1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file
*);
35 struct list_head head
;
39 static struct dma_buf_list db_list
;
41 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
43 struct dma_buf
*dmabuf
;
44 char name
[DMA_BUF_NAME_LEN
];
47 dmabuf
= dentry
->d_fsdata
;
48 spin_lock(&dmabuf
->name_lock
);
50 ret
= strlcpy(name
, dmabuf
->name
, DMA_BUF_NAME_LEN
);
51 spin_unlock(&dmabuf
->name_lock
);
53 return dynamic_dname(dentry
, buffer
, buflen
, "/%s:%s",
54 dentry
->d_name
.name
, ret
> 0 ? name
: "");
57 static void dma_buf_release(struct dentry
*dentry
)
59 struct dma_buf
*dmabuf
;
61 dmabuf
= dentry
->d_fsdata
;
62 if (unlikely(!dmabuf
))
65 BUG_ON(dmabuf
->vmapping_counter
);
68 * Any fences that a dma-buf poll can wait on should be signaled
69 * before releasing dma-buf. This is the responsibility of each
70 * driver that uses the reservation objects.
72 * If you hit this BUG() it means someone dropped their ref to the
73 * dma-buf while still having pending operation to the buffer.
75 BUG_ON(dmabuf
->cb_shared
.active
|| dmabuf
->cb_excl
.active
);
77 dmabuf
->ops
->release(dmabuf
);
79 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
80 dma_resv_fini(dmabuf
->resv
);
82 module_put(dmabuf
->owner
);
87 static int dma_buf_file_release(struct inode
*inode
, struct file
*file
)
89 struct dma_buf
*dmabuf
;
91 if (!is_dma_buf_file(file
))
94 dmabuf
= file
->private_data
;
96 mutex_lock(&db_list
.lock
);
97 list_del(&dmabuf
->list_node
);
98 mutex_unlock(&db_list
.lock
);
103 static const struct dentry_operations dma_buf_dentry_ops
= {
104 .d_dname
= dmabuffs_dname
,
105 .d_release
= dma_buf_release
,
108 static struct vfsmount
*dma_buf_mnt
;
110 static int dma_buf_fs_init_context(struct fs_context
*fc
)
112 struct pseudo_fs_context
*ctx
;
114 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
117 ctx
->dops
= &dma_buf_dentry_ops
;
121 static struct file_system_type dma_buf_fs_type
= {
123 .init_fs_context
= dma_buf_fs_init_context
,
124 .kill_sb
= kill_anon_super
,
127 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
129 struct dma_buf
*dmabuf
;
131 if (!is_dma_buf_file(file
))
134 dmabuf
= file
->private_data
;
136 /* check if buffer supports mmap */
137 if (!dmabuf
->ops
->mmap
)
140 /* check for overflowing the buffer's size */
141 if (vma
->vm_pgoff
+ vma_pages(vma
) >
142 dmabuf
->size
>> PAGE_SHIFT
)
145 return dmabuf
->ops
->mmap(dmabuf
, vma
);
148 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
150 struct dma_buf
*dmabuf
;
153 if (!is_dma_buf_file(file
))
156 dmabuf
= file
->private_data
;
158 /* only support discovering the end of the buffer,
159 but also allow SEEK_SET to maintain the idiomatic
160 SEEK_END(0), SEEK_CUR(0) pattern */
161 if (whence
== SEEK_END
)
163 else if (whence
== SEEK_SET
)
171 return base
+ offset
;
175 * DOC: implicit fence polling
177 * To support cross-device and cross-driver synchronization of buffer access
178 * implicit fences (represented internally in the kernel with &struct dma_fence)
179 * can be attached to a &dma_buf. The glue for that and a few related things are
180 * provided in the &dma_resv structure.
182 * Userspace can query the state of these implicitly tracked fences using poll()
183 * and related system calls:
185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
186 * most recent write or exclusive fence.
188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
189 * all attached fences, shared and exclusive ones.
191 * Note that this only signals the completion of the respective fences, i.e. the
192 * DMA transfers are complete. Cache flushing and any other necessary
193 * preparations before CPU access can begin still need to happen.
