Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / dma / imx-sdma.c
blob41ba21eea7c8b2fee9125f27fa47b2fab7cc5cc7
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
45 #include "virt-dma.h"
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
79 * Buffer descriptor status values.
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
90 * Data Node descriptor status values.
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
98 * IPCV2 descriptor status values.
100 #define BD_IPCV2_END_OF_FRAME 0x40
102 #define IPCV2_MAX_NODES 50
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
107 #define DATA_ERROR 0x10000000
110 * Buffer descriptor commands.
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
122 * Change endianness indicator in the BD command field
124 #define CHANGE_ENDIANNESS 0x80
127 * p_2_p watermark_level description
128 * Bits Name Description
129 * 0-7 Lower WML Lower watermark level
130 * 8 PS 1: Pad Swallowing
131 * 0: No Pad Swallowing
132 * 9 PA 1: Pad Adding
133 * 0: No Pad Adding
134 * 10 SPDIF If this bit is set both source
135 * and destination are on SPBA
136 * 11 Source Bit(SP) 1: Source on SPBA
137 * 0: Source on AIPS
138 * 12 Destination Bit(DP) 1: Destination on SPBA
139 * 0: Destination on AIPS
140 * 13-15 --------- MUST BE 0
141 * 16-23 Higher WML HWML
142 * 24-27 N Total number of samples after
143 * which Pad adding/Swallowing
144 * must be done. It must be odd.
145 * 28 Lower WML Event(LWE) SDMA events reg to check for
146 * LWML event mask
147 * 0: LWE in EVENTS register
148 * 1: LWE in EVENTS2 register
149 * 29 Higher WML Event(HWE) SDMA events reg to check for
150 * HWML event mask
151 * 0: HWE in EVENTS register
152 * 1: HWE in EVENTS2 register
153 * 30 --------- MUST BE 0
154 * 31 CONT 1: Amount of samples to be
155 * transferred is unknown and
156 * script will keep on
157 * transferring samples as long as
158 * both events are detected and
159 * script must be manually stopped
160 * by the application
161 * 0: The amount of samples to be
162 * transferred is equal to the
163 * count field of mode word
165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
166 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
181 BIT(DMA_MEM_TO_DEV) | \
182 BIT(DMA_DEV_TO_DEV))
185 * Mode/Count of data node descriptors - IPCv2
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189 u32 count : 16; /* size of the buffer pointed by this BD */
190 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
191 u32 command : 8; /* command mostly used for channel 0 */
195 * Buffer descriptor
197 struct sdma_buffer_descriptor {
198 struct sdma_mode_count mode;
199 u32 buffer_addr; /* address of the buffer described */
200 u32 ext_buffer_addr; /* extended buffer address */
201 } __attribute__ ((packed));
204 * struct sdma_channel_control - Channel control Block
206 * @current_bd_ptr: current buffer descriptor processed
207 * @base_bd_ptr: first element of buffer descriptor array
208 * @unused: padding. The SDMA engine expects an array of 128 byte
209 * control blocks
211 struct sdma_channel_control {
212 u32 current_bd_ptr;
213 u32 base_bd_ptr;
214 u32 unused[2];
215 } __attribute__ ((packed));
218 * struct sdma_state_registers - SDMA context for a channel
220 * @pc: program counter
221 * @unused1: unused
222 * @t: test bit: status of arithmetic & test instruction
223 * @rpc: return program counter
224 * @unused0: unused
225 * @sf: source fault while loading data
226 * @spc: loop start program counter
227 * @unused2: unused
228 * @df: destination fault while storing data
229 * @epc: loop end program counter
230 * @lm: loop mode
232 struct sdma_state_registers {
233 u32 pc :14;
234 u32 unused1: 1;
235 u32 t : 1;
236 u32 rpc :14;
237 u32 unused0: 1;
238 u32 sf : 1;
239 u32 spc :14;
240 u32 unused2: 1;
241 u32 df : 1;
242 u32 epc :14;
243 u32 lm : 2;
244 } __attribute__ ((packed));
247 * struct sdma_context_data - sdma context specific to a channel
249 * @channel_state: channel state bits
250 * @gReg: general registers
251 * @mda: burst dma destination address register
252 * @msa: burst dma source address register
253 * @ms: burst dma status register
254 * @md: burst dma data register
255 * @pda: peripheral dma destination address register
256 * @psa: peripheral dma source address register
257 * @ps: peripheral dma status register
258 * @pd: peripheral dma data register
259 * @ca: CRC polynomial register
260 * @cs: CRC accumulator register
261 * @dda: dedicated core destination address register
262 * @dsa: dedicated core source address register
263 * @ds: dedicated core status register
264 * @dd: dedicated core data register
265 * @scratch0: 1st word of dedicated ram for context switch
266 * @scratch1: 2nd word of dedicated ram for context switch
267 * @scratch2: 3rd word of dedicated ram for context switch
268 * @scratch3: 4th word of dedicated ram for context switch
269 * @scratch4: 5th word of dedicated ram for context switch
270 * @scratch5: 6th word of dedicated ram for context switch
271 * @scratch6: 7th word of dedicated ram for context switch
272 * @scratch7: 8th word of dedicated ram for context switch
274 struct sdma_context_data {
275 struct sdma_state_registers channel_state;
276 u32 gReg[8];
277 u32 mda;
278 u32 msa;
279 u32 ms;
280 u32 md;
281 u32 pda;
282 u32 psa;
283 u32 ps;
284 u32 pd;
285 u32 ca;
286 u32 cs;
287 u32 dda;
288 u32 dsa;
289 u32 ds;
290 u32 dd;
291 u32 scratch0;
292 u32 scratch1;
293 u32 scratch2;
294 u32 scratch3;
295 u32 scratch4;
296 u32 scratch5;
297 u32 scratch6;
298 u32 scratch7;
299 } __attribute__ ((packed));
302 struct sdma_engine;
305 * struct sdma_desc - descriptor structor for one transfer
306 * @vd: descriptor for virt dma
307 * @num_bd: number of descriptors currently handling
308 * @bd_phys: physical address of bd
309 * @buf_tail: ID of the buffer that was processed
310 * @buf_ptail: ID of the previous buffer that was processed
311 * @period_len: period length, used in cyclic.
