Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / dma-buf / dma-buf.c
blob9ad6397aaa97e10b580a23b54836162e765ae7ff
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file *);
34 struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
39 static struct dma_buf_list db_list;
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
47 dmabuf = dentry->d_fsdata;
48 spin_lock(&dmabuf->name_lock);
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 spin_unlock(&dmabuf->name_lock);
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
57 static void dma_buf_release(struct dentry *dentry)
59 struct dma_buf *dmabuf;
61 dmabuf = dentry->d_fsdata;
62 if (unlikely(!dmabuf))
63 return;
65 BUG_ON(dmabuf->vmapping_counter);
68 * Any fences that a dma-buf poll can wait on should be signaled
69 * before releasing dma-buf. This is the responsibility of each
70 * driver that uses the reservation objects.
72 * If you hit this BUG() it means someone dropped their ref to the
73 * dma-buf while still having pending operation to the buffer.
75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
77 dmabuf->ops->release(dmabuf);
79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 dma_resv_fini(dmabuf->resv);
82 module_put(dmabuf->owner);
83 kfree(dmabuf->name);
84 kfree(dmabuf);
87 static int dma_buf_file_release(struct inode *inode, struct file *file)
89 struct dma_buf *dmabuf;
91 if (!is_dma_buf_file(file))
92 return -EINVAL;
94 dmabuf = file->private_data;
96 mutex_lock(&db_list.lock);
97 list_del(&dmabuf->list_node);
98 mutex_unlock(&db_list.lock);
100 return 0;
103 static const struct dentry_operations dma_buf_dentry_ops = {
104 .d_dname = dmabuffs_dname,
105 .d_release = dma_buf_release,
108 static struct vfsmount *dma_buf_mnt;
110 static int dma_buf_fs_init_context(struct fs_context *fc)
112 struct pseudo_fs_context *ctx;
114 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
115 if (!ctx)
116 return -ENOMEM;
117 ctx->dops = &dma_buf_dentry_ops;
118 return 0;
121 static struct file_system_type dma_buf_fs_type = {
122 .name = "dmabuf",
123 .init_fs_context = dma_buf_fs_init_context,
124 .kill_sb = kill_anon_super,
127 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
129 struct dma_buf *dmabuf;
131 if (!is_dma_buf_file(file))
132 return -EINVAL;
134 dmabuf = file->private_data;
136 /* check if buffer supports mmap */
137 if (!dmabuf->ops->mmap)
138 return -EINVAL;
140 /* check for overflowing the buffer's size */
141 if (vma->vm_pgoff + vma_pages(vma) >
142 dmabuf->size >> PAGE_SHIFT)
143 return -EINVAL;
145 return dmabuf->ops->mmap(dmabuf, vma);
148 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
150 struct dma_buf *dmabuf;
151 loff_t base;
153 if (!is_dma_buf_file(file))
154 return -EBADF;
156 dmabuf = file->private_data;
158 /* only support discovering the end of the buffer,
159 but also allow SEEK_SET to maintain the idiomatic
160 SEEK_END(0), SEEK_CUR(0) pattern */
161 if (whence == SEEK_END)
162 base = dmabuf->size;
163 else if (whence == SEEK_SET)
164 base = 0;
165 else
166 return -EINVAL;
168 if (offset != 0)
169 return -EINVAL;
171 return base + offset;
175 * DOC: implicit fence polling
177 * To support cross-device and cross-driver synchronization of buffer access
178 * implicit fences (represented internally in the kernel with &struct dma_fence)
179 * can be attached to a &dma_buf. The glue for that and a few related things are
180 * provided in the &dma_resv structure.
182 * Userspace can query the state of these implicitly tracked fences using poll()
183 * and related system calls:
185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
186 * most recent write or exclusive fence.
188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
189 * all attached fences, shared and exclusive ones.
191 * Note that this only signals the completion of the respective fences, i.e. the
192 * DMA transfers are complete. Cache flushing and any other necessary
193 * preparations before CPU access can begin still need to happen.
