1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42 #include <linux/topology.h>
44 #include <acpi/cppc_acpi.h>
46 struct cppc_pcc_data
{
47 struct mbox_chan
*pcc_channel
;
48 void __iomem
*pcc_comm_addr
;
49 bool pcc_channel_acquired
;
50 unsigned int deadline_us
;
51 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
53 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
54 bool platform_owns_pcc
; /* Ownership of PCC subspace */
55 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
58 * Lock to provide controlled access to the PCC channel.
60 * For performance critical usecases(currently cppc_set_perf)
61 * We need to take read_lock and check if channel belongs to OSPM
62 * before reading or writing to PCC subspace
63 * We need to take write_lock before transferring the channel
64 * ownership to the platform via a Doorbell
65 * This allows us to batch a number of CPPC requests if they happen
66 * to originate in about the same time
68 * For non-performance critical usecases(init)
69 * Take write_lock for all purposes which gives exclusive access
71 struct rw_semaphore pcc_lock
;
73 /* Wait queue for CPUs whose requests were batched */
74 wait_queue_head_t pcc_write_wait_q
;
75 ktime_t last_cmd_cmpl_time
;
76 ktime_t last_mpar_reset
;
81 /* Array to represent the PCC channel per subspace ID */
82 static struct cppc_pcc_data
*pcc_data
[MAX_PCC_SUBSPACES
];
83 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
84 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx
);
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
93 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 /* Check if a CPC register is in PCC */
100 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
101 (cpc)->cpc_entry.reg.space_id == \
102 ACPI_ADR_SPACE_PLATFORM_COMM)
104 /* Evalutes to True if reg is a NULL register descriptor */
105 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
106 (reg)->address == 0 && \
107 (reg)->bit_width == 0 && \
108 (reg)->bit_offset == 0 && \
109 (reg)->access_width == 0)
111 /* Evalutes to True if an optional cpc field is supported */
112 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
113 !!(cpc)->cpc_entry.int_value : \
114 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
116 * Arbitrary Retries in case the remote processor is slow to respond
117 * to PCC commands. Keeping it high enough to cover emulators where
118 * the processors run painfully slow.
120 #define NUM_RETRIES 500ULL
123 struct attribute attr
;
124 ssize_t (*show
)(struct kobject
*kobj
,
125 struct attribute
*attr
, char *buf
);
126 ssize_t (*store
)(struct kobject
*kobj
,
127 struct attribute
*attr
, const char *c
, ssize_t count
);
130 #define define_one_cppc_ro(_name) \
131 static struct cppc_attr _name = \
132 __ATTR(_name, 0444, show_##_name, NULL)
134 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
136 #define show_cppc_data(access_fn, struct_name, member_name) \
137 static ssize_t show_##member_name(struct kobject *kobj, \
138 struct attribute *attr, char *buf) \
140 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
141 struct struct_name st_name = {0}; \
144 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
149 (u64)st_name.member_name); \
151 define_one_cppc_ro(member_name)
153 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
154 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
155 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
156 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
157 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_freq
);
158 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_freq
);
160 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
161 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
163 static ssize_t
show_feedback_ctrs(struct kobject
*kobj
,
164 struct attribute
*attr
, char *buf
)
166 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
167 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
170 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
174 return scnprintf(buf
, PAGE_SIZE
, "ref:%llu del:%llu\n",
175 fb_ctrs
.reference
, fb_ctrs
.delivered
);
177 define_one_cppc_ro(feedback_ctrs
);
179 static struct attribute
*cppc_attrs
[] = {
181 &reference_perf
.attr
,
182 &wraparound_time
.attr
,
185 &lowest_nonlinear_perf
.attr
,