312 * @chn_real_count: the real count updated from bd->mode.count
313 * @chn_count: the transfer count set
314 * @sdmac: sdma_channel pointer
315 * @bd: pointer of allocate bd
317 struct sdma_desc {
318 struct virt_dma_desc vd;
319 unsigned int num_bd;
320 dma_addr_t bd_phys;
321 unsigned int buf_tail;
322 unsigned int buf_ptail;
323 unsigned int period_len;
324 unsigned int chn_real_count;
325 unsigned int chn_count;
326 struct sdma_channel *sdmac;
327 struct sdma_buffer_descriptor *bd;
331 * struct sdma_channel - housekeeping for a SDMA channel
333 * @vc: virt_dma base structure
334 * @desc: sdma description including vd and other special member
335 * @sdma: pointer to the SDMA engine for this channel
336 * @channel: the channel number, matches dmaengine chan_id + 1
337 * @direction: transfer type. Needed for setting SDMA script
338 * @slave_config: Slave configuration
339 * @peripheral_type: Peripheral type. Needed for setting SDMA script
340 * @event_id0: aka dma request line
341 * @event_id1: for channels that use 2 events
342 * @word_size: peripheral access size
343 * @pc_from_device: script address for those device_2_memory
344 * @pc_to_device: script address for those memory_2_device
345 * @device_to_device: script address for those device_2_device
346 * @pc_to_pc: script address for those memory_2_memory
347 * @flags: loop mode or not
348 * @per_address: peripheral source or destination address in common case
349 * destination address in p_2_p case
350 * @per_address2: peripheral source address in p_2_p case
351 * @event_mask: event mask used in p_2_p script
352 * @watermark_level: value for gReg[7], some script will extend it from
353 * basic watermark such as p_2_p
354 * @shp_addr: value for gReg[6]
355 * @per_addr: value for gReg[2]
356 * @status: status of dma channel
357 * @context_loaded: ensure context is only loaded once
358 * @data: specific sdma interface structure
359 * @bd_pool: dma_pool for bd
360 * @terminate_worker: used to call back into terminate work function
362 struct sdma_channel {
363 struct virt_dma_chan vc;
364 struct sdma_desc *desc;
365 struct sdma_engine *sdma;
366 unsigned int channel;
367 enum dma_transfer_direction direction;
368 struct dma_slave_config slave_config;
369 enum sdma_peripheral_type peripheral_type;
370 unsigned int event_id0;
371 unsigned int event_id1;
372 enum dma_slave_buswidth word_size;
373 unsigned int pc_from_device, pc_to_device;
374 unsigned int device_to_device;
375 unsigned int pc_to_pc;
376 unsigned long flags;
377 dma_addr_t per_address, per_address2;
378 unsigned long event_mask[2];
379 unsigned long watermark_level;
380 u32 shp_addr, per_addr;
381 enum dma_status status;
382 bool context_loaded;
383 struct imx_dma_data data;
384 struct work_struct terminate_worker;
387 #define IMX_DMA_SG_LOOP BIT(0)
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
397 * struct sdma_firmware_header - Layout of the firmware image
399 * @magic: "SDMA"
400 * @version_major: increased whenever layout of struct
401 * sdma_script_start_addrs changes.
402 * @version_minor: firmware minor version (for binary compatible changes)
403 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
404 * @num_script_addrs: Number of script addresses in this image
405 * @ram_code_start: offset of SDMA ram image in this firmware image
406 * @ram_code_size: size of SDMA ram image
407 * @script_addrs: Stores the start address of the SDMA scripts
408 * (in SDMA memory space)
410 struct sdma_firmware_header {
411 u32 magic;
412 u32 version_major;
413 u32 version_minor;
414 u32 script_addrs_start;
415 u32 num_script_addrs;
416 u32 ram_code_start;
417 u32 ram_code_size;
420 struct sdma_driver_data {
421 int chnenbl0;
422 int num_events;
423 struct sdma_script_start_addrs *script_addrs;
424 bool check_ratio;
427 struct sdma_engine {
428 struct device *dev;
429 struct sdma_channel channel[MAX_DMA_CHANNELS];
430 struct sdma_channel_control *channel_control;
431 void __iomem *regs;
432 struct sdma_context_data *context;
433 dma_addr_t context_phys;
434 struct dma_device dma_device;
435 struct clk *clk_ipg;
436 struct clk *clk_ahb;
437 spinlock_t channel_0_lock;
438 u32 script_number;
439 struct sdma_script_start_addrs *script_addrs;
440 const struct sdma_driver_data *drvdata;
441 u32 spba_start_addr;
442 u32 spba_end_addr;
443 unsigned int irq;
444 dma_addr_t bd0_phys;
445 struct sdma_buffer_descriptor *bd0;
446 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
447 bool clk_ratio;
450 static int sdma_config_write(struct dma_chan *chan,
451 struct dma_slave_config *dmaengine_cfg,
452 enum dma_transfer_direction direction);
454 static struct sdma_driver_data sdma_imx31 = {
455 .chnenbl0 = SDMA_CHNENBL0_IMX31,
456 .num_events = 32,
459 static struct sdma_script_start_addrs sdma_script_imx25 = {
460 .ap_2_ap_addr = 729,
461 .uart_2_mcu_addr = 904,
462 .per_2_app_addr = 1255,
463 .mcu_2_app_addr = 834,
464 .uartsh_2_mcu_addr = 1120,
465 .per_2_shp_addr = 1329,
466 .mcu_2_shp_addr = 1048,
467 .ata_2_mcu_addr = 1560,
468 .mcu_2_ata_addr = 1479,
469 .app_2_per_addr = 1189,
470 .app_2_mcu_addr = 770,
471 .shp_2_per_addr = 1407,
472 .shp_2_mcu_addr = 979,
475 static struct sdma_driver_data sdma_imx25 = {
476 .chnenbl0 = SDMA_CHNENBL0_IMX35,
477 .num_events = 48,
478 .script_addrs = &sdma_script_imx25,
481 static struct sdma_driver_data sdma_imx35 = {
482 .chnenbl0 = SDMA_CHNENBL0_IMX35,
483 .num_events = 48,
486 static struct sdma_script_start_addrs sdma_script_imx51 = {
487 .ap_2_ap_addr = 642,
488 .uart_2_mcu_addr = 817,
489 .mcu_2_app_addr = 747,
490 .mcu_2_shp_addr = 961,
491 .ata_2_mcu_addr = 1473,
492 .mcu_2_ata_addr = 1392,
493 .app_2_per_addr = 1033,
494 .app_2_mcu_addr = 683,
495 .shp_2_per_addr = 1251,
496 .shp_2_mcu_addr = 892,
499 static struct sdma_driver_data sdma_imx51 = {
500 .chnenbl0 = SDMA_CHNENBL0_IMX35,
501 .num_events = 48,
502 .script_addrs = &sdma_script_imx51,
505 static struct sdma_script_start_addrs sdma_script_imx53 = {
506 .ap_2_ap_addr = 642,
507 .app_2_mcu_addr = 683,
508 .mcu_2_app_addr = 747,
509 .uart_2_mcu_addr = 817,
510 .shp_2_mcu_addr = 891,
511 .mcu_2_shp_addr = 960,
512 .uartsh_2_mcu_addr = 1032,
513 .spdif_2_mcu_addr = 1100,
514 .mcu_2_spdif_addr = 1134,
515 .firi_2_mcu_addr = 1193,
516 .mcu_2_firi_addr = 1290,
519 static struct sdma_driver_data sdma_imx53 = {
520 .chnenbl0 = SDMA_CHNENBL0_IMX35,
521 .num_events = 48,
522 .script_addrs = &sdma_script_imx53,
525 static struct sdma_script_start_addrs sdma_script_imx6q = {
526 .ap_2_ap_addr = 642,
527 .uart_2_mcu_addr = 817,
528 .mcu_2_app_addr = 747,
529 .per_2_per_addr = 6331,
530 .uartsh_2_mcu_addr = 1032,
531 .mcu_2_shp_addr = 960,
