1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
31 #include <clocksource/arm_arch_timer.h>
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
47 #define CNTP_TVAL 0x28
49 #define CNTV_TVAL 0x38
52 static unsigned arch_timers_present __initdata
;
54 static void __iomem
*arch_counter_base
;
58 struct clock_event_device evt
;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate
;
64 static int arch_timer_ppi
[ARCH_TIMER_MAX_TIMER_PPI
];
66 static struct clock_event_device __percpu
*arch_timer_evt
;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi
= ARCH_TIMER_VIRT_PPI
;
69 static bool arch_timer_c3stop
;
70 static bool arch_timer_mem_use_virtual
;
71 static bool arch_counter_suspend_stop
;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_ARCHTIMER
;
75 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_NONE
;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78 static cpumask_t evtstrm_available
= CPU_MASK_NONE
;
79 static bool evtstrm_enable
= IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
);
81 static int __init
early_evtstrm_cfg(char *buf
)
83 return strtobool(buf
, &evtstrm_enable
);
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg
);
88 * Architected system timer support.
91 static __always_inline
92 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
93 struct clock_event_device
*clk
)
95 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
96 struct arch_timer
*timer
= to_arch_timer(clk
);
98 case ARCH_TIMER_REG_CTRL
:
99 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
101 case ARCH_TIMER_REG_TVAL
:
102 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
105 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
106 struct arch_timer
*timer
= to_arch_timer(clk
);
108 case ARCH_TIMER_REG_CTRL
:
109 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
111 case ARCH_TIMER_REG_TVAL
:
112 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
116 arch_timer_reg_write_cp15(access
, reg
, val
);
120 static __always_inline
121 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
122 struct clock_event_device
*clk
)
126 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
127 struct arch_timer
*timer
= to_arch_timer(clk
);
129 case ARCH_TIMER_REG_CTRL
:
130 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
132 case ARCH_TIMER_REG_TVAL
:
133 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
136 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
137 struct arch_timer
*timer
= to_arch_timer(clk
);
139 case ARCH_TIMER_REG_CTRL
:
140 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
142 case ARCH_TIMER_REG_TVAL
:
143 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
147 val
= arch_timer_reg_read_cp15(access
, reg
);
153 static notrace u64
arch_counter_get_cntpct_stable(void)
155 return __arch_counter_get_cntpct_stable();
158 static notrace u64
arch_counter_get_cntpct(void)
160 return __arch_counter_get_cntpct();
163 static notrace u64
arch_counter_get_cntvct_stable(void)
165 return __arch_counter_get_cntvct_stable();
168 static notrace u64
arch_counter_get_cntvct(void)
170 return __arch_counter_get_cntvct();
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
179 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter
);
182 static u64
arch_counter_read(struct clocksource
*cs
)
184 return arch_timer_read_counter();
187 static u64
arch_counter_read_cc(const struct cyclecounter
*cc
)
189 return arch_timer_read_counter();
192 static struct clocksource clocksource_counter
= {
193 .name
= "arch_sys_counter",
195 .read
= arch_counter_read
,
196 .mask
= CLOCKSOURCE_MASK(56),
197 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
200 static struct cyclecounter cyclecounter __ro_after_init
= {
201 .read
= arch_counter_read_cc
,
202 .mask
= CLOCKSOURCE_MASK(56),
205 struct ate_acpi_oem_info
{
206 char oem_id
[ACPI_OEM_ID_SIZE
+ 1];
207 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
+ 1];
211 #ifdef CONFIG_FSL_ERRATUM_A008585
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
216 #define __fsl_a008585_read_reg(reg) ({ \
218 int _retries = 200; \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
224 } while (unlikely(_old != _new) && _retries); \
226 WARN_ON_ONCE(!_retries); \
230 static u32 notrace
fsl_a008585_read_cntp_tval_el0(void)
232 return __fsl_a008585_read_reg(cntp_tval_el0
);
235 static u32 notrace
fsl_a008585_read_cntv_tval_el0(void)
237 return __fsl_a008585_read_reg(cntv_tval_el0
);
240 static u64 notrace
fsl_a008585_read_cntpct_el0(void)
242 return __fsl_a008585_read_reg(cntpct_el0
);
245 static u64 notrace
fsl_a008585_read_cntvct_el0(void)
247 return __fsl_a008585_read_reg(cntvct_el0
);
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
262 #define __hisi_161010101_read_reg(reg) ({ \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
272 WARN_ON_ONCE(!_retries); \
276 static u32 notrace
hisi_161010101_read_cntp_tval_el0(void)
278 return __hisi_161010101_read_reg(cntp_tval_el0
);
281 static u32 notrace
hisi_161010101_read_cntv_tval_el0(void)
283 return __hisi_161010101_read_reg(cntv_tval_el0
);
286 static u64 notrace
hisi_161010101_read_cntpct_el0(void)
288 return __hisi_161010101_read_reg(cntpct_el0
);
291 static u64 notrace
hisi_161010101_read_cntvct_el0(void)
293 return __hisi_161010101_read_reg(cntvct_el0
);
