1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
39 #define CM_PASSWORD 0x5a000000
41 #define CM_GNRICCTL 0x000
42 #define CM_GNRICDIV 0x004
43 # define CM_DIV_FRAC_BITS 12
44 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46 #define CM_VPUCTL 0x008
47 #define CM_VPUDIV 0x00c
48 #define CM_SYSCTL 0x010
49 #define CM_SYSDIV 0x014
50 #define CM_PERIACTL 0x018
51 #define CM_PERIADIV 0x01c
52 #define CM_PERIICTL 0x020
53 #define CM_PERIIDIV 0x024
54 #define CM_H264CTL 0x028
55 #define CM_H264DIV 0x02c
56 #define CM_ISPCTL 0x030
57 #define CM_ISPDIV 0x034
58 #define CM_V3DCTL 0x038
59 #define CM_V3DDIV 0x03c
60 #define CM_CAM0CTL 0x040
61 #define CM_CAM0DIV 0x044
62 #define CM_CAM1CTL 0x048
63 #define CM_CAM1DIV 0x04c
64 #define CM_CCP2CTL 0x050
65 #define CM_CCP2DIV 0x054
66 #define CM_DSI0ECTL 0x058
67 #define CM_DSI0EDIV 0x05c
68 #define CM_DSI0PCTL 0x060
69 #define CM_DSI0PDIV 0x064
70 #define CM_DPICTL 0x068
71 #define CM_DPIDIV 0x06c
72 #define CM_GP0CTL 0x070
73 #define CM_GP0DIV 0x074
74 #define CM_GP1CTL 0x078
75 #define CM_GP1DIV 0x07c
76 #define CM_GP2CTL 0x080
77 #define CM_GP2DIV 0x084
78 #define CM_HSMCTL 0x088
79 #define CM_HSMDIV 0x08c
80 #define CM_OTPCTL 0x090
81 #define CM_OTPDIV 0x094
82 #define CM_PCMCTL 0x098
83 #define CM_PCMDIV 0x09c
84 #define CM_PWMCTL 0x0a0
85 #define CM_PWMDIV 0x0a4
86 #define CM_SLIMCTL 0x0a8
87 #define CM_SLIMDIV 0x0ac
88 #define CM_SMICTL 0x0b0
89 #define CM_SMIDIV 0x0b4
90 /* no definition for 0x0b8 and 0x0bc */
91 #define CM_TCNTCTL 0x0c0
92 # define CM_TCNT_SRC1_SHIFT 12
93 #define CM_TCNTCNT 0x0c4
94 #define CM_TECCTL 0x0c8
95 #define CM_TECDIV 0x0cc
96 #define CM_TD0CTL 0x0d0
97 #define CM_TD0DIV 0x0d4
98 #define CM_TD1CTL 0x0d8
99 #define CM_TD1DIV 0x0dc
100 #define CM_TSENSCTL 0x0e0
101 #define CM_TSENSDIV 0x0e4
102 #define CM_TIMERCTL 0x0e8
103 #define CM_TIMERDIV 0x0ec
104 #define CM_UARTCTL 0x0f0
105 #define CM_UARTDIV 0x0f4
106 #define CM_VECCTL 0x0f8
107 #define CM_VECDIV 0x0fc
108 #define CM_PULSECTL 0x190
109 #define CM_PULSEDIV 0x194
110 #define CM_SDCCTL 0x1a8
111 #define CM_SDCDIV 0x1ac
112 #define CM_ARMCTL 0x1b0
113 #define CM_AVEOCTL 0x1b8
114 #define CM_AVEODIV 0x1bc
115 #define CM_EMMCCTL 0x1c0
116 #define CM_EMMCDIV 0x1c4
117 #define CM_EMMC2CTL 0x1d0
118 #define CM_EMMC2DIV 0x1d4
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE BIT(4)
122 # define CM_KILL BIT(5)
123 # define CM_GATE_BIT 6
124 # define CM_GATE BIT(CM_GATE_BIT)
125 # define CM_BUSY BIT(7)
126 # define CM_BUSYD BIT(8)
127 # define CM_FRAC BIT(9)
128 # define CM_SRC_SHIFT 0
129 # define CM_SRC_BITS 4
130 # define CM_SRC_MASK 0xf
131 # define CM_SRC_GND 0
132 # define CM_SRC_OSC 1
133 # define CM_SRC_TESTDEBUG0 2
134 # define CM_SRC_TESTDEBUG1 3
135 # define CM_SRC_PLLA_CORE 4
136 # define CM_SRC_PLLA_PER 4
137 # define CM_SRC_PLLC_CORE0 5
138 # define CM_SRC_PLLC_PER 5
139 # define CM_SRC_PLLC_CORE1 8
140 # define CM_SRC_PLLD_CORE 6
141 # define CM_SRC_PLLD_PER 6
142 # define CM_SRC_PLLH_AUX 7
143 # define CM_SRC_PLLC_CORE1 8
144 # define CM_SRC_PLLC_CORE2 9
146 #define CM_OSCCOUNT 0x100
148 #define CM_PLLA 0x104
149 # define CM_PLL_ANARST BIT(8)
150 # define CM_PLLA_HOLDPER BIT(7)
151 # define CM_PLLA_LOADPER BIT(6)
152 # define CM_PLLA_HOLDCORE BIT(5)
153 # define CM_PLLA_LOADCORE BIT(4)
154 # define CM_PLLA_HOLDCCP2 BIT(3)
155 # define CM_PLLA_LOADCCP2 BIT(2)
156 # define CM_PLLA_HOLDDSI0 BIT(1)
157 # define CM_PLLA_LOADDSI0 BIT(0)
159 #define CM_PLLC 0x108
160 # define CM_PLLC_HOLDPER BIT(7)
161 # define CM_PLLC_LOADPER BIT(6)
162 # define CM_PLLC_HOLDCORE2 BIT(5)
163 # define CM_PLLC_LOADCORE2 BIT(4)
164 # define CM_PLLC_HOLDCORE1 BIT(3)
165 # define CM_PLLC_LOADCORE1 BIT(2)
166 # define CM_PLLC_HOLDCORE0 BIT(1)
167 # define CM_PLLC_LOADCORE0 BIT(0)
169 #define CM_PLLD 0x10c
170 # define CM_PLLD_HOLDPER BIT(7)
171 # define CM_PLLD_LOADPER BIT(6)
172 # define CM_PLLD_HOLDCORE BIT(5)
173 # define CM_PLLD_LOADCORE BIT(4)
174 # define CM_PLLD_HOLDDSI1 BIT(3)
175 # define CM_PLLD_LOADDSI1 BIT(2)
176 # define CM_PLLD_HOLDDSI0 BIT(1)
177 # define CM_PLLD_LOADDSI0 BIT(0)
179 #define CM_PLLH 0x110
180 # define CM_PLLH_LOADRCAL BIT(2)
181 # define CM_PLLH_LOADAUX BIT(1)
182 # define CM_PLLH_LOADPIX BIT(0)
184 #define CM_LOCK 0x114
185 # define CM_LOCK_FLOCKH BIT(12)
186 # define CM_LOCK_FLOCKD BIT(11)
187 # define CM_LOCK_FLOCKC BIT(10)
188 # define CM_LOCK_FLOCKB BIT(9)
189 # define CM_LOCK_FLOCKA BIT(8)
191 #define CM_EVENT 0x118
192 #define CM_DSI1ECTL 0x158
193 #define CM_DSI1EDIV 0x15c
194 #define CM_DSI1PCTL 0x160
195 #define CM_DSI1PDIV 0x164
196 #define CM_DFTCTL 0x168
197 #define CM_DFTDIV 0x16c
199 #define CM_PLLB 0x170
200 # define CM_PLLB_HOLDARM BIT(1)
201 # define CM_PLLB_LOADARM BIT(0)
203 #define A2W_PLLA_CTRL 0x1100
204 #define A2W_PLLC_CTRL 0x1120
205 #define A2W_PLLD_CTRL 0x1140
206 #define A2W_PLLH_CTRL 0x1160
207 #define A2W_PLLB_CTRL 0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
209 # define A2W_PLL_CTRL_PWRDN BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT 12
212 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT 0
215 #define A2W_PLLA_ANA0 0x1010
216 #define A2W_PLLC_ANA0 0x1030
217 #define A2W_PLLD_ANA0 0x1050
218 #define A2W_PLLH_ANA0 0x1070
219 #define A2W_PLLB_ANA0 0x10f0
221 #define A2W_PLL_KA_SHIFT 7
222 #define A2W_PLL_KA_MASK GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT 19
224 #define A2W_PLL_KI_MASK GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT 15
226 #define A2W_PLL_KP_MASK GENMASK(18, 15)
228 #define A2W_PLLH_KA_SHIFT 19
229 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT 22
231 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT 0
233 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT 1
235 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
237 #define A2W_XOSC_CTRL 0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247 #define A2W_PLLA_FRAC 0x1200
