1 // SPDX-License-Identifier: GPL-2.0
3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
5 // Refer to drivers/dma/imx-sdma.c
7 #include <linux/init.h>
8 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/clk.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/semaphore.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
18 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/stmp_device.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/list.h>
27 #include <linux/dma/mxs-dma.h>
31 #include "dmaengine.h"
34 * NOTE: The term "PIO" throughout the mxs-dma implementation means
35 * PIO mode of mxs apbh-dma and apbx-dma. With this working mode,
36 * dma can program the controller registers of peripheral devices.
39 #define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH)
40 #define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA)
42 #define HW_APBHX_CTRL0 0x000
43 #define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
44 #define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
45 #define BP_APBH_CTRL0_RESET_CHANNEL 16
46 #define HW_APBHX_CTRL1 0x010
47 #define HW_APBHX_CTRL2 0x020
48 #define HW_APBHX_CHANNEL_CTRL 0x030
49 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
51 * The offset of NXTCMDAR register is different per both dma type and version,
52 * while stride for each channel is all the same 0x70.
54 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
55 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
56 #define HW_APBHX_CHn_SEMA(d, n) \
57 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
58 #define HW_APBHX_CHn_BAR(d, n) \
59 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
60 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
63 * ccw bits definitions
68 * NAND_LOCK: 4 (1) - not implemented
69 * NAND_WAIT4READY: 5 (1) - not implemented
72 * HALT_ON_TERMINATE: 8 (1)
73 * TERMINATE_FLUSH: 9 (1)
74 * RESERVED: 10..11 (2)
77 #define BP_CCW_COMMAND 0
78 #define BM_CCW_COMMAND (3 << 0)
79 #define CCW_CHAIN (1 << 2)
80 #define CCW_IRQ (1 << 3)
81 #define CCW_WAIT4RDY (1 << 5)
82 #define CCW_DEC_SEM (1 << 6)
83 #define CCW_WAIT4END (1 << 7)
84 #define CCW_HALT_ON_TERM (1 << 8)
85 #define CCW_TERM_FLUSH (1 << 9)
86 #define BP_CCW_PIO_NUM 12
87 #define BM_CCW_PIO_NUM (0xf << 12)
89 #define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field)
91 #define MXS_DMA_CMD_NO_XFER 0
92 #define MXS_DMA_CMD_WRITE 1
93 #define MXS_DMA_CMD_READ 2
94 #define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */
100 #define MAX_XFER_BYTES 0xff00
102 #define MXS_PIO_WORDS 16
103 u32 pio_words
[MXS_PIO_WORDS
];
106 #define CCW_BLOCK_SIZE (4 * PAGE_SIZE)
107 #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
109 struct mxs_dma_chan
{
110 struct mxs_dma_engine
*mxs_dma
;
111 struct dma_chan chan
;
112 struct dma_async_tx_descriptor desc
;
113 struct tasklet_struct tasklet
;
114 unsigned int chan_irq
;
115 struct mxs_dma_ccw
*ccw
;
118 enum dma_status status
;
121 #define MXS_DMA_SG_LOOP (1 << 0)
122 #define MXS_DMA_USE_SEMAPHORE (1 << 1)
125 #define MXS_DMA_CHANNELS 16
126 #define MXS_DMA_CHANNELS_MASK 0xffff
128 enum mxs_dma_devtype
{
138 struct mxs_dma_engine
{
139 enum mxs_dma_id dev_id
;
140 enum mxs_dma_devtype type
;
143 struct dma_device dma_device
;
144 struct mxs_dma_chan mxs_chans
[MXS_DMA_CHANNELS
];
145 struct platform_device
*pdev
;
146 unsigned int nr_channels
;
149 struct mxs_dma_type
{
151 enum mxs_dma_devtype type
;
154 static struct mxs_dma_type mxs_dma_types
[] = {
157 .type
= MXS_DMA_APBH
,
160 .type
= MXS_DMA_APBX
,
163 .type
= MXS_DMA_APBH
,
166 .type
= MXS_DMA_APBX
,
170 static const struct of_device_id mxs_dma_dt_ids
[] = {
171 { .compatible
= "fsl,imx23-dma-apbh", .data
= &mxs_dma_types
[0], },
172 { .compatible
= "fsl,imx23-dma-apbx", .data
= &mxs_dma_types
[1], },
173 { .compatible
= "fsl,imx28-dma-apbh", .data
= &mxs_dma_types
[2], },
174 { .compatible
= "fsl,imx28-dma-apbx", .data
= &mxs_dma_types
[3], },
177 MODULE_DEVICE_TABLE(of
, mxs_dma_dt_ids
);
179 static struct mxs_dma_chan
*to_mxs_dma_chan(struct dma_chan
*chan
)
181 return container_of(chan
, struct mxs_dma_chan
, chan
);
184 static void mxs_dma_reset_chan(struct dma_chan
*chan
)
186 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
187 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
188 int chan_id
= mxs_chan
->chan
.chan_id
;
191 * mxs dma channel resets can cause a channel stall. To recover from a
192 * channel stall, we have to reset the whole DMA engine. To avoid this,
193 * we use cyclic DMA with semaphores, that are enhanced in
194 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
195 * into the semaphore counter.