532 .app_2_mcu_addr = 683,
533 .shp_2_mcu_addr = 891,
534 .spdif_2_mcu_addr = 1100,
535 .mcu_2_spdif_addr = 1134,
538 static struct sdma_driver_data sdma_imx6q = {
539 .chnenbl0 = SDMA_CHNENBL0_IMX35,
540 .num_events = 48,
541 .script_addrs = &sdma_script_imx6q,
544 static struct sdma_script_start_addrs sdma_script_imx7d = {
545 .ap_2_ap_addr = 644,
546 .uart_2_mcu_addr = 819,
547 .mcu_2_app_addr = 749,
548 .uartsh_2_mcu_addr = 1034,
549 .mcu_2_shp_addr = 962,
550 .app_2_mcu_addr = 685,
551 .shp_2_mcu_addr = 893,
552 .spdif_2_mcu_addr = 1102,
553 .mcu_2_spdif_addr = 1136,
556 static struct sdma_driver_data sdma_imx7d = {
557 .chnenbl0 = SDMA_CHNENBL0_IMX35,
558 .num_events = 48,
559 .script_addrs = &sdma_script_imx7d,
562 static struct sdma_driver_data sdma_imx8mq = {
563 .chnenbl0 = SDMA_CHNENBL0_IMX35,
564 .num_events = 48,
565 .script_addrs = &sdma_script_imx7d,
566 .check_ratio = 1,
569 static const struct of_device_id sdma_dt_ids[] = {
570 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
571 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
572 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
573 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
574 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
575 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
576 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
577 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
578 { /* sentinel */ }
580 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
582 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
583 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
584 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
585 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
587 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
589 u32 chnenbl0 = sdma->drvdata->chnenbl0;
590 return chnenbl0 + event * 4;
593 static int sdma_config_ownership(struct sdma_channel *sdmac,
594 bool event_override, bool mcu_override, bool dsp_override)
596 struct sdma_engine *sdma = sdmac->sdma;
597 int channel = sdmac->channel;
598 unsigned long evt, mcu, dsp;
600 if (event_override && mcu_override && dsp_override)
601 return -EINVAL;
603 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
604 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
605 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
607 if (dsp_override)
608 __clear_bit(channel, &dsp);
609 else
610 __set_bit(channel, &dsp);
612 if (event_override)
613 __clear_bit(channel, &evt);
614 else
615 __set_bit(channel, &evt);
617 if (mcu_override)
618 __clear_bit(channel, &mcu);
619 else
620 __set_bit(channel, &mcu);
622 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
623 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
624 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
626 return 0;
629 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
631 writel(BIT(channel), sdma->regs + SDMA_H_START);
635 * sdma_run_channel0 - run a channel and wait till it's done
637 static int sdma_run_channel0(struct sdma_engine *sdma)
639 int ret;
640 u32 reg;
642 sdma_enable_channel(sdma, 0);
644 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
645 reg, !(reg & 1), 1, 500);
646 if (ret)
647 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
649 /* Set bits of CONFIG register with dynamic context switching */
650 reg = readl(sdma->regs + SDMA_H_CONFIG);
651 if ((reg & SDMA_H_CONFIG_CSM) == 0) {
652 reg |= SDMA_H_CONFIG_CSM;
653 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
656 return ret;
659 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
660 u32 address)
662 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
663 void *buf_virt;
664 dma_addr_t buf_phys;
665 int ret;
666 unsigned long flags;
668 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
669 if (!buf_virt) {
670 return -ENOMEM;
673 spin_lock_irqsave(&sdma->channel_0_lock, flags);
675 bd0->mode.command = C0_SETPM;
676 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
677 bd0->mode.count = size / 2;
678 bd0->buffer_addr = buf_phys;
679 bd0->ext_buffer_addr = address;
681 memcpy(buf_virt, buf, size);
683 ret = sdma_run_channel0(sdma);
685 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
687 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
689 return ret;
692 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
694 struct sdma_engine *sdma = sdmac->sdma;
695 int channel = sdmac->channel;
696 unsigned long val;
697 u32 chnenbl = chnenbl_ofs(sdma, event);
699 val = readl_relaxed(sdma->regs + chnenbl);
700 __set_bit(channel, &val);
701 writel_relaxed(val, sdma->regs + chnenbl);
704 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
706 struct sdma_engine *sdma = sdmac->sdma;
707 int channel = sdmac->channel;
708 u32 chnenbl = chnenbl_ofs(sdma, event);
709 unsigned long val;
711 val = readl_relaxed(sdma->regs + chnenbl);
712 __clear_bit(channel, &val);
713 writel_relaxed(val, sdma->regs + chnenbl);
716 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
718 return container_of(t, struct sdma_desc, vd.tx);
721 static void sdma_start_desc(struct sdma_channel *sdmac)
723 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
724 struct sdma_desc *desc;
725 struct sdma_engine *sdma = sdmac->sdma;
726 int channel = sdmac->channel;
728 if (!vd) {
729 sdmac->desc = NULL;
730 return;
732 sdmac->desc = desc = to_sdma_desc(&vd->tx);
734 list_del(&vd->node);
736 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
737 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
738 sdma_enable_channel(sdma, sdmac->channel);
741 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
743 struct sdma_buffer_descriptor *bd;
744 int error = 0;
745 enum dma_status old_status = sdmac->status;
748 * loop mode. Iterate over descriptors, re-setup them and
749 * call callback function.
751 while (sdmac->desc) {
752 struct sdma_desc *desc = sdmac->desc;
754 bd = &desc->bd[desc->buf_tail];
756 if (bd->mode.status & BD_DONE)
757 break;
759 if (bd->mode.status & BD_RROR) {
760 bd->mode.status &= ~BD_RROR;
761 sdmac->status = DMA_ERROR;
762 error = -EIO;
766 * We use bd->mode.count to calculate the residue, since contains
767 * the number of bytes present in the current buffer descriptor.
770 desc->chn_real_count = bd->mode.count;
771 bd->mode.status |= BD_DONE;
772 bd->mode.count = desc->period_len;
773 desc->buf_ptail = desc->buf_tail;
774 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
777 * The callback is called from the interrupt context in order
778 * to reduce latency and to avoid the risk of altering the
779 * SDMA transaction status by the time the client tasklet is
780 * executed.
