1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <asm/platform_early.h>
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
72 enum sh_cmt_model model
;
74 unsigned int channels_mask
;
76 unsigned long width
; /* 16 or 32 bit version of hardware block */
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control
)(void __iomem
*base
, unsigned long offs
);
82 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count
)(void __iomem
*base
, unsigned long offs
);
87 void (*write_count
)(void __iomem
*base
, unsigned long offs
, u32 value
);
90 struct sh_cmt_channel
{
91 struct sh_cmt_device
*cmt
;
93 unsigned int index
; /* Index in the documentation */
94 unsigned int hwidx
; /* Real hardware index */
96 void __iomem
*iostart
;
99 unsigned int timer_bit
;
102 u32 next_match_value
;
105 struct clock_event_device ced
;
106 struct clocksource cs
;
111 struct sh_cmt_device
{
112 struct platform_device
*pdev
;
114 const struct sh_cmt_info
*info
;
116 void __iomem
*mapbase
;
120 raw_spinlock_t lock
; /* Protect the shared start/stop register */
122 struct sh_cmt_channel
*channels
;
123 unsigned int num_channels
;
124 unsigned int hw_channels
;
127 bool has_clocksource
;
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158 static u32
sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
160 return ioread16(base
+ (offs
<< 1));
163 static u32
sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
165 return ioread32(base
+ (offs
<< 2));
168 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
, u32 value
)
170 iowrite16(value
, base
+ (offs
<< 1));
173 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
, u32 value
)
175 iowrite32(value
, base
+ (offs
<< 2));
178 static const struct sh_cmt_info sh_cmt_info
[] = {
180 .model
= SH_CMT_16BIT
,
182 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
183 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
184 .read_control
= sh_cmt_read16
,
185 .write_control
= sh_cmt_write16
,
186 .read_count
= sh_cmt_read16
,
187 .write_count
= sh_cmt_write16
,
190 .model
= SH_CMT_32BIT
,
192 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
193 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
194 .read_control
= sh_cmt_read16
,
195 .write_control
= sh_cmt_write16
,
196 .read_count
= sh_cmt_read32
,
197 .write_count
= sh_cmt_write32
,
200 .model
= SH_CMT_48BIT
,
201 .channels_mask
= 0x3f,
203 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
204 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
205 .read_control
= sh_cmt_read32
,
206 .write_control
= sh_cmt_write32
,
207 .read_count
= sh_cmt_read32
,
208 .write_count
= sh_cmt_write32
,
210 [SH_CMT0_RCAR_GEN2
] = {
211 .model
= SH_CMT0_RCAR_GEN2
,
212 .channels_mask
= 0x60,
214 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
215 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
216 .read_control
= sh_cmt_read32
,
217 .write_control
= sh_cmt_write32
,
218 .read_count
= sh_cmt_read32
,
219 .write_count
= sh_cmt_write32
,
221 [SH_CMT1_RCAR_GEN2
] = {
222 .model
= SH_CMT1_RCAR_GEN2
,
223 .channels_mask
= 0xff,
225 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
226 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
227 .read_control
= sh_cmt_read32
,
228 .write_control
= sh_cmt_write32
,
229 .read_count
= sh_cmt_read32
,
230 .write_count
= sh_cmt_write32
,
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
238 static inline u32
sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
241 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
243 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
, u32 value
)
249 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
251 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
254 static inline u32
sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
256 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
, u32 value
)
261 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
264 static inline u32
sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
266 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
, u32 value
)
271 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
, u32 value
)
276 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
279 static u32
sh_cmt_get_counter(struct sh_cmt_channel
*ch
, u32
*has_wrapped
)
284 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 v1
= sh_cmt_read_cmcnt(ch
);
290 v2
= sh_cmt_read_cmcnt(ch
);
291 v3
= sh_cmt_read_cmcnt(ch
);
292 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
293 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
294 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch
->cmt
->lock
, flags
);
307 value
= sh_cmt_read_cmstr(ch
);
310 value
|= 1 << ch
->timer_bit
;
312 value
&= ~(1 << ch
->timer_bit
);
314 sh_cmt_write_cmstr(ch
, value
);
315 raw_spin_unlock_irqrestore(&ch
->cmt
->lock
, flags
);
318 static int sh_cmt_enable(struct sh_cmt_channel
*ch
)
322 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
325 ret
= clk_enable(ch
->cmt
->clk
);
327 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
332 /* make sure channel is disabled */
333 sh_cmt_start_stop_ch(ch
, 0);
335 /* configure channel, periodic mode and maximum timeout */
336 if (ch
->cmt
->info
->width
== 16) {
337 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
338 SH_CMT16_CMCSR_CKS512
);
340 sh_cmt_write_cmcsr(ch
, SH_CMT32_CMCSR_CMM
|
341 SH_CMT32_CMCSR_CMTOUT_IE
|
342 SH_CMT32_CMCSR_CMR_IRQ
|
343 SH_CMT32_CMCSR_CKS_RCLK8
);
346 sh_cmt_write_cmcor(ch
, 0xffffffff);
347 sh_cmt_write_cmcnt(ch
, 0);
350 * According to the sh73a0 user's manual, as CMCNT can be operated
351 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
352 * modifying CMCNT register; two RCLK cycles are necessary before
353 * this register is either read or any modification of the value
354 * it holds is reflected in the LSI's actual operation.