248 #define A2W_PLLC_FRAC 0x1220
249 #define A2W_PLLD_FRAC 0x1240
250 #define A2W_PLLH_FRAC 0x1260
251 #define A2W_PLLB_FRAC 0x12e0
252 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS 20
255 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
256 #define A2W_PLL_DIV_BITS 8
257 #define A2W_PLL_DIV_SHIFT 0
259 #define A2W_PLLA_DSI0 0x1300
260 #define A2W_PLLA_CORE 0x1400
261 #define A2W_PLLA_PER 0x1500
262 #define A2W_PLLA_CCP2 0x1600
264 #define A2W_PLLC_CORE2 0x1320
265 #define A2W_PLLC_CORE1 0x1420
266 #define A2W_PLLC_PER 0x1520
267 #define A2W_PLLC_CORE0 0x1620
269 #define A2W_PLLD_DSI0 0x1340
270 #define A2W_PLLD_CORE 0x1440
271 #define A2W_PLLD_PER 0x1540
272 #define A2W_PLLD_DSI1 0x1640
274 #define A2W_PLLH_AUX 0x1360
275 #define A2W_PLLH_RCAL 0x1460
276 #define A2W_PLLH_PIX 0x1560
277 #define A2W_PLLH_STS 0x1660
279 #define A2W_PLLH_CTRLR 0x1960
280 #define A2W_PLLH_FRACR 0x1a60
281 #define A2W_PLLH_AUXR 0x1b60
282 #define A2W_PLLH_RCALR 0x1c60
283 #define A2W_PLLH_PIXR 0x1d60
284 #define A2W_PLLH_STSR 0x1e60
286 #define A2W_PLLB_ARM 0x13e0
287 #define A2W_PLLB_SP0 0x14e0
288 #define A2W_PLLB_SP1 0x15e0
289 #define A2W_PLLB_SP2 0x16e0
291 #define LOCK_TIMEOUT_NS 100000000
292 #define BCM2835_MAX_FB_RATE 1750000000u
294 #define SOC_BCM2835 BIT(0)
295 #define SOC_BCM2711 BIT(1)
296 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
299 * Names of clocks used within the driver that need to be replaced
300 * with an external parent's name. This array is in the order that
301 * the clocks node in the DT references external clocks.
303 static const char *const cprman_parent_names
[] = {
313 struct bcm2835_cprman
{
316 spinlock_t regs_lock
; /* spinlock for all clocks */
320 * Real names of cprman clock parents looked up through
321 * of_clk_get_parent_name(), which will be used in the
322 * parent_names[] arrays for clock registration.
324 const char *real_parent_names
[ARRAY_SIZE(cprman_parent_names
)];
327 struct clk_hw_onecell_data onecell
;
330 struct cprman_plat_data
{
334 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
336 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
339 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
341 return readl(cprman
->regs
+ reg
);
344 /* Does a cycle of measuring a clock through the TCNT clock, which may
345 * source from many other clocks in the system.
347 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman
*cprman
,
350 u32 osccount
= 19200; /* 1ms */
354 spin_lock(&cprman
->regs_lock
);
356 cprman_write(cprman
, CM_TCNTCTL
, CM_KILL
);
358 cprman_write(cprman
, CM_TCNTCTL
,
359 (tcnt_mux
& CM_SRC_MASK
) |
360 (tcnt_mux
>> CM_SRC_BITS
) << CM_TCNT_SRC1_SHIFT
);
362 cprman_write(cprman
, CM_OSCCOUNT
, osccount
);
364 /* do a kind delay at the start */
367 /* Finish off whatever is left of OSCCOUNT */
368 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
369 while (cprman_read(cprman
, CM_OSCCOUNT
)) {
370 if (ktime_after(ktime_get(), timeout
)) {
371 dev_err(cprman
->dev
, "timeout waiting for OSCCOUNT\n");
378 /* Wait for BUSY to clear. */
379 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
380 while (cprman_read(cprman
, CM_TCNTCTL
) & CM_BUSY
) {
381 if (ktime_after(ktime_get(), timeout
)) {
382 dev_err(cprman
->dev
, "timeout waiting for !BUSY\n");
389 count
= cprman_read(cprman
, CM_TCNTCNT
);
391 cprman_write(cprman
, CM_TCNTCTL
, 0);
394 spin_unlock(&cprman
->regs_lock
);
399 static void bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
400 const struct debugfs_reg32
*regs
,
401 size_t nregs
, struct dentry
*dentry
)
403 struct debugfs_regset32
*regset
;
405 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
410 regset
->nregs
= nregs
;
411 regset
->base
= cprman
->regs
+ base
;
413 debugfs_create_regset32("regdump", S_IRUGO
, dentry
, regset
);
416 struct bcm2835_pll_data
{
422 u32 reference_enable_mask
;
423 /* Bit in CM_LOCK to indicate when the PLL has locked. */
427 const struct bcm2835_pll_ana_bits
*ana
;
429 unsigned long min_rate
;
430 unsigned long max_rate
;
432 * Highest rate for the VCO before we have to use the
435 unsigned long max_fb_rate
;
438 struct bcm2835_pll_ana_bits
{
448 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
451 .mask1
= A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
,
452 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
453 .mask3
= A2W_PLL_KA_MASK
,
454 .set3
= (2 << A2W_PLL_KA_SHIFT
),
455 .fb_prediv_mask
= BIT(14),
458 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
459 .mask0
= A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
,
460 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
461 .mask1
= A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
,
462 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
465 .fb_prediv_mask
= BIT(11),
468 struct bcm2835_pll_divider_data
{
470 const char *source_pll
;
481 struct bcm2835_clock_data
{
484 const char *const *parents
;
487 /* Bitmap encoding which parents accept rate change propagation. */
488 unsigned int set_rate_parent
;
493 /* Number of integer bits in the divider */
495 /* Number of fractional bits in the divider */
507 struct bcm2835_gate_data
{
516 struct bcm2835_cprman
*cprman
;
517 const struct bcm2835_pll_data
*data
;
520 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
522 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
523 struct bcm2835_cprman
*cprman
= pll
->cprman
;
524 const struct bcm2835_pll_data
*data
= pll
->data
;
526 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
527 A2W_PLL_CTRL_PRST_DISABLE
;
530 static u32
bcm2835_pll_get_prediv_mask(struct bcm2835_cprman
*cprman
,
531 const struct bcm2835_pll_data
*data
)
534 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
535 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
536 * for to for VCO RANGE bits.
