Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blobd0177824c518b88daa749d2f8d3d4b9ac183b8d0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
31 #include <clocksource/arm_arch_timer.h>
33 #define CNTTIDR 0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
46 #define CNTFRQ 0x10
47 #define CNTP_TVAL 0x28
48 #define CNTP_CTL 0x2c
49 #define CNTV_TVAL 0x38
50 #define CNTV_CTL 0x3c
52 static unsigned arch_timers_present __initdata;
54 static void __iomem *arch_counter_base;
56 struct arch_timer {
57 void __iomem *base;
58 struct clock_event_device evt;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
66 static struct clock_event_device __percpu *arch_timer_evt;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81 static int __init early_evtstrm_cfg(char *buf)
83 return strtobool(buf, &evtstrm_enable);
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88 * Architected system timer support.
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 struct clock_event_device *clk)
95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 struct arch_timer *timer = to_arch_timer(clk);
97 switch (reg) {
98 case ARCH_TIMER_REG_CTRL:
99 writel_relaxed(val, timer->base + CNTP_CTL);
100 break;
101 case ARCH_TIMER_REG_TVAL:
102 writel_relaxed(val, timer->base + CNTP_TVAL);
103 break;
105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 struct arch_timer *timer = to_arch_timer(clk);
107 switch (reg) {
108 case ARCH_TIMER_REG_CTRL:
109 writel_relaxed(val, timer->base + CNTV_CTL);
110 break;
111 case ARCH_TIMER_REG_TVAL:
112 writel_relaxed(val, timer->base + CNTV_TVAL);
113 break;
115 } else {
116 arch_timer_reg_write_cp15(access, reg, val);
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 struct clock_event_device *clk)
124 u32 val;
126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 struct arch_timer *timer = to_arch_timer(clk);
128 switch (reg) {
129 case ARCH_TIMER_REG_CTRL:
130 val = readl_relaxed(timer->base + CNTP_CTL);
131 break;
132 case ARCH_TIMER_REG_TVAL:
133 val = readl_relaxed(timer->base + CNTP_TVAL);
134 break;
136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 struct arch_timer *timer = to_arch_timer(clk);
138 switch (reg) {
139 case ARCH_TIMER_REG_CTRL:
140 val = readl_relaxed(timer->base + CNTV_CTL);
141 break;
142 case ARCH_TIMER_REG_TVAL:
143 val = readl_relaxed(timer->base + CNTV_TVAL);
144 break;
146 } else {
147 val = arch_timer_reg_read_cp15(access, reg);
150 return val;
153 static notrace u64 arch_counter_get_cntpct_stable(void)
155 return __arch_counter_get_cntpct_stable();
158 static notrace u64 arch_counter_get_cntpct(void)
160 return __arch_counter_get_cntpct();
163 static notrace u64 arch_counter_get_cntvct_stable(void)
165 return __arch_counter_get_cntvct_stable();
168 static notrace u64 arch_counter_get_cntvct(void)
170 return __arch_counter_get_cntvct();
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
182 static u64 arch_counter_read(struct clocksource *cs)
184 return arch_timer_read_counter();
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
189 return arch_timer_read_counter();
192 static struct clocksource clocksource_counter = {
193 .name = "arch_sys_counter",
194 .rating = 400,
195 .read = arch_counter_read,
196 .mask = CLOCKSOURCE_MASK(56),
197 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
200 static struct cyclecounter cyclecounter __ro_after_init = {
201 .read = arch_counter_read_cc,
202 .mask = CLOCKSOURCE_MASK(56),
205 struct ate_acpi_oem_info {
206 char oem_id[ACPI_OEM_ID_SIZE + 1];
207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208 u32 oem_revision;
211 #ifdef CONFIG_FSL_ERRATUM_A008585
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
216 #define __fsl_a008585_read_reg(reg) ({ \
217 u64 _old, _new; \
218 int _retries = 200; \
220 do { \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
223 _retries--; \
224 } while (unlikely(_old != _new) && _retries); \
226 WARN_ON_ONCE(!_retries); \
227 _new; \
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
232 return __fsl_a008585_read_reg(cntp_tval_el0);
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
237 return __fsl_a008585_read_reg(cntv_tval_el0);
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
242 return __fsl_a008585_read_reg(cntpct_el0);
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
247 return __fsl_a008585_read_reg(cntvct_el0);
249 #endif
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
260 * observed to take.