197 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
&&
198 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
199 mxs_chan
->reset
= true;
200 } else if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
)) {
201 writel(1 << (chan_id
+ BP_APBH_CTRL0_RESET_CHANNEL
),
202 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
204 unsigned long elapsed
= 0;
205 const unsigned long max_wait
= 50000; /* 50ms */
206 void __iomem
*reg_dbg1
= mxs_dma
->base
+
207 HW_APBX_CHn_DEBUG1(mxs_dma
, chan_id
);
210 * On i.MX28 APBX, the DMA channel can stop working if we reset
211 * the channel while it is in READ_FLUSH (0x08) state.
212 * We wait here until we leave the state. Then we trigger the
213 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
216 while ((readl(reg_dbg1
) & 0xf) == 0x8 && elapsed
< max_wait
) {
221 if (elapsed
>= max_wait
)
222 dev_err(&mxs_chan
->mxs_dma
->pdev
->dev
,
223 "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
226 writel(1 << (chan_id
+ BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL
),
227 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_SET
);
230 mxs_chan
->status
= DMA_COMPLETE
;
233 static void mxs_dma_enable_chan(struct dma_chan
*chan
)
235 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
236 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
237 int chan_id
= mxs_chan
->chan
.chan_id
;
239 /* set cmd_addr up */
240 writel(mxs_chan
->ccw_phys
,
241 mxs_dma
->base
+ HW_APBHX_CHn_NXTCMDAR(mxs_dma
, chan_id
));
243 /* write 1 to SEMA to kick off the channel */
244 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
&&
245 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
246 /* A cyclic DMA consists of at least 2 segments, so initialize
247 * the semaphore with 2 so we have enough time to add 1 to the
248 * semaphore if we need to */
249 writel(2, mxs_dma
->base
+ HW_APBHX_CHn_SEMA(mxs_dma
, chan_id
));
251 writel(1, mxs_dma
->base
+ HW_APBHX_CHn_SEMA(mxs_dma
, chan_id
));
253 mxs_chan
->reset
= false;
256 static void mxs_dma_disable_chan(struct dma_chan
*chan
)
258 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
260 mxs_chan
->status
= DMA_COMPLETE
;
263 static int mxs_dma_pause_chan(struct dma_chan
*chan
)
265 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
266 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
267 int chan_id
= mxs_chan
->chan
.chan_id
;
269 /* freeze the channel */
270 if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
))
272 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
275 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_SET
);
277 mxs_chan
->status
= DMA_PAUSED
;
281 static int mxs_dma_resume_chan(struct dma_chan
*chan
)
283 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
284 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
285 int chan_id
= mxs_chan
->chan
.chan_id
;
287 /* unfreeze the channel */
288 if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
))
290 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_CLR
);
293 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_CLR
);
295 mxs_chan
->status
= DMA_IN_PROGRESS
;
299 static dma_cookie_t
mxs_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
301 return dma_cookie_assign(tx
);
304 static void mxs_dma_tasklet(struct tasklet_struct
*t
)
306 struct mxs_dma_chan
*mxs_chan
= from_tasklet(mxs_chan
, t
, tasklet
);
308 dmaengine_desc_get_callback_invoke(&mxs_chan
->desc
, NULL
);
311 static int mxs_dma_irq_to_chan(struct mxs_dma_engine
*mxs_dma
, int irq
)
315 for (i
= 0; i
!= mxs_dma
->nr_channels
; ++i
)
316 if (mxs_dma
->mxs_chans
[i
].chan_irq
== irq
)
322 static irqreturn_t
mxs_dma_int_handler(int irq
, void *dev_id
)
324 struct mxs_dma_engine
*mxs_dma
= dev_id
;
325 struct mxs_dma_chan
*mxs_chan
;
328 int chan
= mxs_dma_irq_to_chan(mxs_dma
, irq
);
333 /* completion status */
334 completed
= readl(mxs_dma
->base
+ HW_APBHX_CTRL1
);
335 completed
= (completed
>> chan
) & 0x1;
337 /* Clear interrupt */
339 mxs_dma
->base
+ HW_APBHX_CTRL1
+ STMP_OFFSET_REG_CLR
);
342 err
= readl(mxs_dma
->base
+ HW_APBHX_CTRL2