538 if (cprman
->soc
& SOC_BCM2711
)
541 return data
->ana
->fb_prediv_mask
;
544 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
545 unsigned long parent_rate
,
546 u32
*ndiv
, u32
*fdiv
)
550 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
551 do_div(div
, parent_rate
);
553 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
554 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
557 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
558 u32 ndiv
, u32 fdiv
, u32 pdiv
)
565 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
567 return rate
>> A2W_PLL_FRAC_BITS
;
570 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
571 unsigned long *parent_rate
)
573 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
574 const struct bcm2835_pll_data
*data
= pll
->data
;
577 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
579 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
581 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
584 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
585 unsigned long parent_rate
)
587 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
588 struct bcm2835_cprman
*cprman
= pll
->cprman
;
589 const struct bcm2835_pll_data
*data
= pll
->data
;
590 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
591 u32 ndiv
, pdiv
, fdiv
;
594 if (parent_rate
== 0)
597 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
598 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
599 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
600 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
601 bcm2835_pll_get_prediv_mask(cprman
, data
);
608 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
611 static void bcm2835_pll_off(struct clk_hw
*hw
)
613 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
614 struct bcm2835_cprman
*cprman
= pll
->cprman
;
615 const struct bcm2835_pll_data
*data
= pll
->data
;
617 spin_lock(&cprman
->regs_lock
);
618 cprman_write(cprman
, data
->cm_ctrl_reg
, CM_PLL_ANARST
);
619 cprman_write(cprman
, data
->a2w_ctrl_reg
,
620 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
622 spin_unlock(&cprman
->regs_lock
);
625 static int bcm2835_pll_on(struct clk_hw
*hw
)
627 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
628 struct bcm2835_cprman
*cprman
= pll
->cprman
;
629 const struct bcm2835_pll_data
*data
= pll
->data
;
632 cprman_write(cprman
, data
->a2w_ctrl_reg
,
633 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
634 ~A2W_PLL_CTRL_PWRDN
);
636 /* Take the PLL out of reset. */
637 spin_lock(&cprman
->regs_lock
);
638 cprman_write(cprman
, data
->cm_ctrl_reg
,
639 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
640 spin_unlock(&cprman
->regs_lock
);
642 /* Wait for the PLL to lock. */
643 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
644 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
645 if (ktime_after(ktime_get(), timeout
)) {
646 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
647 clk_hw_get_name(hw
));
654 cprman_write(cprman
, data
->a2w_ctrl_reg
,
655 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
656 A2W_PLL_CTRL_PRST_DISABLE
);
662 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
667 * ANA register setup is done as a series of writes to
668 * ANA3-ANA0, in that order. This lets us write all 4
669 * registers as a single cycle of the serdes interface (taking
670 * 100 xosc clocks), whereas if we were to update ana0, 1, and
671 * 3 individually through their partial-write registers, each
672 * would be their own serdes cycle.
674 for (i
= 3; i
>= 0; i
--)
675 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
678 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
679 unsigned long rate
, unsigned long parent_rate
)
681 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
682 struct bcm2835_cprman
*cprman
= pll
->cprman
;
683 const struct bcm2835_pll_data
*data
= pll
->data
;
684 u32 prediv_mask
= bcm2835_pll_get_prediv_mask(cprman
, data
);
685 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
686 u32 ndiv
, fdiv
, a2w_ctl
;
690 if (rate
> data
->max_fb_rate
) {
691 use_fb_prediv
= true;
694 use_fb_prediv
= false;
697 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
699 for (i
= 3; i
>= 0; i
--)
700 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
702 was_using_prediv
= ana
[1] & prediv_mask
;
704 ana
[0] &= ~data
->ana
->mask0
;
705 ana
[0] |= data
->ana
->set0
;
706 ana
[1] &= ~data
->ana
->mask1
;
707 ana
[1] |= data
->ana
->set1
;
708 ana
[3] &= ~data
->ana
->mask3
;
709 ana
[3] |= data
->ana
->set3
;
711 if (was_using_prediv
&& !use_fb_prediv
) {
712 ana
[1] &= ~prediv_mask
;
713 do_ana_setup_first
= true;
714 } else if (!was_using_prediv
&& use_fb_prediv
) {
715 ana
[1] |= prediv_mask
;
716 do_ana_setup_first
= false;
718 do_ana_setup_first
= true;
721 /* Unmask the reference clock from the oscillator. */
722 spin_lock(&cprman
->regs_lock
);
723 cprman_write(cprman
, A2W_XOSC_CTRL
,
724 cprman_read(cprman
, A2W_XOSC_CTRL
) |
725 data
->reference_enable_mask
);
726 spin_unlock(&cprman
->regs_lock
);
728 if (do_ana_setup_first
)
729 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
731 /* Set the PLL multiplier from the oscillator. */
732 cprman_write(cprman
, data
->frac_reg
, fdiv
);
734 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
735 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
736 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
737 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
738 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
739 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
741 if (!do_ana_setup_first
)
742 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
747 static void bcm2835_pll_debug_init(struct clk_hw
*hw
,
748 struct dentry
*dentry
)
750 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
751 struct bcm2835_cprman
*cprman
= pll
->cprman
;
752 const struct bcm2835_pll_data
*data
= pll
->data
;
753 struct debugfs_reg32
*regs
;
755 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
759 regs
[0].name
= "cm_ctrl";
760 regs
[0].offset
= data
->cm_ctrl_reg
;
761 regs
[1].name
= "a2w_ctrl";
762 regs
[1].offset
= data
->a2w_ctrl_reg
;
763 regs
[2].name
= "frac";
764 regs
[2].offset
= data
->frac_reg
;
765 regs
[3].name
= "ana0";
766 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
767 regs
[4].name
= "ana1";
768 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
769 regs
[5].name
= "ana2";
770 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
771 regs
[6].name
= "ana3";
772 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
774 bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
777 static const struct clk_ops bcm2835_pll_clk_ops
= {
778 .is_prepared
= bcm2835_pll_is_on
,
779 .prepare
= bcm2835_pll_on
,
780 .unprepare
= bcm2835_pll_off
,
781 .recalc_rate
= bcm2835_pll_get_rate
,
782 .set_rate
= bcm2835_pll_set_rate
,
783 .round_rate
= bcm2835_pll_round_rate
,
784 .debug_init
= bcm2835_pll_debug_init
,
787 struct bcm2835_pll_divider
{
788 struct clk_divider div
;
789 struct bcm2835_cprman
*cprman
;
790 const struct bcm2835_pll_divider_data
*data
;
793 static struct bcm2835_pll_divider
*
794 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
796 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
799 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
801 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
802 struct bcm2835_cprman
*cprman
= divider
->cprman
;
803 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
805 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
808 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
810 unsigned long *parent_rate
)
812 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
815 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
816 unsigned long parent_rate
)
818 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
821 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
823 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
824 struct bcm2835_cprman
*cprman
= divider
->cprman
;
825 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
827 spin_lock(&cprman
->regs_lock
);
828 cprman_write(cprman
, data
->cm_reg
,
829 (cprman_read(cprman
, data
->cm_reg
) &
830 ~data
->load_mask
) | data
->hold_mask
);
831 cprman_write(cprman
, data
->a2w_reg
,
832 cprman_read(cprman
, data
->a2w_reg
) |
833 A2W_PLL_CHANNEL_DISABLE
);
834 spin_unlock(&cprman
->regs_lock
);
837 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
839 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
840 struct bcm2835_cprman
*cprman
= divider