782 spin_unlock(&sdmac->vc.lock);
783 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
784 spin_lock(&sdmac->vc.lock);
786 if (error)
787 sdmac->status = old_status;
791 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
793 struct sdma_channel *sdmac = (struct sdma_channel *) data;
794 struct sdma_buffer_descriptor *bd;
795 int i, error = 0;
797 sdmac->desc->chn_real_count = 0;
799 * non loop mode. Iterate over all descriptors, collect
800 * errors and call callback function
802 for (i = 0; i < sdmac->desc->num_bd; i++) {
803 bd = &sdmac->desc->bd[i];
805 if (bd->mode.status & (BD_DONE | BD_RROR))
806 error = -EIO;
807 sdmac->desc->chn_real_count += bd->mode.count;
810 if (error)
811 sdmac->status = DMA_ERROR;
812 else
813 sdmac->status = DMA_COMPLETE;
816 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
818 struct sdma_engine *sdma = dev_id;
819 unsigned long stat;
821 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
822 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
823 /* channel 0 is special and not handled here, see run_channel0() */
824 stat &= ~1;
826 while (stat) {
827 int channel = fls(stat) - 1;
828 struct sdma_channel *sdmac = &sdma->channel[channel];
829 struct sdma_desc *desc;
831 spin_lock(&sdmac->vc.lock);
832 desc = sdmac->desc;
833 if (desc) {
834 if (sdmac->flags & IMX_DMA_SG_LOOP) {
835 sdma_update_channel_loop(sdmac);
836 } else {
837 mxc_sdma_handle_channel_normal(sdmac);
838 vchan_cookie_complete(&desc->vd);
839 sdma_start_desc(sdmac);
843 spin_unlock(&sdmac->vc.lock);
844 __clear_bit(channel, &stat);
847 return IRQ_HANDLED;
851 * sets the pc of SDMA script according to the peripheral type
853 static void sdma_get_pc(struct sdma_channel *sdmac,
854 enum sdma_peripheral_type peripheral_type)
856 struct sdma_engine *sdma = sdmac->sdma;
857 int per_2_emi = 0, emi_2_per = 0;
859 * These are needed once we start to support transfers between
860 * two peripherals or memory-to-memory transfers
862 int per_2_per = 0, emi_2_emi = 0;
864 sdmac->pc_from_device = 0;
865 sdmac->pc_to_device = 0;
866 sdmac->device_to_device = 0;
867 sdmac->pc_to_pc = 0;
869 switch (peripheral_type) {
870 case IMX_DMATYPE_MEMORY:
871 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
872 break;
873 case IMX_DMATYPE_DSP:
874 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
875 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
876 break;
877 case IMX_DMATYPE_FIRI:
878 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
879 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
880 break;
881 case IMX_DMATYPE_UART:
882 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
883 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
884 break;
885 case IMX_DMATYPE_UART_SP:
886 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
887 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
888 break;
889 case IMX_DMATYPE_ATA:
890 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
891 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
892 break;
893 case IMX_DMATYPE_CSPI:
894 case IMX_DMATYPE_EXT:
895 case IMX_DMATYPE_SSI:
896 case IMX_DMATYPE_SAI:
897 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
898 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
899 break;
900 case IMX_DMATYPE_SSI_DUAL:
901 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
902 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
903 break;
904 case IMX_DMATYPE_SSI_SP:
905 case IMX_DMATYPE_MMC:
906 case IMX_DMATYPE_SDHC:
907 case IMX_DMATYPE_CSPI_SP:
908 case IMX_DMATYPE_ESAI:
909 case IMX_DMATYPE_MSHC_SP:
910 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
911 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
912 break;
913 case IMX_DMATYPE_ASRC:
914 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
915 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
916 per_2_per = sdma->script_addrs->per_2_per_addr;
917 break;
918 case IMX_DMATYPE_ASRC_SP:
919 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
920 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
921 per_2_per = sdma->script_addrs->per_2_per_addr;
922 break;
923 case IMX_DMATYPE_MSHC:
924 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
925 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
926 break;
927 case IMX_DMATYPE_CCM:
928 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
929 break;
930 case IMX_DMATYPE_SPDIF:
931 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
932 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
933 break;
934 case IMX_DMATYPE_IPU_MEMORY:
935 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
936 break;
937 default:
938 break;
941 sdmac->pc_from_device = per_2_emi;
942 sdmac->pc_to_device = emi_2_per;
943 sdmac->device_to_device = per_2_per;
944 sdmac->pc_to_pc = emi_2_emi;
947 static int sdma_load_context(struct sdma_channel *sdmac)
949 struct sdma_engine *sdma = sdmac->sdma;
950 int channel = sdmac->channel;
951 int load_address;
952 struct sdma_context_data *context = sdma->context;
953 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
954 int ret;
955 unsigned long flags;
957 if (sdmac->context_loaded)
958 return 0;
960 if (sdmac->direction == DMA_DEV_TO_MEM)
961 load_address = sdmac->pc_from_device;
962 else if (sdmac->direction == DMA_DEV_TO_DEV)
963 load_address = sdmac->device_to_device;
964 else if (sdmac->direction == DMA_MEM_TO_MEM)
965 load_address = sdmac->pc_to_pc;
966 else
967 load_address = sdmac->pc_to_device;
969 if (load_address < 0)
970 return load_address;
972 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
973 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
974 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
975 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
976 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
977 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
979 spin_lock_irqsave(&sdma->channel_0_lock, flags);
981 memset(context, 0, sizeof(*context));
982 context->channel_state.pc = load_address;
984 /* Send by context the event mask,base address for peripheral
985 * and watermark level
987 context->gReg[0] = sdmac->event_mask[1];
988 context->gReg[1] = sdmac->event_mask[0];
989 context->gReg[2] = sdmac->per_addr;
990 context->gReg[6] = sdmac->shp_addr;
991 context->gReg[7] = sdmac->watermark_level;
993 bd0->mode.command = C0_SETDM;
994 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
995 bd0->mode.count = sizeof(*context) / 4;
996 bd0->buffer_addr = sdma->context_phys;
997 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
998 ret = sdma_run_channel0(sdma);
1000 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1002 sdmac->context_loaded = true;
1004 return ret;
1007 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1009 return container_of(chan, struct sdma_channel, vc.chan);
1012 static int sdma_disable_channel(struct dma_chan *chan)
1014 struct sdma_channel *sdmac = to_sdma_chan(chan);
1015 struct sdma_engine *sdma = sdmac->sdma;
1016 int channel = sdmac->channel;
1018 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1019 sdmac->status = DMA_ERROR;
1021 return 0;
1023 static void sdma_channel_terminate_work(struct work_struct *work)
1025 struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1026 terminate_worker);
1027 unsigned long flags;
1028 LIST_HEAD(head);
1031 * According to NXP R&D team a delay of one BD SDMA cost time
1032 * (maximum is 1ms) should be added after disable of the channel
1033 * bit, to ensure SDMA core has really been stopped after SDMA
1034 * clients call .device_terminate_all.
1036 usleep_range(1000, 2000);
1038 spin_lock_irqsave(&sdmac->vc.lock, flags);
1039 vchan_get_all_descriptors(&sdmac->vc, &head);
1040 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1041 vchan_dma_desc_free_list(&sdmac->vc, &head);
1042 sdmac->context_loaded = false;
1045 static int sdma_terminate_all(struct dma_chan *chan)
1047 struct sdma_channel *sdmac = to_sdma_chan(chan);
1048 unsigned long flags;
1050 spin_lock_irqsave(&sdmac->vc.lock, flags);
1052 sdma_disable_channel(chan);
1054 if (sdmac->desc) {
1055 vchan_terminate_vdesc(&sdmac->desc->vd);
1056 sdmac->desc = NULL;
1057 schedule_work(&sdmac->terminate_worker);
1060 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1062 return 0;
1065 static void sdma_channel_synchronize(struct dma_chan *chan)
1067 struct sdma_channel *sdmac = to_sdma_chan(chan);
1069 vchan_synchronize(&sdmac->vc);
1071 flush_work(&sdmac->terminate_worker);
1074 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1076 struct sdma_engine *sdma = sdmac->sdma;
1078 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1079 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1081 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1082 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1084 if (sdmac->event_id0 > 31)
1085 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1087 if (sdmac->event_id1 > 31)
1088 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1091 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1092 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1093 * r0(event_mask[1]) and r1(event_mask[0]).