196 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
198 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
199 unsigned long flags;
201 spin_lock_irqsave(&dcb->poll->lock, flags);
202 wake_up_locked_poll(dcb->poll, dcb->active);
203 dcb->active = 0;
204 spin_unlock_irqrestore(&dcb->poll->lock, flags);
207 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
209 struct dma_buf *dmabuf;
210 struct dma_resv *resv;
211 struct dma_resv_list *fobj;
212 struct dma_fence *fence_excl;
213 __poll_t events;
214 unsigned shared_count, seq;
216 dmabuf = file->private_data;
217 if (!dmabuf || !dmabuf->resv)
218 return EPOLLERR;
220 resv = dmabuf->resv;
222 poll_wait(file, &dmabuf->poll, poll);
224 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
225 if (!events)
226 return 0;
228 retry:
229 seq = read_seqcount_begin(&resv->seq);
230 rcu_read_lock();
232 fobj = rcu_dereference(resv->fence);
233 if (fobj)
234 shared_count = fobj->shared_count;
235 else
236 shared_count = 0;
237 fence_excl = rcu_dereference(resv->fence_excl);
238 if (read_seqcount_retry(&resv->seq, seq)) {
239 rcu_read_unlock();
240 goto retry;
243 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
244 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
245 __poll_t pevents = EPOLLIN;
247 if (shared_count == 0)
248 pevents |= EPOLLOUT;
250 spin_lock_irq(&dmabuf->poll.lock);
251 if (dcb->active) {
252 dcb->active |= pevents;
253 events &= ~pevents;
254 } else
255 dcb->active = pevents;
256 spin_unlock_irq(&dmabuf->poll.lock);
258 if (events & pevents) {
259 if (!dma_fence_get_rcu(fence_excl)) {
260 /* force a recheck */
261 events &= ~pevents;
262 dma_buf_poll_cb(NULL, &dcb->cb);
263 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
264 dma_buf_poll_cb)) {
265 events &= ~pevents;
266 dma_fence_put(fence_excl);
267 } else {
269 * No callback queued, wake up any additional
270 * waiters.
272 dma_fence_put(fence_excl);
273 dma_buf_poll_cb(NULL, &dcb->cb);
278 if ((events & EPOLLOUT) && shared_count > 0) {
279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
280 int i;
282 /* Only queue a new callback if no event has fired yet */
283 spin_lock_irq(&dmabuf->poll.lock);
284 if (dcb->active)
285 events &= ~EPOLLOUT;
286 else
287 dcb->active = EPOLLOUT;
288 spin_unlock_irq(&dmabuf->poll.lock);
290 if (!(events & EPOLLOUT))
291 goto out;
293 for (i = 0; i < shared_count; ++i) {
294 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
296 if (!dma_fence_get_rcu(fence)) {
298 * fence refcount dropped to zero, this means
299 * that fobj has been freed
301 * call dma_buf_poll_cb and force a recheck!
303 events &= ~EPOLLOUT;
304 dma_buf_poll_cb(NULL, &dcb->cb);
305 break;
307 if (!dma_fence_add_callback(fence, &dcb->cb,
308 dma_buf_poll_cb)) {
309 dma_fence_put(fence);
310 events &= ~EPOLLOUT;
311 break;
313 dma_fence_put(fence);
316 /* No callback queued, wake up any additional waiters. */
317 if (i == shared_count)
318 dma_buf_poll_cb(NULL, &dcb->cb);
321 out:
322 rcu_read_unlock();
323 return events;
327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
328 * The name of the dma-buf buffer can only be set when the dma-buf is not
329 * attached to any devices. It could theoritically support changing the
330 * name of the dma-buf if the same piece of memory is used for multiple
331 * purpose between different devices.
333 * @dmabuf: [in] dmabuf buffer that will be renamed.
334 * @buf: [in] A piece of userspace memory that contains the name of
335 * the dma-buf.
337 * Returns 0 on success. If the dma-buf buffer is already attached to
338 * devices, return -EBUSY.
341 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
343 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
344 long ret = 0;
346 if (IS_ERR(name))
347 return PTR_ERR(name);
349 dma_resv_lock(dmabuf->resv, NULL);
350 if (!list_empty(&dmabuf->attachments)) {
351 ret = -EBUSY;
352 kfree(name);
353 goto out_unlock;
355 spin_lock(&dmabuf->name_lock);
356 kfree(dmabuf->name);
357 dmabuf->name = name;
358 spin_unlock(&dmabuf->name_lock);
360 out_unlock:
361 dma_resv_unlock(dmabuf->resv);
362 return ret;
365 static long dma_buf_ioctl(struct file *file,
366 unsigned int cmd, unsigned long arg)
368 struct dma_buf *dmabuf;
369 struct dma_buf_sync sync;
370 enum dma_data_direction direction;
371 int ret;
373 dmabuf = file->private_data;
375 switch (cmd) {
376 case DMA_BUF_IOCTL_SYNC:
377 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
378 return -EFAULT;
380 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
381 return -EINVAL;
383 switch (sync.flags & DMA_BUF_SYNC_RW) {
384 case DMA_BUF_SYNC_READ:
385 direction = DMA_FROM_DEVICE;
386 break;
387 case DMA_BUF_SYNC_WRITE:
388 direction = DMA_TO_DEVICE;
389 break;
390 case DMA_BUF_SYNC_RW:
391 direction = DMA_BIDIRECTIONAL;
392 break;
393 default:
394 return -EINVAL;
397 if (sync.flags & DMA_BUF_SYNC_END)
398 ret = dma_buf_end_cpu_access(dmabuf, direction);
399 else
400 ret = dma_buf_begin_cpu_access(dmabuf, direction);
402 return ret;
404 case DMA_BUF_SET_NAME_A:
405 case DMA_BUF_SET_NAME_B:
406 return dma_buf_set_name(dmabuf, (const char __user *)arg);
408 default:
409 return -ENOTTY;
413 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
415 struct dma_buf *dmabuf = file->private_data;
417 seq_printf(m, "size:\t%zu\n", dmabuf->size);
418 /* Don't count the temporary reference taken inside procfs seq_show */
