1 // SPDX-License-Identifier: GPL-2.0
3 * Faraday Technology FTTMR010 timer driver
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
10 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
24 * Register definitions common for all the timer variants.
26 #define TIMER1_COUNT (0x00)
27 #define TIMER1_LOAD (0x04)
28 #define TIMER1_MATCH1 (0x08)
29 #define TIMER1_MATCH2 (0x0c)
30 #define TIMER2_COUNT (0x10)
31 #define TIMER2_LOAD (0x14)
32 #define TIMER2_MATCH1 (0x18)
33 #define TIMER2_MATCH2 (0x1c)
34 #define TIMER3_COUNT (0x20)
35 #define TIMER3_LOAD (0x24)
36 #define TIMER3_MATCH1 (0x28)
37 #define TIMER3_MATCH2 (0x2c)
38 #define TIMER_CR (0x30)
41 * Control register set to clear for ast2600 only.
43 #define AST2600_TIMER_CR_CLR (0x3c)
46 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
48 #define TIMER_1_CR_ENABLE BIT(0)
49 #define TIMER_1_CR_CLOCK BIT(1)
50 #define TIMER_1_CR_INT BIT(2)
51 #define TIMER_2_CR_ENABLE BIT(3)
52 #define TIMER_2_CR_CLOCK BIT(4)
53 #define TIMER_2_CR_INT BIT(5)
54 #define TIMER_3_CR_ENABLE BIT(6)
55 #define TIMER_3_CR_CLOCK BIT(7)
56 #define TIMER_3_CR_INT BIT(8)
57 #define TIMER_1_CR_UPDOWN BIT(9)
58 #define TIMER_2_CR_UPDOWN BIT(10)
59 #define TIMER_3_CR_UPDOWN BIT(11)
62 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
63 * The aspeed timers move bits around in the control register and lacks
64 * bits for setting the timer to count upwards.
66 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
67 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
68 #define TIMER_1_CR_ASPEED_INT BIT(2)
69 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
70 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
71 #define TIMER_2_CR_ASPEED_INT BIT(6)
72 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
73 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
74 #define TIMER_3_CR_ASPEED_INT BIT(10)
77 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
79 * The registers don't exist and they are not needed on aspeed timers
81 * - aspeed timer overflow interrupt is controlled by bits in Control
83 * - aspeed timers always generate interrupt when either one of the
84 * Match registers equals to Status register.
86 #define TIMER_INTR_STATE (0x34)
87 #define TIMER_INTR_MASK (0x38)
88 #define TIMER_1_INT_MATCH1 BIT(0)
89 #define TIMER_1_INT_MATCH2 BIT(1)
90 #define TIMER_1_INT_OVERFLOW BIT(2)
91 #define TIMER_2_INT_MATCH1 BIT(3)
92 #define TIMER_2_INT_MATCH2 BIT(4)
93 #define TIMER_2_INT_OVERFLOW BIT(5)
94 #define TIMER_3_INT_MATCH1 BIT(6)
95 #define TIMER_3_INT_MATCH2 BIT(7)
96 #define TIMER_3_INT_OVERFLOW BIT(8)
97 #define TIMER_INT_ALL_MASK 0x1ff
101 unsigned int tick_rate
;
104 struct clock_event_device clkevt
;
105 int (*timer_shutdown
)(struct clock_event_device
*evt
);
107 struct delay_timer delay_timer
;
112 * A local singleton used by sched_clock and delay timer reads, which are
115 static struct fttmr010
*local_fttmr
;
117 static inline struct fttmr010
*to_fttmr010(struct clock_event_device
*evt
)
119 return container_of(evt
, struct fttmr010
, clkevt
);
122 static unsigned long fttmr010_read_current_timer_up(void)
124 return readl(local_fttmr
->base
+ TIMER2_COUNT
);
127 static unsigned long fttmr010_read_current_timer_down(void)
129 return ~readl(local_fttmr
->base
+ TIMER2_COUNT
);
132 static u64 notrace
fttmr010_read_sched_clock_up(void)
134 return fttmr010_read_current_timer_up();
137 static u64 notrace
fttmr010_read_sched_clock_down(void)
139 return fttmr010_read_current_timer_down();
142 static int fttmr010_timer_set_next_event(unsigned long cycles
,
143 struct clock_event_device
*evt
)
145 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
149 fttmr010
->timer_shutdown(evt
);
151 if (fttmr010
->is_aspeed
) {
153 * ASPEED Timer Controller will load TIMER1_LOAD register
154 * into TIMER1_COUNT register when the timer is re-enabled.