196 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
198 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
201 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
202 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
204 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
207 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
209 struct dma_buf
*dmabuf
;
210 struct dma_resv
*resv
;
211 struct dma_resv_list
*fobj
;
212 struct dma_fence
*fence_excl
;
214 unsigned shared_count
, seq
;
216 dmabuf
= file
->private_data
;
217 if (!dmabuf
|| !dmabuf
->resv
)
222 poll_wait(file
, &dmabuf
->poll
, poll
);
224 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
229 seq
= read_seqcount_begin(&resv
->seq
);
232 fobj
= rcu_dereference(resv
->fence
);
234 shared_count
= fobj
->shared_count
;
237 fence_excl
= rcu_dereference(resv
->fence_excl
);
238 if (read_seqcount_retry(&resv
->seq
, seq
)) {
243 if (fence_excl
&& (!(events
& EPOLLOUT
) || shared_count
== 0)) {
244 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_excl
;
245 __poll_t pevents
= EPOLLIN
;
247 if (shared_count
== 0)
250 spin_lock_irq(&dmabuf
->poll
.lock
);
252 dcb
->active
|= pevents
;
255 dcb
->active
= pevents
;
256 spin_unlock_irq(&dmabuf
->poll
.lock
);
258 if (events
& pevents
) {
259 if (!dma_fence_get_rcu(fence_excl
)) {
260 /* force a recheck */
262 dma_buf_poll_cb(NULL
, &dcb
->cb
);
263 } else if (!dma_fence_add_callback(fence_excl
, &dcb
->cb
,
266 dma_fence_put(fence_excl
);
269 * No callback queued, wake up any additional
272 dma_fence_put(fence_excl
);
273 dma_buf_poll_cb(NULL
, &dcb
->cb
);
278 if ((events
& EPOLLOUT
) && shared_count
> 0) {
279 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_shared
;
282 /* Only queue a new callback if no event has fired yet */
283 spin_lock_irq(&dmabuf
->poll
.lock
);
287 dcb
->active
= EPOLLOUT
;
288 spin_unlock_irq(&dmabuf
->poll
.lock
);
290 if (!(events
& EPOLLOUT
))
293 for (i
= 0; i
< shared_count
; ++i
) {
294 struct dma_fence
*fence
= rcu_dereference(fobj
->shared
[i
]);
296 if (!dma_fence_get_rcu(fence
)) {
298 * fence refcount dropped to zero, this means
299 * that fobj has been freed
301 * call dma_buf_poll_cb and force a recheck!
304 dma_buf_poll_cb(NULL
, &dcb
->cb
);
307 if (!dma_fence_add_callback(fence
, &dcb
->cb
,
309 dma_fence_put(fence
);
313 dma_fence_put(fence
);
316 /* No callback queued, wake up any additional waiters. */
317 if (i
== shared_count
)
318 dma_buf_poll_cb(NULL
, &dcb
->cb
);
327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
328 * The name of the dma-buf buffer can only be set when the dma-buf is not
329 * attached to any devices. It could theoritically support changing the
330 * name of the dma-buf if the same piece of memory is used for multiple
331 * purpose between different devices.
333 * @dmabuf: [in] dmabuf buffer that will be renamed.
334 * @buf: [in] A piece of userspace memory that contains the name of
337 * Returns 0 on success. If the dma-buf buffer is already attached to
338 * devices, return -EBUSY.
341 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
343 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
347 return PTR_ERR(name
);
349 dma_resv_lock(dmabuf
->resv
, NULL
);
350 if (!list_empty(&dmabuf
->attachments
)) {
355 spin_lock(&dmabuf
->name_lock
);
358 spin_unlock(&dmabuf
->name_lock
);
361 dma_resv_unlock(dmabuf
->resv
);
365 static long dma_buf_ioctl(struct file
*file
,
366 unsigned int cmd
, unsigned long arg
)
368 struct dma_buf
*dmabuf
;
369 struct dma_buf_sync sync
;
370 enum dma_data_direction direction
;
373 dmabuf
= file
->private_data
;
376 case DMA_BUF_IOCTL_SYNC
:
377 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
380 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
383 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
384 case DMA_BUF_SYNC_READ
:
385 direction
= DMA_FROM_DEVICE
;
387 case DMA_BUF_SYNC_WRITE
:
388 direction
= DMA_TO_DEVICE
;
390 case DMA_BUF_SYNC_RW
:
391 direction
= DMA_BIDIRECTIONAL
;
397 if (sync
.flags
& DMA_BUF_SYNC_END
)
398 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
400 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
404 case DMA_BUF_SET_NAME_A
:
405 case DMA_BUF_SET_NAME_B
:
406 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
413 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
415 struct dma_buf
*dmabuf
= file
->private_data
;
417 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
418 /* Don't count the temporary reference taken inside procfs seq_show */
419 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
420 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
421 spin_lock(&dmabuf
->name_lock
);
423 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
424 spin_unlock(&dmabuf
->name_lock
);
427 static const struct file_operations dma_buf_fops
= {
428 .release
= dma_buf_file_release
,
429 .mmap
= dma_buf_mmap_internal
,
430 .llseek
= dma_buf_llseek
,
431 .poll
= dma_buf_poll
,
432 .unlocked_ioctl
= dma_buf_ioctl
,
433 .compat_ioctl
= compat_ptr_ioctl
,
434 .show_fdinfo
= dma_buf_show_fdinfo
,
438 * is_dma_buf_file - Check if struct file* is associated with dma_buf
440 static inline int is_dma_buf_file(struct file
*file
)
442 return file
->f_op
== &dma_buf_fops
;
445 static struct file
*dma_buf_getfile(struct dma_buf
*dmabuf
, int flags
)
448 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
451 return ERR_CAST(inode
);
453 inode
->i_size
= dmabuf
->size
;
454 inode_set_bytes(inode
, dmabuf
->size
);
456 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
457 flags
, &dma_buf_fops
);
460 file
->f_flags
= flags
& (O_ACCMODE
| O_NONBLOCK
);
461 file
->private_data
= dmabuf
;
462 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
472 * DOC: dma buf device access
474 * For device DMA access to a shared DMA buffer the usual sequence of operations
477 * 1. The exporter defines his exporter instance using
478 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
479 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
480 * as a file descriptor by calling dma_buf_fd().