->cprman
;
841 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
843 spin_lock(&cprman
->regs_lock
);
844 cprman_write(cprman
, data
->a2w_reg
,
845 cprman_read(cprman
, data
->a2w_reg
) &
846 ~A2W_PLL_CHANNEL_DISABLE
);
848 cprman_write(cprman
, data
->cm_reg
,
849 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
850 spin_unlock(&cprman
->regs_lock
);
855 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
857 unsigned long parent_rate
)
859 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
860 struct bcm2835_cprman
*cprman
= divider
->cprman
;
861 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
862 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
864 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
866 div
= min(div
, max_div
);
870 cprman_write(cprman
, data
->a2w_reg
, div
);
871 cm
= cprman_read(cprman
, data
->cm_reg
);
872 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
873 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
878 static void bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
879 struct dentry
*dentry
)
881 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
882 struct bcm2835_cprman
*cprman
= divider
->cprman
;
883 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
884 struct debugfs_reg32
*regs
;
886 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
891 regs
[0].offset
= data
->cm_reg
;
892 regs
[1].name
= "a2w";
893 regs
[1].offset
= data
->a2w_reg
;
895 bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
898 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
899 .is_prepared
= bcm2835_pll_divider_is_on
,
900 .prepare
= bcm2835_pll_divider_on
,
901 .unprepare
= bcm2835_pll_divider_off
,
902 .recalc_rate
= bcm2835_pll_divider_get_rate
,
903 .set_rate
= bcm2835_pll_divider_set_rate
,
904 .round_rate
= bcm2835_pll_divider_round_rate
,
905 .debug_init
= bcm2835_pll_divider_debug_init
,
909 * The CM dividers do fixed-point division, so we can't use the
910 * generic integer divider code like the PLL dividers do (and we can't
911 * fake it by having some fixed shifts preceding it in the clock tree,
912 * because we'd run out of bits in a 32-bit unsigned long).
914 struct bcm2835_clock
{
916 struct bcm2835_cprman
*cprman
;
917 const struct bcm2835_clock_data
*data
;
920 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
922 return container_of(hw
, struct bcm2835_clock
, hw
);
925 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
927 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
928 struct bcm2835_cprman
*cprman
= clock
->cprman
;
929 const struct bcm2835_clock_data
*data
= clock
->data
;
931 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
934 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
936 unsigned long parent_rate
,
939 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
940 const struct bcm2835_clock_data
*data
= clock
->data
;
941 u32 unused_frac_mask
=
942 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
943 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
945 u32 div
, mindiv
, maxdiv
;
947 rem
= do_div(temp
, rate
);
950 /* Round up and mask off the unused bits */
951 if (round_up
&& ((div
& unused_frac_mask
) != 0 || rem
!= 0))
952 div
+= unused_frac_mask
+ 1;
953 div
&= ~unused_frac_mask
;
955 /* different clamping limits apply for a mash clock */
956 if (data
->is_mash_clock
) {
957 /* clamp to min divider of 2 */
958 mindiv
= 2 << CM_DIV_FRAC_BITS
;
959 /* clamp to the highest possible integer divider */
960 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
962 /* clamp to min divider of 1 */
963 mindiv
= 1 << CM_DIV_FRAC_BITS
;
964 /* clamp to the highest possible fractional divider */
965 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
966 CM_DIV_FRAC_BITS
- data
->frac_bits
);
969 /* apply the clamping limits */
970 div
= max_t(u32
, div
, mindiv
);
971 div
= min_t(u32
, div
, maxdiv
);
976 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
977 unsigned long parent_rate
,
980 const struct bcm2835_clock_data
*data
= clock
->data
;
983 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
987 * The divisor is a 12.12 fixed point field, but only some of
988 * the bits are populated in any given clock.
990 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
991 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
996 temp
= (u64
)parent_rate
<< data
->frac_bits
;
1003 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
1004 unsigned long parent_rate
)
1006 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1007 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1008 const struct bcm2835_clock_data
*data
= clock
->data
;
1011 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
1014 div
= cprman_read(cprman
, data
->div_reg
);
1016 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
1019 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
1021 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1022 const struct bcm2835_clock_data
*data
= clock
->data
;
1023 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
1025 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
1026 if (ktime_after(ktime_get(), timeout
)) {
1027 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
1028 clk_hw_get_name(&clock
->hw
));
1035 static void bcm2835_clock_off(struct clk_hw
*hw
)
1037 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1038 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1039 const struct bcm2835_clock_data
*data
= clock
->data
;
1041 spin_lock(&cprman
->regs_lock
);
1042 cprman_write(cprman
, data
->ctl_reg
,
1043 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
1044 spin_unlock(&cprman
->regs_lock
);
1046 /* BUSY will remain high until the divider completes its cycle. */
1047 bcm2835_clock_wait_busy(clock
);
1050 static int bcm2835_clock_on(struct clk_hw
*hw
)
1052 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1053 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1054 const struct bcm2835_clock_data
*data
= clock
->data
;
1056 spin_lock(&cprman
->regs_lock
);
1057 cprman_write(cprman
, data
->ctl_reg
,
1058 cprman_read(cprman
, data
->ctl_reg
) |
1061 spin_unlock(&cprman
->regs_lock
);
1063 /* Debug code to measure the clock once it's turned on to see
1064 * if it's ticking at the rate we expect.
1066 if (data
->tcnt_mux
&& false) {
1067 dev_info(cprman
->dev
,
1068 "clk %s: rate %ld, measure %ld\n",
1070 clk_hw_get_rate(hw
),
1071 bcm2835_measure_tcnt_mux(cprman
, data
->tcnt_mux
));
1077 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
1078 unsigned long rate
, unsigned long parent_rate
)
1080 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1081 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1082 const struct bcm2835_clock_data
*data
= clock
->data
;
1083 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
, false);
1086 spin_lock(&cprman
->regs_lock
);
1089 * Setting up frac support
1091 * In principle it is recommended to stop/start the clock first,
1092 * but as we set CLK_SET_RATE_GATE during registration of the
1093 * clock this requirement should be take care of by the
1096 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1097 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1098 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1100 cprman_write(cprman
, data
->div_reg
, div
);
1102 spin_unlock(&cprman
->regs_lock
);
1108 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1113 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1116 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw
*hw
,
1120 unsigned long *prate
,
1121 unsigned long *avgrate
)
1123 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1124 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1125 const struct bcm2835_clock_data
*data
= clock
->data
;
1126 unsigned long best_rate
= 0;
1127 u32 curdiv
, mindiv
, maxdiv
;
1128 struct clk_hw
*parent
;
1130 parent
= clk_hw_get_parent_by_index(hw
, parent_idx
);
1132 if (!(BIT(parent_idx
) & data
->set_rate_parent
)) {
1133 *prate
= clk_hw_get_rate(parent
);
1134 *div
= bcm2835_clock_choose_div(hw
, rate
, *prate
, true);
1136 *avgrate
= bcm2835_clock_rate_from_divisor(clock
, *prate
, *div
);
1138 if (data
->low_jitter
&& (*div
& CM_DIV_FRAC_MASK
)) {
1139 unsigned long high
, low
;
1140 u32 int_div
= *div
& ~CM_DIV_FRAC_MASK
;
1142 high
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1144 int_div
+= CM_DIV_FRAC_MASK
+ 1;
1145 low
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1149 * Return a value which is the maximum deviation
1150 * below the ideal rate, for use as a metric.