419 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
420 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
421 spin_lock(&dmabuf->name_lock);
422 if (dmabuf->name)
423 seq_printf(m, "name:\t%s\n", dmabuf->name);
424 spin_unlock(&dmabuf->name_lock);
427 static const struct file_operations dma_buf_fops = {
428 .release = dma_buf_file_release,
429 .mmap = dma_buf_mmap_internal,
430 .llseek = dma_buf_llseek,
431 .poll = dma_buf_poll,
432 .unlocked_ioctl = dma_buf_ioctl,
433 .compat_ioctl = compat_ptr_ioctl,
434 .show_fdinfo = dma_buf_show_fdinfo,
438 * is_dma_buf_file - Check if struct file* is associated with dma_buf
440 static inline int is_dma_buf_file(struct file *file)
442 return file->f_op == &dma_buf_fops;
445 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
447 struct file *file;
448 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
450 if (IS_ERR(inode))
451 return ERR_CAST(inode);
453 inode->i_size = dmabuf->size;
454 inode_set_bytes(inode, dmabuf->size);
456 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
457 flags, &dma_buf_fops);
458 if (IS_ERR(file))
459 goto err_alloc_file;
460 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
461 file->private_data = dmabuf;
462 file->f_path.dentry->d_fsdata = dmabuf;
464 return file;
466 err_alloc_file:
467 iput(inode);
468 return file;
472 * DOC: dma buf device access
474 * For device DMA access to a shared DMA buffer the usual sequence of operations
475 * is fairly simple:
477 * 1. The exporter defines his exporter instance using
478 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
479 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
480 * as a file descriptor by calling dma_buf_fd().
482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
483 * to share with: First the filedescriptor is converted to a &dma_buf using
484 * dma_buf_get(). Then the buffer is attached to the device using
485 * dma_buf_attach().
487 * Up to this stage the exporter is still free to migrate or reallocate the
488 * backing storage.
490 * 3. Once the buffer is attached to all devices userspace can initiate DMA
491 * access to the shared buffer. In the kernel this is done by calling
492 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
494 * 4. Once a driver is done with a shared buffer it needs to call
495 * dma_buf_detach() (after cleaning up any mappings) and then release the
496 * reference acquired with dma_buf_get by calling dma_buf_put().
498 * For the detailed semantics exporters are expected to implement see
499 * &dma_buf_ops.
503 * dma_buf_export - Creates a new dma_buf, and associates an anon file
504 * with this buffer, so it can be exported.
505 * Also connect the allocator specific data and ops to the buffer.
506 * Additionally, provide a name string for exporter; useful in debugging.
508 * @exp_info: [in] holds all the export related information provided
509 * by the exporter. see &struct dma_buf_export_info
510 * for further details.
512 * Returns, on success, a newly created dma_buf object, which wraps the
513 * supplied private data and operations for dma_buf_ops. On either missing
514 * ops, or error in allocating struct dma_buf, will return negative error.
516 * For most cases the easiest way to create @exp_info is through the
517 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
519 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
521 struct dma_buf *dmabuf;
522 struct dma_resv *resv = exp_info->resv;
523 struct file *file;
524 size_t alloc_size = sizeof(struct dma_buf);
525 int ret;
527 if (!exp_info->resv)
528 alloc_size += sizeof(struct dma_resv);
529 else
530 /* prevent &dma_buf[1] == dma_buf->resv */
531 alloc_size += 1;
533 if (WARN_ON(!exp_info->priv
534 || !exp_info->ops
535 || !exp_info->ops->map_dma_buf
536 || !exp_info->ops->unmap_dma_buf
537 || !exp_info->ops->release)) {
538 return ERR_PTR(-EINVAL);
541 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
542 (exp_info->ops->pin || exp_info->ops->unpin)))
543 return ERR_PTR(-EINVAL);
545 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
546 return ERR_PTR(-EINVAL);
548 if (!try_module_get(exp_info->owner))
549 return ERR_PTR(-ENOENT);
551 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
552 if (!dmabuf) {
553 ret = -ENOMEM;
554 goto err_module;
557 dmabuf->priv = exp_info->priv;
558 dmabuf->ops = exp_info->ops;
559 dmabuf->size = exp_info->size;
560 dmabuf->exp_name = exp_info->exp_name;
561 dmabuf->owner = exp_info->owner;
562 spin_lock_init(&dmabuf->name_lock);
563 init_waitqueue_head(&dmabuf->poll);
564 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
565 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
567 if (!resv) {
568 resv = (struct dma_resv *)&dmabuf[1];
569 dma_resv_init(resv);
571 dmabuf->resv = resv;
573 file = dma_buf_getfile(dmabuf, exp_info->flags);
574 if (IS_ERR(file)) {
575 ret = PTR_ERR(file);
576 goto err_dmabuf;
579 file->f_mode |= FMODE_LSEEK;
580 dmabuf->file = file;
582 mutex_init(&dmabuf->lock);
583 INIT_LIST_HEAD(&dmabuf->attachments);
585 mutex_lock(&db_list.lock);
586 list_add(&dmabuf->list_node, &db_list.head);
587 mutex_unlock(&db_list.lock);
589 return dmabuf;
591 err_dmabuf:
592 kfree(dmabuf);
593 err_module:
594 module_put(exp_info->owner);
595 return ERR_PTR(ret);
597 EXPORT_SYMBOL_GPL(dma_buf_export);
600 * dma_buf_fd - returns a file descriptor for the given dma_buf
601 * @dmabuf: [in] pointer to dma_buf for which fd is required.