482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
483 * to share with: First the filedescriptor is converted to a &dma_buf using
484 * dma_buf_get(). Then the buffer is attached to the device using
487 * Up to this stage the exporter is still free to migrate or reallocate the
490 * 3. Once the buffer is attached to all devices userspace can initiate DMA
491 * access to the shared buffer. In the kernel this is done by calling
492 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
494 * 4. Once a driver is done with a shared buffer it needs to call
495 * dma_buf_detach() (after cleaning up any mappings) and then release the
496 * reference acquired with dma_buf_get by calling dma_buf_put().
498 * For the detailed semantics exporters are expected to implement see
503 * dma_buf_export - Creates a new dma_buf, and associates an anon file
504 * with this buffer, so it can be exported.
505 * Also connect the allocator specific data and ops to the buffer.
506 * Additionally, provide a name string for exporter; useful in debugging.
508 * @exp_info: [in] holds all the export related information provided
509 * by the exporter. see &struct dma_buf_export_info
510 * for further details.
512 * Returns, on success, a newly created dma_buf object, which wraps the
513 * supplied private data and operations for dma_buf_ops. On either missing
514 * ops, or error in allocating struct dma_buf, will return negative error.
516 * For most cases the easiest way to create @exp_info is through the
517 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
519 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
521 struct dma_buf
*dmabuf
;
522 struct dma_resv
*resv
= exp_info
->resv
;
524 size_t alloc_size
= sizeof(struct dma_buf
);
528 alloc_size
+= sizeof(struct dma_resv
);
530 /* prevent &dma_buf[1] == dma_buf->resv */
533 if (WARN_ON(!exp_info
->priv
535 || !exp_info
->ops
->map_dma_buf
536 || !exp_info
->ops
->unmap_dma_buf
537 || !exp_info
->ops
->release
)) {
538 return ERR_PTR(-EINVAL
);
541 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
542 (exp_info
->ops
->pin
|| exp_info
->ops
->unpin
)))
543 return ERR_PTR(-EINVAL
);
545 if (WARN_ON(!exp_info
->ops
->pin
!= !exp_info
->ops
->unpin
))
546 return ERR_PTR(-EINVAL
);
548 if (!try_module_get(exp_info
->owner
))
549 return ERR_PTR(-ENOENT
);
551 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
557 dmabuf
->priv
= exp_info
->priv
;
558 dmabuf
->ops
= exp_info
->ops
;
559 dmabuf
->size
= exp_info
->size
;
560 dmabuf
->exp_name
= exp_info
->exp_name
;
561 dmabuf
->owner
= exp_info
->owner
;
562 spin_lock_init(&dmabuf
->name_lock
);
563 init_waitqueue_head(&dmabuf
->poll
);
564 dmabuf
->cb_excl
.poll
= dmabuf
->cb_shared
.poll
= &dmabuf
->poll
;
565 dmabuf
->cb_excl
.active
= dmabuf
->cb_shared
.active
= 0;
568 resv
= (struct dma_resv
*)&dmabuf
[1];
573 file
= dma_buf_getfile(dmabuf
, exp_info
->flags
);
579 file
->f_mode
|= FMODE_LSEEK
;
582 mutex_init(&dmabuf
->lock
);
583 INIT_LIST_HEAD(&dmabuf
->attachments
);
585 mutex_lock(&db_list
.lock
);
586 list_add(&dmabuf
->list_node
, &db_list
.head
);
587 mutex_unlock(&db_list
.lock
);
594 module_put(exp_info
->owner
);
597 EXPORT_SYMBOL_GPL(dma_buf_export
);
600 * dma_buf_fd - returns a file descriptor for the given dma_buf
601 * @dmabuf: [in] pointer to dma_buf for which fd is required.