192 static struct kobj_type cppc_ktype
= {
193 .sysfs_ops
= &kobj_sysfs_ops
,
194 .default_attrs
= cppc_attrs
,
197 static int check_pcc_chan(int pcc_ss_id
, bool chk_err_bit
)
200 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
201 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
202 pcc_ss_data
->pcc_comm_addr
;
204 if (!pcc_ss_data
->platform_owns_pcc
)
208 * Poll PCC status register every 3us(delay_us) for maximum of
209 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
211 ret
= readw_relaxed_poll_timeout(&generic_comm_base
->status
, status
,
212 status
& PCC_CMD_COMPLETE_MASK
, 3,
213 pcc_ss_data
->deadline_us
);
216 pcc_ss_data
->platform_owns_pcc
= false;
217 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
222 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
229 * This function transfers the ownership of the PCC to the platform
230 * So it must be called while holding write_lock(pcc_lock)
232 static int send_pcc_cmd(int pcc_ss_id
, u16 cmd
)
235 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
236 struct acpi_pcct_shared_memory
*generic_comm_base
=
237 (struct acpi_pcct_shared_memory
*)pcc_ss_data
->pcc_comm_addr
;
238 unsigned int time_delta
;
241 * For CMD_WRITE we know for a fact the caller should have checked
242 * the channel before writing to PCC space
244 if (cmd
== CMD_READ
) {
246 * If there are pending cpc_writes, then we stole the channel
247 * before write completion, so first send a WRITE command to
250 if (pcc_ss_data
->pending_pcc_write_cmd
)
251 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
253 ret
= check_pcc_chan(pcc_ss_id
, false);
256 } else /* CMD_WRITE */
257 pcc_ss_data
->pending_pcc_write_cmd
= FALSE
;
260 * Handle the Minimum Request Turnaround Time(MRTT)
261 * "The minimum amount of time that OSPM must wait after the completion
262 * of a command before issuing the next command, in microseconds"
264 if (pcc_ss_data
->pcc_mrtt
) {
265 time_delta
= ktime_us_delta(ktime_get(),
266 pcc_ss_data
->last_cmd_cmpl_time
);
267 if (pcc_ss_data
->pcc_mrtt
> time_delta
)
268 udelay(pcc_ss_data
->pcc_mrtt
- time_delta
);
272 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
273 * "The maximum number of periodic requests that the subspace channel can
274 * support, reported in commands per minute. 0 indicates no limitation."
276 * This parameter should be ideally zero or large enough so that it can
277 * handle maximum number of requests that all the cores in the system can
278 * collectively generate. If it is not, we will follow the spec and just
279 * not send the request to the platform after hitting the MPAR limit in
282 if (pcc_ss_data
->pcc_mpar
) {
283 if (pcc_ss_data
->mpar_count
== 0) {
284 time_delta
= ktime_ms_delta(ktime_get(),
285 pcc_ss_data
->last_mpar_reset
);
286 if ((time_delta
< 60 * MSEC_PER_SEC
) && pcc_ss_data
->last_mpar_reset
) {
287 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292 pcc_ss_data
->last_mpar_reset
= ktime_get();
293 pcc_ss_data
->mpar_count
= pcc_ss_data
->pcc_mpar
;
295 pcc_ss_data
->mpar_count
--;
298 /* Write to the shared comm region. */
299 writew_relaxed(cmd
, &generic_comm_base
->command
);
301 /* Flip CMD COMPLETE bit */
302 writew_relaxed(0, &generic_comm_base
->status
);
304 pcc_ss_data
->platform_owns_pcc
= true;
307 ret
= mbox_send_message(pcc_ss_data
->pcc_channel
, &cmd
);
309 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
310 pcc_ss_id
, cmd
, ret
);
314 /* wait for completion and check for PCC errro bit */
315 ret
= check_pcc_chan(pcc_ss_id
, true);
317 if (pcc_ss_data
->pcc_mrtt
)
318 pcc_ss_data
->last_cmd_cmpl_time
= ktime_get();
320 if (pcc_ss_data
->pcc_channel
->mbox
->txdone_irq
)
321 mbox_chan_txdone(pcc_ss_data
->pcc_channel
, ret
);
323 mbox_client_txdone(pcc_ss_data
->pcc_channel
, ret
);
326 if (cmd
== CMD_WRITE
) {
328 for_each_possible_cpu(i
) {
329 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
333 if (desc
->write_cmd_id
== pcc_ss_data
->pcc_write_cnt
)
334 desc
->write_cmd_status
= ret
;
337 pcc_ss_data
->pcc_write_cnt
++;
338 wake_up_all(&pcc_ss_data
->pcc_write_wait_q
);
344 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
347 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
350 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
354 static struct mbox_client cppc_mbox_cl