296 static struct ate_acpi_oem_info hisi_161010101_oem_info
[] = {
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
303 .oem_table_id
= "HIP05 ",
308 .oem_table_id
= "HIP06 ",
313 .oem_table_id
= "HIP07 ",
316 { /* Sentinel indicating the end of the OEM array */ },
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace
arm64_858921_read_cntpct_el0(void)
325 old
= read_sysreg(cntpct_el0
);
326 new = read_sysreg(cntpct_el0
);
327 return (((old
^ new) >> 32) & 1) ? old
: new;
330 static u64 notrace
arm64_858921_read_cntvct_el0(void)
334 old
= read_sysreg(cntvct_el0
);
335 new = read_sysreg(cntvct_el0
);
336 return (((old
^ new) >> 32) & 1) ? old
: new;
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
348 #define __sun50i_a64_read_reg(reg) ({ \
350 int _retries = 150; \
353 _val = read_sysreg(reg); \
355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
357 WARN_ON_ONCE(!_retries); \
361 static u64 notrace
sun50i_a64_read_cntpct_el0(void)
363 return __sun50i_a64_read_reg(cntpct_el0
);
366 static u64 notrace
sun50i_a64_read_cntvct_el0(void)
368 return __sun50i_a64_read_reg(cntvct_el0
);
371 static u32 notrace
sun50i_a64_read_cntp_tval_el0(void)
373 return read_sysreg(cntp_cval_el0
) - sun50i_a64_read_cntpct_el0();
376 static u32 notrace
sun50i_a64_read_cntv_tval_el0(void)
378 return read_sysreg(cntv_cval_el0
) - sun50i_a64_read_cntvct_el0();
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround
*, timer_unstable_counter_workaround
);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround
);
386 static atomic_t timer_unstable_counter_workaround_in_use
= ATOMIC_INIT(0);
388 static void erratum_set_next_event_tval_generic(const int access
, unsigned long evt
,
389 struct clock_event_device
*clk
)
394 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
395 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
396 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
398 if (access
== ARCH_TIMER_PHYS_ACCESS
) {
399 cval
= evt
+ arch_counter_get_cntpct_stable();
400 write_sysreg(cval
, cntp_cval_el0
);
402 cval
= evt
+ arch_counter_get_cntvct_stable();
403 write_sysreg(cval
, cntv_cval_el0
);
406 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
409 static __maybe_unused
int erratum_set_next_event_tval_virt(unsigned long evt
,
410 struct clock_event_device
*clk
)
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
416 static __maybe_unused
int erratum_set_next_event_tval_phys(unsigned long evt
,
417 struct clock_event_device
*clk
)
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
423 static const struct arch_timer_erratum_workaround ool_workarounds
[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
426 .match_type
= ate_match_dt
,
427 .id
= "fsl,erratum-a008585",
428 .desc
= "Freescale erratum a005858",
429 .read_cntp_tval_el0
= fsl_a008585_read_cntp_tval_el0
,
430 .read_cntv_tval_el0
= fsl_a008585_read_cntv_tval_el0
,
431 .read_cntpct_el0
= fsl_a008585_read_cntpct_el0
,
432 .read_cntvct_el0
= fsl_a008585_read_cntvct_el0
,
433 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
434 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
439 .match_type
= ate_match_dt
,
440 .id
= "hisilicon,erratum-161010101",
441 .desc
= "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
443 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
444 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
445 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
446 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
447 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
450 .match_type
= ate_match_acpi_oem_info
,
451 .id
= hisi_161010101_oem_info
,
452 .desc
= "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
454 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
455 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
456 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
457 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
458 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
461 #ifdef CONFIG_ARM64_ERRATUM_858921
463 .match_type
= ate_match_local_cap_id
,
464 .id
= (void *)ARM64_WORKAROUND_858921
,
465 .desc
= "ARM erratum 858921",
466 .read_cntpct_el0
= arm64_858921_read_cntpct_el0
,
467 .read_cntvct_el0
= arm64_858921_read_cntvct_el0
,
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
472 .match_type
= ate_match_dt
,
473 .id
= "allwinner,erratum-unknown1",
474 .desc
= "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0
= sun50i_a64_read_cntp_tval_el0
,
476 .read_cntv_tval_el0
= sun50i_a64_read_cntv_tval_el0
,
477 .read_cntpct_el0
= sun50i_a64_read_cntpct_el0
,
478 .read_cntvct_el0
= sun50i_a64_read_cntvct_el0
,
479 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
480 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
485 .match_type
= ate_match_local_cap_id
,
486 .id
= (void *)ARM64_WORKAROUND_1418040
,
487 .desc
= "ARM erratum 1418040",
488 .disable_compat_vdso
= true,
493 typedef bool (*ate_match_fn_t
)(const struct arch_timer_erratum_workaround
*,
497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround
*wa
,
500 const struct device_node
*np
= arg
;
502 return of_property_read_bool(np
, wa
->id
);
506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround
*wa
,
509 return this_cpu_has_cap((uintptr_t)wa
->id
);
514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround
*wa
,
517 static const struct ate_acpi_oem_info empty_oem_info
= {};
518 const struct ate_acpi_oem_info
*info
= wa
->id
;
519 const struct acpi_table_header
*table
= arg
;
521 /* Iterate over the ACPI OEM info array, looking for a match */
522 while (memcmp(info
, &empty_oem_info
, sizeof(*info
))) {
523 if (!memcmp(info
->oem_id
, table
->oem_id
, ACPI_OEM_ID_SIZE
) &&
524 !memcmp(info
->oem_table_id
, table
->oem_table_id
, ACPI_OEM_TABLE_ID_SIZE
) &&
525 info
->oem_revision
== table
->oem_revision
)
534 static const struct arch_timer_erratum_workaround
*
535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type
,
536 ate_match_fn_t match_fn
,
541 for (i
= 0; i
< ARRAY_SIZE(ool_workarounds
); i
++) {
542 if (ool_workarounds
[i
].match_type
!= type
)
545 if (match_fn(&ool_workarounds
[i
], arg
))
546 return &ool_workarounds
[i
];
553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround
*wa
,
559 __this_cpu_write(timer_unstable_counter_workaround
, wa
);
561 for_each_possible_cpu(i
)
562 per_cpu(timer_unstable_counter_workaround
, i
) = wa
;
565 if (wa
->read_cntvct_el0
|| wa
->read_cntpct_el0
)
566 atomic_set(&timer_unstable_counter_workaround_in_use
, 1);
569 * Don't use the vdso fastpath if errata require using the
570 * out-of-line counter accessor. We may change our mind pretty
571 * late in the game (with a per-CPU erratum, for example), so
572 * change both the default value and the vdso itself.
574 if (wa
->read_cntvct_el0
) {
575 clocksource_counter
.vdso_clock_mode
= VDSO_CLOCKMODE_NONE
;
576 vdso_default
= VDSO_CLOCKMODE_NONE
;
577 } else if (wa
->disable_compat_vdso
&& vdso_default
!= VDSO_CLOCKMODE_NONE
) {
578 vdso_default
= VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT
;
579 clocksource_counter
.vdso_clock_mode
= vdso_default
;
583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type
,
586 const struct arch_timer_erratum_workaround
*wa
, *__wa
;
587 ate_match_fn_t match_fn
= NULL
;
592 match_fn
= arch_timer_check_dt_erratum
;
594 case ate_match_local_cap_id
:
595 match_fn
= arch_timer_check_local_cap_erratum
;
598 case ate_match_acpi_oem_info
:
599 match_fn
= arch_timer_check_acpi_oem_erratum
;
606 wa
= arch_timer_iterate_errata(type
, match_fn
, arg
);
610 __wa
= __this_cpu_read(timer_unstable_counter_workaround
);
611 if (__wa
&& wa
!= __wa
)
612 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613 wa
->desc
, __wa
->desc
);
618 arch_timer_enable_workaround(wa
, local
);
619 pr_info("Enabling %s workaround for %s\n",
620 local
? "local" : "global", wa
->desc
);
623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
625 return has_erratum_handler(read_cntvct_el0
);
628 static bool arch_timer_counter_has_wa(void)
630 return atomic_read(&timer_unstable_counter_workaround_in_use
);
633 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
635 #define arch_timer_counter_has_wa() ({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
638 static __always_inline irqreturn_t
timer_handler(const int access
,
639 struct clock_event_device
*evt
)
643 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
644 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
645 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
646 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
647 evt
->event_handler(evt
);
654 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
656 struct clock_event_device
*evt
= dev_id
;
658 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
661 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
663 struct clock_event_device
*evt
= dev_id
;
665 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
668 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
670 struct clock_event_device
*evt
= dev_id
;
672 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
675 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
677 struct clock_event_device
*evt
= dev_id
;
679 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
682 static __always_inline
int timer_shutdown(const int access
,
683 struct clock_event_device
*clk
)
687 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
688 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
689 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
694 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
696 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
699 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
701 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
704 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
706 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
709 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
711 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
714 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
715 struct clock_event_device
*clk
)
718 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
719 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
720 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
721 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
722 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
725 static int arch_timer_set_next_event_virt(unsigned long evt
,
726 struct clock_event_device
*clk
)
728 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
732 static int arch_timer_set_next_event_phys(unsigned long evt
,
733 struct clock_event_device