602 * @flags: [in] flags to give to fd
604 * On success, returns an associated 'fd'. Else, returns error.
606 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
610 if (!dmabuf
|| !dmabuf
->file
)
613 fd
= get_unused_fd_flags(flags
);
617 fd_install(fd
, dmabuf
->file
);
621 EXPORT_SYMBOL_GPL(dma_buf_fd
);
624 * dma_buf_get - returns the dma_buf structure related to an fd
625 * @fd: [in] fd associated with the dma_buf to be returned
627 * On success, returns the dma_buf structure associated with an fd; uses
628 * file's refcounting done by fget to increase refcount. returns ERR_PTR
631 struct dma_buf
*dma_buf_get(int fd
)
638 return ERR_PTR(-EBADF
);
640 if (!is_dma_buf_file(file
)) {
642 return ERR_PTR(-EINVAL
);
645 return file
->private_data
;
647 EXPORT_SYMBOL_GPL(dma_buf_get
);
650 * dma_buf_put - decreases refcount of the buffer
651 * @dmabuf: [in] buffer to reduce refcount of
653 * Uses file's refcounting done implicitly by fput().
655 * If, as a result of this call, the refcount becomes 0, the 'release' file
656 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
657 * in turn, and frees the memory allocated for dmabuf when exported.
659 void dma_buf_put(struct dma_buf
*dmabuf
)
661 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
666 EXPORT_SYMBOL_GPL(dma_buf_put
);
669 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
670 * calls attach() of dma_buf_ops to allow device-specific attach functionality
671 * @dmabuf: [in] buffer to attach device to.
672 * @dev: [in] device to be attached.
673 * @importer_ops: [in] importer operations for the attachment
674 * @importer_priv: [in] importer private pointer for the attachment
676 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
677 * must be cleaned up by calling dma_buf_detach().
681 * A pointer to newly created &dma_buf_attachment on success, or a negative
682 * error code wrapped into a pointer on failure.
684 * Note that this can fail if the backing storage of @dmabuf is in a place not
685 * accessible to @dev, and cannot be moved to a more suitable place. This is
686 * indicated with the error code -EBUSY.
688 struct dma_buf_attachment
*
689 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
690 const struct dma_buf_attach_ops
*importer_ops
,
693 struct dma_buf_attachment
*attach
;
696 if (WARN_ON(!dmabuf
|| !dev
))
697 return ERR_PTR(-EINVAL
);
699 if (WARN_ON(importer_ops
&& !importer_ops
->move_notify
))
700 return ERR_PTR(-EINVAL
);
702 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
704 return ERR_PTR(-ENOMEM
);
707 attach
->dmabuf
= dmabuf
;
709 attach
->peer2peer
= importer_ops
->allow_peer2peer
;
710 attach
->importer_ops
= importer_ops
;
711 attach
->importer_priv
= importer_priv
;
713 if (dmabuf
->ops
->attach
) {
714 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
718 dma_resv_lock(dmabuf
->resv
, NULL
);
719 list_add(&attach
->node
, &dmabuf
->attachments
);
720 dma_resv_unlock(dmabuf
->resv
);
722 /* When either the importer or the exporter can't handle dynamic
723 * mappings we cache the mapping here to avoid issues with the
724 * reservation object lock.
726 if (dma_buf_attachment_is_dynamic(attach
) !=
727 dma_buf_is_dynamic(dmabuf
)) {
728 struct sg_table
*sgt
;
730 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
731 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
732 ret
= dma_buf_pin(attach
);
737 sgt
= dmabuf
->ops
->map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
739 sgt
= ERR_PTR(-ENOMEM
);
744 if (dma_buf_is_dynamic(attach
->dmabuf
))
745 dma_resv_unlock(attach
->dmabuf
->resv
);
747 attach
->dir
= DMA_BIDIRECTIONAL
;
757 if (dma_buf_is_dynamic(attach
->dmabuf
))
758 dma_buf_unpin(attach
);
761 if (dma_buf_is_dynamic(attach
->dmabuf
))
762 dma_resv_unlock(attach
->dmabuf
->resv
);
764 dma_buf_detach(dmabuf
, attach
);
767 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach
);
770 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
771 * @dmabuf: [in] buffer to attach device to.