156 writel(cycles
, fttmr010
->base
+ TIMER1_LOAD
);
158 /* Setup the match register forward in time */
159 cr
= readl(fttmr010
->base
+ TIMER1_COUNT
);
160 writel(cr
+ cycles
, fttmr010
->base
+ TIMER1_MATCH1
);
164 cr
= readl(fttmr010
->base
+ TIMER_CR
);
165 cr
|= fttmr010
->t1_enable_val
;
166 writel(cr
, fttmr010
->base
+ TIMER_CR
);
171 static int ast2600_timer_shutdown(struct clock_event_device
*evt
)
173 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
176 writel(fttmr010
->t1_enable_val
, fttmr010
->base
+ AST2600_TIMER_CR_CLR
);
181 static int fttmr010_timer_shutdown(struct clock_event_device
*evt
)
183 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
187 cr
= readl(fttmr010
->base
+ TIMER_CR
);
188 cr
&= ~fttmr010
->t1_enable_val
;
189 writel(cr
, fttmr010
->base
+ TIMER_CR
);
194 static int fttmr010_timer_set_oneshot(struct clock_event_device
*evt
)
196 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
200 fttmr010
->timer_shutdown(evt
);
202 /* Setup counter start from 0 or ~0 */
203 writel(0, fttmr010
->base
+ TIMER1_COUNT
);
204 if (fttmr010
->is_aspeed
) {
205 writel(~0, fttmr010
->base
+ TIMER1_LOAD
);
207 writel(0, fttmr010
->base
+ TIMER1_LOAD
);
209 /* Enable interrupt */
210 cr
= readl(fttmr010
->base
+ TIMER_INTR_MASK
);
211 cr
&= ~(TIMER_1_INT_OVERFLOW
| TIMER_1_INT_MATCH2
);
212 cr
|= TIMER_1_INT_MATCH1
;
213 writel(cr
, fttmr010
->base
+ TIMER_INTR_MASK
);
219 static int fttmr010_timer_set_periodic(struct clock_event_device
*evt
)
221 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
222 u32 period
= DIV_ROUND_CLOSEST(fttmr010
->tick_rate
, HZ
);
226 fttmr010
->timer_shutdown(evt
);
228 /* Setup timer to fire at 1/HZ intervals. */
229 if (fttmr010
->is_aspeed
) {
230 writel(period
, fttmr010
->base
+ TIMER1_LOAD
);
232 cr
= 0xffffffff - (period
- 1);
233 writel(cr
, fttmr010
->base
+ TIMER1_COUNT
);
234 writel(cr
, fttmr010
->base
+ TIMER1_LOAD
);
236 /* Enable interrupt on overflow */
237 cr
= readl(fttmr010
->base
+ TIMER_INTR_MASK
);
238 cr
&= ~(TIMER_1_INT_MATCH1
| TIMER_1_INT_MATCH2
);
239 cr
|= TIMER_1_INT_OVERFLOW
;
240 writel(cr
, fttmr010
->base
+ TIMER_INTR_MASK
);
243 /* Start the timer */
244 cr
= readl(fttmr010
->base
+ TIMER_CR
);
245 cr
|= fttmr010
->t1_enable_val
;
246 writel(cr
, fttmr010
->base
+ TIMER_CR
);
252 * IRQ handler for the timer
254 static irqreturn_t
fttmr010_timer_interrupt(int irq
, void *dev_id
)
256 struct clock_event_device
*evt
= dev_id
;
258 evt
->event_handler(evt
);
262 static irqreturn_t
ast2600_timer_interrupt(int irq
, void *dev_id
)
264 struct clock_event_device
*evt
= dev_id
;
265 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
267 writel(0x1, fttmr010
->base
+ TIMER_INTR_STATE
);
269 evt
->event_handler(evt
);
273 static int __init
fttmr010_common_init(struct device_node
*np
,
275 int (*timer_shutdown
)(struct clock_event_device
*),
276 irq_handler_t irq_handler
)
278 struct fttmr010
*fttmr010
;
285 * These implementations require a clock reference.
286 * FIXME: we currently only support clocking using PCLK
287 * and using EXTCLK is not supported in the driver.
289 clk
= of_clk_get_by_name(np
, "PCLK");
291 pr_err("could not get PCLK\n");
294 ret
= clk_prepare_enable(clk
);
296 pr_err("failed to enable PCLK\n");
300 fttmr010
= kzalloc(sizeof(*fttmr010
), GFP_KERNEL
);
303 goto out_disable_clock
;
305 fttmr010
->tick_rate
= clk_get_rate(clk
);
307 fttmr010
->base
= of_iomap(np
, 0);
308 if (!fttmr010
->base
) {
309 pr_err("Can't remap registers\n");
313 /* IRQ for timer 1 */
314 irq
= irq_of_parse_and_map(np
, 0);
316 pr_err("Can't parse IRQ\n");
322 * The Aspeed timers move bits around in the control register.
325 fttmr010
->t1_enable_val
= TIMER_1_CR_ASPEED_ENABLE
|
326 TIMER_1_CR_ASPEED_INT
;
327 fttmr010
->is_aspeed
= true;
329 fttmr010
->t1_enable_val
= TIMER_1_CR_ENABLE
| TIMER_1_CR_INT
;
332 * Reset the interrupt mask and status
334 writel(TIMER_INT_ALL_MASK
, fttmr010
->base
+ TIMER_INTR_MASK
);
335 writel(0, fttmr010
->base
+ TIMER_INTR_STATE
);
339 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
340 * where everything just counts down.