356 * While at it, we're supposed to clear out the CMCNT as of this
357 * moment, so make sure it's processed properly here. This will
358 * take RCLKx2 at maximum.
360 for (k
= 0; k
< 100; k
++) {
361 if (!sh_cmt_read_cmcnt(ch
))
366 if (sh_cmt_read_cmcnt(ch
)) {
367 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
374 sh_cmt_start_stop_ch(ch
, 1);
378 clk_disable(ch
->cmt
->clk
);
384 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
386 /* disable channel */
387 sh_cmt_start_stop_ch(ch
, 0);
389 /* disable interrupts in CMT block */
390 sh_cmt_write_cmcsr(ch
, 0);
393 clk_disable(ch
->cmt
->clk
);
395 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
408 u32 value
= ch
->next_match_value
;
414 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
415 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
418 /* we're competing with the interrupt handler.
419 * -> let the interrupt handler reprogram the timer.
420 * -> interrupt number two handles the event.
422 ch
->flags
|= FLAG_SKIPEVENT
;
430 /* reprogram the timer hardware,
431 * but don't save the new match value yet.
433 new_match
= now
+ value
+ delay
;
434 if (new_match
> ch
->max_match_value
)
435 new_match
= ch
->max_match_value
;
437 sh_cmt_write_cmcor(ch
, new_match
);
439 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
440 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
441 /* we are changing to a greater match value,
442 * so this wrap must be caused by the counter
443 * matching the old value.
444 * -> first interrupt reprograms the timer.
445 * -> interrupt number two handles the event.
447 ch
->flags
|= FLAG_SKIPEVENT
;
452 /* we are changing to a smaller match value,
453 * so the wrap must be caused by the counter
454 * matching the new value.
455 * -> save programmed match value.
456 * -> let isr handle the event.
458 ch
->match_value
= new_match
;
462 /* be safe: verify hardware settings */
463 if (now
< new_match
) {
464 /* timer value is below match value, all good.
465 * this makes sure we won't miss any match events.
466 * -> save programmed match value.
467 * -> let isr handle the event.
469 ch
->match_value
= new_match
;
473 /* the counter has reached a value greater
474 * than our new match value. and since the
475 * has_wrapped flag isn't set we must have
476 * programmed a too close event.
477 * -> increase delay and retry.
485 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
491 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
493 if (delta
> ch
->max_match_value
)
494 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
497 ch
->next_match_value
= delta
;
498 sh_cmt_clock_event_program_verify(ch
, 0);
501 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
505 raw_spin_lock_irqsave(&ch
->lock
, flags
);
506 __sh_cmt_set_next(ch
, delta
);
507 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
510 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
512 struct sh_cmt_channel
*ch
= dev_id
;
515 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
516 ch
->cmt
->info
->clear_bits
);
518 /* update clock source counter to begin with if enabled
519 * the wrap flag should be cleared by the timer specific
520 * isr before we end up here.