= {
355 .tx_done
= cppc_chan_tx_done
,
356 .knows_txdone
= true,
359 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
361 int result
= -EFAULT
;
362 acpi_status status
= AE_OK
;
363 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
364 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
365 struct acpi_buffer state
= {0, NULL
};
366 union acpi_object
*psd
= NULL
;
367 struct acpi_psd_package
*pdomain
;
369 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
,
370 &buffer
, ACPI_TYPE_PACKAGE
);
371 if (status
== AE_NOT_FOUND
) /* _PSD is optional */
373 if (ACPI_FAILURE(status
))
376 psd
= buffer
.pointer
;
377 if (!psd
|| psd
->package
.count
!= 1) {
378 pr_debug("Invalid _PSD data\n");
382 pdomain
= &(cpc_ptr
->domain_info
);
384 state
.length
= sizeof(struct acpi_psd_package
);
385 state
.pointer
= pdomain
;
387 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
389 if (ACPI_FAILURE(status
)) {
390 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
394 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
395 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
399 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
400 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
404 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
405 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
406 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
407 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
413 kfree(buffer
.pointer
);
417 bool acpi_cpc_valid(void)
419 struct cpc_desc
*cpc_ptr
;
422 for_each_possible_cpu(cpu
) {
423 cpc_ptr
= per_cpu(cpc_desc_ptr
, cpu
);
430 EXPORT_SYMBOL_GPL(acpi_cpc_valid
);
433 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
434 * @cpu: Find all CPUs that share a domain with cpu.
435 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
437 * Return: 0 for success or negative value for err.
439 int acpi_get_psd_map(unsigned int cpu
, struct cppc_cpudata
*cpu_data
)
441 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
442 struct acpi_psd_package
*match_pdomain
;
443 struct acpi_psd_package
*pdomain
;
447 * Now that we have _PSD data from all CPUs, let's setup P-state
450 cpc_ptr
= per_cpu(cpc_desc_ptr
, cpu
);
454 pdomain
= &(cpc_ptr
->domain_info
);
455 cpumask_set_cpu(cpu
, cpu_data
->shared_cpu_map
);
456 if (pdomain
->num_processors
<= 1)
459 /* Validate the Domain info */
460 count_target
= pdomain
->num_processors
;
461 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
462 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
463 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
464 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
465 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
466 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
468 for_each_possible_cpu(i
) {
472 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
476 match_pdomain
= &(match_cpc_ptr
->domain_info
);
477 if (match_pdomain
->domain
!= pdomain
->domain
)
480 /* Here i and cpu are in the same domain */
481 if (match_pdomain
->num_processors
!= count_target
)
484 if (pdomain
->coord_type
!= match_pdomain
->coord_type
)
487 cpumask_set_cpu(i
, cpu_data
->shared_cpu_map
);
493 /* Assume no coordination on any error parsing domain info */
494 cpumask_clear(cpu_data
->shared_cpu_map
);
495 cpumask_set_cpu(cpu
, cpu_data
->shared_cpu_map
);
496 cpu_data
->shared_type
= CPUFREQ_SHARED_TYPE_NONE
;
500 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
502 static int register_pcc_channel(int pcc_ss_idx
)
504 struct acpi_pcct_hw_reduced
*cppc_ss
;
507 if (pcc_ss_idx
>= 0) {
508 pcc_data
[pcc_ss_idx
]->pcc_channel
=
509 pcc_mbox_request_channel(&cppc_mbox_cl
, pcc_ss_idx
);
511 if (IS_ERR(pcc_data
[pcc_ss_idx
]->pcc_channel
)) {
512 pr_err("Failed to find PCC channel for subspace %d\n",
518 * The PCC mailbox controller driver should
519 * have parsed the PCCT (global table of all
520 * PCC channels) and stored pointers to the
521 * subspace communication region in con_priv.
523 cppc_ss
= (pcc_data
[pcc_ss_idx
]->pcc_channel
)->con_priv
;
526 pr_err("No PCC subspace found for %d CPPC\n",
532 * cppc_ss->latency is just a Nominal value. In reality
533 * the remote processor could be much slower to reply.
534 * So add an arbitrary amount of wait on top of Nominal.