262 #define __hisi_161010101_read_reg(reg) ({ \
263 u64 _old, _new; \
264 int _retries = 50; \
266 do { \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
269 _retries--; \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
272 WARN_ON_ONCE(!_retries); \
273 _new; \
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
278 return __hisi_161010101_read_reg(cntp_tval_el0);
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
283 return __hisi_161010101_read_reg(cntv_tval_el0);
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
288 return __hisi_161010101_read_reg(cntpct_el0);
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
293 return __hisi_161010101_read_reg(cntvct_el0);
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
302 .oem_id = "HISI ",
303 .oem_table_id = "HIP05 ",
304 .oem_revision = 0,
307 .oem_id = "HISI ",
308 .oem_table_id = "HIP06 ",
309 .oem_revision = 0,
312 .oem_id = "HISI ",
313 .oem_table_id = "HIP07 ",
314 .oem_revision = 0,
316 { /* Sentinel indicating the end of the OEM array */ },
318 #endif
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
323 u64 old, new;
325 old = read_sysreg(cntpct_el0);
326 new = read_sysreg(cntpct_el0);
327 return (((old ^ new) >> 32) & 1) ? old : new;
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
332 u64 old, new;
334 old = read_sysreg(cntvct_el0);
335 new = read_sysreg(cntvct_el0);
336 return (((old ^ new) >> 32) & 1) ? old : new;
338 #endif
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
348 #define __sun50i_a64_read_reg(reg) ({ \
349 u64 _val; \
350 int _retries = 150; \
352 do { \
353 _val = read_sysreg(reg); \
354 _retries--; \
355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
357 WARN_ON_ONCE(!_retries); \
358 _val; \
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
363 return __sun50i_a64_read_reg(cntpct_el0);
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
368 return __sun50i_a64_read_reg(cntvct_el0);
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
380 #endif
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 struct clock_event_device *clk)
391 unsigned long ctrl;
392 u64 cval;
394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
398 if (access == ARCH_TIMER_PHYS_ACCESS) {
399 cval = evt + arch_counter_get_cntpct_stable();
400 write_sysreg(cval, cntp_cval_el0);
401 } else {
402 cval = evt + arch_counter_get_cntvct_stable();
403 write_sysreg(cval, cntv_cval_el0);
406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 struct clock_event_device *clk)
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413 return 0;
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 struct clock_event_device *clk)
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420 return 0;
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
426 .match_type = ate_match_dt,
427 .id = "fsl,erratum-a008585",
428 .desc = "Freescale erratum a005858",
429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 .set_next_event_phys = erratum_set_next_event_tval_phys,
434 .set_next_event_virt = erratum_set_next_event_tval_virt,
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
439 .match_type = ate_match_dt,
440 .id = "hisilicon,erratum-161010101",
441 .desc = "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 .set_next_event_phys = erratum_set_next_event_tval_phys,
447 .set_next_event_virt = erratum_set_next_event_tval_virt,
450 .match_type = ate_match_acpi_oem_info,
451 .id = hisi_161010101_oem_info,
452 .desc = "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 .set_next_event_phys = erratum_set_next_event_tval_phys,
458 .set_next_event_virt = erratum_set_next_event_tval_virt,
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
463 .match_type = ate_match_local_cap_id,
464 .id = (void *)ARM64_WORKAROUND_858921,
465 .desc = "ARM erratum 858921",
466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
472 .match_type = ate_match_dt,
473 .id = "allwinner,erratum-unknown1",
474 .desc = "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 .set_next_event_phys = erratum_set_next_event_tval_phys,
480 .set_next_event_virt = erratum_set_next_event_tval_virt,
482 #endif
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
485 .match_type = ate_match_local_cap_id,
486 .id = (void *)ARM64_WORKAROUND_1418040,
487 .desc = "ARM erratum 1418040",
488 .disable_compat_vdso = true,
490 #endif
493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494 const void *);
496 static
497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498 const void *arg)
500 const struct device_node *np = arg;
502 return of_property_read_bool(np, wa->id);
505 static
506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507 const void *arg)
509 return this_cpu_has_cap((uintptr_t)wa->id);
513 static
514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515 const void *arg)
517 static const struct ate_acpi_oem_info empty_oem_info = {};
518 const struct ate_acpi_oem_info *info = wa->id;
519 const struct acpi_table_header *table = arg;
521 /* Iterate over the ACPI OEM info array, looking for a match */
522 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525 info->oem_revision == table->oem_revision)
526 return true;
528 info++;
531 return false;
534 static const struct arch_timer_erratum_workaround *
535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536 ate_match_fn_t match_fn,
537 void *arg)
539 int i;
541 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542 if (ool_workarounds[i].match_type != type)
543 continue;
545 if (match_fn(&ool_workarounds[i], arg))
546 return &ool_workarounds[i];
549 return NULL;
552 static
553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554 bool local)
556 int i;
558 if (local) {
559 __this_cpu_write(timer_unstable_counter_workaround, wa);
560 } else {
561 for_each_possible_cpu(i)
562 per_cpu(timer_unstable_counter_workaround, i) = wa;
565 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
569 * Don't use the vdso fastpath if errata require using the
570 * out-of-line counter accessor. We may change our mind pretty
571 * late in the game (with a per-CPU erratum, for example), so
572 * change both the default value and the vdso itself.