772 * @dev: [in] device to be attached.
774 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
777 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
780 return dma_buf_dynamic_attach(dmabuf
, dev
, NULL
, NULL
);
782 EXPORT_SYMBOL_GPL(dma_buf_attach
);
785 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
786 * optionally calls detach() of dma_buf_ops for device-specific detach
787 * @dmabuf: [in] buffer to detach from.
788 * @attach: [in] attachment to be detached; is free'd after this call.
790 * Clean up a device attachment obtained by calling dma_buf_attach().
792 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
794 if (WARN_ON(!dmabuf
|| !attach
))
798 if (dma_buf_is_dynamic(attach
->dmabuf
))
799 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
801 dmabuf
->ops
->unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
803 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
804 dma_buf_unpin(attach
);
805 dma_resv_unlock(attach
->dmabuf
->resv
);
809 dma_resv_lock(dmabuf
->resv
, NULL
);
810 list_del(&attach
->node
);
811 dma_resv_unlock(dmabuf
->resv
);
812 if (dmabuf
->ops
->detach
)
813 dmabuf
->ops
->detach(dmabuf
, attach
);
817 EXPORT_SYMBOL_GPL(dma_buf_detach
);
820 * dma_buf_pin - Lock down the DMA-buf
822 * @attach: [in] attachment which should be pinned
825 * 0 on success, negative error code on failure.
827 int dma_buf_pin(struct dma_buf_attachment
*attach
)
829 struct dma_buf
*dmabuf
= attach
->dmabuf
;
832 dma_resv_assert_held(dmabuf
->resv
);
834 if (dmabuf
->ops
->pin
)
835 ret
= dmabuf
->ops
->pin(attach
);
839 EXPORT_SYMBOL_GPL(dma_buf_pin
);
842 * dma_buf_unpin - Remove lock from DMA-buf
844 * @attach: [in] attachment which should be unpinned
846 void dma_buf_unpin(struct dma_buf_attachment
*attach
)
848 struct dma_buf
*dmabuf
= attach
->dmabuf
;
850 dma_resv_assert_held(dmabuf
->resv
);
852 if (dmabuf
->ops
->unpin
)
853 dmabuf
->ops
->unpin(attach
);
855 EXPORT_SYMBOL_GPL(dma_buf_unpin
);
858 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
859 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
861 * @attach: [in] attachment whose scatterlist is to be returned
862 * @direction: [in] direction of DMA transfer
864 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
865 * on error. May return -EINTR if it is interrupted by a signal.
867 * On success, the DMA addresses and lengths in the returned scatterlist are
870 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
871 * the underlying backing storage is pinned for as long as a mapping exists,
872 * therefore users/importers should not hold onto a mapping for undue amounts of
875 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
876 enum dma_data_direction direction
)
878 struct sg_table
*sg_table
;
883 if (WARN_ON(!attach
|| !attach
->dmabuf
))
884 return ERR_PTR(-EINVAL
);
886 if (dma_buf_attachment_is_dynamic(attach
))
887 dma_resv_assert_held(attach
->dmabuf
->resv
);
891 * Two mappings with different directions for the same
892 * attachment are not allowed.