536 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
537 pcc_data
[pcc_ss_idx
]->deadline_us
= usecs_lat
;
538 pcc_data
[pcc_ss_idx
]->pcc_mrtt
= cppc_ss
->min_turnaround_time
;
539 pcc_data
[pcc_ss_idx
]->pcc_mpar
= cppc_ss
->max_access_rate
;
540 pcc_data
[pcc_ss_idx
]->pcc_nominal
= cppc_ss
->latency
;
542 pcc_data
[pcc_ss_idx
]->pcc_comm_addr
=
543 acpi_os_ioremap(cppc_ss
->base_address
, cppc_ss
->length
);
544 if (!pcc_data
[pcc_ss_idx
]->pcc_comm_addr
) {
545 pr_err("Failed to ioremap PCC comm region mem for %d\n",
550 /* Set flag so that we don't come here for each CPU. */
551 pcc_data
[pcc_ss_idx
]->pcc_channel_acquired
= true;
558 * cpc_ffh_supported() - check if FFH reading supported
560 * Check if the architecture has support for functional fixed hardware
561 * read/write capability.
563 * Return: true for supported, false for not supported
565 bool __weak
cpc_ffh_supported(void)
571 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
573 * Check and allocate the cppc_pcc_data memory.
574 * In some processor configurations it is possible that same subspace
575 * is shared between multiple CPUs. This is seen especially in CPUs
576 * with hardware multi-threading support.
578 * Return: 0 for success, errno for failure
580 static int pcc_data_alloc(int pcc_ss_id
)
582 if (pcc_ss_id
< 0 || pcc_ss_id
>= MAX_PCC_SUBSPACES
)
585 if (pcc_data
[pcc_ss_id
]) {
586 pcc_data
[pcc_ss_id
]->refcount
++;
588 pcc_data
[pcc_ss_id
] = kzalloc(sizeof(struct cppc_pcc_data
),
590 if (!pcc_data
[pcc_ss_id
])
592 pcc_data
[pcc_ss_id
]->refcount
++;
598 /* Check if CPPC revision + num_ent combination is supported */
599 static bool is_cppc_supported(int revision
, int num_ent
)
601 int expected_num_ent
;
605 expected_num_ent
= CPPC_V2_NUM_ENT
;
608 expected_num_ent
= CPPC_V3_NUM_ENT
;
611 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
616 if (expected_num_ent
!= num_ent
) {
617 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
618 num_ent
, expected_num_ent
, revision
);
626 * An example CPC table looks like the following.
628 * Name(_CPC, Package()
634 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
635 * // Highest Performance
636 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
637 * // Nominal Performance
638 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
639 * // Lowest Nonlinear Performance
640 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
641 * // Lowest Performance
642 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
643 * // Guaranteed Performance Register
644 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
645 * // Desired Performance Register
646 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
652 * Each Register() encodes how to access that specific register.
653 * e.g. a sample PCC entry has the following encoding:
657 * AddressSpaceKeyword
661 * //RegisterBitOffset
665 * //AccessSize (subspace ID)
671 #ifndef init_freq_invariance_cppc
672 static inline void init_freq_invariance_cppc(void) { }
676 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
677 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
679 * Return: 0 for success or negative value for err.
681 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
683 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
684 union acpi_object
*out_obj
, *cpc_obj
;
685 struct cpc_desc
*cpc_ptr
;
686 struct cpc_reg
*gas_t
;
687 struct device
*cpu_dev
;
688 acpi_handle handle
= pr
->handle
;
689 unsigned int num_ent
, i
, cpc_rev
;
690 int pcc_subspace_id
= -1;
694 /* Parse the ACPI _CPC table for this CPU. */
695 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
697 if (ACPI_FAILURE(status
)) {
702 out_obj
= (union acpi_object
*) output
.pointer
;
704 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
710 /* First entry is NumEntries. */
711 cpc_obj
= &out_obj
->package
.elements
[0];
712 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
713 num_ent
= cpc_obj
->integer
.value
;
715 pr_debug("Unexpected entry type(%d) for NumEntries\n",
719 cpc_ptr
->num_entries
= num_ent
;
721 /* Second entry should be revision. */
722 cpc_obj
= &out_obj
->package
.elements
[1];
723 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
724 cpc_rev
= cpc_obj
->integer
.value
;
726 pr_debug("Unexpected entry type(%d) for Revision\n",
730 cpc_ptr
->version
= cpc_rev
;
732 if (!is_cppc_supported(cpc_rev
, num_ent
))
735 /* Iterate through remaining entries in _CPC */
736 for (i
= 2; i
< num_ent
; i
++) {
737 cpc_obj
= &out_obj
->package
.elements
[i
];
739 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
740 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
741 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
742 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
743 gas_t
= (struct cpc_reg
*)
744 cpc_obj
->buffer
.pointer
;
747 * The PCC Subspace index is encoded inside
748 * the CPC table entries. The same PCC index
749 * will be used for all the PCC entries,
750 * so extract it only once.