574 if (wa->read_cntvct_el0) {
575 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576 vdso_default = VDSO_CLOCKMODE_NONE;
577 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579 clocksource_counter.vdso_clock_mode = vdso_default;
583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584 void *arg)
586 const struct arch_timer_erratum_workaround *wa, *__wa;
587 ate_match_fn_t match_fn = NULL;
588 bool local = false;
590 switch (type) {
591 case ate_match_dt:
592 match_fn = arch_timer_check_dt_erratum;
593 break;
594 case ate_match_local_cap_id:
595 match_fn = arch_timer_check_local_cap_erratum;
596 local = true;
597 break;
598 case ate_match_acpi_oem_info:
599 match_fn = arch_timer_check_acpi_oem_erratum;
600 break;
601 default:
602 WARN_ON(1);
603 return;
606 wa = arch_timer_iterate_errata(type, match_fn, arg);
607 if (!wa)
608 return;
610 __wa = __this_cpu_read(timer_unstable_counter_workaround);
611 if (__wa && wa != __wa)
612 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613 wa->desc, __wa->desc);
615 if (__wa)
616 return;
618 arch_timer_enable_workaround(wa, local);
619 pr_info("Enabling %s workaround for %s\n",
620 local ? "local" : "global", wa->desc);
623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
625 return has_erratum_handler(read_cntvct_el0);
628 static bool arch_timer_counter_has_wa(void)
630 return atomic_read(&timer_unstable_counter_workaround_in_use);
632 #else
633 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
635 #define arch_timer_counter_has_wa() ({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
638 static __always_inline irqreturn_t timer_handler(const int access,
639 struct clock_event_device *evt)
641 unsigned long ctrl;
643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647 evt->event_handler(evt);
648 return IRQ_HANDLED;
651 return IRQ_NONE;
654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
656 struct clock_event_device *evt = dev_id;
658 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
663 struct clock_event_device *evt = dev_id;
665 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
670 struct clock_event_device *evt = dev_id;
672 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
677 struct clock_event_device *evt = dev_id;
679 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
682 static __always_inline int timer_shutdown(const int access,
683 struct clock_event_device *clk)
685 unsigned long ctrl;
687 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
691 return 0;
694 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
696 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
699 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
701 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
706 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
711 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
714 static __always_inline void set_next_event(const int access, unsigned long evt,
715 struct clock_event_device *clk)
717 unsigned long ctrl;
718 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719 ctrl |= ARCH_TIMER_CTRL_ENABLE;
720 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
725 static int arch_timer_set_next_event_virt(unsigned long evt,
726 struct clock_event_device *clk)
728 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729 return 0;
732 static int arch_timer_set_next_event_phys(unsigned long evt,
733 struct clock_event_device *clk)
735 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736 return 0;
739 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740 struct clock_event_device *clk)
742 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743 return 0;
746 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747 struct clock_event_device *clk)
749 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750 return 0;
753 static void __arch_timer_setup(unsigned type,
754 struct clock_event_device *clk)
756 clk->features = CLOCK_EVT_FEAT_ONESHOT;
758 if (type == ARCH_TIMER_TYPE_CP15) {
759 typeof(clk->set_next_event) sne;
761 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
763 if (arch_timer_c3stop)
764 clk->features |= CLOCK_EVT_FEAT_C3STOP;
765 clk->name = "arch_sys_timer";
766 clk->rating = 450;
767 clk->cpumask = cpumask_of(smp_processor_id());
768 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769 switch (arch_timer_uses_ppi) {