522 if (ch
->flags
& FLAG_CLOCKSOURCE
)
523 ch
->total_cycles
+= ch
->match_value
+ 1;
525 if (!(ch
->flags
& FLAG_REPROGRAM
))
526 ch
->next_match_value
= ch
->max_match_value
;
528 ch
->flags
|= FLAG_IRQCONTEXT
;
530 if (ch
->flags
& FLAG_CLOCKEVENT
) {
531 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
532 if (clockevent_state_oneshot(&ch
->ced
)) {
533 ch
->next_match_value
= ch
->max_match_value
;
534 ch
->flags
|= FLAG_REPROGRAM
;
537 ch
->ced
.event_handler(&ch
->ced
);
541 ch
->flags
&= ~FLAG_SKIPEVENT
;
543 if (ch
->flags
& FLAG_REPROGRAM
) {
544 ch
->flags
&= ~FLAG_REPROGRAM
;
545 sh_cmt_clock_event_program_verify(ch
, 1);
547 if (ch
->flags
& FLAG_CLOCKEVENT
)
548 if ((clockevent_state_shutdown(&ch
->ced
))
549 || (ch
->match_value
== ch
->next_match_value
))
550 ch
->flags
&= ~FLAG_REPROGRAM
;
553 ch
->flags
&= ~FLAG_IRQCONTEXT
;
558 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
563 if (flag
& FLAG_CLOCKSOURCE
)
564 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
566 raw_spin_lock_irqsave(&ch
->lock
, flags
);
568 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
))) {
569 if (flag
& FLAG_CLOCKEVENT
)
570 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
571 ret
= sh_cmt_enable(ch
);
578 /* setup timeout if no clockevent */
579 if ((flag
== FLAG_CLOCKSOURCE
) && (!(ch
->flags
& FLAG_CLOCKEVENT
)))
580 __sh_cmt_set_next(ch
, ch
->max_match_value
);
582 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
587 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
592 raw_spin_lock_irqsave(&ch
->lock
, flags
);
594 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
597 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
))) {
599 if (flag
& FLAG_CLOCKEVENT
)
600 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
603 /* adjust the timeout to maximum if only clocksource left */
604 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
605 __sh_cmt_set_next(ch
, ch
->max_match_value
);
607 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
609 if (flag
& FLAG_CLOCKSOURCE
)
610 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
613 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
615 return container_of(cs
, struct sh_cmt_channel
, cs
);
618 static u64
sh_cmt_clocksource_read(struct clocksource
*cs
)
620 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
626 raw_spin_lock_irqsave(&ch
->lock
, flags
);
627 value
= ch
->total_cycles
;
628 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
630 if (unlikely(has_wrapped
))
631 raw
+= ch
->match_value
+ 1;
632 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
637 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
640 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
642 WARN_ON(ch
->cs_enabled
);
644 ch
->total_cycles
= 0;
646 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
648 ch
->cs_enabled
= true;
653 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
655 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
657 WARN_ON(!ch
->cs_enabled
);
659 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
660 ch
->cs_enabled
= false;
663 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
665 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
670 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
671 dev_pm_genpd_suspend(&ch
->cmt
->pdev
->dev
);
674 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
676 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
681 dev_pm_genpd_resume(&ch
->cmt
->pdev
->dev
);
682 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
685 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
688 struct clocksource
*cs
= &ch
->cs
;
692 cs
->read
= sh_cmt_clocksource_read
;
693 cs
->enable
= sh_cmt_clocksource_enable
;
694 cs
->disable
= sh_cmt_clocksource_disable
;
695 cs
->suspend
= sh_cmt_clocksource_suspend
;
696 cs
->resume
= sh_cmt_clocksource_resume
;
697 cs
->mask
= CLOCKSOURCE_MASK(sizeof(u64
) * 8);
698 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
700 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
703 clocksource_register_hz(cs
, ch
->cmt
->rate
);
707 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
709 return container_of(ced
, struct sh_cmt_channel
, ced
);
712 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
714 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
717 sh_cmt_set_next(ch
, ((ch
->cmt
->rate
+ HZ
/2) / HZ
) - 1);
719 sh_cmt_set_next(ch
, ch
->max_match_value
);
722 static int sh_cmt_clock_event_shutdown(struct clock_event_device
*ced
)
724 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
726 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