343 val
= TIMER_2_CR_ASPEED_ENABLE
;
345 val
= TIMER_2_CR_ENABLE
| TIMER_1_CR_UPDOWN
|
348 writel(val
, fttmr010
->base
+ TIMER_CR
);
351 * Setup free-running clocksource timer (interrupts
354 local_fttmr
= fttmr010
;
355 writel(0, fttmr010
->base
+ TIMER2_COUNT
);
356 writel(0, fttmr010
->base
+ TIMER2_MATCH1
);
357 writel(0, fttmr010
->base
+ TIMER2_MATCH2
);
359 if (fttmr010
->is_aspeed
) {
360 writel(~0, fttmr010
->base
+ TIMER2_LOAD
);
361 clocksource_mmio_init(fttmr010
->base
+ TIMER2_COUNT
,
364 300, 32, clocksource_mmio_readl_down
);
365 sched_clock_register(fttmr010_read_sched_clock_down
, 32,
366 fttmr010
->tick_rate
);
368 writel(0, fttmr010
->base
+ TIMER2_LOAD
);
369 clocksource_mmio_init(fttmr010
->base
+ TIMER2_COUNT
,
372 300, 32, clocksource_mmio_readl_up
);
373 sched_clock_register(fttmr010_read_sched_clock_up
, 32,
374 fttmr010
->tick_rate
);
377 fttmr010
->timer_shutdown
= timer_shutdown
;
380 * Setup clockevent timer (interrupt-driven) on timer 1.
382 writel(0, fttmr010
->base
+ TIMER1_COUNT
);
383 writel(0, fttmr010
->base
+ TIMER1_LOAD
);
384 writel(0, fttmr010
->base
+ TIMER1_MATCH1
);
385 writel(0, fttmr010
->base
+ TIMER1_MATCH2
);
386 ret
= request_irq(irq
, irq_handler
, IRQF_TIMER
,
387 "FTTMR010-TIMER1", &fttmr010
->clkevt
);
389 pr_err("FTTMR010-TIMER1 no IRQ\n");
393 fttmr010
->clkevt
.name
= "FTTMR010-TIMER1";
394 /* Reasonably fast and accurate clock event */
395 fttmr010
->clkevt
.rating
= 300;
396 fttmr010
->clkevt
.features
= CLOCK_EVT_FEAT_PERIODIC
|
397 CLOCK_EVT_FEAT_ONESHOT
;
398 fttmr010
->clkevt
.set_next_event
= fttmr010_timer_set_next_event
;
399 fttmr010
->clkevt
.set_state_shutdown
= fttmr010
->timer_shutdown
;
400 fttmr010
->clkevt
.set_state_periodic
= fttmr010_timer_set_periodic
;
401 fttmr010
->clkevt
.set_state_oneshot
= fttmr010_timer_set_oneshot
;
402 fttmr010
->clkevt
.tick_resume
= fttmr010
->timer_shutdown
;
403 fttmr010
->clkevt
.cpumask
= cpumask_of(0);
404 fttmr010
->clkevt
.irq
= irq
;
405 clockevents_config_and_register(&fttmr010
->clkevt
,
410 /* Also use this timer for delays */
411 if (fttmr010
->is_aspeed
)
412 fttmr010
->delay_timer
.read_current_timer
=
413 fttmr010_read_current_timer_down
;
415 fttmr010
->delay_timer
.read_current_timer
=
416 fttmr010_read_current_timer_up
;
417 fttmr010
->delay_timer
.freq
= fttmr010
->tick_rate
;
418 register_current_timer_delay(&fttmr010
->delay_timer
);
424 iounmap(fttmr010
->base
);
428 clk_disable_unprepare(clk
);
433 static __init
int ast2600_timer_init(struct device_node
*np
)
435 return fttmr010_common_init(np
, true,
436 ast2600_timer_shutdown
,
437 ast2600_timer_interrupt
);
440 static __init
int aspeed_timer_init(struct device_node
*np
)
442 return fttmr010_common_init(np
, true,
443 fttmr010_timer_shutdown
,
444 fttmr010_timer_interrupt
);
447 static __init
int fttmr010_timer_init(struct device_node
*np
)
449 return fttmr010_common_init(np
, false,
450 fttmr010_timer_shutdown
,
451 fttmr010_timer_interrupt
);
454 TIMER_OF_DECLARE(fttmr010
, "faraday,fttmr010", fttmr010_timer_init
);
455 TIMER_OF_DECLARE(gemini
, "cortina,gemini-timer", fttmr010_timer_init
);
456 TIMER_OF_DECLARE(moxart
, "moxa,moxart-timer", fttmr010_timer_init
);
457 TIMER_OF_DECLARE(ast2400
, "aspeed,ast2400-timer", aspeed_timer_init
);
458 TIMER_OF_DECLARE(ast2500
, "aspeed,ast2500-timer", aspeed_timer_init
);
459 TIMER_OF_DECLARE(ast2600
, "aspeed,ast2600-timer", ast2600_timer_init
);