894 if (attach
->dir
!= direction
&&
895 attach
->dir
!= DMA_BIDIRECTIONAL
)
896 return ERR_PTR(-EBUSY
);
901 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
902 dma_resv_assert_held(attach
->dmabuf
->resv
);
903 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
)) {
904 r
= dma_buf_pin(attach
);
910 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
912 sg_table
= ERR_PTR(-ENOMEM
);
914 if (IS_ERR(sg_table
) && dma_buf_is_dynamic(attach
->dmabuf
) &&
915 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
916 dma_buf_unpin(attach
);
918 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
919 attach
->sgt
= sg_table
;
920 attach
->dir
= direction
;
923 #ifdef CONFIG_DMA_API_DEBUG
924 if (!IS_ERR(sg_table
)) {
925 struct scatterlist
*sg
;
930 for_each_sgtable_dma_sg(sg_table
, sg
, i
) {
931 addr
= sg_dma_address(sg
);
932 len
= sg_dma_len(sg
);
933 if (!PAGE_ALIGNED(addr
) || !PAGE_ALIGNED(len
)) {
934 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
935 __func__
, addr
, len
);
939 #endif /* CONFIG_DMA_API_DEBUG */
943 EXPORT_SYMBOL_GPL(dma_buf_map_attachment
);
946 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
947 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
949 * @attach: [in] attachment to unmap buffer from
950 * @sg_table: [in] scatterlist info of the buffer to unmap
951 * @direction: [in] direction of DMA transfer
953 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
955 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
956 struct sg_table
*sg_table
,
957 enum dma_data_direction direction
)
961 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
964 if (dma_buf_attachment_is_dynamic(attach
))
965 dma_resv_assert_held(attach
->dmabuf
->resv
);
967 if (attach
->sgt
== sg_table
)
970 if (dma_buf_is_dynamic(attach
->dmabuf
))
971 dma_resv_assert_held(attach
->dmabuf
->resv
);
973 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
975 if (dma_buf_is_dynamic(attach
->dmabuf
) &&
976 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
977 dma_buf_unpin(attach
);
979 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment
);
982 * dma_buf_move_notify - notify attachments that DMA-buf is moving
984 * @dmabuf: [in] buffer which is moving
986 * Informs all attachmenst that they need to destroy and recreated all their
989 void dma_buf_move_notify(struct dma_buf
*dmabuf
)
991 struct dma_buf_attachment
*attach
;
993 dma_resv_assert_held(dmabuf
->resv
);
995 list_for_each_entry(attach
, &dmabuf
->attachments
, node
)
996 if (attach
->importer_ops
)
997 attach
->importer_ops
->move_notify(attach
);
999 EXPORT_SYMBOL_GPL(dma_buf_move_notify
);
1004 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1006 * - Fallback operations in the kernel, for example when a device is connected
1007 * over USB and the kernel needs to shuffle the data around first before
1008 * sending it away. Cache coherency is handled by braketing any transactions
1009 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1012 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1013 * vmap interface is introduced. Note that on very old 32-bit architectures
1014 * vmalloc space might be limited and result in vmap calls failing.
1017 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1018 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1020 * The vmap call can fail if there is no vmap support in the exporter, or if
1021 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1022 * that the dma-buf layer keeps a reference count for all vmap access and
1023 * calls down into the exporter's vmap function only when no vmapping exists,
1024 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1025 * provided by taking the dma_buf->lock mutex.
1027 * - For full compatibility on the importer side with existing userspace
1028 * interfaces, which might already support mmap'ing buffers. This is needed in
1029 * many processing pipelines (e.g. feeding a software rendered image into a
1030 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1031 * framework already supported this and for DMA buffer file descriptors to
1032 * replace ION buffers mmap support was needed.
1034 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1035 * fd. But like for CPU access there's a need to braket the actual access,
1036 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1037 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1040 * Some systems might need some sort of cache coherency management e.g. when
1041 * CPU and GPU domains are being accessed through dma-buf at the same time.
1042 * To circumvent this problem there are begin/end coherency markers, that
1043 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1044 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1045 * sequence would be used like following:
1048 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1049 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1050 * want (with the new data being consumed by say the GPU or the scanout
1052 * - munmap once you don't need the buffer any more
1054 * For correctness and optimal performance, it is always required to use
1055 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1056 * mapped address. Userspace cannot rely on coherent access, even when there
1057 * are systems where it just works without calling these ioctls.
1059 * - And as a CPU fallback in userspace processing pipelines.
1061 * Similar to the motivation for kernel cpu access it is again important that
1062 * the userspace code of a given importing subsystem can use the same
1063 * interfaces with a imported dma-buf buffer object as with a native buffer
1064 * object. This is especially important for drm where the userspace part of
1065 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1066 * use a different way to mmap a buffer rather invasive.
1068 * The assumption in the current dma-buf interfaces is that redirecting the
1069 * initial mmap is all that's needed. A survey of some of the existing
1070 * subsystems shows that no driver seems to do any nefarious thing like
1071 * syncing up with outstanding asynchronous processing on the device or
1072 * allocating special resources at fault time. So hopefully this is good
1073 * enough, since adding interfaces to intercept pagefaults and allow pte
1074 * shootdowns would increase the complexity quite a bit.
1077 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1080 * If the importing subsystem simply provides a special-purpose mmap call to
1081 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1082 * equally achieve that for a dma-buf object.
1085 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1086 enum dma_data_direction direction
)
1088 bool write
= (direction
== DMA_BIDIRECTIONAL
||
1089 direction
== DMA_TO_DEVICE
);
1090 struct dma_resv
*resv
= dmabuf
->resv
;
1093 /* Wait on any implicit rendering fences */
1094 ret
= dma_resv_wait_timeout_rcu(resv
, write
, true,
1095 MAX_SCHEDULE_TIMEOUT
);
1103 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1104 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1105 * preparations. Coherency is only guaranteed in the specified range for the
1106 * specified access direction.