770 case ARCH_TIMER_VIRT_PPI:
771 clk->set_state_shutdown = arch_timer_shutdown_virt;
772 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773 sne = erratum_handler(set_next_event_virt);
774 break;
775 case ARCH_TIMER_PHYS_SECURE_PPI:
776 case ARCH_TIMER_PHYS_NONSECURE_PPI:
777 case ARCH_TIMER_HYP_PPI:
778 clk->set_state_shutdown = arch_timer_shutdown_phys;
779 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780 sne = erratum_handler(set_next_event_phys);
781 break;
782 default:
783 BUG();
786 clk->set_next_event = sne;
787 } else {
788 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789 clk->name = "arch_mem_timer";
790 clk->rating = 400;
791 clk->cpumask = cpu_possible_mask;
792 if (arch_timer_mem_use_virtual) {
793 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795 clk->set_next_event =
796 arch_timer_set_next_event_virt_mem;
797 } else {
798 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800 clk->set_next_event =
801 arch_timer_set_next_event_phys_mem;
805 clk->set_state_shutdown(clk);
807 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
810 static void arch_timer_evtstrm_enable(int divider)
812 u32 cntkctl = arch_timer_get_cntkctl();
814 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815 /* Set the divider and enable virtual event stream */
816 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817 | ARCH_TIMER_VIRT_EVT_EN;
818 arch_timer_set_cntkctl(cntkctl);
819 arch_timer_set_evtstrm_feature();
820 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
823 static void arch_timer_configure_evtstream(void)
825 int evt_stream_div, lsb;
828 * As the event stream can at most be generated at half the frequency
829 * of the counter, use half the frequency when computing the divider.
831 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
834 * Find the closest power of two to the divisor. If the adjacent bit
835 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
837 lsb = fls(evt_stream_div) - 1;
838 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
839 lsb++;
841 /* enable event stream */
842 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
845 static void arch_counter_set_user_access(void)
847 u32 cntkctl = arch_timer_get_cntkctl();
849 /* Disable user access to the timers and both counters */
850 /* Also disable virtual event stream */
851 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
852 | ARCH_TIMER_USR_VT_ACCESS_EN
853 | ARCH_TIMER_USR_VCT_ACCESS_EN
854 | ARCH_TIMER_VIRT_EVT_EN
855 | ARCH_TIMER_USR_PCT_ACCESS_EN);
858 * Enable user access to the virtual counter if it doesn't
859 * need to be workaround. The vdso may have been already
860 * disabled though.
862 if (arch_timer_this_cpu_has_cntvct_wa())
863 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
864 else
865 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
867 arch_timer_set_cntkctl(cntkctl);
870 static bool arch_timer_has_nonsecure_ppi(void)
872 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
873 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
876 static u32 check_ppi_trigger(int irq)
878 u32 flags = irq_get_trigger_type(irq);
880 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
881 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
882 pr_warn("WARNING: Please fix your firmware\n");
883 flags = IRQF_TRIGGER_LOW;
886 return flags;
889 static int arch_timer_starting_cpu(unsigned int cpu)
891 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
892 u32 flags;
894 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
896 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
897 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
899 if (arch_timer_has_nonsecure_ppi()) {
900 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
901 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
902 flags);
905 arch_counter_set_user_access();
906 if (evtstrm_enable)
907 arch_timer_configure_evtstream();
909 return 0;
912 static int validate_timer_rate(void)
914 if (!arch_timer_rate)
915 return -EINVAL;
917 /* Arch timer frequency < 1MHz can cause trouble */
918 WARN_ON(arch_timer_rate < 1000000);
920 return 0;
924 * For historical reasons, when probing with DT we use whichever (non-zero)
925 * rate was probed first, and don't verify that others match. If the first node
926 * probed has a clock-frequency property, this overrides the HW register.