*clk
)
735 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
739 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
740 struct clock_event_device
*clk
)
742 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
746 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
747 struct clock_event_device
*clk
)
749 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
753 static void __arch_timer_setup(unsigned type
,
754 struct clock_event_device
*clk
)
756 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
758 if (type
== ARCH_TIMER_TYPE_CP15
) {
759 typeof(clk
->set_next_event
) sne
;
761 arch_timer_check_ool_workaround(ate_match_local_cap_id
, NULL
);
763 if (arch_timer_c3stop
)
764 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
765 clk
->name
= "arch_sys_timer";
767 clk
->cpumask
= cpumask_of(smp_processor_id());
768 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
769 switch (arch_timer_uses_ppi
) {
770 case ARCH_TIMER_VIRT_PPI
:
771 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
772 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
773 sne
= erratum_handler(set_next_event_virt
);
775 case ARCH_TIMER_PHYS_SECURE_PPI
:
776 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
777 case ARCH_TIMER_HYP_PPI
:
778 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
779 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
780 sne
= erratum_handler(set_next_event_phys
);
786 clk
->set_next_event
= sne
;
788 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
789 clk
->name
= "arch_mem_timer";
791 clk
->cpumask
= cpu_possible_mask
;
792 if (arch_timer_mem_use_virtual
) {
793 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
794 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
795 clk
->set_next_event
=
796 arch_timer_set_next_event_virt_mem
;
798 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
799 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
800 clk
->set_next_event
=
801 arch_timer_set_next_event_phys_mem
;
805 clk
->set_state_shutdown(clk
);
807 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
810 static void arch_timer_evtstrm_enable(int divider
)
812 u32 cntkctl
= arch_timer_get_cntkctl();
814 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
815 /* Set the divider and enable virtual event stream */
816 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
817 | ARCH_TIMER_VIRT_EVT_EN
;
818 arch_timer_set_cntkctl(cntkctl
);
819 arch_timer_set_evtstrm_feature();
820 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
823 static void arch_timer_configure_evtstream(void)
825 int evt_stream_div
, lsb
;
828 * As the event stream can at most be generated at half the frequency
829 * of the counter, use half the frequency when computing the divider.
831 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
/ 2;
834 * Find the closest power of two to the divisor. If the adjacent bit
835 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
837 lsb
= fls(evt_stream_div
) - 1;
838 if (lsb
> 0 && (evt_stream_div
& BIT(lsb
- 1)))
841 /* enable event stream */
842 arch_timer_evtstrm_enable(max(0, min(lsb
, 15)));
845 static void arch_counter_set_user_access(void)
847 u32 cntkctl
= arch_timer_get_cntkctl();
849 /* Disable user access to the timers and both counters */
850 /* Also disable virtual event stream */
851 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
852 | ARCH_TIMER_USR_VT_ACCESS_EN
853 | ARCH_TIMER_USR_VCT_ACCESS_EN
854 | ARCH_TIMER_VIRT_EVT_EN
855 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
858 * Enable user access to the virtual counter if it doesn't
859 * need to be workaround. The vdso may have been already
862 if (arch_timer_this_cpu_has_cntvct_wa())
863 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
865 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
867 arch_timer_set_cntkctl(cntkctl
);
870 static bool arch_timer_has_nonsecure_ppi(void)
872 return (arch_timer_uses_ppi
== ARCH_TIMER_PHYS_SECURE_PPI
&&
873 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
876 static u32
check_ppi_trigger(int irq
)
878 u32 flags
= irq_get_trigger_type(irq
);
880 if (flags
!= IRQF_TRIGGER_HIGH
&& flags
!= IRQF_TRIGGER_LOW
) {
881 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq
);
882 pr_warn("WARNING: Please fix your firmware\n");
883 flags
= IRQF_TRIGGER_LOW
;
889 static int arch_timer_starting_cpu(unsigned int cpu
)
891 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
894 __arch_timer_setup(ARCH_TIMER_TYPE_CP15
, clk
);
896 flags
= check_ppi_trigger(arch_timer_ppi
[arch_timer_uses_ppi
]);
897 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], flags
);
899 if (arch_timer_has_nonsecure_ppi()) {
900 flags
= check_ppi_trigger(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
901 enable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
905 arch_counter_set_user_access();
907 arch_timer_configure_evtstream();
912 static int validate_timer_rate(void)
914 if (!arch_timer_rate
)
917 /* Arch timer frequency < 1MHz can cause trouble */
918 WARN_ON(arch_timer_rate
< 1000000);
924 * For historical reasons, when probing with DT we use whichever (non-zero)
925 * rate was probed first, and don't verify that others match. If the first node
926 * probed has a clock-frequency property, this overrides the HW register.