602 * @flags: [in] flags to give to fd
604 * On success, returns an associated 'fd'. Else, returns error.
606 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
608 int fd;
610 if (!dmabuf || !dmabuf->file)
611 return -EINVAL;
613 fd = get_unused_fd_flags(flags);
614 if (fd < 0)
615 return fd;
617 fd_install(fd, dmabuf->file);
619 return fd;
621 EXPORT_SYMBOL_GPL(dma_buf_fd);
624 * dma_buf_get - returns the dma_buf structure related to an fd
625 * @fd: [in] fd associated with the dma_buf to be returned
627 * On success, returns the dma_buf structure associated with an fd; uses
628 * file's refcounting done by fget to increase refcount. returns ERR_PTR
629 * otherwise.
631 struct dma_buf *dma_buf_get(int fd)
633 struct file *file;
635 file = fget(fd);
637 if (!file)
638 return ERR_PTR(-EBADF);
640 if (!is_dma_buf_file(file)) {
641 fput(file);
642 return ERR_PTR(-EINVAL);
645 return file->private_data;
647 EXPORT_SYMBOL_GPL(dma_buf_get);
650 * dma_buf_put - decreases refcount of the buffer
651 * @dmabuf: [in] buffer to reduce refcount of
653 * Uses file's refcounting done implicitly by fput().
655 * If, as a result of this call, the refcount becomes 0, the 'release' file
656 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
657 * in turn, and frees the memory allocated for dmabuf when exported.
659 void dma_buf_put(struct dma_buf *dmabuf)
661 if (WARN_ON(!dmabuf || !dmabuf->file))
662 return;
664 fput(dmabuf->file);
666 EXPORT_SYMBOL_GPL(dma_buf_put);
669 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
670 * calls attach() of dma_buf_ops to allow device-specific attach functionality
671 * @dmabuf: [in] buffer to attach device to.
672 * @dev: [in] device to be attached.
673 * @importer_ops: [in] importer operations for the attachment
674 * @importer_priv: [in] importer private pointer for the attachment
676 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
677 * must be cleaned up by calling dma_buf_detach().
679 * Returns:
681 * A pointer to newly created &dma_buf_attachment on success, or a negative
682 * error code wrapped into a pointer on failure.
684 * Note that this can fail if the backing storage of @dmabuf is in a place not
685 * accessible to @dev, and cannot be moved to a more suitable place. This is
686 * indicated with the error code -EBUSY.
688 struct dma_buf_attachment *
689 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
690 const struct dma_buf_attach_ops *importer_ops,
691 void *importer_priv)
693 struct dma_buf_attachment *attach;
694 int ret;
696 if (WARN_ON(!dmabuf || !dev))
697 return ERR_PTR(-EINVAL);
699 if (WARN_ON(importer_ops && !importer_ops->move_notify))
700 return ERR_PTR(-EINVAL);
702 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
703 if (!attach)
704 return ERR_PTR(-ENOMEM);
706 attach->dev = dev;
707 attach->dmabuf = dmabuf;
708 if (importer_ops)
709 attach->peer2peer = importer_ops->allow_peer2peer;
710 attach->importer_ops = importer_ops;
711 attach->importer_priv = importer_priv;
713 if (dmabuf->ops->attach) {
714 ret = dmabuf->ops->attach(dmabuf, attach);
715 if (ret)
716 goto err_attach;
718 dma_resv_lock(dmabuf->resv, NULL);
719 list_add(&attach->node, &dmabuf->attachments);
720 dma_resv_unlock(dmabuf->resv);
722 /* When either the importer or the exporter can't handle dynamic
723 * mappings we cache the mapping here to avoid issues with the
724 * reservation object lock.