1095 if (lwml > hwml) {
1096 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1097 SDMA_WATERMARK_LEVEL_HWML);
1098 sdmac->watermark_level |= hwml;
1099 sdmac->watermark_level |= lwml << 16;
1100 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1103 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1104 sdmac->per_address2 <= sdma->spba_end_addr)
1105 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1107 if (sdmac->per_address >= sdma->spba_start_addr &&
1108 sdmac->per_address <= sdma->spba_end_addr)
1109 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1111 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1114 static int sdma_config_channel(struct dma_chan *chan)
1116 struct sdma_channel *sdmac = to_sdma_chan(chan);
1117 int ret;
1119 sdma_disable_channel(chan);
1121 sdmac->event_mask[0] = 0;
1122 sdmac->event_mask[1] = 0;
1123 sdmac->shp_addr = 0;
1124 sdmac->per_addr = 0;
1126 switch (sdmac->peripheral_type) {
1127 case IMX_DMATYPE_DSP:
1128 sdma_config_ownership(sdmac, false, true, true);
1129 break;
1130 case IMX_DMATYPE_MEMORY:
1131 sdma_config_ownership(sdmac, false, true, false);
1132 break;
1133 default:
1134 sdma_config_ownership(sdmac, true, true, false);
1135 break;
1138 sdma_get_pc(sdmac, sdmac->peripheral_type);
1140 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1141 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1142 /* Handle multiple event channels differently */
1143 if (sdmac->event_id1) {
1144 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1145 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1146 sdma_set_watermarklevel_for_p2p(sdmac);
1147 } else
1148 __set_bit(sdmac->event_id0, sdmac->event_mask);
1150 /* Address */
1151 sdmac->shp_addr = sdmac->per_address;
1152 sdmac->per_addr = sdmac->per_address2;
1153 } else {
1154 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1157 ret = sdma_load_context(sdmac);
1159 return ret;
1162 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1163 unsigned int priority)
1165 struct sdma_engine *sdma = sdmac->sdma;
1166 int channel = sdmac->channel;
1168 if (priority < MXC_SDMA_MIN_PRIORITY
1169 || priority > MXC_SDMA_MAX_PRIORITY) {
1170 return -EINVAL;
1173 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1175 return 0;
1178 static int sdma_request_channel0(struct sdma_engine *sdma)
1180 int ret = -EBUSY;
1182 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1183 GFP_NOWAIT);
1184 if (!sdma->bd0) {
1185 ret = -ENOMEM;
1186 goto out;
1189 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1190 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1192 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1193 return 0;
1194 out:
1196 return ret;
1200 static int sdma_alloc_bd(struct sdma_desc *desc)
1202 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1203 int ret = 0;
1205 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1206 &desc->bd_phys, GFP_NOWAIT);
1207 if (!desc->bd) {
1208 ret = -ENOMEM;
1209 goto out;
1211 out:
1212 return ret;
1215 static void sdma_free_bd(struct sdma_desc *desc)
1217 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1219 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1220 desc->bd_phys);
1223 static void sdma_desc_free(struct virt_dma_desc *vd)
1225 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1227 sdma_free_bd(desc);
1228 kfree(desc);
1231 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1233 struct sdma_channel *sdmac = to_sdma_chan(chan);
1234 struct imx_dma_data *data = chan->private;
1235 struct imx_dma_data mem_data;
1236 int prio, ret;
1239 * MEMCPY may never setup chan->private by filter function such as
1240 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1241 * Please note in any other slave case, you have to setup chan->private
1242 * with 'struct imx_dma_data' in your own filter function if you want to
1243 * request dma channel by dma_request_channel() rather than
1244 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1245 * to warn you to correct your filter function.
1247 if (!data) {
1248 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1249 mem_data.priority = 2;
1250 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1251 mem_data.dma_request = 0;
1252 mem_data.dma_request2 = 0;
1253 data = &mem_data;
1255 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1258 switch (data->priority) {
1259 case DMA_PRIO_HIGH:
1260 prio = 3;
1261 break;
1262 case DMA_PRIO_MEDIUM:
1263 prio = 2;
1264 break;
1265 case DMA_PRIO_LOW:
1266 default:
1267 prio = 1;
1268 break;
1271 sdmac->peripheral_type = data->peripheral_type;
1272 sdmac->event_id0 = data->dma_request;
1273 sdmac->event_id1 = data->dma_request2;
1275 ret = clk_enable(sdmac->sdma->clk_ipg);
1276 if (ret)
1277 return ret;
1278 ret = clk_enable(sdmac->sdma->clk_ahb);
1279 if (ret)
1280 goto disable_clk_ipg;
1282 ret = sdma_set_channel_priority(sdmac, prio);
1283 if (ret)
1284 goto disable_clk_ahb;
1286 return 0;
1288 disable_clk_ahb:
1289 clk_disable(sdmac->sdma->clk_ahb);
1290 disable_clk_ipg:
1291 clk_disable(sdmac->sdma->clk_ipg);
1292 return ret;
1295 static void sdma_free_chan_resources(struct dma_chan *chan)
1297 struct sdma_channel *sdmac = to_sdma_chan(chan);
1298 struct sdma_engine *sdma = sdmac->sdma;
1300 sdma_terminate_all(chan);
1302 sdma_channel_synchronize(chan);
1304 sdma_event_disable(sdmac, sdmac->event_id0);
1305 if (sdmac->event_id1)
1306 sdma_event_disable(sdmac, sdmac->event_id1);
1308 sdmac->event_id0 = 0;
1309 sdmac->event_id1 = 0;
1310 sdmac->context_loaded = false;
1312 sdma_set_channel_priority(sdmac, 0);
1314 clk_disable(sdma->clk_ipg);
1315 clk_disable(sdma->clk_ahb);
1318 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1319 enum dma_transfer_direction direction, u32 bds)
1321 struct sdma_desc *desc;
1323 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1324 if (!desc)
1325 goto err_out;
1327 sdmac->status = DMA_IN_PROGRESS;
1328 sdmac->direction = direction;
1329 sdmac->flags = 0;
1331 desc->chn_count = 0;
1332 desc->chn_real_count = 0;
1333 desc->buf_tail = 0;
1334 desc->buf_ptail = 0;
1335 desc->sdmac = sdmac;
1336 desc->num_bd = bds;
1338 if (sdma_alloc_bd(desc))
1339 goto err_desc_out;
1341 /* No slave_config called in MEMCPY case, so do here */
1342 if (direction == DMA_MEM_TO_MEM)
1343 sdma_config_ownership(sdmac, false, true, false);
1345 if (sdma_load_context(sdmac))
1346 goto err_desc_out;
1348 return desc;
1350 err_desc_out:
1351 kfree(desc);
1352 err_out:
1353 return NULL;
1356 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1357 struct dma_chan *chan, dma_addr_t dma_dst,
1358 dma_addr_t dma_src, size_t len, unsigned long flags)
1360 struct sdma_channel *sdmac = to_sdma_chan(chan);
1361 struct sdma_engine *sdma = sdmac->sdma;
1362 int channel = sdmac->channel;
1363 size_t count;
1364 int i = 0, param;
1365 struct sdma_buffer_descriptor *bd;
1366 struct sdma_desc *desc;
1368 if (!chan || !len)
1369 return NULL;
1371 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1372 &dma_src, &dma_dst, len, channel);
1374 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1375 len / SDMA_BD_MAX_CNT + 1);
1376 if (!desc)
1377 return NULL;
1379 do {
1380 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1381 bd = &desc->bd[i];
1382 bd->buffer_addr = dma_src;
1383 bd->ext_buffer_addr = dma_dst;
1384 bd->mode.count = count;
1385 desc->chn_count += count;
1386 bd->mode.command = 0;
1388 dma_src += count;
1389 dma_dst += count;
1390 len -= count;
1391 i++;