1152 return *avgrate
- max(*avgrate
- low
, high
- *avgrate
);
1157 if (data
->frac_bits
)
1158 dev_warn(cprman
->dev
,
1159 "frac bits are not used when propagating rate change");
1161 /* clamp to min divider of 2 if we're dealing with a mash clock */
1162 mindiv
= data
->is_mash_clock
? 2 : 1;
1163 maxdiv
= BIT(data
->int_bits
) - 1;
1165 /* TODO: Be smart, and only test a subset of the available divisors. */
1166 for (curdiv
= mindiv
; curdiv
<= maxdiv
; curdiv
++) {
1167 unsigned long tmp_rate
;
1169 tmp_rate
= clk_hw_round_rate(parent
, rate
* curdiv
);
1171 if (curdiv
== mindiv
||
1172 (tmp_rate
> best_rate
&& tmp_rate
<= rate
))
1173 best_rate
= tmp_rate
;
1175 if (best_rate
== rate
)
1179 *div
= curdiv
<< CM_DIV_FRAC_BITS
;
1180 *prate
= curdiv
* best_rate
;
1181 *avgrate
= best_rate
;
1186 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1187 struct clk_rate_request
*req
)
1189 struct clk_hw
*parent
, *best_parent
= NULL
;
1190 bool current_parent_is_pllc
;
1191 unsigned long rate
, best_rate
= 0;
1192 unsigned long prate
, best_prate
= 0;
1193 unsigned long avgrate
, best_avgrate
= 0;
1197 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1200 * Select parent clock that results in the closest but lower rate
1202 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1203 parent
= clk_hw_get_parent_by_index(hw
, i
);
1208 * Don't choose a PLLC-derived clock as our parent
1209 * unless it had been manually set that way. PLLC's
1210 * frequency gets adjusted by the firmware due to
1211 * over-temp or under-voltage conditions, without
1212 * prior notification to our clock consumer.
1214 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1217 rate
= bcm2835_clock_choose_div_and_prate(hw
, i
, req
->rate
,
1220 if (rate
> best_rate
&& rate
<= req
->rate
) {
1221 best_parent
= parent
;
1224 best_avgrate
= avgrate
;
1231 req
->best_parent_hw
= best_parent
;
1232 req
->best_parent_rate
= best_prate
;
1234 req
->rate
= best_avgrate
;
1239 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1241 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1242 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1243 const struct bcm2835_clock_data
*data
= clock
->data
;
1244 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1246 cprman_write(cprman
, data
->ctl_reg
, src
);
1250 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1252 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1253 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1254 const struct bcm2835_clock_data
*data
= clock
->data
;
1255 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1257 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1260 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1271 static void bcm2835_clock_debug_init(struct clk_hw
*hw
,
1272 struct dentry
*dentry
)
1274 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1275 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1276 const struct bcm2835_clock_data
*data
= clock
->data
;
1278 bcm2835_debugfs_regset(cprman
, data
->ctl_reg
,
1279 bcm2835_debugfs_clock_reg32
,
1280 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1284 static const struct clk_ops bcm2835_clock_clk_ops
= {
1285 .is_prepared
= bcm2835_clock_is_on
,
1286 .prepare
= bcm2835_clock_on
,
1287 .unprepare
= bcm2835_clock_off
,
1288 .recalc_rate
= bcm2835_clock_get_rate
,
1289 .set_rate
= bcm2835_clock_set_rate
,
1290 .determine_rate
= bcm2835_clock_determine_rate
,
1291 .set_parent
= bcm2835_clock_set_parent
,
1292 .get_parent
= bcm2835_clock_get_parent
,
1293 .debug_init
= bcm2835_clock_debug_init
,
1296 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1302 * The VPU clock can never be disabled (it doesn't have an ENABLE
1303 * bit), so it gets its own set of clock ops.
1305 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1306 .is_prepared
= bcm2835_vpu_clock_is_on
,
1307 .recalc_rate
= bcm2835_clock_get_rate
,
1308 .set_rate
= bcm2835_clock_set_rate
,
1309 .determine_rate
= bcm2835_clock_determine_rate
,
1310 .set_parent
= bcm2835_clock_set_parent
,
1311 .get_parent
= bcm2835_clock_get_parent
,
1312 .debug_init
= bcm2835_clock_debug_init
,
1315 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1318 const struct bcm2835_pll_data
*pll_data
= data
;
1319 struct bcm2835_pll
*pll
;
1320 struct clk_init_data init
;
1323 memset(&init
, 0, sizeof(init
));
1325 /* All of the PLLs derive from the external oscillator. */
1326 init
.parent_names
= &cprman
->real_parent_names
[0];
1327 init
.num_parents
= 1;
1328 init
.name
= pll_data
->name
;
1329 init
.ops
= &bcm2835_pll_clk_ops
;
1330 init
.flags
= pll_data
->flags
| CLK_IGNORE_UNUSED
;
1332 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1336 pll
->cprman
= cprman
;
1337 pll
->data
= pll_data
;
1338 pll
->hw
.init
= &init
;
1340 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1348 static struct clk_hw
*
1349 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1352 const struct bcm2835_pll_divider_data
*divider_data
= data
;
1353 struct bcm2835_pll_divider
*divider
;
1354 struct clk_init_data init
;
1355 const char *divider_name
;
1358 if (divider_data
->fixed_divider
!= 1) {
1359 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1360 "%s_prediv", divider_data
->name
);
1364 divider_name
= divider_data
->name
;
1367 memset(&init
, 0, sizeof(init
));
1369 init
.parent_names
= ÷r_data
->source_pll
;
1370 init
.num_parents
= 1;
1371 init
.name
= divider_name
;
1372 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1373 init
.flags
= divider_data
->flags
| CLK_IGNORE_UNUSED
;
1375 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1379 divider
->div
.reg
= cprman
->regs
+ divider_data
->a2w_reg
;
1380 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1381 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1382 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1383 divider
->div
.lock
= &cprman
->regs_lock
;
1384 divider
->div
.hw
.init
= &init
;
1385 divider
->div
.table
= NULL
;
1387 divider
->cprman
= cprman
;
1388 divider
->data
= divider_data
;
1390 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1392 return ERR_PTR(ret
);
1395 * PLLH's channels have a fixed divide by 10 afterwards, which
1396 * is what our consumers are actually using.
1398 if (divider_data
->fixed_divider
!= 1) {
1399 return clk_hw_register_fixed_factor(cprman
->dev
,
1402 CLK_SET_RATE_PARENT
,
1404 divider_data
->fixed_divider
);
1407 return ÷r
->div
.hw
;
1410 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1413 const struct bcm2835_clock_data
*clock_data
= data
;
1414 struct bcm2835_clock
*clock
;
1415 struct clk_init_data init
;
1416 const char *parents
[1 << CM_SRC_BITS
];
1421 * Replace our strings referencing parent clocks with the
1422 * actual clock-output-name of the parent.