726 if (dma_buf_attachment_is_dynamic(attach) !=
727 dma_buf_is_dynamic(dmabuf)) {
728 struct sg_table *sgt;
730 if (dma_buf_is_dynamic(attach->dmabuf)) {
731 dma_resv_lock(attach->dmabuf->resv, NULL);
732 ret = dma_buf_pin(attach);
733 if (ret)
734 goto err_unlock;
737 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
738 if (!sgt)
739 sgt = ERR_PTR(-ENOMEM);
740 if (IS_ERR(sgt)) {
741 ret = PTR_ERR(sgt);
742 goto err_unpin;
744 if (dma_buf_is_dynamic(attach->dmabuf))
745 dma_resv_unlock(attach->dmabuf->resv);
746 attach->sgt = sgt;
747 attach->dir = DMA_BIDIRECTIONAL;
750 return attach;
752 err_attach:
753 kfree(attach);
754 return ERR_PTR(ret);
756 err_unpin:
757 if (dma_buf_is_dynamic(attach->dmabuf))
758 dma_buf_unpin(attach);
760 err_unlock:
761 if (dma_buf_is_dynamic(attach->dmabuf))
762 dma_resv_unlock(attach->dmabuf->resv);
764 dma_buf_detach(dmabuf, attach);
765 return ERR_PTR(ret);
767 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
770 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
771 * @dmabuf: [in] buffer to attach device to.
772 * @dev: [in] device to be attached.
774 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
775 * mapping.
777 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
778 struct device *dev)
780 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
782 EXPORT_SYMBOL_GPL(dma_buf_attach);
785 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
786 * optionally calls detach() of dma_buf_ops for device-specific detach
787 * @dmabuf: [in] buffer to detach from.
788 * @attach: [in] attachment to be detached; is free'd after this call.
790 * Clean up a device attachment obtained by calling dma_buf_attach().
792 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
794 if (WARN_ON(!dmabuf || !attach))
795 return;
797 if (attach->sgt) {
798 if (dma_buf_is_dynamic(attach->dmabuf))
799 dma_resv_lock(attach->dmabuf->resv, NULL);
801 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
803 if (dma_buf_is_dynamic(attach->dmabuf)) {
804 dma_buf_unpin(attach);
805 dma_resv_unlock(attach->dmabuf->resv);
809 dma_resv_lock(dmabuf->resv, NULL);
810 list_del(&attach->node);
811 dma_resv_unlock(dmabuf->resv);
812 if (dmabuf->ops->detach)
813 dmabuf->ops->detach(dmabuf, attach);
815 kfree(attach);
817 EXPORT_SYMBOL_GPL(dma_buf_detach);
820 * dma_buf_pin - Lock down the DMA-buf
822 * @attach: [in] attachment which should be pinned
824 * Returns:
825 * 0 on success, negative error code on failure.
827 int dma_buf_pin(struct dma_buf_attachment *attach)
829 struct dma_buf *dmabuf = attach->dmabuf;
830 int ret = 0;
832 dma_resv_assert_held(dmabuf->resv);
834 if (dmabuf->ops->pin)
835 ret = dmabuf->ops->pin(attach);
837 return ret;
839 EXPORT_SYMBOL_GPL(dma_buf_pin);
842 * dma_buf_unpin - Remove lock from DMA-buf
844 * @attach: [in] attachment which should be unpinned
846 void dma_buf_unpin(struct dma_buf_attachment *attach)
848 struct dma_buf *dmabuf = attach->dmabuf;
850 dma_resv_assert_held(dmabuf->resv);
852 if (dmabuf->ops->unpin)
853 dmabuf->ops->unpin(attach);
855 EXPORT_SYMBOL_GPL(dma_buf_unpin);
858 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
859 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
860 * dma_buf_ops.
861 * @attach: [in] attachment whose scatterlist is to be returned
862 * @direction: [in] direction of DMA transfer
864 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
865 * on error. May return -EINTR if it is interrupted by a signal.
867 * On success, the DMA addresses and lengths in the returned scatterlist are
868 * PAGE_SIZE aligned.
870 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
871 * the underlying backing storage is pinned for as long as a mapping exists,
872 * therefore users/importers should not hold onto a mapping for undue amounts of
873 * time.
875 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
876 enum dma_data_direction direction)
878 struct sg_table *sg_table;
879 int r;
881 might_sleep();
883 if (WARN_ON(!attach || !attach->dmabuf))
884 return ERR_PTR(-EINVAL);
886 if (dma_buf_attachment_is_dynamic(attach))
887 dma_resv_assert_held(attach->dmabuf->resv);
889 if (attach->sgt) {
891 * Two mappings with different directions for the same
892 * attachment are not allowed.