1107 * @dmabuf: [in] buffer to prepare cpu access for.
1108 * @direction: [in] length of range for cpu access.
1110 * After the cpu access is complete the caller should call
1111 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1112 * it guaranteed to be coherent with other DMA access.
1114 * Can return negative error values, returns 0 on success.
1116 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1117 enum dma_data_direction direction
)
1121 if (WARN_ON(!dmabuf
))
1124 if (dmabuf
->ops
->begin_cpu_access
)
1125 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
1127 /* Ensure that all fences are waited upon - but we first allow
1128 * the native handler the chance to do so more efficiently if it
1129 * chooses. A double invocation here will be reasonably cheap no-op.
1132 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1136 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access
);
1139 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1140 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1141 * actions. Coherency is only guaranteed in the specified range for the
1142 * specified access direction.
1143 * @dmabuf: [in] buffer to complete cpu access for.
1144 * @direction: [in] length of range for cpu access.
1146 * This terminates CPU access started with dma_buf_begin_cpu_access().
1148 * Can return negative error values, returns 0 on success.
1150 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1151 enum dma_data_direction direction
)
1157 if (dmabuf
->ops
->end_cpu_access
)
1158 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1162 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access
);
1166 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1167 * @dmabuf: [in] buffer that should back the vma
1168 * @vma: [in] vma for the mmap
1169 * @pgoff: [in] offset in pages where this mmap should start within the
1172 * This function adjusts the passed in vma so that it points at the file of the
1173 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1174 * checking on the size of the vma. Then it calls the exporters mmap function to
1175 * set up the mapping.
1177 * Can return negative error values, returns 0 on success.
1179 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1180 unsigned long pgoff
)
1182 if (WARN_ON(!dmabuf
|| !vma
))
1185 /* check if buffer supports mmap */
1186 if (!dmabuf
->ops
->mmap
)
1189 /* check for offset overflow */
1190 if (pgoff
+ vma_pages(vma
) < pgoff
)
1193 /* check for overflowing the buffer's size */
1194 if (pgoff
+ vma_pages(vma
) >
1195 dmabuf
->size
>> PAGE_SHIFT
)
1198 /* readjust the vma */
1199 vma_set_file(vma
, dmabuf
->file
);
1200 vma
->vm_pgoff
= pgoff
;
1202 return dmabuf
->ops
->mmap(dmabuf
, vma
);
1204 EXPORT_SYMBOL_GPL(dma_buf_mmap
);
1207 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1208 * address space. Same restrictions as for vmap and friends apply.
1209 * @dmabuf: [in] buffer to vmap
1210 * @map: [out] returns the vmap pointer
1212 * This call may fail due to lack of virtual mapping address space.
1213 * These calls are optional in drivers. The intended use for them
1214 * is for mapping objects linear in kernel space for high use objects.
1215 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1217 * Returns 0 on success, or a negative errno code otherwise.
1219 int dma_buf_vmap(struct dma_buf
*dmabuf
, struct dma_buf_map
*map
)
1221 struct dma_buf_map ptr
;
1224 dma_buf_map_clear(map
);
1226 if (WARN_ON(!dmabuf
))
1229 if (!dmabuf
->ops
->vmap
)
1232 mutex_lock(&dmabuf
->lock
);
1233 if (dmabuf
->vmapping_counter
) {
1234 dmabuf
->vmapping_counter
++;
1235 BUG_ON(dma_buf_map_is_null(&dmabuf
->vmap_ptr
));
1236 *map
= dmabuf
->vmap_ptr
;
1240 BUG_ON(dma_buf_map_is_set(&dmabuf
->vmap_ptr
));
1242 ret
= dmabuf
->ops
->vmap(dmabuf
, &ptr
);
1243 if (WARN_ON_ONCE(ret
))
1246 dmabuf
->vmap_ptr
= ptr
;
1247 dmabuf
->vmapping_counter
= 1;
1249 *map
= dmabuf
->vmap_ptr
;
1252 mutex_unlock(&dmabuf