730 static int sh_cmt_clock_event_set_state(struct clock_event_device
*ced
,
733 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
735 /* deal with old setting first */
736 if (clockevent_state_oneshot(ced
) || clockevent_state_periodic(ced
))
737 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
739 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for %s clock events\n",
740 ch
->index
, periodic
? "periodic" : "oneshot");
741 sh_cmt_clock_event_start(ch
, periodic
);
745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device
*ced
)
747 return sh_cmt_clock_event_set_state(ced
, 0);
750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device
*ced
)
752 return sh_cmt_clock_event_set_state(ced
, 1);
755 static int sh_cmt_clock_event_next(unsigned long delta
,
756 struct clock_event_device
*ced
)
758 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
760 BUG_ON(!clockevent_state_oneshot(ced
));
761 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
762 ch
->next_match_value
= delta
- 1;
764 sh_cmt_set_next(ch
, delta
- 1);
769 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
771 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
773 dev_pm_genpd_suspend(&ch
->cmt
->pdev
->dev
);
774 clk_unprepare(ch
->cmt
->clk
);
777 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
779 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
781 clk_prepare(ch
->cmt
->clk
);
782 dev_pm_genpd_resume(&ch
->cmt
->pdev
->dev
);
785 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
788 struct clock_event_device
*ced
= &ch
->ced
;
792 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->index
);
796 ret
= request_irq(irq
, sh_cmt_interrupt
,
797 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
798 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
800 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
806 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
807 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
809 ced
->cpumask
= cpu_possible_mask
;
810 ced
->set_next_event
= sh_cmt_clock_event_next
;
811 ced
->set_state_shutdown
= sh_cmt_clock_event_shutdown
;
812 ced
->set_state_periodic
= sh_cmt_clock_event_set_periodic
;
813 ced
->set_state_oneshot
= sh_cmt_clock_event_set_oneshot
;
814 ced
->suspend
= sh_cmt_clock_event_suspend
;
815 ced
->resume
= sh_cmt_clock_event_resume
;
817 /* TODO: calculate good shift from rate and counter bit width */
819 ced
->mult
= div_sc(ch
->cmt
->rate
, NSEC_PER_SEC
, ced
->shift
);
820 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
821 ced
->max_delta_ticks
= ch
->max_match_value
;
822 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
823 ced
->min_delta_ticks
= 0x1f;
825 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
827 clockevents_register_device(ced
);
832 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
833 bool clockevent
, bool clocksource
)
838 ch
->cmt
->has_clockevent
= true;
839 ret
= sh_cmt_register_clockevent(ch
, name
);
845 ch
->cmt
->has_clocksource
= true;
846 sh_cmt_register_clocksource(ch
, name
);
852 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
853 unsigned int hwidx
, bool clockevent
,
854 bool clocksource
, struct sh_cmt_device
*cmt
)
858 /* Skip unused channels. */
859 if (!clockevent
&& !clocksource
)
865 ch
->timer_bit
= hwidx
;
868 * Compute the address of the channel control register block. For the
869 * timers with a per-channel start/stop register, compute its address
872 switch (cmt
->info
->model
) {
874 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
878 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
880 case SH_CMT0_RCAR_GEN2
:
881 case SH_CMT1_RCAR_GEN2
:
882 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
883 ch
->ioctrl
= ch
->iostart
+ 0x10;
888 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
889 ch
->max_match_value
= ~0;
891 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
893 ch
->match_value
= ch
->max_match_value
;
894 raw_spin_lock_init(&ch
->lock
);
896 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
897 clockevent
, clocksource
);
899 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
903 ch
->cs_enabled
= false;
908 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
910 struct resource
*mem
;
912 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
914 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
918 cmt
->mapbase
= ioremap(mem
->start
, resource_size(mem
));
919 if (cmt
->mapbase
== NULL
) {
920 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
927 static const struct platform_device_id sh_cmt_id_table
[] = {
928 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