752 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
753 if (pcc_subspace_id
< 0) {
754 pcc_subspace_id
= gas_t
->access_width
;
755 if (pcc_data_alloc(pcc_subspace_id
))
757 } else if (pcc_subspace_id
!= gas_t
->access_width
) {
758 pr_debug("Mismatched PCC ids.\n");
761 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
762 if (gas_t
->address
) {
765 addr
= ioremap(gas_t
->address
, gas_t
->bit_width
/8);
768 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
771 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
772 /* Support only PCC ,SYS MEM and FFH type regs */
773 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
778 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
779 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
781 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
785 per_cpu(cpu_pcc_subspace_idx
, pr
->id
) = pcc_subspace_id
;
788 * Initialize the remaining cpc_regs as unsupported.
789 * Example: In case FW exposes CPPC v2, the below loop will initialize
790 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
792 for (i
= num_ent
- 2; i
< MAX_CPC_REG_ENT
; i
++) {
793 cpc_ptr
->cpc_regs
[i
].type
= ACPI_TYPE_INTEGER
;
794 cpc_ptr
->cpc_regs
[i
].cpc_entry
.int_value
= 0;
798 /* Store CPU Logical ID */
799 cpc_ptr
->cpu_id
= pr
->id
;
801 /* Parse PSD data for this CPU */
802 ret
= acpi_get_psd(cpc_ptr
, handle
);
806 /* Register PCC channel once for all PCC subspace ID. */
807 if (pcc_subspace_id
>= 0 && !pcc_data
[pcc_subspace_id
]->pcc_channel_acquired
) {
808 ret
= register_pcc_channel(pcc_subspace_id
);
812 init_rwsem(&pcc_data
[pcc_subspace_id
]->pcc_lock
);
813 init_waitqueue_head(&pcc_data
[pcc_subspace_id
]->pcc_write_wait_q
);
816 /* Everything looks okay */
817 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
819 /* Add per logical CPU nodes for reading its feedback counters. */
820 cpu_dev
= get_cpu_device(pr
->id
);
826 /* Plug PSD data into this CPU's CPC descriptor. */
827 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
829 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
832 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
833 kobject_put(&cpc_ptr
->kobj
);
837 init_freq_invariance_cppc();
839 kfree(output
.pointer
);
843 /* Free all the mapped sys mem areas for this CPU */
844 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
845 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
853 kfree(output
.pointer
);
856 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
859 * acpi_cppc_processor_exit - Cleanup CPC structs.
860 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
864 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
866 struct cpc_desc
*cpc_ptr
;
869 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, pr
->id
);
871 if (pcc_ss_id
>=0 && pcc_data
[pcc_ss_id
]) {
872 if (pcc_data
[pcc_ss_id
]->pcc_channel_acquired
) {
873 pcc_data
[pcc_ss_id
]->refcount
--;
874 if (!pcc_data
[pcc_ss_id
]->refcount
) {
875 pcc_mbox_free_channel(pcc_data
[pcc_ss_id
]->pcc_channel
);
876 kfree(pcc_data
[pcc_ss_id
]);
877 pcc_data
[pcc_ss_id
] = NULL
;
882 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
886 /* Free all the mapped sys mem areas for this CPU */
887 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
888 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
893 kobject_put(&cpc_ptr
->kobj
);
896 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
899 * cpc_read_ffh() - Read FFH register
900 * @cpunum: CPU number to read
901 * @reg: cppc register information
902 * @val: place holder for return value
904 * Read bit_width bits from a specified address and bit_offset
906 * Return: 0 for success and error code
908 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
914 * cpc_write_ffh() - Write FFH register
915 * @cpunum: CPU number to write
916 * @reg: cppc register information
917 * @val: value to write
919 * Write value of bit_width bits to a specified address and bit_offset
921 * Return: 0 for success and error code
923 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
929 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
930 * as fast as possible. We have already mapped the PCC subspace during init, so
931 * we can directly write to it.