);
343 err
&= (1 << (MXS_DMA_CHANNELS
+ chan
)) | (1 << chan
);
346 * error status bit is in the upper 16 bits, error irq bit in the lower
347 * 16 bits. We transform it into a simpler error code:
348 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
350 err
= (err
>> (MXS_DMA_CHANNELS
+ chan
)) + (err
>> chan
);
352 /* Clear error irq */
354 mxs_dma
->base
+ HW_APBHX_CTRL2
+ STMP_OFFSET_REG_CLR
);
357 * When both completion and error of termination bits set at the
358 * same time, we do not take it as an error. IOW, it only becomes
359 * an error we need to handle here in case of either it's a bus
360 * error or a termination error with no completion. 0x01 is termination
361 * error, so we can subtract err & completed to get the real error case.
363 err
-= err
& completed
;
365 mxs_chan
= &mxs_dma
->mxs_chans
[chan
];
368 dev_dbg(mxs_dma
->dma_device
.dev
,
369 "%s: error in channel %d\n", __func__
,
371 mxs_chan
->status
= DMA_ERROR
;
372 mxs_dma_reset_chan(&mxs_chan
->chan
);
373 } else if (mxs_chan
->status
!= DMA_COMPLETE
) {
374 if (mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
375 mxs_chan
->status
= DMA_IN_PROGRESS
;
376 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
)
377 writel(1, mxs_dma
->base
+
378 HW_APBHX_CHn_SEMA(mxs_dma
, chan
));
380 mxs_chan
->status
= DMA_COMPLETE
;
384 if (mxs_chan
->status
== DMA_COMPLETE
) {
387 dma_cookie_complete(&mxs_chan
->desc
);
390 /* schedule tasklet on this channel */
391 tasklet_schedule(&mxs_chan
->tasklet
);
396 static int mxs_dma_alloc_chan_resources(struct dma_chan
*chan
)
398 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
399 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
402 mxs_chan
->ccw
= dma_alloc_coherent(mxs_dma
->dma_device
.dev
,
404 &mxs_chan
->ccw_phys
, GFP_KERNEL
);
405 if (!mxs_chan
->ccw
) {
410 ret
= request_irq(mxs_chan
->chan_irq
, mxs_dma_int_handler
,
411 0, "mxs-dma", mxs_dma
);
415 ret
= clk_prepare_enable(mxs_dma
->clk
);
419 mxs_dma_reset_chan(chan
);
421 dma_async_tx_descriptor_init(&mxs_chan
->desc
, chan
);
422 mxs_chan
->desc
.tx_submit
= mxs_dma_tx_submit
;
424 /* the descriptor is ready */
425 async_tx_ack(&mxs_chan
->desc
);
430 free_irq(mxs_chan
->chan_irq
, mxs_dma
);
432 dma_free_coherent(mxs_dma
->dma_device
.dev
, CCW_BLOCK_SIZE
,
433 mxs_chan
->ccw
, mxs_chan
->ccw_phys
);
438 static void mxs_dma_free_chan_resources(struct dma_chan
*chan
)
440 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
441 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
443 mxs_dma_disable_chan(chan
);
445 free_irq(mxs_chan
->chan_irq
, mxs_dma
);
447 dma_free_coherent(mxs_dma
->dma_device
.dev
, CCW_BLOCK_SIZE
,
448 mxs_chan
->ccw
, mxs_chan
->ccw_phys
);
450 clk_disable_unprepare(mxs_dma
->clk
);
454 * How to use the flags for ->device_prep_slave_sg() :
455 * [1] If there is only one DMA command in the DMA chain, the code should be:
457 * ->device_prep_slave_sg(DMA_CTRL_ACK);
459 * [2] If there are two DMA commands in the DMA chain, the code should be
461 * ->device_prep_slave_sg(0);
463 * ->device_prep_slave_sg(DMA_CTRL_ACK);
465 * [3] If there are more than two DMA commands in the DMA chain, the code
468 * ->device_prep_slave_sg(0); // First
470 * ->device_prep_slave_sg(DMA_CTRL_ACK]);
472 * ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
475 static struct dma_async_tx_descriptor
*mxs_dma_prep_slave_sg(
476 struct dma_chan
*chan
, struct scatterlist
*sgl
,
477 unsigned int sg_len
, enum dma_transfer_direction direction
,
478 unsigned long flags
, void *context
)
480 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
481 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
482 struct mxs_dma_ccw
*ccw
;
483 struct scatterlist
*sg
;
488 if (mxs_chan
->status
== DMA_IN_PROGRESS
)
489 idx
= mxs_chan
->desc_count
;
491 if (sg_len
+ idx
> NUM_CCW
) {
492 dev_err(mxs_dma
->dma_device
.dev
,
493 "maximum number of sg exceeded: %d > %d\n",
498 mxs_chan
->status
= DMA_IN_PROGRESS
;
502 * If the sg is prepared with append flag set, the sg
503 * will be appended to the last prepared sg.