894 if (attach->dir != direction &&
895 attach->dir != DMA_BIDIRECTIONAL)
896 return ERR_PTR(-EBUSY);
898 return attach->sgt;
901 if (dma_buf_is_dynamic(attach->dmabuf)) {
902 dma_resv_assert_held(attach->dmabuf->resv);
903 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
904 r = dma_buf_pin(attach);
905 if (r)
906 return ERR_PTR(r);
910 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
911 if (!sg_table)
912 sg_table = ERR_PTR(-ENOMEM);
914 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
915 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
916 dma_buf_unpin(attach);
918 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
919 attach->sgt = sg_table;
920 attach->dir = direction;
923 #ifdef CONFIG_DMA_API_DEBUG
924 if (!IS_ERR(sg_table)) {
925 struct scatterlist *sg;
926 u64 addr;
927 int len;
928 int i;
930 for_each_sgtable_dma_sg(sg_table, sg, i) {
931 addr = sg_dma_address(sg);
932 len = sg_dma_len(sg);
933 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
934 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
935 __func__, addr, len);
939 #endif /* CONFIG_DMA_API_DEBUG */
941 return sg_table;
943 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
946 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
947 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
948 * dma_buf_ops.
949 * @attach: [in] attachment to unmap buffer from
950 * @sg_table: [in] scatterlist info of the buffer to unmap
951 * @direction: [in] direction of DMA transfer
953 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
955 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
956 struct sg_table *sg_table,
957 enum dma_data_direction direction)
959 might_sleep();
961 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
962 return;
964 if (dma_buf_attachment_is_dynamic(attach))
965 dma_resv_assert_held(attach->dmabuf->resv);
967 if (attach->sgt == sg_table)
968 return;
970 if (dma_buf_is_dynamic(attach->dmabuf))
971 dma_resv_assert_held(attach->dmabuf->resv);
973 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
975 if (dma_buf_is_dynamic(attach->dmabuf) &&
976 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
977 dma_buf_unpin(attach);
979 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
982 * dma_buf_move_notify - notify attachments that DMA-buf is moving
984 * @dmabuf: [in] buffer which is moving
986 * Informs all attachmenst that they need to destroy and recreated all their
987 * mappings.
989 void dma_buf_move_notify(struct dma_buf *dmabuf)
991 struct dma_buf_attachment *attach;
993 dma_resv_assert_held(dmabuf->resv);
995 list_for_each_entry(attach, &dmabuf->attachments, node)
996 if (attach->importer_ops)
997 attach->importer_ops->move_notify(attach);
999 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1002 * DOC: cpu access
1004 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1006 * - Fallback operations in the kernel, for example when a device is connected
1007 * over USB and the kernel needs to shuffle the data around first before
1008 * sending it away. Cache coherency is handled by braketing any transactions
1009 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1010 * access.
1012 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1013 * vmap interface is introduced. Note that on very old 32-bit architectures
1014 * vmalloc space might be limited and result in vmap calls failing.
1016 * Interfaces::
1017 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1018 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1020 * The vmap call can fail if there is no vmap support in the exporter, or if
1021 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1022 * that the dma-buf layer keeps a reference count for all vmap access and
1023 * calls down into the exporter's vmap function only when no vmapping exists,
1024 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1025 * provided by taking the dma_buf->lock mutex.
1027 * - For full compatibility on the importer side with existing userspace
1028 * interfaces, which might already support mmap'ing buffers. This is needed in
1029 * many processing pipelines (e.g. feeding a software rendered image into a
1030 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1031 * framework already supported this and for DMA buffer file descriptors to
1032 * replace ION buffers mmap support was needed.
1034 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1035 * fd. But like for CPU access there's a need to braket the actual access,
1036 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1037 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1038 * be restarted.
1040 * Some systems might need some sort of cache coherency management e.g. when
1041 * CPU and GPU domains are being accessed through dma-buf at the same time.
1042 * To circumvent this problem there are begin/end coherency markers, that
1043 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1044 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1045 * sequence would be used like following:
1047 * - mmap dma-buf fd
1048 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1049 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1050 * want (with the new data being consumed by say the GPU or the scanout
1051 * device)
1052 * - munmap once you don't need the buffer any more
1054 * For correctness and optimal performance, it is always required to use
1055 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1056 * mapped address. Userspace cannot rely on coherent access, even when there
1057 * are systems where it just works without calling these ioctls.
1059 * - And as a CPU fallback in userspace processing pipelines.
1061 * Similar to the motivation for kernel cpu access it is again important that
1062 * the userspace code of a given importing subsystem can use the same
1063 * interfaces with a imported dma-buf buffer object as with a native buffer
1064 * object. This is especially important for drm where the userspace part of
1065 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1066 * use a different way to mmap a buffer rather invasive.
1068 * The assumption in the current dma-buf interfaces is that redirecting the
1069 * initial mmap is all that's needed. A survey of some of the existing
1070 * subsystems shows that no driver seems to do any nefarious thing like
1071 * syncing up with outstanding asynchronous processing on the device or
1072 * allocating special resources at fault time. So hopefully this is good
1073 * enough, since adding interfaces to intercept pagefaults and allow pte
1074 * shootdowns would increase the complexity quite a bit.