928 static void arch_timer_of_configure_rate(u32 rate
, struct device_node
*np
)
930 /* Who has more than one independent system counter? */
934 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
))
935 arch_timer_rate
= rate
;
937 /* Check the timer frequency. */
938 if (validate_timer_rate())
939 pr_warn("frequency not available\n");
942 static void arch_timer_banner(unsigned type
)
944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 type
& ARCH_TIMER_TYPE_CP15
? "cp15" : "",
946 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ?
948 type
& ARCH_TIMER_TYPE_MEM
? "mmio" : "",
949 (unsigned long)arch_timer_rate
/ 1000000,
950 (unsigned long)(arch_timer_rate
/ 10000) % 100,
951 type
& ARCH_TIMER_TYPE_CP15
?
952 (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) ? "virt" : "phys" :
954 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ? "/" : "",
955 type
& ARCH_TIMER_TYPE_MEM
?
956 arch_timer_mem_use_virtual
? "virt" : "phys" :
960 u32
arch_timer_get_rate(void)
962 return arch_timer_rate
;
965 bool arch_timer_evtstrm_available(void)
968 * We might get called from a preemptible context. This is fine
969 * because availability of the event stream should be always the same
970 * for a preemptible context and context where we might resume a task.
972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available
);
975 static u64
arch_counter_get_cntvct_mem(void)
977 u32 vct_lo
, vct_hi
, tmp_hi
;
980 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
981 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
982 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
983 } while (vct_hi
!= tmp_hi
);
985 return ((u64
) vct_hi
<< 32) | vct_lo
;
988 static struct arch_timer_kvm_info arch_timer_kvm_info
;
990 struct arch_timer_kvm_info
*arch_timer_get_kvm_info(void)
992 return &arch_timer_kvm_info
;
995 static void __init
arch_counter_register(unsigned type
)
999 /* Register the CP15 based counter if we have one */
1000 if (type
& ARCH_TIMER_TYPE_CP15
) {
1003 if ((IS_ENABLED(CONFIG_ARM64
) && !is_hyp_mode_available()) ||
1004 arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) {
1005 if (arch_timer_counter_has_wa())
1006 rd
= arch_counter_get_cntvct_stable
;
1008 rd
= arch_counter_get_cntvct
;
1010 if (arch_timer_counter_has_wa())
1011 rd
= arch_counter_get_cntpct_stable
;
1013 rd
= arch_counter_get_cntpct
;
1016 arch_timer_read_counter
= rd
;
1017 clocksource_counter
.vdso_clock_mode
= vdso_default
;
1019 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
1022 if (!arch_counter_suspend_stop
)
1023 clocksource_counter
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1024 start_count
= arch_timer_read_counter();
1025 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
1026 cyclecounter
.mult
= clocksource_counter
.mult
;
1027 cyclecounter
.shift
= clocksource_counter
.shift
;
1028 timecounter_init(&arch_timer_kvm_info
.timecounter
,
1029 &cyclecounter
, start_count
);
1031 /* 56 bits minimum, so we assume worst case rollover */
1032 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
1035 static void arch_timer_stop(struct clock_event_device
*clk
)
1037 pr_debug("disable IRQ%d cpu #%d\n", clk
->irq
, smp_processor_id());
1039 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
1040 if (arch_timer_has_nonsecure_ppi())
1041 disable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1043 clk
->set_state_shutdown(clk
);
1046 static int arch_timer_dying_cpu(unsigned int cpu
)
1048 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
1050 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1052 arch_timer_stop(clk
);
1056 #ifdef CONFIG_CPU_PM
1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl
);
1058 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
1059 unsigned long action
, void *hcpu
)
1061 if (action
== CPU_PM_ENTER
) {
1062 __this_cpu_write(saved_cntkctl
, arch_timer_get_cntkctl());
1064 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1065 } else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
) {
1066 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl
));
1068 if (arch_timer_have_evtstrm_feature())
1069 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
1074 static struct notifier_block arch_timer_cpu_pm_notifier