934 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
937 void __iomem
*vaddr
= 0;
938 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
939 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
941 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
942 *val
= reg_res
->cpc_entry
.int_value
;
947 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
948 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
949 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
950 vaddr
= reg_res
->sys_mem_vaddr
;
951 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
952 return cpc_read_ffh(cpu
, reg
, val
);
954 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
955 val
, reg
->bit_width
);
957 switch (reg
->bit_width
) {
959 *val
= readb_relaxed(vaddr
);
962 *val
= readw_relaxed(vaddr
);
965 *val
= readl_relaxed(vaddr
);
968 *val
= readq_relaxed(vaddr
);
971 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
972 reg
->bit_width
, pcc_ss_id
);
979 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
982 void __iomem
*vaddr
= 0;
983 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
984 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
986 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
987 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
988 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
989 vaddr
= reg_res
->sys_mem_vaddr
;
990 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
991 return cpc_write_ffh(cpu
, reg
, val
);
993 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
994 val
, reg
->bit_width
);
996 switch (reg
->bit_width
) {
998 writeb_relaxed(val
, vaddr
);
1001 writew_relaxed(val
, vaddr
);
1004 writel_relaxed(val
, vaddr
);
1007 writeq_relaxed(val
, vaddr
);
1010 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1011 reg
->bit_width
, pcc_ss_id
);
1020 * cppc_get_desired_perf - Get the value of desired performance register.
1021 * @cpunum: CPU from which to get desired performance.
1022 * @desired_perf: address of a variable to store the returned desired performance
1024 * Return: 0 for success, -EIO otherwise.
1026 int cppc_get_desired_perf(int cpunum
, u64
*desired_perf
)
1028 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1029 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1030 struct cpc_register_resource
*desired_reg
;
1031 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1033 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1035 if (CPC_IN_PCC(desired_reg
)) {
1041 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1043 down_write(&pcc_ss_data
->pcc_lock
);
1045 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) >= 0)
1046 cpc_read(cpunum
, desired_reg
, desired_perf
);
1050 up_write(&pcc_ss_data
->pcc_lock
);
1055 cpc_read(cpunum
, desired_reg
, desired_perf
);
1059 EXPORT_SYMBOL_GPL(cppc_get_desired_perf
);
1062 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1063 * @cpunum: CPU from which to get capabilities info.
1064 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1066 * Return: 0 for success with perf_caps populated else -ERRNO.
1068 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1070 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1071 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
1072 *lowest_non_linear_reg
, *nominal_reg
, *guaranteed_reg
,
1073 *low_freq_reg
= NULL
, *nom_freq_reg
= NULL
;
1074 u64 high
, low
, guaranteed
, nom
, min_nonlinear
, low_f
= 0, nom_f
= 0;
1075 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1076 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1077 int ret
= 0, regs_in_pcc
= 0;
1080 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1084 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
1085 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
1086 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
1087 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1088 low_freq_reg
= &cpc_desc
->cpc_regs
[LOWEST_FREQ
];
1089 nom_freq_reg
= &cpc_desc
->cpc_regs
[NOMINAL_FREQ
];
1090 guaranteed_reg
= &cpc_desc
->cpc_regs
[GUARANTEED_PERF
];
1092 /* Are any of the regs PCC ?*/
1093 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
1094 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
) ||
1095 CPC_IN_PCC(low_freq_reg
) || CPC_IN_PCC(nom_freq_reg
)) {
1096 if (pcc_ss_id
< 0) {
1097 pr_debug("Invalid pcc_ss_id\n");
1100 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1102 down_write(&pcc_ss_data
->pcc_lock
);
1103 /* Ring doorbell once to update PCC subspace */
1104 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1110 cpc_read(cpunum
, highest_reg
, &high
);
1111 perf_caps
->highest_perf
= high
;
1113 cpc_read(cpunum
, lowest_reg
, &low
);
1114 perf_caps
->lowest_perf
= low
;
1116 cpc_read(cpunum
, nominal_reg
, &nom
);
1117 perf_caps
->nominal_perf
= nom
;
1119 if (guaranteed_reg
->type
!= ACPI_TYPE_BUFFER
||
1120 IS_NULL_REG(&guaranteed_reg
->cpc_entry
.reg
)) {
1121 perf_caps
->guaranteed_perf
= 0;
1123 cpc_read(cpunum
, guaranteed_reg
, &guaranteed
);
1124 perf_caps
->guaranteed_perf
= guaranteed
;
1127 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1128 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1130 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1133 /* Read optional lowest and nominal frequencies if present */
1134 if (CPC_SUPPORTED(low_freq_reg
))
1135 cpc_read(cpunum
, low_freq_reg
, &low_f
);
1137 if (CPC_SUPPORTED(nom_freq_reg
))
1138 cpc_read(cpunum
, nom_freq_reg
, &nom_f
);
1140 perf_caps
->lowest_freq
= low_f
;
1141 perf_caps
->nominal_freq
= nom_f
;
1146 up_write(&pcc_ss_data
->pcc_lock
);
1149 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1152 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1153 * @cpunum: CPU from which to read counters.