1076 * Interface::
1077 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1078 * unsigned long);
1080 * If the importing subsystem simply provides a special-purpose mmap call to
1081 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1082 * equally achieve that for a dma-buf object.
1085 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1086 enum dma_data_direction direction)
1088 bool write = (direction == DMA_BIDIRECTIONAL ||
1089 direction == DMA_TO_DEVICE);
1090 struct dma_resv *resv = dmabuf->resv;
1091 long ret;
1093 /* Wait on any implicit rendering fences */
1094 ret = dma_resv_wait_timeout_rcu(resv, write, true,
1095 MAX_SCHEDULE_TIMEOUT);
1096 if (ret < 0)
1097 return ret;
1099 return 0;
1103 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1104 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1105 * preparations. Coherency is only guaranteed in the specified range for the
1106 * specified access direction.
1107 * @dmabuf: [in] buffer to prepare cpu access for.
1108 * @direction: [in] length of range for cpu access.
1110 * After the cpu access is complete the caller should call
1111 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1112 * it guaranteed to be coherent with other DMA access.
1114 * Can return negative error values, returns 0 on success.
1116 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1117 enum dma_data_direction direction)
1119 int ret = 0;
1121 if (WARN_ON(!dmabuf))
1122 return -EINVAL;
1124 if (dmabuf->ops->begin_cpu_access)
1125 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1127 /* Ensure that all fences are waited upon - but we first allow
1128 * the native handler the chance to do so more efficiently if it
1129 * chooses. A double invocation here will be reasonably cheap no-op.
1131 if (ret == 0)
1132 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1134 return ret;
1136 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1139 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1140 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1141 * actions. Coherency is only guaranteed in the specified range for the
1142 * specified access direction.
1143 * @dmabuf: [in] buffer to complete cpu access for.
1144 * @direction: [in] length of range for cpu access.
1146 * This terminates CPU access started with dma_buf_begin_cpu_access().
1148 * Can return negative error values, returns 0 on success.
1150 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1151 enum dma_data_direction direction)
1153 int ret = 0;
1155 WARN_ON(!dmabuf);
1157 if (dmabuf->ops->end_cpu_access)
1158 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1160 return ret;
1162 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1166 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1167 * @dmabuf: [in] buffer that should back the vma
1168 * @vma: [in] vma for the mmap
1169 * @pgoff: [in] offset in pages where this mmap should start within the
1170 * dma-buf buffer.
1172 * This function adjusts the passed in vma so that it points at the file of the
1173 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1174 * checking on the size of the vma. Then it calls the exporters mmap function to
1175 * set up the mapping.
1177 * Can return negative error values, returns 0 on success.
1179 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1180 unsigned long pgoff)
1182 if (WARN_ON(!dmabuf || !vma))
1183 return -EINVAL;
1185 /* check if buffer supports mmap */
1186 if (!dmabuf->ops->mmap)
1187 return -EINVAL;
1189 /* check for offset overflow */
1190 if (pgoff + vma_pages(vma) < pgoff)
1191 return -EOVERFLOW;
1193 /* check for overflowing the buffer's size */
1194 if (pgoff + vma_pages(vma) >
1195 dmabuf->size >> PAGE_SHIFT)
1196 return -EINVAL;
1198 /* readjust the vma */
1199 vma_set_file(vma, dmabuf->file);
1200 vma->vm_pgoff = pgoff;
1202 return dmabuf->ops->mmap(dmabuf, vma);
1204 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1207 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1208 * address space. Same restrictions as for vmap and friends apply.
1209 * @dmabuf: [in] buffer to vmap
1210 * @map: [out] returns the vmap pointer
1212 * This call may fail due to lack of virtual mapping address space.
1213 * These calls are optional in drivers. The intended use for them
1214 * is for mapping objects linear in kernel space for high use objects.
1215 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1217 * Returns 0 on success, or a negative errno code otherwise.