928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
930 /* Who has more than one independent system counter? */
931 if (arch_timer_rate)
932 return;
934 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
935 arch_timer_rate = rate;
937 /* Check the timer frequency. */
938 if (validate_timer_rate())
939 pr_warn("frequency not available\n");
942 static void arch_timer_banner(unsigned type)
944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
946 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
947 " and " : "",
948 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949 (unsigned long)arch_timer_rate / 1000000,
950 (unsigned long)(arch_timer_rate / 10000) % 100,
951 type & ARCH_TIMER_TYPE_CP15 ?
952 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
954 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
955 type & ARCH_TIMER_TYPE_MEM ?
956 arch_timer_mem_use_virtual ? "virt" : "phys" :
957 "");
960 u32 arch_timer_get_rate(void)
962 return arch_timer_rate;
965 bool arch_timer_evtstrm_available(void)
968 * We might get called from a preemptible context. This is fine
969 * because availability of the event stream should be always the same
970 * for a preemptible context and context where we might resume a task.
972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
975 static u64 arch_counter_get_cntvct_mem(void)
977 u32 vct_lo, vct_hi, tmp_hi;
979 do {
980 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
981 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
982 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
983 } while (vct_hi != tmp_hi);
985 return ((u64) vct_hi << 32) | vct_lo;
988 static struct arch_timer_kvm_info arch_timer_kvm_info;
990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
992 return &arch_timer_kvm_info;
995 static void __init arch_counter_register(unsigned type)
997 u64 start_count;
999 /* Register the CP15 based counter if we have one */
1000 if (type & ARCH_TIMER_TYPE_CP15) {
1001 u64 (*rd)(void);
1003 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1004 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1005 if (arch_timer_counter_has_wa())
1006 rd = arch_counter_get_cntvct_stable;
1007 else
1008 rd = arch_counter_get_cntvct;
1009 } else {
1010 if (arch_timer_counter_has_wa())
1011 rd = arch_counter_get_cntpct_stable;
1012 else
1013 rd = arch_counter_get_cntpct;
1016 arch_timer_read_counter = rd;
1017 clocksource_counter.vdso_clock_mode = vdso_default;
1018 } else {
1019 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1022 if (!arch_counter_suspend_stop)
1023 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1024 start_count = arch_timer_read_counter();
1025 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1026 cyclecounter.mult = clocksource_counter.mult;
1027 cyclecounter.shift = clocksource_counter.shift;
1028 timecounter_init(&arch_timer_kvm_info.timecounter,
1029 &cyclecounter, start_count);
1031 /* 56 bits minimum, so we assume worst case rollover */
1032 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1035 static void arch_timer_stop(struct clock_event_device *clk)
1037 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1039 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1040 if (arch_timer_has_nonsecure_ppi())
1041 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1043 clk->set_state_shutdown(clk);
1046 static int arch_timer_dying_cpu(unsigned int cpu)
1048 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1050 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1052 arch_timer_stop(clk);
1053 return 0;
1056 #ifdef CONFIG_CPU_PM
1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1058 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1059 unsigned long action, void *hcpu)
1061 if (action == CPU_PM_ENTER) {
1062 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1064 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1065 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1066 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1068 if (arch_timer_have_evtstrm_feature())
1069 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1071 return NOTIFY_OK;
1074 static struct notifier_block arch_timer_cpu_pm_notifier = {
1075 .notifier_call = arch_timer_cpu_pm_notify,
1078 static int __init arch_timer_cpu_pm_init(void)
1080 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1083 static void __init arch_timer_cpu_pm_deinit(void)
1085 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1088 #else
1089 static int __init arch_timer_cpu_pm_init(void)
1091 return 0;
1094 static void __init arch_timer_cpu_pm_deinit(void)
1097 #endif
1099 static int __init arch_timer_register(void)
1101 int err;
1102 int ppi;
1104 arch_timer_evt = alloc_percpu(struct clock_event_device);
1105 if (!arch_timer_evt) {
1106 err = -ENOMEM;
1107 goto out;
1110 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1111 switch (arch_timer_uses_ppi) {
1112 case ARCH_TIMER_VIRT_PPI:
1113 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1114 "arch_timer", arch_timer_evt);
1115 break;
1116 case ARCH_TIMER_PHYS_SECURE_PPI:
1117 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1118 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1119 "arch_timer", arch_timer_evt);
1120 if (!err && arch_timer_has_nonsecure_ppi()) {
1121 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1122 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1123 "arch_timer", arch_timer_evt);
1124 if (err)
1125 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1126 arch_timer_evt);
1128 break;
1129 case ARCH_TIMER_HYP_PPI:
1130 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 "arch_timer", arch_timer_evt);
1132 break;
1133 default:
1134 BUG();
1137 if (err) {
1138 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1139 goto out_free;
1142 err = arch_timer_cpu_pm_init();
1143 if (err)
1144 goto out_unreg_notify;
1146 /* Register and immediately configure the timer on the boot CPU */
1147 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1148 "clockevents/arm/arch_timer:starting",
1149 arch_timer_starting_cpu, arch_timer_dying_cpu);
1150 if (err)
1151 goto out_unreg_cpupm;
1152 return 0;
1154 out_unreg_cpupm:
1155 arch_timer_cpu_pm_deinit();
1157 out_unreg_notify:
1158 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1159 if (arch_timer_has_nonsecure_ppi())
1160 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1161 arch_timer_evt);
1163 out_free:
1164 free_percpu(arch_timer_evt);
1165 out:
1166 return err;
1169 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1171 int ret;
1172 irq_handler_t func;
1173 struct arch_timer *t;
1175 t = kzalloc(sizeof(*t), GFP_KERNEL);
1176 if (!t)
1177 return -ENOMEM;
1179 t->base = base;
1180 t->evt.irq = irq;
1181 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1183 if (arch_timer_mem_use_virtual)
1184 func = arch_timer_handler_virt_mem;
1185 else
1186 func = arch_timer_handler_phys_mem;
1188 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1189 if (ret) {
1190 pr_err("Failed to request mem timer irq\n");
1191 kfree(t);
1194 return ret;
1197 static const struct of_device_id arch_timer_of_match[] __initconst = {
1198 { .compatible = "arm,armv7-timer", },
1199 { .compatible = "arm,armv8-timer", },
1203 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1204 { .compatible = "arm,armv7-timer-mem", },
1208 static bool __init arch_timer_needs_of_probing(void)
1210 struct device_node *dn;
1211 bool needs_probing = false;
1212 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1214 /* We have two timers, and both device-tree nodes are probed. */
1215 if ((arch_timers_present & mask) == mask)
1216 return false;
1219 * Only one type of timer is probed,
1220 * check if we have another type of timer node in device-tree.
1222 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1223 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1224 else
1225 dn = of_find_matching_node(NULL, arch_timer_of_match);
1227 if (dn && of_device_is_available(dn))
1228 needs_probing = true;
1230 of_node_put(dn);
1232 return needs_probing;
1235 static int __init arch_timer_common_init(void)
1237 arch_timer_banner(arch_timers_present);
1238 arch_counter_register(arch_timers_present);
1239 return arch_timer_arch_init();
1243 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1245 * If HYP mode is available, we know that the physical timer
1246 * has been configured to be accessible from PL1. Use it, so
1247 * that a guest can use the virtual timer instead.
1249 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250 * accesses to CNTP_*_EL1 registers are silently redirected to
1251 * their CNTHP_*_EL2 counterparts, and use a different PPI
1252 * number.
1254 * If no interrupt provided for virtual timer, we'll have to
1255 * stick to the physical timer. It'd better be accessible...
1256 * For arm64 we never use the secure interrupt.
1258 * Return: a suitable PPI type for the current system.
1260 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1262 if (is_kernel_in_hyp_mode())
1263 return ARCH_TIMER_HYP_PPI;
1265 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1266 return ARCH_TIMER_VIRT_PPI;
1268 if (IS_ENABLED(CONFIG_ARM64))
1269 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1271 return ARCH_TIMER_PHYS_SECURE_PPI;
1274 static void __init arch_timer_populate_kvm_info(void)
1276 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1277 if (is_kernel_in_hyp_mode())
1278 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1281 static int __init arch_timer_of_init(struct device_node *np)
1283 int i, ret;
1284 u32 rate;
1286 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1287 pr_warn("multiple nodes in dt, skipping\n");
1288 return 0;
1291 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1292 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1293 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1295 arch_timer_populate_kvm_info();
1297 rate = arch_timer_get_cntfrq();
1298 arch_timer_of_configure_rate(rate, np);
1300 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1302 /* Check for globally applicable workarounds */
1303 arch_timer_check_ool_workaround(ate_match_dt, np);
1306 * If we cannot rely on firmware initializing the timer registers then
1307 * we should use the physical timers instead.