1154 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1156 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1158 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1160 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1161 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1162 *ref_perf_reg
, *ctr_wrap_reg
;
1163 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1164 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1165 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1166 int ret
= 0, regs_in_pcc
= 0;
1169 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1173 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1174 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1175 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1176 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1179 * If reference perf register is not supported then we should
1180 * use the nominal perf value
1182 if (!CPC_SUPPORTED(ref_perf_reg
))
1183 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1185 /* Are any of the regs PCC ?*/
1186 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1187 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1188 if (pcc_ss_id
< 0) {
1189 pr_debug("Invalid pcc_ss_id\n");
1192 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1193 down_write(&pcc_ss_data
->pcc_lock
);
1195 /* Ring doorbell once to update PCC subspace */
1196 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1202 cpc_read(cpunum
, delivered_reg
, &delivered
);
1203 cpc_read(cpunum
, reference_reg
, &reference
);
1204 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1207 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1208 * performance counters are assumed to never wrap during the lifetime of
1211 ctr_wrap_time
= (u64
)(~((u64
)0));
1212 if (CPC_SUPPORTED(ctr_wrap_reg
))
1213 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1215 if (!delivered
|| !reference
|| !ref_perf
) {
1220 perf_fb_ctrs
->delivered
= delivered
;
1221 perf_fb_ctrs
->reference
= reference
;
1222 perf_fb_ctrs
->reference_perf
= ref_perf
;
1223 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1226 up_write(&pcc_ss_data
->pcc_lock
);
1229 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1232 * cppc_set_perf - Set a CPU's performance controls.
1233 * @cpu: CPU for which to set performance controls.
1234 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1236 * Return: 0 for success, -ERRNO otherwise.
1238 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1240 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1241 struct cpc_register_resource
*desired_reg
;
1242 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1243 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1247 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1251 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1254 * This is Phase-I where we want to write to CPC registers
1255 * -> We want all CPUs to be able to execute this phase in parallel
1257 * Since read_lock can be acquired by multiple CPUs simultaneously we
1258 * achieve that goal here
1260 if (CPC_IN_PCC(desired_reg
)) {
1261 if (pcc_ss_id
< 0) {
1262 pr_debug("Invalid pcc_ss_id\n");
1265 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1266 down_read(&pcc_ss_data
->pcc_lock
); /* BEGIN Phase-I */
1267 if (pcc_ss_data
->platform_owns_pcc
) {
1268 ret
= check_pcc_chan(pcc_ss_id
, false);
1270 up_read(&pcc_ss_data
->pcc_lock
);
1275 * Update the pending_write to make sure a PCC CMD_READ will not
1276 * arrive and steal the channel during the switch to write lock
1278 pcc_ss_data
->pending_pcc_write_cmd
= true;
1279 cpc_desc
->write_cmd_id
= pcc_ss_data
->pcc_write_cnt
;
1280 cpc_desc
->write_cmd_status
= 0;
1284 * Skip writing MIN/MAX until Linux knows how to come up with
1287 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1289 if (CPC_IN_PCC(desired_reg
))
1290 up_read(&pcc_ss_data
->pcc_lock
); /* END Phase-I */
1292 * This is Phase-II where we transfer the ownership of PCC to Platform
1294 * Short Summary: Basically if we think of a group of cppc_set_perf
1295 * requests that happened in short overlapping interval. The last CPU to
1296 * come out of Phase-I will enter Phase-II and ring the doorbell.