507 ccw
= &mxs_chan
->ccw
[idx
- 1];
508 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * idx
;
509 ccw
->bits
|= CCW_CHAIN
;
510 ccw
->bits
&= ~CCW_IRQ
;
511 ccw
->bits
&= ~CCW_DEC_SEM
;
516 if (direction
== DMA_TRANS_NONE
) {
517 ccw
= &mxs_chan
->ccw
[idx
++];
520 for (j
= 0; j
< sg_len
;)
521 ccw
->pio_words
[j
++] = *pio
++;
524 ccw
->bits
|= CCW_IRQ
;
525 ccw
->bits
|= CCW_DEC_SEM
;
526 if (flags
& MXS_DMA_CTRL_WAIT4END
)
527 ccw
->bits
|= CCW_WAIT4END
;
528 ccw
->bits
|= CCW_HALT_ON_TERM
;
529 ccw
->bits
|= CCW_TERM_FLUSH
;
530 ccw
->bits
|= BF_CCW(sg_len
, PIO_NUM
);
531 ccw
->bits
|= BF_CCW(MXS_DMA_CMD_NO_XFER
, COMMAND
);
532 if (flags
& MXS_DMA_CTRL_WAIT4RDY
)
533 ccw
->bits
|= CCW_WAIT4RDY
;
535 for_each_sg(sgl
, sg
, sg_len
, i
) {
536 if (sg_dma_len(sg
) > MAX_XFER_BYTES
) {
537 dev_err(mxs_dma
->dma_device
.dev
, "maximum bytes for sg entry exceeded: %d > %d\n",
538 sg_dma_len(sg
), MAX_XFER_BYTES
);
542 ccw
= &mxs_chan
->ccw
[idx
++];
544 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * idx
;
545 ccw
->bufaddr
= sg
->dma_address
;
546 ccw
->xfer_bytes
= sg_dma_len(sg
);
549 ccw
->bits
|= CCW_CHAIN
;
550 ccw
->bits
|= CCW_HALT_ON_TERM
;
551 ccw
->bits
|= CCW_TERM_FLUSH
;
552 ccw
->bits
|= BF_CCW(direction
== DMA_DEV_TO_MEM
?