1424 for (i
= 0; i
< clock_data
->num_mux_parents
; i
++) {
1425 parents
[i
] = clock_data
->parents
[i
];
1427 ret
= match_string(cprman_parent_names
,
1428 ARRAY_SIZE(cprman_parent_names
),
1431 parents
[i
] = cprman
->real_parent_names
[ret
];
1434 memset(&init
, 0, sizeof(init
));
1435 init
.parent_names
= parents
;
1436 init
.num_parents
= clock_data
->num_mux_parents
;
1437 init
.name
= clock_data
->name
;
1438 init
.flags
= clock_data
->flags
| CLK_IGNORE_UNUSED
;
1441 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1442 * rate changes on at least of the parents.
1444 if (clock_data
->set_rate_parent
)
1445 init
.flags
|= CLK_SET_RATE_PARENT
;
1447 if (clock_data
->is_vpu_clock
) {
1448 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1450 init
.ops
= &bcm2835_clock_clk_ops
;
1451 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1453 /* If the clock wasn't actually enabled at boot, it's not
1456 if (!(cprman_read(cprman
, clock_data
->ctl_reg
) & CM_ENABLE
))
1457 init
.flags
&= ~CLK_IS_CRITICAL
;
1460 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1464 clock
->cprman
= cprman
;
1465 clock
->data
= clock_data
;
1466 clock
->hw
.init
= &init
;
1468 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1470 return ERR_PTR(ret
);
1474 static struct clk_hw
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1477 const struct bcm2835_gate_data
*gate_data
= data
;
1479 return clk_hw_register_gate(cprman
->dev
, gate_data
->name
,
1481 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1482 cprman
->regs
+ gate_data
->ctl_reg
,
1483 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1486 struct bcm2835_clk_desc
{
1487 struct clk_hw
*(*clk_register
)(struct bcm2835_cprman
*cprman
,
1489 unsigned int supported
;
1493 /* assignment helper macros for different clock types */
1494 #define _REGISTER(f, s, ...) { .clk_register = f, \
1496 .data = __VA_ARGS__ }
1497 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1499 &(struct bcm2835_pll_data) \
1501 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1503 &(struct bcm2835_pll_divider_data) \
1505 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1507 &(struct bcm2835_clock_data) \
1509 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1511 &(struct bcm2835_gate_data) \
1514 /* parent mux arrays plus helper macros */
1516 /* main oscillator parent mux */
1517 static const char *const bcm2835_clock_osc_parents
[] = {
1524 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1526 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1527 .parents = bcm2835_clock_osc_parents, \
1530 /* main peripherial parent mux */
1531 static const char *const bcm2835_clock_per_parents
[] = {
1542 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1544 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1545 .parents = bcm2835_clock_per_parents, \
1549 * Restrict clock sources for the PCM peripheral to the oscillator and
1550 * PLLD_PER because other source may have varying rates or be switched
1553 * Prevent other sources from being selected by replacing their names in
1554 * the list of potential parents with dummy entries (entry index is
1557 static const char *const bcm2835_pcm_per_parents
[] = {
1568 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1570 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1571 .parents = bcm2835_pcm_per_parents, \
1574 /* main vpu parent mux */
1575 static const char *const bcm2835_clock_vpu_parents
[] = {
1588 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1590 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1591 .parents = bcm2835_clock_vpu_parents, \
1595 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1596 * analog PHY. The _inv variants are generated internally to cprman,
1597 * but we don't use them so they aren't hooked up.
1599 static const char *const bcm2835_clock_dsi0_parents
[] = {
1612 static const char *const bcm2835_clock_dsi1_parents
[] = {
1625 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1627 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1628 .parents = bcm2835_clock_dsi0_parents, \
1631 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1633 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1634 .parents = bcm2835_clock_dsi1_parents, \
1638 * the real definition of all the pll, pll_dividers and clocks
1639 * these make use of the above REGISTER_* macros
1641 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1642 /* the PLL + PLL dividers */
1645 * PLLA is the auxiliary PLL, used to drive the CCP2
1646 * (Compact Camera Port 2) transmitter clock.
1648 * It is in the PX LDO power domain, which is on when the
1649 * AUDIO domain is on.
1651 [BCM2835_PLLA
] = REGISTER_PLL(
1654 .cm_ctrl_reg
= CM_PLLA
,
1655 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1656 .frac_reg
= A2W_PLLA_FRAC
,
1657 .ana_reg_base
= A2W_PLLA_ANA0
,
1658 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1659 .lock_mask
= CM_LOCK_FLOCKA
,
1661 .ana
= &bcm2835_ana_default
,
1663 .min_rate
= 600000000u,
1664 .max_rate
= 2400000000u,
1665 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1666 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1668 .name
= "plla_core",
1669 .source_pll
= "plla",
1671 .a2w_reg
= A2W_PLLA_CORE
,
1672 .load_mask
= CM_PLLA_LOADCORE
,
1673 .hold_mask
= CM_PLLA_HOLDCORE
,
1675 .flags
= CLK_SET_RATE_PARENT
),
1676 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1679 .source_pll
= "plla",
1681 .a2w_reg
= A2W_PLLA_PER
,
1682 .load_mask
= CM_PLLA_LOADPER
,
1683 .hold_mask
= CM_PLLA_HOLDPER
,
1685 .flags
= CLK_SET_RATE_PARENT
),
1686 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1688 .name
= "plla_dsi0",
1689 .source_pll
= "plla",
1691 .a2w_reg
= A2W_PLLA_DSI0
,
1692 .load_mask
= CM_PLLA_LOADDSI0
,
1693 .hold_mask
= CM_PLLA_HOLDDSI0
,
1694 .fixed_divider
= 1),
1695 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1697 .name
= "plla_ccp2",
1698 .source_pll
= "plla",
1700 .a2w_reg
= A2W_PLLA_CCP2
,
1701 .load_mask
= CM_PLLA_LOADCCP2
,
1702 .hold_mask
= CM_PLLA_HOLDCCP2
,
1704 .flags
= CLK_SET_RATE_PARENT
),
1706 /* PLLB is used for the ARM's clock. */
1707 [BCM2835_PLLB
] = REGISTER_PLL(
1710 .cm_ctrl_reg
= CM_PLLB
,
1711 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
1712 .frac_reg
= A2W_PLLB_FRAC
,
1713 .ana_reg_base
= A2W_PLLB_ANA0
,
1714 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
1715 .lock_mask
= CM_LOCK_FLOCKB
,
1717 .ana
= &bcm2835_ana_default
,
1719 .min_rate
= 600000000u,
1720 .max_rate
= 3000000000u,
1721 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
1722 .flags
= CLK_GET_RATE_NOCACHE
),
1723 [BCM2835_PLLB_ARM
] = REGISTER_PLL_DIV(
1726 .source_pll
= "pllb",
1728 .a2w_reg
= A2W_PLLB_ARM
,
1729 .load_mask
= CM_PLLB_LOADARM
,
1730 .hold_mask
= CM_PLLB_HOLDARM
,
1732 .flags
= CLK_SET_RATE_PARENT
| CLK_GET_RATE_NOCACHE
),
1735 * PLLC is the core PLL, used to drive the core VPU clock.
