = 0;
1168 if (!cpc_desc) {
1169 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1170 return -ENODEV;
1173 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1174 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1175 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1176 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1179 * If reference perf register is not supported then we should
1180 * use the nominal perf value
1182 if (!CPC_SUPPORTED(ref_perf_reg))
1183 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1185 /* Are any of the regs PCC ?*/
1186 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1187 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1188 if (pcc_ss_id < 0) {
1189 pr_debug("Invalid pcc_ss_id\n");
1190 return -ENODEV;
1192 pcc_ss_data = pcc_data[pcc_ss_id];
1193 down_write(&pcc_ss_data->pcc_lock);
1194 regs_in_pcc = 1;
1195 /* Ring doorbell once to update PCC subspace */
1196 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1197 ret = -EIO;
1198 goto out_err;
1202 cpc_read(cpunum, delivered_reg, &delivered);
1203 cpc_read(cpunum, reference_reg, &reference);
1204 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1207 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1208 * performance counters are assumed to never wrap during the lifetime of
1209 * platform
1211 ctr_wrap_time = (u64)(~((u64)0));
1212 if (CPC_SUPPORTED(ctr_wrap_reg))
1213 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1215 if (!delivered || !reference || !ref_perf) {
1216 ret = -EFAULT;
1217 goto out_err;
1220 perf_fb_ctrs->delivered = delivered;
1221 perf_fb_ctrs->reference = reference;
1222 perf_fb_ctrs->reference_perf = ref_perf;
1223 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1224 out_err:
1225 if (regs_in_pcc)
1226 up_write(&pcc_ss_data->pcc_lock);
1227 return ret;
1229 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1232 * cppc_set_perf - Set a CPU's performance controls.
1233 * @cpu: CPU for which to set performance controls.
1234 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1236 * Return: 0 for success, -ERRNO otherwise.
1238 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1240 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1241 struct cpc_register_resource *desired_reg;
1242 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1243 struct cppc_pcc_data *pcc_ss_data = NULL;
1244 int ret = 0;
1246 if (!cpc_desc) {
1247 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1248 return -ENODEV;
1251 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1254 * This is Phase-I where we want to write to CPC registers
1255 * -> We want all CPUs to be able to execute this phase in parallel
1257 * Since read_lock can be acquired by multiple CPUs simultaneously we
1258 * achieve that goal here
1260 if (CPC_IN_PCC(desired_reg)) {
1261 if (pcc_ss_id < 0) {
1262 pr_debug("Invalid pcc_ss_id\n");
1263 return -ENODEV;
1265 pcc_ss_data = pcc_data[pcc_ss_id];
1266 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1267 if (pcc_ss_data->platform_owns_pcc) {
1268 ret = check_pcc_chan(pcc_ss_id, false);
1269 if (ret) {
1270 up_read(&pcc_ss_data->pcc_lock);
1271 return ret;
1275 * Update the pending_write to make sure a PCC CMD_READ will not
1276 * arrive and steal the channel during the switch to write lock
1278 pcc_ss_data->pending_pcc_write_cmd = true;
1279 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1280 cpc_desc->write_cmd_status = 0;
1284 * Skip writing MIN/MAX until Linux knows how to come up with
1285 * useful values.
1287 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1289 if (CPC_IN_PCC(desired_reg))
1290 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1292 * This is Phase-II where we transfer the ownership of PCC to Platform
1294 * Short Summary: Basically if we think of a group of cppc_set_perf
1295 * requests that happened in short overlapping interval. The last CPU to
1296 * come out of Phase-I will enter Phase-II and ring the doorbell.
1298 * We have the following requirements for Phase-II:
1299 * 1. We want to execute Phase-II only when there are no CPUs
1300 * currently executing in Phase-I
1301 * 2. Once we start Phase-II we want to avoid all other CPUs from
1302 * entering Phase-I.
1303 * 3. We want only one CPU among all those who went through Phase-I
1304 * to run phase-II
1306 * If write_trylock fails to get the lock and doesn't transfer the
1307 * PCC ownership to the platform, then one of the following will be TRUE
1308 * 1. There is at-least one CPU in Phase-I which will later execute
1309 * write_trylock, so the CPUs in Phase-I will be responsible for
1310 * executing the Phase-II.
1311 * 2. Some other CPU has beaten this CPU to successfully execute the
1312 * write_trylock and has already acquired the write_lock. We know for a
1313 * fact it (other CPU acquiring the write_lock) couldn't have happened
1314 * before this CPU's Phase-I as we held the read_lock.
1315 * 3. Some other CPU executing pcc CMD_READ has stolen the
1316 * down_write, in which case, send_pcc_cmd will check for pending
1317 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1318 * So this CPU can be certain that its request will be delivered
1319 * So in all cases, this CPU knows that its request will be delivered
1320 * by another CPU and can return
1322 * After getting the down_write we still need to check for
1323 * pending_pcc_write_cmd to take care of the following scenario
1324 * The thread running this code could be scheduled out between
1325 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1326 * could have delivered the request to Platform by triggering the
1327 * doorbell and transferred the ownership of PCC to platform. So this
1328 * avoids triggering an unnecessary doorbell and more importantly before
1329 * triggering the doorbell it makes sure that the PCC channel ownership
1330 * is still with OSPM.
1331 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1332 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1333 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1334 * case during a CMD_READ and if there are pending writes it delivers
1335 * the write command before servicing the read command
1337 if (CPC_IN_PCC(desired_reg)) {
1338 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1339 /* Update only if there are pending write commands */
1340 if (pcc_ss_data->pending_pcc_write_cmd)
1341 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1342 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1343 } else
1344 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1345 wait_event(pcc_ss_data->pcc_write_wait_q,
1346 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1348 /* send_pcc_cmd updates the status in case of failure */
1349 ret = cpc_desc->write_cmd_status;
1351 return ret;
1353 EXPORT_SYMBOL_GPL(cppc_set_perf);
1356 * cppc_get_transition_latency - returns frequency transition latency in ns
1358 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1359 * transition latency for perfromance change requests. The closest we have
1360 * is the timing information from the PCCT tables which provides the info
1361 * on the number and frequency of PCC commands the platform can handle.
1363 unsigned int cppc_get_transition_latency(int cpu_num)
1366 * Expected transition latency is based on the PCCT timing values
1367 * Below are definition from ACPI spec:
1368 * pcc_nominal- Expected latency to process a command, in microseconds
1369 * pcc_mpar - The maximum number of periodic requests that the subspace
1370 * channel can support, reported in commands per minute. 0
1371 * indicates no limitation.
1372 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1373 * completion of a command before issuing the next command,
1374 * in microseconds.
1376 unsigned int latency_ns = 0;
1377 struct cpc_desc *cpc_desc;
1378 struct cpc_register_resource *desired_reg;
1379 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1380 struct cppc_pcc_data *pcc_ss_data;
1382 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1383 if (!cpc_desc)
1384 return CPUFREQ_ETERNAL;
1386 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1387 if (!CPC_IN_PCC(desired_reg))
1388 return CPUFREQ_ETERNAL;
1390 if (pcc_ss_id < 0)
1391 return CPUFREQ_ETERNAL;
1393 pcc_ss_data = pcc_data[pcc_ss_id];
1394 if (pcc_ss_data->pcc_mpar)
1395 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1397 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1398 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1400 return latency_ns;
1402 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);