553 MXS_DMA_CMD_WRITE
: MXS_DMA_CMD_READ
,
556 if (i
+ 1 == sg_len
) {
557 ccw
->bits
&= ~CCW_CHAIN
;
558 ccw
->bits
|= CCW_IRQ
;
559 ccw
->bits
|= CCW_DEC_SEM
;
560 if (flags
& MXS_DMA_CTRL_WAIT4END
)
561 ccw
->bits
|= CCW_WAIT4END
;
565 mxs_chan
->desc_count
= idx
;
567 return &mxs_chan
->desc
;
570 mxs_chan
->status
= DMA_ERROR
;
574 static struct dma_async_tx_descriptor
*mxs_dma_prep_dma_cyclic(
575 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
576 size_t period_len
, enum dma_transfer_direction direction
,
579 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
580 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
581 u32 num_periods
= buf_len
/ period_len
;
584 if (mxs_chan
->status
== DMA_IN_PROGRESS
)
587 mxs_chan
->status
= DMA_IN_PROGRESS
;
588 mxs_chan
->flags
|= MXS_DMA_SG_LOOP
;
589 mxs_chan
->flags
|= MXS_DMA_USE_SEMAPHORE
;
591 if (num_periods
> NUM_CCW
) {
592 dev_err(mxs_dma
->dma_device
.dev
,
593 "maximum number of sg exceeded: %d > %d\n",
594 num_periods
, NUM_CCW
);
598 if (period_len
> MAX_XFER_BYTES
) {
599 dev_err(mxs_dma
->dma_device
.dev
,
600 "maximum period size exceeded: %zu > %d\n",
601 period_len
, MAX_XFER_BYTES
);
605 while (buf
< buf_len
) {
606 struct mxs_dma_ccw
*ccw
= &mxs_chan
->ccw
[i
];
608 if (i
+ 1 == num_periods
)
609 ccw
->next
= mxs_chan
->ccw_phys
;
611 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * (i
+ 1);
613 ccw
->bufaddr
= dma_addr
;
614 ccw
->xfer_bytes
= period_len
;
617 ccw
->bits
|= CCW_CHAIN
;
618 ccw
->bits
|= CCW_IRQ
;
619 ccw
->bits
|= CCW_HALT_ON_TERM
;
620 ccw
->bits
|= CCW_TERM_FLUSH
;
621 ccw
->bits
|= CCW_DEC_SEM
;
622 ccw
->bits
|= BF_CCW(direction
== DMA_DEV_TO_MEM
?
623 MXS_DMA_CMD_WRITE
: MXS_DMA_CMD_READ
, COMMAND
);
625 dma_addr
+= period_len
;
630 mxs_chan
->desc_count
= i
;
632 return &mxs_chan
->desc
;
635 mxs_chan
->status
= DMA_ERROR
;
639 static int mxs_dma_terminate_all(struct dma_chan
*chan
)
641 mxs_dma_reset_chan(chan
);
642 mxs_dma_disable_chan(chan
);
647 static enum dma_status
mxs_dma_tx_status(struct dma_chan
*chan
,
648 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
650 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
651 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
654 if (mxs_chan
->status
== DMA_IN_PROGRESS
&&
655 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
656 struct mxs_dma_ccw
*last_ccw
;
659 last_ccw
= &mxs_chan
->ccw
[mxs_chan
->desc_count
- 1];
660 residue
= last_ccw
->xfer_bytes
+ last_ccw
->bufaddr
;
662 bar
= readl(mxs_dma
->base
+
663 HW_APBHX_CHn_BAR(mxs_dma
, chan
->chan_id
));
667 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
670 return mxs_chan
->status
;
673 static int __init
mxs_dma_init(struct mxs_dma_engine
*mxs_dma
)
677 ret
= clk_prepare_enable(mxs_dma
->clk
);
681 ret
= stmp_reset_block(mxs_dma
->base
);
685 /* enable apbh burst */
686 if (dma_is_apbh(mxs_dma
)) {
687 writel(BM_APBH_CTRL0_APB_BURST_EN
,
688 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
689 writel(BM_APBH_CTRL0_APB_BURST8_EN
,
690 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
693 /* enable irq for all the channels */
694 writel(MXS_DMA_CHANNELS_MASK
<< MXS_DMA_CHANNELS
,
695 mxs_dma
->base
+ HW_APBHX_CTRL1
+ STMP_OFFSET_REG_SET
);
698 clk_disable_unprepare(mxs_dma
->clk
);
702 struct mxs_dma_filter_param
{
703 unsigned int chan_id
;
706 static bool mxs_dma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
708 struct mxs_dma_filter_param
*param
= fn_param
;
709 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
710 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
713 if (chan
->chan_id
!= param
->chan_id
)
716 chan_irq
= platform_get_irq(mxs_dma
->pdev
, param
->chan_id
);
720 mxs_chan
->chan_irq
= chan_irq
;
725 static struct dma_chan