1737 * It is in the PX LDO power domain, which is on when the
1738 * AUDIO domain is on.
1740 [BCM2835_PLLC
] = REGISTER_PLL(
1743 .cm_ctrl_reg
= CM_PLLC
,
1744 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1745 .frac_reg
= A2W_PLLC_FRAC
,
1746 .ana_reg_base
= A2W_PLLC_ANA0
,
1747 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1748 .lock_mask
= CM_LOCK_FLOCKC
,
1750 .ana
= &bcm2835_ana_default
,
1752 .min_rate
= 600000000u,
1753 .max_rate
= 3000000000u,
1754 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1755 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1757 .name
= "pllc_core0",
1758 .source_pll
= "pllc",
1760 .a2w_reg
= A2W_PLLC_CORE0
,
1761 .load_mask
= CM_PLLC_LOADCORE0
,
1762 .hold_mask
= CM_PLLC_HOLDCORE0
,
1764 .flags
= CLK_SET_RATE_PARENT
),
1765 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1767 .name
= "pllc_core1",
1768 .source_pll
= "pllc",
1770 .a2w_reg
= A2W_PLLC_CORE1
,
1771 .load_mask
= CM_PLLC_LOADCORE1
,
1772 .hold_mask
= CM_PLLC_HOLDCORE1
,
1774 .flags
= CLK_SET_RATE_PARENT
),
1775 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1777 .name
= "pllc_core2",
1778 .source_pll
= "pllc",
1780 .a2w_reg
= A2W_PLLC_CORE2
,
1781 .load_mask
= CM_PLLC_LOADCORE2
,
1782 .hold_mask
= CM_PLLC_HOLDCORE2
,
1784 .flags
= CLK_SET_RATE_PARENT
),
1785 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1788 .source_pll
= "pllc",
1790 .a2w_reg
= A2W_PLLC_PER
,
1791 .load_mask
= CM_PLLC_LOADPER
,
1792 .hold_mask
= CM_PLLC_HOLDPER
,
1794 .flags
= CLK_SET_RATE_PARENT
),
1797 * PLLD is the display PLL, used to drive DSI display panels.
1799 * It is in the PX LDO power domain, which is on when the
1800 * AUDIO domain is on.
1802 [BCM2835_PLLD
] = REGISTER_PLL(
1805 .cm_ctrl_reg
= CM_PLLD
,
1806 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1807 .frac_reg
= A2W_PLLD_FRAC
,
1808 .ana_reg_base
= A2W_PLLD_ANA0
,
1809 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1810 .lock_mask
= CM_LOCK_FLOCKD
,
1812 .ana
= &bcm2835_ana_default
,
1814 .min_rate
= 600000000u,
1815 .max_rate
= 2400000000u,
1816 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1817 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1819 .name
= "plld_core",
1820 .source_pll
= "plld",
1822 .a2w_reg
= A2W_PLLD_CORE
,
1823 .load_mask
= CM_PLLD_LOADCORE
,
1824 .hold_mask
= CM_PLLD_HOLDCORE
,
1826 .flags
= CLK_SET_RATE_PARENT
),
1828 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1829 * Otherwise this could cause firmware lookups. That's why we mark
1832 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1835 .source_pll
= "plld",
1837 .a2w_reg
= A2W_PLLD_PER
,
1838 .load_mask
= CM_PLLD_LOADPER
,
1839 .hold_mask
= CM_PLLD_HOLDPER
,
1841 .flags
= CLK_IS_CRITICAL
| CLK_SET_RATE_PARENT
),
1842 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1844 .name
= "plld_dsi0",
1845 .source_pll
= "plld",
1847 .a2w_reg
= A2W_PLLD_DSI0
,
1848 .load_mask
= CM_PLLD_LOADDSI0
,
1849 .hold_mask
= CM_PLLD_HOLDDSI0
,
1850 .fixed_divider
= 1),
1851 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1853 .name
= "plld_dsi1",
1854 .source_pll
= "plld",
1856 .a2w_reg
= A2W_PLLD_DSI1
,
1857 .load_mask
= CM_PLLD_LOADDSI1
,
1858 .hold_mask
= CM_PLLD_HOLDDSI1
,
1859 .fixed_divider
= 1),
1862 * PLLH is used to supply the pixel clock or the AUX clock for the
1865 * It is in the HDMI power domain.
1867 [BCM2835_PLLH
] = REGISTER_PLL(
1870 .cm_ctrl_reg
= CM_PLLH
,
1871 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1872 .frac_reg
= A2W_PLLH_FRAC
,
1873 .ana_reg_base
= A2W_PLLH_ANA0
,
1874 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1875 .lock_mask
= CM_LOCK_FLOCKH
,
1877 .ana
= &bcm2835_ana_pllh
,
1879 .min_rate
= 600000000u,
1880 .max_rate
= 3000000000u,
1881 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1882 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1884 .name
= "pllh_rcal",
1885 .source_pll
= "pllh",
1887 .a2w_reg
= A2W_PLLH_RCAL
,
1888 .load_mask
= CM_PLLH_LOADRCAL
,
1890 .fixed_divider
= 10,
1891 .flags
= CLK_SET_RATE_PARENT
),
1892 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1895 .source_pll
= "pllh",
1897 .a2w_reg
= A2W_PLLH_AUX
,
1898 .load_mask
= CM_PLLH_LOADAUX
,
1901 .flags
= CLK_SET_RATE_PARENT
),
1902 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1905 .source_pll
= "pllh",
1907 .a2w_reg
= A2W_PLLH_PIX
,
1908 .load_mask
= CM_PLLH_LOADPIX
,
1910 .fixed_divider
= 10,
1911 .flags
= CLK_SET_RATE_PARENT
),
1915 /* clocks with oscillator parent mux */
1917 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1918 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1921 .ctl_reg
= CM_OTPCTL
,
1922 .div_reg
= CM_OTPDIV
,
1927 * Used for a 1Mhz clock for the system clocksource, and also used
1928 * bythe watchdog timer and the camera pulse generator.
1930 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1933 .ctl_reg
= CM_TIMERCTL
,
1934 .div_reg
= CM_TIMERDIV
,
1938 * Clock for the temperature sensor.
1939 * Generally run at 2Mhz, max 5Mhz.
1941 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1944 .ctl_reg
= CM_TSENSCTL
,
1945 .div_reg
= CM_TSENSDIV
,
1948 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1951 .ctl_reg
= CM_TECCTL
,
1952 .div_reg
= CM_TECDIV
,
1956 /* clocks with vpu parent mux */
1957 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1960 .ctl_reg
= CM_H264CTL
,
1961 .div_reg
= CM_H264DIV
,
1965 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1968 .ctl_reg
= CM_ISPCTL
,
1969 .div_reg
= CM_ISPDIV
,
1975 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1976 * in the SDRAM controller can't be used.
1978 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
1981 .ctl_reg
= CM_SDCCTL
,
1982 .div_reg
= CM_SDCDIV
,
1986 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
1989 .ctl_reg
= CM_V3DCTL
,
1990 .div_reg
= CM_V3DDIV
,
1995 * VPU clock. This doesn't have an enable bit, since it drives
1996 * the bus for everything else, and is special so it doesn't need
1997 * to be gated for rate changes. It is also known as "clk_audio"
1998 * in various hardware documentation.