= {
1075 .notifier_call
= arch_timer_cpu_pm_notify
,
1078 static int __init
arch_timer_cpu_pm_init(void)
1080 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
1083 static void __init
arch_timer_cpu_pm_deinit(void)
1085 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier
));
1089 static int __init
arch_timer_cpu_pm_init(void)
1094 static void __init
arch_timer_cpu_pm_deinit(void)
1099 static int __init
arch_timer_register(void)
1104 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
1105 if (!arch_timer_evt
) {
1110 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
1111 switch (arch_timer_uses_ppi
) {
1112 case ARCH_TIMER_VIRT_PPI
:
1113 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
1114 "arch_timer", arch_timer_evt
);
1116 case ARCH_TIMER_PHYS_SECURE_PPI
:
1117 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
1118 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1119 "arch_timer", arch_timer_evt
);
1120 if (!err
&& arch_timer_has_nonsecure_ppi()) {
1121 ppi
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1122 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1123 "arch_timer", arch_timer_evt
);
1125 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_SECURE_PPI
],
1129 case ARCH_TIMER_HYP_PPI
:
1130 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1131 "arch_timer", arch_timer_evt
);
1138 pr_err("can't register interrupt %d (%d)\n", ppi
, err
);
1142 err
= arch_timer_cpu_pm_init();
1144 goto out_unreg_notify
;
1146 /* Register and immediately configure the timer on the boot CPU */
1147 err
= cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING
,
1148 "clockevents/arm/arch_timer:starting",
1149 arch_timer_starting_cpu
, arch_timer_dying_cpu
);
1151 goto out_unreg_cpupm
;
1155 arch_timer_cpu_pm_deinit();
1158 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
1159 if (arch_timer_has_nonsecure_ppi())
1160 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1164 free_percpu(arch_timer_evt
);
1169 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
1173 struct arch_timer
*t
;
1175 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
1181 __arch_timer_setup(ARCH_TIMER_TYPE_MEM
, &t
->evt
);
1183 if (arch_timer_mem_use_virtual
)
1184 func
= arch_timer_handler_virt_mem
;
1186 func
= arch_timer_handler_phys_mem
;
1188 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
1190 pr_err("Failed to request mem timer irq\n");
1197 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
1198 { .compatible
= "arm,armv7-timer", },
1199 { .compatible
= "arm,armv8-timer", },
1203 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
1204 { .compatible
= "arm,armv7-timer-mem", },
1208 static bool __init
arch_timer_needs_of_probing(void)
1210 struct device_node
*dn
;
1211 bool needs_probing
= false;
1212 unsigned int mask
= ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
;
1214 /* We have two timers, and both device-tree nodes are probed. */
1215 if ((arch_timers_present
& mask
) == mask
)
1219 * Only one type of timer is probed,
1220 * check if we have another type of timer node in device-tree.
1222 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
)
1223 dn
= of_find_matching_node(NULL
, arch_timer_mem_of_match
);
1225 dn
= of_find_matching_node(NULL
, arch_timer_of_match
);
1227 if (dn
&& of_device_is_available(dn
))
1228 needs_probing
= true;
1232 return needs_probing
;
1235 static int __init
arch_timer_common_init(void)
1237 arch_timer_banner(arch_timers_present
);
1238 arch_counter_register(arch_timers_present
);
1239 return arch_timer_arch_init();
1243 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1245 * If HYP mode is available, we know that the physical timer
1246 * has been configured to be accessible from PL1. Use it, so
1247 * that a guest can use the virtual timer instead.
1249 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250 * accesses to CNTP_*_EL1 registers are silently redirected to
1251 * their CNTHP_*_EL2 counterparts, and use a different PPI
1254 * If no interrupt provided for virtual timer, we'll have to
1255 * stick to the physical timer. It'd better be accessible...
1256 * For arm64 we never use the secure interrupt.
1258 * Return: a suitable PPI type for the current system.