1393 param = BD_DONE | BD_EXTD | BD_CONT;
1394 /* last bd */
1395 if (!len) {
1396 param |= BD_INTR;
1397 param |= BD_LAST;
1398 param &= ~BD_CONT;
1401 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1402 i, count, bd->buffer_addr,
1403 param & BD_WRAP ? "wrap" : "",
1404 param & BD_INTR ? " intr" : "");
1406 bd->mode.status = param;
1407 } while (len);
1409 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1412 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1413 struct dma_chan *chan, struct scatterlist *sgl,
1414 unsigned int sg_len, enum dma_transfer_direction direction,
1415 unsigned long flags, void *context)
1417 struct sdma_channel *sdmac = to_sdma_chan(chan);
1418 struct sdma_engine *sdma = sdmac->sdma;
1419 int i, count;
1420 int channel = sdmac->channel;
1421 struct scatterlist *sg;
1422 struct sdma_desc *desc;
1424 sdma_config_write(chan, &sdmac->slave_config, direction);
1426 desc = sdma_transfer_init(sdmac, direction, sg_len);
1427 if (!desc)
1428 goto err_out;
1430 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1431 sg_len, channel);
1433 for_each_sg(sgl, sg, sg_len, i) {
1434 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1435 int param;
1437 bd->buffer_addr = sg->dma_address;
1439 count = sg_dma_len(sg);
1441 if (count > SDMA_BD_MAX_CNT) {
1442 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1443 channel, count, SDMA_BD_MAX_CNT);
1444 goto err_bd_out;
1447 bd->mode.count = count;
1448 desc->chn_count += count;
1450 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1451 goto err_bd_out;
1453 switch (sdmac->word_size) {
1454 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1455 bd->mode.command = 0;
1456 if (count & 3 || sg->dma_address & 3)
1457 goto err_bd_out;
1458 break;
1459 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1460 bd->mode.command = 2;
1461 if (count & 1 || sg->dma_address & 1)
1462 goto err_bd_out;
1463 break;
1464 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1465 bd->mode.command = 1;
1466 break;
1467 default:
1468 goto err_bd_out;
1471 param = BD_DONE | BD_EXTD | BD_CONT;
1473 if (i + 1 == sg_len) {
1474 param |= BD_INTR;
1475 param |= BD_LAST;
1476 param &= ~BD_CONT;
1479 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1480 i, count, (u64)sg->dma_address,
1481 param & BD_WRAP ? "wrap" : "",
1482 param & BD_INTR ? " intr" : "");
1484 bd->mode.status = param;
1487 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1488 err_bd_out:
1489 sdma_free_bd(desc);
1490 kfree(desc);
1491 err_out:
1492 sdmac->status = DMA_ERROR;
1493 return NULL;
1496 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1497 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1498 size_t period_len, enum dma_transfer_direction direction,
1499 unsigned long flags)
1501 struct sdma_channel *sdmac = to_sdma_chan(chan);
1502 struct sdma_engine *sdma = sdmac->sdma;
1503 int num_periods = buf_len / period_len;
1504 int channel = sdmac->channel;
1505 int i = 0, buf = 0;
1506 struct sdma_desc *desc;
1508 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1510 sdma_config_write(chan, &sdmac->slave_config, direction);
1512 desc = sdma_transfer_init(sdmac, direction, num_periods);
1513 if (!desc)
1514 goto err_out;
1516 desc->period_len = period_len;
1518 sdmac->flags |= IMX_DMA_SG_LOOP;
1520 if (period_len > SDMA_BD_MAX_CNT) {
1521 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1522 channel, period_len, SDMA_BD_MAX_CNT);
1523 goto err_bd_out;
1526 while (buf < buf_len) {
1527 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1528 int param;
1530 bd->buffer_addr = dma_addr;
1532 bd->mode.count = period_len;
1534 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1535 goto err_bd_out;
1536 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1537 bd->mode.command = 0;
1538 else
1539 bd->mode.command = sdmac->word_size;
1541 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1542 if (i + 1 == num_periods)
1543 param |= BD_WRAP;
1545 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1546 i, period_len, (u64)dma_addr,
1547 param & BD_WRAP ? "wrap" : "",
1548 param & BD_INTR ? " intr" : "");
1550 bd->mode.status = param;
1552 dma_addr += period_len;
1553 buf += period_len;
1555 i++;
1558 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1559 err_bd_out:
1560 sdma_free_bd(desc);
1561 kfree(desc);
1562 err_out:
1563 sdmac->status = DMA_ERROR;
1564 return NULL;
1567 static int sdma_config_write(struct dma_chan *chan,
1568 struct dma_slave_config *dmaengine_cfg,
1569 enum dma_transfer_direction direction)
1571 struct sdma_channel *sdmac = to_sdma_chan(chan);
1573 if (direction == DMA_DEV_TO_MEM) {
1574 sdmac->per_address = dmaengine_cfg->src_addr;
1575 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1576 dmaengine_cfg->src_addr_width;
1577 sdmac->word_size = dmaengine_cfg->src_addr_width;
1578 } else if (direction == DMA_DEV_TO_DEV) {
1579 sdmac->per_address2 = dmaengine_cfg->src_addr;
1580 sdmac->per_address = dmaengine_cfg->dst_addr;
1581 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1582 SDMA_WATERMARK_LEVEL_LWML;
1583 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1584 SDMA_WATERMARK_LEVEL_HWML;
1585 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1586 } else {
1587 sdmac->per_address = dmaengine_cfg->dst_addr;
1588 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1589 dmaengine_cfg->dst_addr_width;
1590 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1592 sdmac->direction = direction;
1593 return sdma_config_channel(chan);
1596 static int sdma_config(struct dma_chan *chan,
1597 struct dma_slave_config *dmaengine_cfg)
1599 struct sdma_channel *sdmac = to_sdma_chan(chan);
1601 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1603 /* Set ENBLn earlier to make sure dma request triggered after that */
1604 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1605 return -EINVAL;
1606 sdma_event_enable(sdmac, sdmac->event_id0);
1608 if (sdmac->event_id1) {
1609 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1610 return -EINVAL;
1611 sdma_event_enable(sdmac, sdmac->event_id1);
1614 return 0;
1617 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1618 dma_cookie_t cookie,
1619 struct dma_tx_state *txstate)
1621 struct sdma_channel *sdmac = to_sdma_chan(chan);
1622 struct sdma_desc *desc = NULL;
1623 u32 residue;
1624 struct virt_dma_desc *vd;
1625 enum dma_status ret;
1626 unsigned long flags;
1628 ret = dma_cookie_status(chan, cookie, txstate);
1629 if (ret == DMA_COMPLETE || !txstate)
1630 return ret;
1632 spin_lock_irqsave(&sdmac->vc.lock, flags);
1634 vd = vchan_find_desc(&sdmac->vc, cookie);
1635 if (vd)
1636 desc = to_sdma_desc(&vd->tx);
1637 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1638 desc = sdmac->desc;
1640 if (desc) {
1641 if (sdmac->flags & IMX_DMA_SG_LOOP)
1642 residue = (desc->num_bd - desc->buf_ptail) *
1643 desc->period_len - desc->chn_real_count;
1644 else
1645 residue = desc->chn_count - desc->chn_real_count;
1646 } else {
1647 residue = 0;
1650 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1652 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1653 residue);
1655 return sdmac->status;
1658 static void sdma_issue_pending(struct dma_chan *chan)
1660 struct sdma_channel *sdmac = to_sdma_chan(chan);
1661 unsigned long flags;
1663 spin_lock_irqsave(&sdmac->vc.lock, flags);
1664 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1665 sdma_start_desc(sdmac);