2000 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
2003 .ctl_reg
= CM_VPUCTL
,
2004 .div_reg
= CM_VPUDIV
,
2007 .flags
= CLK_IS_CRITICAL
,
2008 .is_vpu_clock
= true,
2011 /* clocks with per parent mux */
2012 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
2015 .ctl_reg
= CM_AVEOCTL
,
2016 .div_reg
= CM_AVEODIV
,
2020 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
2023 .ctl_reg
= CM_CAM0CTL
,
2024 .div_reg
= CM_CAM0DIV
,
2028 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
2031 .ctl_reg
= CM_CAM1CTL
,
2032 .div_reg
= CM_CAM1DIV
,
2036 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
2039 .ctl_reg
= CM_DFTCTL
,
2040 .div_reg
= CM_DFTDIV
,
2043 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
2046 .ctl_reg
= CM_DPICTL
,
2047 .div_reg
= CM_DPIDIV
,
2052 /* Arasan EMMC clock */
2053 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
2056 .ctl_reg
= CM_EMMCCTL
,
2057 .div_reg
= CM_EMMCDIV
,
2062 /* EMMC2 clock (only available for BCM2711) */
2063 [BCM2711_CLOCK_EMMC2
] = REGISTER_PER_CLK(
2066 .ctl_reg
= CM_EMMC2CTL
,
2067 .div_reg
= CM_EMMC2DIV
,
2072 /* General purpose (GPIO) clocks */
2073 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
2076 .ctl_reg
= CM_GP0CTL
,
2077 .div_reg
= CM_GP0DIV
,
2080 .is_mash_clock
= true,
2082 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
2085 .ctl_reg
= CM_GP1CTL
,
2086 .div_reg
= CM_GP1DIV
,
2089 .flags
= CLK_IS_CRITICAL
,
2090 .is_mash_clock
= true,
2092 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
2095 .ctl_reg
= CM_GP2CTL
,
2096 .div_reg
= CM_GP2DIV
,
2099 .flags
= CLK_IS_CRITICAL
),
2101 /* HDMI state machine */
2102 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
2105 .ctl_reg
= CM_HSMCTL
,
2106 .div_reg
= CM_HSMDIV
,
2110 [BCM2835_CLOCK_PCM
] = REGISTER_PCM_CLK(
2113 .ctl_reg
= CM_PCMCTL
,
2114 .div_reg
= CM_PCMDIV
,
2117 .is_mash_clock
= true,
2120 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
2123 .ctl_reg
= CM_PWMCTL
,
2124 .div_reg
= CM_PWMDIV
,
2127 .is_mash_clock
= true,
2129 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
2132 .ctl_reg
= CM_SLIMCTL
,
2133 .div_reg
= CM_SLIMDIV
,
2136 .is_mash_clock
= true,
2138 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
2141 .ctl_reg
= CM_SMICTL
,
2142 .div_reg
= CM_SMIDIV
,
2146 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
2149 .ctl_reg
= CM_UARTCTL
,
2150 .div_reg
= CM_UARTDIV
,
2155 /* TV encoder clock. Only operating frequency is 108Mhz. */
2156 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
2159 .ctl_reg
= CM_VECCTL
,
2160 .div_reg
= CM_VECDIV
,
2164 * Allow rate change propagation only on PLLH_AUX which is
2165 * assigned index 7 in the parent array.
2167 .set_rate_parent
= BIT(7),
2171 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
2174 .ctl_reg
= CM_DSI0ECTL
,
2175 .div_reg
= CM_DSI0EDIV
,
2179 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
2182 .ctl_reg
= CM_DSI1ECTL
,
2183 .div_reg
= CM_DSI1EDIV
,
2187 [BCM2835_CLOCK_DSI0P
] = REGISTER_DSI0_CLK(
2190 .ctl_reg
= CM_DSI0PCTL
,
2191 .div_reg
= CM_DSI0PDIV
,
2195 [BCM2835_CLOCK_DSI1P
] = REGISTER_DSI1_CLK(
2198 .ctl_reg
= CM_DSI1PCTL
,
2199 .div_reg
= CM_DSI1PDIV
,
2207 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2208 * you have the debug bit set in the power manager, which we
2209 * don't bother exposing) are individual gates off of the
2210 * non-stop vpu clock.
2212 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
2214 .name
= "peri_image",
2216 .ctl_reg
= CM_PERIICTL
),
2220 * Permanently take a reference on the parent of the SDRAM clock.
2222 * While the SDRAM is being driven by its dedicated PLL most of the
2223 * time, there is a little loop running in the firmware that
2224 * periodically switches the SDRAM to using our CM clock to do PVT
2225 * recalibration, with the assumption that the previously configured
2226 * SDRAM parent is still enabled and running.
2228 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
2230 struct clk
*parent
= clk_get_parent(sdc
);
2233 return PTR_ERR(parent
);
2235 return clk_prepare_enable(parent
);
2238 static int bcm2835_clk_probe(struct platform_device
*pdev
)
2240 struct device
*dev
= &pdev
->dev
;
2241 struct clk_hw
**hws
;
2242 struct bcm2835_cprman
*cprman
;
2243 const struct bcm2835_clk_desc
*desc
;
2244 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
2245 const struct cprman_plat_data
*pdata
;
2249 pdata
= of_device_get_match_data(&pdev
->dev
);
2253 cprman
= devm_kzalloc(dev
,
2254 struct_size(cprman
, onecell
.hws
, asize
),
2259 spin_lock_init(&cprman
->regs_lock
);
2261 cprman
->regs
= devm_platform_ioremap_resource(pdev
, 0);
2262 if (IS_ERR(cprman
->regs
))
2263 return PTR_ERR(cprman
->regs
);
2265 memcpy(cprman
->real_parent_names
, cprman_parent_names
,
2266 sizeof(cprman_parent_names
));
2267 of_clk_parent_fill(dev
->of_node
, cprman
->real_parent_names
,
2268 ARRAY_SIZE(cprman_parent_names
));
2271 * Make sure the external oscillator has been registered.
2273 * The other (DSI) clocks are not present on older device
2274 * trees, which we still need to support for backwards
2277 if (!cprman
->real_parent_names
[0])
2280 platform_set_drvdata(pdev
, cprman
);
2282 cprman
->onecell
.num
= asize
;
2283 cprman
->soc
= pdata
->soc
;
2284 hws
= cprman
->onecell
.hws
;
2286 for (i
= 0; i
< asize
; i
++) {
2287 desc
= &clk_desc_array
[i
];
2288 if (desc
->clk_register
&& desc
->data
&&
2289 (desc
->supported
& pdata
->soc
)) {
2290 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
2294 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
2298 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
2302 static const struct cprman_plat_data cprman_bcm2835_plat_data
= {
2306 static const struct cprman_plat_data cprman_bcm2711_plat_data
= {
2310 static const struct of_device_id bcm2835_clk_of_match
[] = {
2311 { .compatible
= "brcm,bcm2835-cprman", .data
= &cprman_bcm2835_plat_data
},
2312 { .compatible
= "brcm,bcm2711-cprman", .data
= &cprman_bcm2711_plat_data
},
2315 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
2317 static struct platform_driver bcm2835_clk_driver
= {
2319 .name
= "bcm2835-clk",
2320 .of_match_table
= bcm2835_clk_of_match
,
2322 .probe
= bcm2835_clk_probe
,
2325 builtin_platform_driver(bcm2835_clk_driver
);
2327 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2328 MODULE_DESCRIPTION("BCM2835 clock driver");
2329 MODULE_LICENSE("GPL");