1309 if (IS_ENABLED(CONFIG_ARM) &&
1310 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1311 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1312 else
1313 arch_timer_uses_ppi = arch_timer_select_ppi();
1315 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1316 pr_err("No interrupt available, giving up\n");
1317 return -EINVAL;
1320 /* On some systems, the counter stops ticking when in suspend. */
1321 arch_counter_suspend_stop = of_property_read_bool(np,
1322 "arm,no-tick-in-suspend");
1324 ret = arch_timer_register();
1325 if (ret)
1326 return ret;
1328 if (arch_timer_needs_of_probing())
1329 return 0;
1331 return arch_timer_common_init();
1333 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1334 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1336 static u32 __init
1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1339 void __iomem *base;
1340 u32 rate;
1342 base = ioremap(frame->cntbase, frame->size);
1343 if (!base) {
1344 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1345 return 0;
1348 rate = readl_relaxed(base + CNTFRQ);
1350 iounmap(base);
1352 return rate;
1355 static struct arch_timer_mem_frame * __init
1356 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1358 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1359 void __iomem *cntctlbase;
1360 u32 cnttidr;
1361 int i;
1363 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1364 if (!cntctlbase) {
1365 pr_err("Can't map CNTCTLBase @ %pa\n",
1366 &timer_mem->cntctlbase);
1367 return NULL;
1370 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1373 * Try to find a virtual capable frame. Otherwise fall back to a
1374 * physical capable frame.
1376 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1377 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1378 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1380 frame = &timer_mem->frame[i];
1381 if (!frame->valid)
1382 continue;
1384 /* Try enabling everything, and see what sticks */
1385 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1386 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1388 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1389 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1390 best_frame = frame;
1391 arch_timer_mem_use_virtual = true;
1392 break;
1395 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1396 continue;
1398 best_frame = frame;
1401 iounmap(cntctlbase);
1403 return best_frame;
1406 static int __init
1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1409 void __iomem *base;
1410 int ret, irq = 0;
1412 if (arch_timer_mem_use_virtual)
1413 irq = frame->virt_irq;
1414 else
1415 irq = frame->phys_irq;
1417 if (!irq) {
1418 pr_err("Frame missing %s irq.\n",
1419 arch_timer_mem_use_virtual ? "virt" : "phys");
1420 return -EINVAL;
1423 if (!request_mem_region(frame->cntbase, frame->size,
1424 "arch_mem_timer"))
1425 return -EBUSY;
1427 base = ioremap(frame->cntbase, frame->size);
1428 if (!base) {
1429 pr_err("Can't map frame's registers\n");
1430 return -ENXIO;
1433 ret = arch_timer_mem_register(base, irq);
1434 if (ret) {
1435 iounmap(base);
1436 return ret;
1439 arch_counter_base = base;
1440 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1442 return 0;
1445 static int __init arch_timer_mem_of_init(struct device_node *np)
1447 struct arch_timer_mem *timer_mem;
1448 struct arch_timer_mem_frame *frame;
1449 struct device_node *frame_node;
1450 struct resource res;
1451 int ret = -EINVAL;
1452 u32 rate;
1454 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1455 if (!timer_mem)
1456 return -ENOMEM;
1458 if (of_address_to_resource(np, 0, &res))
1459 goto out;
1460 timer_mem->cntctlbase = res.start;
1461 timer_mem->size = resource_size(&res);
1463 for_each_available_child_of_node(np, frame_node) {
1464 u32 n;
1465 struct arch_timer_mem_frame *frame;
1467 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1468 pr_err(FW_BUG "Missing frame-number.\n");
1469 of_node_put(frame_node);
1470 goto out;
1472 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1473 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1474 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1475 of_node_put(frame_node);
1476 goto out;
1478 frame = &timer_mem->frame[n];
1480 if (frame->valid) {
1481 pr_err(FW_BUG "Duplicated frame-number.\n");
1482 of_node_put(frame_node);
1483 goto out;
1486 if (of_address_to_resource(frame_node, 0, &res)) {
1487 of_node_put(frame_node);