->lock
);
1255 EXPORT_SYMBOL_GPL(dma_buf_vmap
);
1258 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1259 * @dmabuf: [in] buffer to vunmap
1260 * @map: [in] vmap pointer to vunmap
1262 void dma_buf_vunmap(struct dma_buf
*dmabuf
, struct dma_buf_map
*map
)
1264 if (WARN_ON(!dmabuf
))
1267 BUG_ON(dma_buf_map_is_null(&dmabuf
->vmap_ptr
));
1268 BUG_ON(dmabuf
->vmapping_counter
== 0);
1269 BUG_ON(!dma_buf_map_is_equal(&dmabuf
->vmap_ptr
, map
));
1271 mutex_lock(&dmabuf
->lock
);
1272 if (--dmabuf
->vmapping_counter
== 0) {
1273 if (dmabuf
->ops
->vunmap
)
1274 dmabuf
->ops
->vunmap(dmabuf
, map
);
1275 dma_buf_map_clear(&dmabuf
->vmap_ptr
);
1277 mutex_unlock(&dmabuf
->lock
);
1279 EXPORT_SYMBOL_GPL(dma_buf_vunmap
);
1281 #ifdef CONFIG_DEBUG_FS
1282 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1285 struct dma_buf
*buf_obj
;
1286 struct dma_buf_attachment
*attach_obj
;
1287 struct dma_resv
*robj
;
1288 struct dma_resv_list
*fobj
;
1289 struct dma_fence
*fence
;
1291 int count
= 0, attach_count
, shared_count
, i
;
1294 ret
= mutex_lock_interruptible(&db_list
.lock
);
1299 seq_puts(s
, "\nDma-buf Objects:\n");
1300 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1301 "size", "flags", "mode", "count", "ino");
1303 list_for_each_entry(buf_obj
, &db_list
.head
, list_node
) {
1305 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1309 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1311 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1312 file_count(buf_obj
->file
),
1314 file_inode(buf_obj
->file
)->i_ino
,
1315 buf_obj
->name
?: "");
1317 robj
= buf_obj
->resv
;
1319 seq
= read_seqcount_begin(&robj
->seq
);
1321 fobj
= rcu_dereference(robj
->fence
);
1322 shared_count
= fobj
? fobj
->shared_count
: 0;
1323 fence
= rcu_dereference(robj
->fence_excl
);
1324 if (!read_seqcount_retry(&robj
->seq
, seq
))
1330 seq_printf(s
, "\tExclusive fence: %s %s %ssignalled\n",
1331 fence
->ops
->get_driver_name(fence
),
1332 fence
->ops
->get_timeline_name(fence
),
1333 dma_fence_is_signaled(fence
) ? "" : "un");
1334 for (i
= 0; i
< shared_count
; i
++) {
1335 fence
= rcu_dereference(fobj
->shared
[i
]);
1336 if (!dma_fence_get_rcu(fence
))
1338 seq_printf(s
, "\tShared fence: %s %s %ssignalled\n",
1339 fence
->ops
->get_driver_name(fence
),
1340 fence
->ops
->get_timeline_name(fence
),
1341 dma_fence_is_signaled(fence
) ? "" : "un");
1342 dma_fence_put(fence
);
1346 seq_puts(s
, "\tAttached Devices:\n");
1349 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1350 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1353 dma_resv_unlock(buf_obj
->resv
);
1355 seq_printf(s
, "Total %d devices attached\n\n",
1359 size
+= buf_obj
->size
;
1362 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1364 mutex_unlock(&db_list
.lock
);
1368 mutex_unlock(&db_list
.lock
);
1372 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1374 static struct dentry
*dma_buf_debugfs_dir
;
1376 static int dma_buf_init_debugfs(void)
1381 d
= debugfs_create_dir("dma_buf", NULL
);
1385 dma_buf_debugfs_dir
= d
;
1387 d
= debugfs_create_file("bufinfo", S_IRUGO
, dma_buf_debugfs_dir
,
1388 NULL
, &dma_buf_debug_fops
);
1390 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1391 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1392 dma_buf_debugfs_dir
= NULL
;
1399 static void dma_buf_uninit_debugfs(void)
1401 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1404 static inline int dma_buf_init_debugfs(void)
1408 static inline void dma_buf_uninit_debugfs(void)
1413 static int __init
dma_buf_init(void)
1415 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1416 if (IS_ERR(dma_buf_mnt
))
1417 return PTR_ERR(dma_buf_mnt
);
1419 mutex_init(&db_list
.lock
);
1420 INIT_LIST_HEAD(&db_list
.head
);
1421 dma_buf_init_debugfs();
1424 subsys_initcall(dma_buf_init
);
1426 static void __exit
dma_buf_deinit(void)
1428 dma_buf_uninit_debugfs();
1429 kern_unmount(dma_buf_mnt
);
1431 __exitcall(dma_buf_deinit
);