1666 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1669 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1670 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1671 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1672 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1674 static void sdma_add_scripts(struct sdma_engine *sdma,
1675 const struct sdma_script_start_addrs *addr)
1677 s32 *addr_arr = (u32 *)addr;
1678 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1679 int i;
1681 /* use the default firmware in ROM if missing external firmware */
1682 if (!sdma->script_number)
1683 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1685 if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1686 / sizeof(s32)) {
1687 dev_err(sdma->dev,
1688 "SDMA script number %d not match with firmware.\n",
1689 sdma->script_number);
1690 return;
1693 for (i = 0; i < sdma->script_number; i++)
1694 if (addr_arr[i] > 0)
1695 saddr_arr[i] = addr_arr[i];
1698 static void sdma_load_firmware(const struct firmware *fw, void *context)
1700 struct sdma_engine *sdma = context;
1701 const struct sdma_firmware_header *header;
1702 const struct sdma_script_start_addrs *addr;
1703 unsigned short *ram_code;
1705 if (!fw) {
1706 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1707 /* In this case we just use the ROM firmware. */
1708 return;
1711 if (fw->size < sizeof(*header))
1712 goto err_firmware;
1714 header = (struct sdma_firmware_header *)fw->data;
1716 if (header->magic != SDMA_FIRMWARE_MAGIC)
1717 goto err_firmware;
1718 if (header->ram_code_start + header->ram_code_size > fw->size)
1719 goto err_firmware;
1720 switch (header->version_major) {
1721 case 1:
1722 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1723 break;
1724 case 2:
1725 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1726 break;
1727 case 3:
1728 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1729 break;
1730 case 4:
1731 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1732 break;
1733 default:
1734 dev_err(sdma->dev, "unknown firmware version\n");
1735 goto err_firmware;
1738 addr = (void *)header + header->script_addrs_start;
1739 ram_code = (void *)header + header->ram_code_start;
1741 clk_enable(sdma->clk_ipg);
1742 clk_enable(sdma->clk_ahb);
1743 /* download the RAM image for SDMA */
1744 sdma_load_script(sdma, ram_code,
1745 header->ram_code_size,
1746 addr->ram_code_start_addr);
1747 clk_disable(sdma->clk_ipg);
1748 clk_disable(sdma->clk_ahb);
1750 sdma_add_scripts(sdma, addr);
1752 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1753 header->version_major,
1754 header->version_minor);
1756 err_firmware:
1757 release_firmware(fw);
1760 #define EVENT_REMAP_CELLS 3
1762 static int sdma_event_remap(struct sdma_engine *sdma)
1764 struct device_node *np = sdma->dev->of_node;
1765 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1766 struct property *event_remap;
1767 struct regmap *gpr;
1768 char propname[] = "fsl,sdma-event-remap";
1769 u32 reg, val, shift, num_map, i;
1770 int ret = 0;
1772 if (IS_ERR(np) || IS_ERR(gpr_np))
1773 goto out;
1775 event_remap = of_find_property(np, propname, NULL);
1776 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1777 if (!num_map) {
1778 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1779 goto out;
1780 } else if (num_map % EVENT_REMAP_CELLS) {
1781 dev_err(sdma->dev, "the property %s must modulo %d\n",
1782 propname, EVENT_REMAP_CELLS);
1783 ret = -EINVAL;
1784 goto out;
1787 gpr = syscon_node_to_regmap(gpr_np);
1788 if (IS_ERR(gpr)) {
1789 dev_err(sdma->dev, "failed to get gpr regmap\n");
1790 ret = PTR_ERR(gpr);
1791 goto out;
1794 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1795 ret = of_property_read_u32_index(np, propname, i, &reg);
1796 if (ret) {
1797 dev_err(sdma->dev, "failed to read property %s index %d\n",
1798 propname, i);
1799 goto out;
1802 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1803 if (ret) {
1804 dev_err(sdma->dev, "failed to read property %s index %d\n",
1805 propname, i + 1);
1806 goto out;
1809 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1810 if (ret) {
1811 dev_err(sdma->dev, "failed to read property %s index %d\n",
1812 propname, i + 2);
1813 goto out;
1816 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1819 out:
1820 if (!IS_ERR(gpr_np))
1821 of_node_put(gpr_np);
1823 return ret;
1826 static int sdma_get_firmware(struct sdma_engine *sdma,
1827 const char *fw_name)
1829 int ret;
1831 ret = request_firmware_nowait(THIS_MODULE,
1832 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1833 GFP_KERNEL, sdma, sdma_load_firmware);
1835 return ret;
1838 static int sdma_init(struct sdma_engine *sdma)
1840 int i, ret;
1841 dma_addr_t ccb_phys;
1843 ret = clk_enable(sdma->clk_ipg);
1844 if (ret)
1845 return ret;
1846 ret = clk_enable(sdma->clk_ahb);
1847 if (ret)
1848 goto disable_clk_ipg;
1850 if (sdma->drvdata->check_ratio &&
1851 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1852 sdma->clk_ratio = 1;
1854 /* Be sure SDMA has not started yet */
1855 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1857 sdma->channel_control = dma_alloc_coherent(sdma->dev,
1858 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1859 sizeof(struct sdma_context_data),
1860 &ccb_phys, GFP_KERNEL);
1862 if (!sdma->channel_control) {
1863 ret = -ENOMEM;
1864 goto err_dma_alloc;
1867 sdma->context = (void *)sdma->channel_control +
1868 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1869 sdma->context_phys = ccb_phys +
1870 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1872 /* disable all channels */
1873 for (i = 0; i < sdma->drvdata->num_events; i++)
1874 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1876 /* All channels have priority 0 */
1877 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1878 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1880 ret = sdma_request_channel0(sdma);
1881 if (ret)
1882 goto err_dma_alloc;
1884 sdma_config_ownership(&sdma->channel[0], false, true, false);
1886 /* Set Command Channel (Channel Zero) */
1887 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1889 /* Set bits of CONFIG register but with static context switching */
1890 if (sdma->clk_ratio)
1891 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1892 else
1893 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1895 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1897 /* Initializes channel's priorities */
1898 sdma_set_channel_priority(&sdma->channel[0], 7);
1900 clk_disable(sdma->clk_ipg);
1901 clk_disable(sdma->clk_ahb);
1903 return 0;
1905 err_dma_alloc:
1906 clk_disable(sdma->clk_ahb);
1907 disable_clk_ipg:
1908 clk_disable(sdma->clk_ipg);
1909 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1910 return ret;
1913 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1915 struct sdma_channel *sdmac = to_sdma_chan(chan);
1916 struct imx_dma_data *data = fn_param;
1918 if (!imx_dma_is_general_purpose(chan))
1919 return false;
1921 sdmac->data = *data;
1922 chan->private = &sdmac->data;
1924 return true;
1927 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1928 struct of_dma *ofdma)
1930 struct sdma_engine *sdma = ofdma->of_dma_data;
1931 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1932 struct imx_dma_data data;
1934 if (dma_spec->args_count != 3)
1935 return NULL;
1937 data.dma_request = dma_spec->args[0];
1938 data.peripheral_type = dma_spec->args[1];
1939 data.priority = dma_spec->args[2];
1941 * init dma_request2 to zero, which is not used by the dts.