1260 static enum arch_timer_ppi_nr __init
arch_timer_select_ppi(void)
1262 if (is_kernel_in_hyp_mode())
1263 return ARCH_TIMER_HYP_PPI
;
1265 if (!is_hyp_mode_available() && arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
])
1266 return ARCH_TIMER_VIRT_PPI
;
1268 if (IS_ENABLED(CONFIG_ARM64
))
1269 return ARCH_TIMER_PHYS_NONSECURE_PPI
;
1271 return ARCH_TIMER_PHYS_SECURE_PPI
;
1274 static void __init
arch_timer_populate_kvm_info(void)
1276 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1277 if (is_kernel_in_hyp_mode())
1278 arch_timer_kvm_info
.physical_irq
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1281 static int __init
arch_timer_of_init(struct device_node
*np
)
1286 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1287 pr_warn("multiple nodes in dt, skipping\n");
1291 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1292 for (i
= ARCH_TIMER_PHYS_SECURE_PPI
; i
< ARCH_TIMER_MAX_TIMER_PPI
; i
++)
1293 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
1295 arch_timer_populate_kvm_info();
1297 rate
= arch_timer_get_cntfrq();
1298 arch_timer_of_configure_rate(rate
, np
);
1300 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
1302 /* Check for globally applicable workarounds */
1303 arch_timer_check_ool_workaround(ate_match_dt
, np
);
1306 * If we cannot rely on firmware initializing the timer registers then
1307 * we should use the physical timers instead.
1309 if (IS_ENABLED(CONFIG_ARM
) &&
1310 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
1311 arch_timer_uses_ppi
= ARCH_TIMER_PHYS_SECURE_PPI
;
1313 arch_timer_uses_ppi
= arch_timer_select_ppi();
1315 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1316 pr_err("No interrupt available, giving up\n");
1320 /* On some systems, the counter stops ticking when in suspend. */
1321 arch_counter_suspend_stop
= of_property_read_bool(np
,
1322 "arm,no-tick-in-suspend");
1324 ret
= arch_timer_register();
1328 if (arch_timer_needs_of_probing())
1331 return arch_timer_common_init();
1333 TIMER_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
1334 TIMER_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame
*frame
)
1342 base
= ioremap(frame
->cntbase
, frame
->size
);
1344 pr_err("Unable to map frame @ %pa\n", &frame
->cntbase
);
1348 rate
= readl_relaxed(base
+ CNTFRQ
);
1355 static struct arch_timer_mem_frame
* __init
1356 arch_timer_mem_find_best_frame(struct arch_timer_mem
*timer_mem
)
1358 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1359 void __iomem
*cntctlbase
;
1363 cntctlbase
= ioremap(timer_mem
->cntctlbase
, timer_mem
->size
);
1365 pr_err("Can't map CNTCTLBase @ %pa\n",
1366 &timer_mem
->cntctlbase
);
1370 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
1373 * Try to find a virtual capable frame. Otherwise fall back to a
1374 * physical capable frame.
1376 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1377 u32 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
1378 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
1380 frame
= &timer_mem
->frame
[i
];
1384 /* Try enabling everything, and see what sticks */
1385 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(i
));
1386 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(i
));
1388 if ((cnttidr
& CNTTIDR_VIRT(i
)) &&
1389 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
1391 arch_timer_mem_use_virtual
= true;
1395 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
1401 iounmap(cntctlbase
);
1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame
*frame
)
1412 if (arch_timer_mem_use_virtual
)
1413 irq
= frame
->virt_irq
;
1415 irq
= frame
->phys_irq
;
1418 pr_err("Frame missing %s irq.\n",
1419 arch_timer_mem_use_virtual
? "virt" : "phys");
1423 if (!request_mem_region(frame
->cntbase
, frame
->size
,
1427 base
= ioremap(frame
->cntbase
, frame
->size
);
1429 pr_err("Can't map frame's registers\n");
1433 ret
= arch_timer_mem_register(base
, irq
);
1439 arch_counter_base
= base
;
1440 arch_timers_present
|= ARCH_TIMER_TYPE_MEM
;
1445 static int __init
arch_timer_mem_of_init(struct device_node
*np
)
1447 struct arch_timer_mem
*timer_mem
;
1448 struct arch_timer_mem_frame
*frame
;
1449 struct device_node
*frame_node
;
1450 struct resource res
;
1454 timer_mem
= kzalloc(sizeof(*timer_mem
), GFP_KERNEL
);
1458 if (of_address_to_resource(np
, 0, &res
))
1460 timer_mem
->cntctlbase
= res
.start
;
1461 timer_mem
->size
= resource_size(&res
);
1463 for_each_available_child_of_node(np
, frame_node
) {