1219 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1221 struct dma_buf_map ptr;
1222 int ret = 0;
1224 dma_buf_map_clear(map);
1226 if (WARN_ON(!dmabuf))
1227 return -EINVAL;
1229 if (!dmabuf->ops->vmap)
1230 return -EINVAL;
1232 mutex_lock(&dmabuf->lock);
1233 if (dmabuf->vmapping_counter) {
1234 dmabuf->vmapping_counter++;
1235 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1236 *map = dmabuf->vmap_ptr;
1237 goto out_unlock;
1240 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1242 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1243 if (WARN_ON_ONCE(ret))
1244 goto out_unlock;
1246 dmabuf->vmap_ptr = ptr;
1247 dmabuf->vmapping_counter = 1;
1249 *map = dmabuf->vmap_ptr;
1251 out_unlock:
1252 mutex_unlock(&dmabuf->lock);
1253 return ret;
1255 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1258 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1259 * @dmabuf: [in] buffer to vunmap
1260 * @map: [in] vmap pointer to vunmap
1262 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1264 if (WARN_ON(!dmabuf))
1265 return;
1267 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1268 BUG_ON(dmabuf->vmapping_counter == 0);
1269 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1271 mutex_lock(&dmabuf->lock);
1272 if (--dmabuf->vmapping_counter == 0) {
1273 if (dmabuf->ops->vunmap)
1274 dmabuf->ops->vunmap(dmabuf, map);
1275 dma_buf_map_clear(&dmabuf->vmap_ptr);
1277 mutex_unlock(&dmabuf->lock);
1279 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1281 #ifdef CONFIG_DEBUG_FS
1282 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1284 int ret;
1285 struct dma_buf *buf_obj;
1286 struct dma_buf_attachment *attach_obj;
1287 struct dma_resv *robj;
1288 struct dma_resv_list *fobj;
1289 struct dma_fence *fence;
1290 unsigned seq;
1291 int count = 0, attach_count, shared_count, i;
1292 size_t size = 0;
1294 ret = mutex_lock_interruptible(&db_list.lock);
1296 if (ret)
1297 return ret;
1299 seq_puts(s, "\nDma-buf Objects:\n");
1300 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1301 "size", "flags", "mode", "count", "ino");
1303 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1305 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1306 if (ret)
1307 goto error_unlock;
1309 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1310 buf_obj->size,
1311 buf_obj->file->f_flags, buf_obj->file->f_mode,
1312 file_count(buf_obj->file),
1313 buf_obj->exp_name,
1314 file_inode(buf_obj->file)->i_ino,
1315 buf_obj->name ?: "");
1317 robj = buf_obj->resv;
1318 while (true) {
1319 seq = read_seqcount_begin(&robj->seq);
1320 rcu_read_lock();
1321 fobj = rcu_dereference(robj->fence);
1322 shared_count = fobj ? fobj->shared_count : 0;
1323 fence = rcu_dereference(robj->fence_excl);
1324 if (!read_seqcount_retry(&robj->seq, seq))
1325 break;
1326 rcu_read_unlock();
1329 if (fence)
1330 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1331 fence->ops->get_driver_name(fence),
1332 fence->ops->get_timeline_name(fence),
1333 dma_fence_is_signaled(fence) ? "" : "un");
1334 for (i = 0; i < shared_count; i++) {
1335 fence = rcu_dereference(fobj->shared[i]);
1336 if (!dma_fence_get_rcu(fence))
1337 continue;
1338 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1339 fence->ops->get_driver_name(fence),
1340 fence->ops->get_timeline_name(fence),
1341 dma_fence_is_signaled(fence) ? "" : "un");
1342 dma_fence_put(fence);
1344 rcu_read_unlock();
1346 seq_puts(s, "\tAttached Devices:\n");
1347 attach_count = 0;
1349 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1350 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1351 attach_count++;
1353 dma_resv_unlock(buf_obj->resv);
1355 seq_printf(s, "Total %d devices attached\n\n",
1356 attach_count);
1358 count++;
1359 size += buf_obj->size;
1362 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1364 mutex_unlock(&db_list.lock);
1365 return 0;
1367 error_unlock:
1368 mutex_unlock(&db_list.lock);
1369 return ret;
1372 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1374 static struct dentry *dma_buf_debugfs_dir;
1376 static int dma_buf_init_debugfs(void)
1378 struct dentry *d;
1379 int err = 0;
1381 d = debugfs_create_dir("dma_buf", NULL);
1382 if (IS_ERR(d))
1383 return PTR_ERR(d);
1385 dma_buf_debugfs_dir = d;
1387 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1388 NULL, &dma_buf_debug_fops);
1389 if (IS_ERR(d)) {
1390 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1391 debugfs_remove_recursive(dma_buf_debugfs_dir);
1392 dma_buf_debugfs_dir = NULL;
1393 err = PTR_ERR(d);
1396 return err;
1399 static void dma_buf_uninit_debugfs(void)
1401 debugfs_remove_recursive(dma_buf_debugfs_dir);
1403 #else
1404 static inline int dma_buf_init_debugfs(void)
1406 return 0;
1408 static inline void dma_buf_uninit_debugfs(void)
1411 #endif
1413 static int __init dma_buf_init(void)
1415 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1416 if (IS_ERR(dma_buf_mnt))
1417 return PTR_ERR(dma_buf_mnt);
1419 mutex_init(&db_list.lock);
1420 INIT_LIST_HEAD(&db_list.head);
1421 dma_buf_init_debugfs();
1422 return 0;
1424 subsys_initcall(dma_buf_init);
1426 static void __exit dma_buf_deinit(void)
1428 dma_buf_uninit_debugfs();
1429 kern_unmount(dma_buf_mnt);
1431 __exitcall(dma_buf_deinit);