1298 * We have the following requirements for Phase-II:
1299 * 1. We want to execute Phase-II only when there are no CPUs
1300 * currently executing in Phase-I
1301 * 2. Once we start Phase-II we want to avoid all other CPUs from
1303 * 3. We want only one CPU among all those who went through Phase-I
1306 * If write_trylock fails to get the lock and doesn't transfer the
1307 * PCC ownership to the platform, then one of the following will be TRUE
1308 * 1. There is at-least one CPU in Phase-I which will later execute
1309 * write_trylock, so the CPUs in Phase-I will be responsible for
1310 * executing the Phase-II.
1311 * 2. Some other CPU has beaten this CPU to successfully execute the
1312 * write_trylock and has already acquired the write_lock. We know for a
1313 * fact it (other CPU acquiring the write_lock) couldn't have happened
1314 * before this CPU's Phase-I as we held the read_lock.
1315 * 3. Some other CPU executing pcc CMD_READ has stolen the
1316 * down_write, in which case, send_pcc_cmd will check for pending
1317 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1318 * So this CPU can be certain that its request will be delivered
1319 * So in all cases, this CPU knows that its request will be delivered
1320 * by another CPU and can return
1322 * After getting the down_write we still need to check for
1323 * pending_pcc_write_cmd to take care of the following scenario
1324 * The thread running this code could be scheduled out between
1325 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1326 * could have delivered the request to Platform by triggering the
1327 * doorbell and transferred the ownership of PCC to platform. So this
1328 * avoids triggering an unnecessary doorbell and more importantly before
1329 * triggering the doorbell it makes sure that the PCC channel ownership
1330 * is still with OSPM.
1331 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1332 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1333 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1334 * case during a CMD_READ and if there are pending writes it delivers
1335 * the write command before servicing the read command
1337 if (CPC_IN_PCC(desired_reg
)) {
1338 if (down_write_trylock(&pcc_ss_data
->pcc_lock
)) {/* BEGIN Phase-II */
1339 /* Update only if there are pending write commands */
1340 if (pcc_ss_data
->pending_pcc_write_cmd
)
1341 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1342 up_write(&pcc_ss_data
->pcc_lock
); /* END Phase-II */
1344 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1345 wait_event(pcc_ss_data
->pcc_write_wait_q
,
1346 cpc_desc
->write_cmd_id
!= pcc_ss_data
->pcc_write_cnt
);
1348 /* send_pcc_cmd updates the status in case of failure */
1349 ret
= cpc_desc
->write_cmd_status
;
1353 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1356 * cppc_get_transition_latency - returns frequency transition latency in ns
1358 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1359 * transition latency for perfromance change requests. The closest we have
1360 * is the timing information from the PCCT tables which provides the info
1361 * on the number and frequency of PCC commands the platform can handle.
1363 unsigned int cppc_get_transition_latency(int cpu_num
)
1366 * Expected transition latency is based on the PCCT timing values
1367 * Below are definition from ACPI spec:
1368 * pcc_nominal- Expected latency to process a command, in microseconds
1369 * pcc_mpar - The maximum number of periodic requests that the subspace
1370 * channel can support, reported in commands per minute. 0
1371 * indicates no limitation.
1372 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1373 * completion of a command before issuing the next command,
1376 unsigned int latency_ns
= 0;
1377 struct cpc_desc
*cpc_desc
;
1378 struct cpc_register_resource
*desired_reg
;
1379 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu_num
);
1380 struct cppc_pcc_data
*pcc_ss_data
;
1382 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1384 return CPUFREQ_ETERNAL
;
1386 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1387 if (!CPC_IN_PCC(desired_reg
))
1388 return CPUFREQ_ETERNAL
;
1391 return CPUFREQ_ETERNAL
;
1393 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1394 if (pcc_ss_data
->pcc_mpar
)
1395 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_ss_data
->pcc_mpar
);
1397 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_nominal
* 1000);
1398 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_mrtt
* 1000);
1402 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);