1465 struct arch_timer_mem_frame
*frame
;
1467 if (of_property_read_u32(frame_node
, "frame-number", &n
)) {
1468 pr_err(FW_BUG
"Missing frame-number.\n");
1469 of_node_put(frame_node
);
1472 if (n
>= ARCH_TIMER_MEM_MAX_FRAMES
) {
1473 pr_err(FW_BUG
"Wrong frame-number, only 0-%u are permitted.\n",
1474 ARCH_TIMER_MEM_MAX_FRAMES
- 1);
1475 of_node_put(frame_node
);
1478 frame
= &timer_mem
->frame
[n
];
1481 pr_err(FW_BUG
"Duplicated frame-number.\n");
1482 of_node_put(frame_node
);
1486 if (of_address_to_resource(frame_node
, 0, &res
)) {
1487 of_node_put(frame_node
);
1490 frame
->cntbase
= res
.start
;
1491 frame
->size
= resource_size(&res
);
1493 frame
->virt_irq
= irq_of_parse_and_map(frame_node
,
1494 ARCH_TIMER_VIRT_SPI
);
1495 frame
->phys_irq
= irq_of_parse_and_map(frame_node
,
1496 ARCH_TIMER_PHYS_SPI
);
1498 frame
->valid
= true;
1501 frame
= arch_timer_mem_find_best_frame(timer_mem
);
1503 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504 &timer_mem
->cntctlbase
);
1509 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1510 arch_timer_of_configure_rate(rate
, np
);
1512 ret
= arch_timer_mem_frame_register(frame
);
1513 if (!ret
&& !arch_timer_needs_of_probing())
1514 ret
= arch_timer_common_init();
1519 TIMER_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
1520 arch_timer_mem_of_init
);
1522 #ifdef CONFIG_ACPI_GTDT
1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem
*timer_mem
)
1526 struct arch_timer_mem_frame
*frame
;
1530 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1531 frame
= &timer_mem
->frame
[i
];
1536 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1537 if (rate
== arch_timer_rate
)
1540 pr_err(FW_BUG
"CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1542 (unsigned long)rate
, (unsigned long)arch_timer_rate
);
1550 static int __init
arch_timer_mem_acpi_init(int platform_timer_count
)
1552 struct arch_timer_mem
*timers
, *timer
;
1553 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1554 int timer_count
, i
, ret
= 0;
1556 timers
= kcalloc(platform_timer_count
, sizeof(*timers
),
1561 ret
= acpi_arch_timer_mem_init(timers
, &timer_count
);
1562 if (ret
|| !timer_count
)
1566 * While unlikely, it's theoretically possible that none of the frames
1567 * in a timer expose the combination of feature we want.
1569 for (i
= 0; i
< timer_count
; i
++) {
1572 frame
= arch_timer_mem_find_best_frame(timer
);
1576 ret
= arch_timer_mem_verify_cntfrq(timer
);
1578 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1582 if (!best_frame
) /* implies !frame */
1584 * Only complain about missing suitable frames if we
1585 * haven't already found one in a previous iteration.
1587 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588 &timer
->cntctlbase
);
1592 ret
= arch_timer_mem_frame_register(best_frame
);
1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1599 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
1601 int ret
, platform_timer_count
;
1603 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1604 pr_warn("already initialized, skipping\n");
1608 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1610 ret
= acpi_gtdt_init(table
, &platform_timer_count
);
1614 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
] =
1615 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI
);
1617 arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
] =
1618 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI
);
1620 arch_timer_ppi
[ARCH_TIMER_HYP_PPI
] =
1621 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI
);
1623 arch_timer_populate_kvm_info();
1626 * When probing via ACPI, we have no mechanism to override the sysreg
1627 * CNTFRQ value. This *must* be correct.
1629 arch_timer_rate
= arch_timer_get_cntfrq();
1630 ret
= validate_timer_rate();
1632 pr_err(FW_BUG
"frequency not available.\n");
1636 arch_timer_uses_ppi
= arch_timer_select_ppi();
1637 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1638 pr_err("No interrupt available, giving up\n");
1642 /* Always-on capability */
1643 arch_timer_c3stop
= acpi_gtdt_c3stop(arch_timer_uses_ppi
);
1645 /* Check for globally applicable workarounds */
1646 arch_timer_check_ool_workaround(ate_match_acpi_oem_info
, table
);
1648 ret
= arch_timer_register();
1652 if (platform_timer_count
&&
1653 arch_timer_mem_acpi_init(platform_timer_count
))
1654 pr_err("Failed to initialize memory-mapped timer.\n");
1656 return arch_timer_common_init();
1658 TIMER_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);