929 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
932 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
934 static const struct of_device_id sh_cmt_of_table
[] __maybe_unused
= {
936 /* deprecated, preserved for backward compatibility */
937 .compatible
= "renesas,cmt-48",
938 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
941 /* deprecated, preserved for backward compatibility */
942 .compatible
= "renesas,cmt-48-gen2",
943 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
946 .compatible
= "renesas,r8a7740-cmt1",
947 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
950 .compatible
= "renesas,sh73a0-cmt1",
951 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
954 .compatible
= "renesas,rcar-gen2-cmt0",
955 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
958 .compatible
= "renesas,rcar-gen2-cmt1",
959 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
962 .compatible
= "renesas,rcar-gen3-cmt0",
963 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
966 .compatible
= "renesas,rcar-gen3-cmt1",
967 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
971 MODULE_DEVICE_TABLE(of
, sh_cmt_of_table
);
973 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
980 raw_spin_lock_init(&cmt
->lock
);
982 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
983 cmt
->info
= of_device_get_match_data(&pdev
->dev
);
984 cmt
->hw_channels
= cmt
->info
->channels_mask
;
985 } else if (pdev
->dev
.platform_data
) {
986 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
987 const struct platform_device_id
*id
= pdev
->id_entry
;
989 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
990 cmt
->hw_channels
= cfg
->channels_mask
;
992 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
996 /* Get hold of clock. */
997 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, "fck");
998 if (IS_ERR(cmt
->clk
)) {
999 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
1000 return PTR_ERR(cmt
->clk
);
1003 ret
= clk_prepare(cmt
->clk
);
1007 /* Determine clock rate. */
1008 ret
= clk_enable(cmt
->clk
);
1010 goto err_clk_unprepare
;
1012 if (cmt
->info
->width
== 16)
1013 cmt
->rate
= clk_get_rate(cmt
->clk
) / 512;
1015 cmt
->rate
= clk_get_rate(cmt
->clk
) / 8;
1017 clk_disable(cmt
->clk
);
1019 /* Map the memory resource(s). */
1020 ret
= sh_cmt_map_memory(cmt
);
1022 goto err_clk_unprepare
;
1024 /* Allocate and setup the channels. */
1025 cmt
->num_channels
= hweight8(cmt
->hw_channels
);
1026 cmt
->channels
= kcalloc(cmt
->num_channels
, sizeof(*cmt
->channels
),
1028 if (cmt
->channels
== NULL
) {
1034 * Use the first channel as a clock event device and the second channel
1035 * as a clock source. If only one channel is available use it for both.
1037 for (i
= 0, mask
= cmt
->hw_channels
; i
< cmt
->num_channels
; ++i
) {
1038 unsigned int hwidx
= ffs(mask
) - 1;
1039 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1040 bool clockevent
= i
== 0;
1042 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1043 clockevent
, clocksource
, cmt
);
1047 mask
&= ~(1 << hwidx
);
1050 platform_set_drvdata(pdev
, cmt
);
1055 kfree(cmt
->channels
);
1056 iounmap(cmt
->mapbase
);
1058 clk_unprepare(cmt
->clk
);
1064 static int sh_cmt_probe(struct platform_device
*pdev
)
1066 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1069 if (!is_sh_early_platform_device(pdev
)) {
1070 pm_runtime_set_active(&pdev
->dev
);
1071 pm_runtime_enable(&pdev
->dev
);
1075 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1079 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1083 ret
= sh_cmt_setup(cmt
, pdev
);
1086 pm_runtime_idle(&pdev
->dev
);
1089 if (is_sh_early_platform_device(pdev
))
1093 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1094 pm_runtime_irq_safe(&pdev
->dev
);
1096 pm_runtime_idle(&pdev
->dev
);
1101 static int sh_cmt_remove(struct platform_device
*pdev
)
1103 return -EBUSY
; /* cannot unregister clockevent and clocksource */
1106 static struct platform_driver sh_cmt_device_driver
= {
1107 .probe
= sh_cmt_probe
,
1108 .remove
= sh_cmt_remove
,
1111 .of_match_table
= of_match_ptr(sh_cmt_of_table
),
1113 .id_table
= sh_cmt_id_table
,
1116 static int __init
sh_cmt_init(void)
1118 return platform_driver_register(&sh_cmt_device_driver
);
1121 static void __exit
sh_cmt_exit(void)
1123 platform_driver_unregister(&sh_cmt_device_driver
);
1126 #ifdef CONFIG_SUPERH
1127 sh_early_platform_init("earlytimer", &sh_cmt_device_driver
);
1130 subsys_initcall(sh_cmt_init
);
1131 module_exit(sh_cmt_exit
);
1133 MODULE_AUTHOR("Magnus Damm");
1134 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1135 MODULE_LICENSE("GPL v2");