1942 * For P2P, dma_request2 is init from dma_request_channel(),
1943 * chan->private will point to the imx_dma_data, and in
1944 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1945 * be set to sdmac->event_id1.
1947 data.dma_request2 = 0;
1949 return __dma_request_channel(&mask, sdma_filter_fn, &data,
1950 ofdma->of_node);
1953 static int sdma_probe(struct platform_device *pdev)
1955 const struct of_device_id *of_id =
1956 of_match_device(sdma_dt_ids, &pdev->dev);
1957 struct device_node *np = pdev->dev.of_node;
1958 struct device_node *spba_bus;
1959 const char *fw_name;
1960 int ret;
1961 int irq;
1962 struct resource *iores;
1963 struct resource spba_res;
1964 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1965 int i;
1966 struct sdma_engine *sdma;
1967 s32 *saddr_arr;
1968 const struct sdma_driver_data *drvdata = NULL;
1970 drvdata = of_id->data;
1971 if (!drvdata) {
1972 dev_err(&pdev->dev, "unable to find driver data\n");
1973 return -EINVAL;
1976 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1977 if (ret)
1978 return ret;
1980 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1981 if (!sdma)
1982 return -ENOMEM;
1984 spin_lock_init(&sdma->channel_0_lock);
1986 sdma->dev = &pdev->dev;
1987 sdma->drvdata = drvdata;
1989 irq = platform_get_irq(pdev, 0);
1990 if (irq < 0)
1991 return irq;
1993 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1994 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1995 if (IS_ERR(sdma->regs))
1996 return PTR_ERR(sdma->regs);
1998 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1999 if (IS_ERR(sdma->clk_ipg))
2000 return PTR_ERR(sdma->clk_ipg);
2002 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2003 if (IS_ERR(sdma->clk_ahb))
2004 return PTR_ERR(sdma->clk_ahb);
2006 ret = clk_prepare(sdma->clk_ipg);
2007 if (ret)
2008 return ret;
2010 ret = clk_prepare(sdma->clk_ahb);
2011 if (ret)
2012 goto err_clk;
2014 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2015 sdma);
2016 if (ret)
2017 goto err_irq;
2019 sdma->irq = irq;
2021 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2022 if (!sdma->script_addrs) {
2023 ret = -ENOMEM;
2024 goto err_irq;
2027 /* initially no scripts available */
2028 saddr_arr = (s32 *)sdma->script_addrs;
2029 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2030 saddr_arr[i] = -EINVAL;
2032 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2033 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2034 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2036 INIT_LIST_HEAD(&sdma->dma_device.channels);
2037 /* Initialize channel parameters */
2038 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2039 struct sdma_channel *sdmac = &sdma->channel[i];
2041 sdmac->sdma = sdma;
2043 sdmac->channel = i;
2044 sdmac->vc.desc_free = sdma_desc_free;
2045 INIT_WORK(&sdmac->terminate_worker,
2046 sdma_channel_terminate_work);
2048 * Add the channel to the DMAC list. Do not add channel 0 though
2049 * because we need it internally in the SDMA driver. This also means
2050 * that channel 0 in dmaengine counting matches sdma channel 1.
2052 if (i)
2053 vchan_init(&sdmac->vc, &sdma->dma_device);
2056 ret = sdma_init(sdma);
2057 if (ret)
2058 goto err_init;
2060 ret = sdma_event_remap(sdma);
2061 if (ret)
2062 goto err_init;
2064 if (sdma->drvdata->script_addrs)
2065 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2066 if (pdata && pdata->script_addrs)
2067 sdma_add_scripts(sdma, pdata->script_addrs);
2069 sdma->dma_device.dev = &pdev->dev;
2071 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2072 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2073 sdma->dma_device.device_tx_status = sdma_tx_status;
2074 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2075 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2076 sdma->dma_device.device_config = sdma_config;
2077 sdma->dma_device.device_terminate_all = sdma_terminate_all;
2078 sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2079 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2080 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2081 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2082 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2083 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2084 sdma->dma_device.device_issue_pending = sdma_issue_pending;
2085 sdma->dma_device.copy_align = 2;
2086 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2088 platform_set_drvdata(pdev, sdma);
2090 ret = dma_async_device_register(&sdma->dma_device);
2091 if (ret) {
2092 dev_err(&pdev->dev, "unable to register\n");
2093 goto err_init;
2096 if (np) {
2097 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2098 if (ret) {
2099 dev_err(&pdev->dev, "failed to register controller\n");
2100 goto err_register;
2103 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2104 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2105 if (!ret) {
2106 sdma->spba_start_addr = spba_res.start;
2107 sdma->spba_end_addr = spba_res.end;
2109 of_node_put(spba_bus);
2113 * Kick off firmware loading as the very last step:
2114 * attempt to load firmware only if we're not on the error path, because
2115 * the firmware callback requires a fully functional and allocated sdma
2116 * instance.
2118 if (pdata) {
2119 ret = sdma_get_firmware(sdma, pdata->fw_name);
2120 if (ret)
2121 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2122 } else {
2124 * Because that device tree does not encode ROM script address,
2125 * the RAM script in firmware is mandatory for device tree
2126 * probe, otherwise it fails.
2128 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2129 &fw_name);
2130 if (ret) {
2131 dev_warn(&pdev->dev, "failed to get firmware name\n");
2132 } else {
2133 ret = sdma_get_firmware(sdma, fw_name);
2134 if (ret)
2135 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2139 return 0;
2141 err_register:
2142 dma_async_device_unregister(&sdma->dma_device);
2143 err_init:
2144 kfree(sdma->script_addrs);
2145 err_irq:
2146 clk_unprepare(sdma->clk_ahb);
2147 err_clk:
2148 clk_unprepare(sdma->clk_ipg);
2149 return ret;
2152 static int sdma_remove(struct platform_device *pdev)
2154 struct sdma_engine *sdma = platform_get_drvdata(pdev);
2155 int i;
2157 devm_free_irq(&pdev->dev, sdma->irq, sdma);
2158 dma_async_device_unregister(&sdma->dma_device);
2159 kfree(sdma->script_addrs);
2160 clk_unprepare(sdma->clk_ahb);
2161 clk_unprepare(sdma->clk_ipg);
2162 /* Kill the tasklet */
2163 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2164 struct sdma_channel *sdmac = &sdma->channel[i];
2166 tasklet_kill(&sdmac->vc.task);
2167 sdma_free_chan_resources(&sdmac->vc.chan);
2170 platform_set_drvdata(pdev, NULL);
2171 return 0;
2174 static struct platform_driver sdma_driver = {
2175 .driver = {
2176 .name = "imx-sdma",
2177 .of_match_table = sdma_dt_ids,
2179 .remove = sdma_remove,
2180 .probe = sdma_probe,
2183 module_platform_driver(sdma_driver);
2185 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2186 MODULE_DESCRIPTION("i.MX SDMA driver");
2187 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2188 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2189 #endif
2190 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2191 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2192 #endif
2193 MODULE_LICENSE("GPL");