1488 goto out;
1490 frame->cntbase = res.start;
1491 frame->size = resource_size(&res);
1493 frame->virt_irq = irq_of_parse_and_map(frame_node,
1494 ARCH_TIMER_VIRT_SPI);
1495 frame->phys_irq = irq_of_parse_and_map(frame_node,
1496 ARCH_TIMER_PHYS_SPI);
1498 frame->valid = true;
1501 frame = arch_timer_mem_find_best_frame(timer_mem);
1502 if (!frame) {
1503 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504 &timer_mem->cntctlbase);
1505 ret = -EINVAL;
1506 goto out;
1509 rate = arch_timer_mem_frame_get_cntfrq(frame);
1510 arch_timer_of_configure_rate(rate, np);
1512 ret = arch_timer_mem_frame_register(frame);
1513 if (!ret && !arch_timer_needs_of_probing())
1514 ret = arch_timer_common_init();
1515 out:
1516 kfree(timer_mem);
1517 return ret;
1519 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1520 arch_timer_mem_of_init);
1522 #ifdef CONFIG_ACPI_GTDT
1523 static int __init
1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1526 struct arch_timer_mem_frame *frame;
1527 u32 rate;
1528 int i;
1530 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1531 frame = &timer_mem->frame[i];
1533 if (!frame->valid)
1534 continue;
1536 rate = arch_timer_mem_frame_get_cntfrq(frame);
1537 if (rate == arch_timer_rate)
1538 continue;
1540 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1541 &frame->cntbase,
1542 (unsigned long)rate, (unsigned long)arch_timer_rate);
1544 return -EINVAL;
1547 return 0;
1550 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1552 struct arch_timer_mem *timers, *timer;
1553 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1554 int timer_count, i, ret = 0;
1556 timers = kcalloc(platform_timer_count, sizeof(*timers),
1557 GFP_KERNEL);
1558 if (!timers)
1559 return -ENOMEM;
1561 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1562 if (ret || !timer_count)
1563 goto out;
1566 * While unlikely, it's theoretically possible that none of the frames
1567 * in a timer expose the combination of feature we want.
1569 for (i = 0; i < timer_count; i++) {
1570 timer = &timers[i];
1572 frame = arch_timer_mem_find_best_frame(timer);
1573 if (!best_frame)
1574 best_frame = frame;
1576 ret = arch_timer_mem_verify_cntfrq(timer);
1577 if (ret) {
1578 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1579 goto out;
1582 if (!best_frame) /* implies !frame */
1584 * Only complain about missing suitable frames if we
1585 * haven't already found one in a previous iteration.
1587 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588 &timer->cntctlbase);
1591 if (best_frame)
1592 ret = arch_timer_mem_frame_register(best_frame);
1593 out:
1594 kfree(timers);
1595 return ret;
1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1599 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1601 int ret, platform_timer_count;
1603 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1604 pr_warn("already initialized, skipping\n");
1605 return -EINVAL;
1608 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1610 ret = acpi_gtdt_init(table, &platform_timer_count);
1611 if (ret)
1612 return ret;
1614 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1615 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1617 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1618 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1620 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1621 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1623 arch_timer_populate_kvm_info();
1626 * When probing via ACPI, we have no mechanism to override the sysreg
1627 * CNTFRQ value. This *must* be correct.
1629 arch_timer_rate = arch_timer_get_cntfrq();
1630 ret = validate_timer_rate();
1631 if (ret) {
1632 pr_err(FW_BUG "frequency not available.\n");
1633 return ret;
1636 arch_timer_uses_ppi = arch_timer_select_ppi();
1637 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1638 pr_err("No interrupt available, giving up\n");
1639 return -EINVAL;
1642 /* Always-on capability */
1643 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1645 /* Check for globally applicable workarounds */
1646 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1648 ret = arch_timer_register();
1649 if (ret)
1650 return ret;
1652 if (platform_timer_count &&
1653 arch_timer_mem_acpi_init(platform_timer_count))
1654 pr_err("Failed to initialize memory-mapped timer.\n");
1656 return arch_timer_common_init();
1658 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1659 #endif