*mxs_dma_xlate(struct of_phandle_args
*dma_spec
,
726 struct of_dma
*ofdma
)
728 struct mxs_dma_engine
*mxs_dma
= ofdma
->of_dma_data
;
729 dma_cap_mask_t mask
= mxs_dma
->dma_device
.cap_mask
;
730 struct mxs_dma_filter_param param
;
732 if (dma_spec
->args_count
!= 1)
735 param
.chan_id
= dma_spec
->args
[0];
737 if (param
.chan_id
>= mxs_dma
->nr_channels
)
740 return __dma_request_channel(&mask
, mxs_dma_filter_fn
, ¶m
,
744 static int __init
mxs_dma_probe(struct platform_device
*pdev
)
746 struct device_node
*np
= pdev
->dev
.of_node
;
747 const struct mxs_dma_type
*dma_type
;
748 struct mxs_dma_engine
*mxs_dma
;
749 struct resource
*iores
;
752 mxs_dma
= devm_kzalloc(&pdev
->dev
, sizeof(*mxs_dma
), GFP_KERNEL
);
756 ret
= of_property_read_u32(np
, "dma-channels", &mxs_dma
->nr_channels
);
758 dev_err(&pdev
->dev
, "failed to read dma-channels\n");
762 dma_type
= (struct mxs_dma_type
*)of_device_get_match_data(&pdev
->dev
);
763 mxs_dma
->type
= dma_type
->type
;
764 mxs_dma
->dev_id
= dma_type
->id
;
766 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
767 mxs_dma
->base
= devm_ioremap_resource(&pdev
->dev
, iores
);
768 if (IS_ERR(mxs_dma
->base
))
769 return PTR_ERR(mxs_dma
->base
);
771 mxs_dma
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
772 if (IS_ERR(mxs_dma
->clk
))
773 return PTR_ERR(mxs_dma
->clk
);
775 dma_cap_set(DMA_SLAVE
, mxs_dma
->dma_device
.cap_mask
);
776 dma_cap_set(DMA_CYCLIC
, mxs_dma
->dma_device
.cap_mask
);
778 INIT_LIST_HEAD(&mxs_dma
->dma_device
.channels
);
780 /* Initialize channel parameters */
781 for (i
= 0; i
< MXS_DMA_CHANNELS
; i
++) {
782 struct mxs_dma_chan
*mxs_chan
= &mxs_dma
->mxs_chans
[i
];
784 mxs_chan
->mxs_dma
= mxs_dma
;
785 mxs_chan
->chan
.device
= &mxs_dma
->dma_device
;
786 dma_cookie_init(&mxs_chan
->chan
);
788 tasklet_setup(&mxs_chan
->tasklet
, mxs_dma_tasklet
);
791 /* Add the channel to mxs_chan list */
792 list_add_tail(&mxs_chan
->chan
.device_node
,
793 &mxs_dma
->dma_device
.channels
);
796 ret
= mxs_dma_init(mxs_dma
);
800 mxs_dma
->pdev
= pdev
;
801 mxs_dma
->dma_device
.dev
= &pdev
->dev
;
803 /* mxs_dma gets 65535 bytes maximum sg size */
804 dma_set_max_seg_size(mxs_dma
->dma_device
.dev
, MAX_XFER_BYTES
);
806 mxs_dma
->dma_device
.device_alloc_chan_resources
= mxs_dma_alloc_chan_resources
;
807 mxs_dma
->dma_device
.device_free_chan_resources
= mxs_dma_free_chan_resources
;
808 mxs_dma
->dma_device
.device_tx_status
= mxs_dma_tx_status
;
809 mxs_dma
->dma_device
.device_prep_slave_sg
= mxs_dma_prep_slave_sg
;
810 mxs_dma
->dma_device
.device_prep_dma_cyclic
= mxs_dma_prep_dma_cyclic
;
811 mxs_dma
->dma_device
.device_pause
= mxs_dma_pause_chan
;
812 mxs_dma
->dma_device
.device_resume
= mxs_dma_resume_chan
;
813 mxs_dma
->dma_device
.device_terminate_all
= mxs_dma_terminate_all
;
814 mxs_dma
->dma_device
.src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
815 mxs_dma
->dma_device
.dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
816 mxs_dma
->dma_device
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
817 mxs_dma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
818 mxs_dma
->dma_device
.device_issue_pending
= mxs_dma_enable_chan
;
820 ret
= dmaenginem_async_device_register(&mxs_dma
->dma_device
);
822 dev_err(mxs_dma
->dma_device
.dev
, "unable to register\n");
826 ret
= of_dma_controller_register(np
, mxs_dma_xlate
, mxs_dma
);
828 dev_err(mxs_dma
->dma_device
.dev
,
829 "failed to register controller\n");
832 dev_info(mxs_dma
->dma_device
.dev
, "initialized\n");
837 static struct platform_driver mxs_dma_driver
= {
840 .of_match_table
= mxs_dma_dt_ids
,
844 static int __init
mxs_dma_module_init(void)
846 return platform_driver_probe(&mxs_dma_driver
, mxs_dma_probe
);
848 subsys_initcall(mxs_dma_module_init
);