1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI (STM32_DMA_TCI \
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
72 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
76 | STM32_DMA_SCR_MINC \
77 | STM32_DMA_SCR_PINCOS \
78 | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
80 | STM32_DMA_SCR_TEIE \
81 | STM32_DMA_SCR_DMEIE)
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
102 | STM32_DMA_SFCR_DMDIS)
105 #define STM32_DMA_DEV_TO_MEM 0x00
106 #define STM32_DMA_MEM_TO_DEV 0x01
107 #define STM32_DMA_MEM_TO_MEM 0x02
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW 0x00
111 #define STM32_DMA_PRIORITY_MEDIUM 0x01
112 #define STM32_DMA_PRIORITY_HIGH 0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
122 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125 * gather at boundary. Thus it's safer to round down this value on FIFO
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
129 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS 0x08
131 #define STM32_DMA_MAX_REQUEST_ID 0x08
132 #define STM32_DMA_MAX_DATA_PARAM 0x03
133 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST 4
135 #define STM32_DMA_MAX_BURST 16
138 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) \
144 enum stm32_dma_width
{
150 enum stm32_dma_burst_size
{
151 STM32_DMA_BURST_SINGLE
,
152 STM32_DMA_BURST_INCR4
,
153 STM32_DMA_BURST_INCR8
,
154 STM32_DMA_BURST_INCR16
,
158 * struct stm32_dma_cfg - STM32 DMA custom configuration
159 * @channel_id: channel ID
160 * @request_line: DMA request
161 * @stream_config: 32bit mask specifying the DMA channel configuration
162 * @features: 32bit mask specifying the DMA Feature list
164 struct stm32_dma_cfg
{
171 struct stm32_dma_chan_reg
{
184 struct stm32_dma_sg_req
{
186 struct stm32_dma_chan_reg chan_reg
;
189 struct stm32_dma_desc
{
190 struct virt_dma_desc vdesc
;
193 struct stm32_dma_sg_req sg_req
[];
196 struct stm32_dma_chan
{
197 struct virt_dma_chan vchan
;
202 struct stm32_dma_desc
*desc
;
204 struct dma_slave_config dma_sconfig
;
205 struct stm32_dma_chan_reg chan_reg
;
211 struct stm32_dma_device
{
212 struct dma_device ddev
;
216 struct stm32_dma_chan chan
[STM32_DMA_MAX_CHANNELS
];
219 static struct stm32_dma_device
*stm32_dma_get_dev(struct stm32_dma_chan
*chan
)
221 return container_of(chan
->vchan
.chan
.device
, struct stm32_dma_device
,
225 static struct stm32_dma_chan
*to_stm32_dma_chan(struct dma_chan
*c
)
227 return container_of(c
, struct stm32_dma_chan
, vchan
.chan
);
230 static struct stm32_dma_desc
*to_stm32_dma_desc(struct virt_dma_desc
*vdesc
)
232 return container_of(vdesc
, struct stm32_dma_desc
, vdesc
);
235 static struct device
*chan2dev(struct stm32_dma_chan
*chan
)
237 return &chan
->vchan
.chan
.dev
->device
;
240 static u32
stm32_dma_read(struct stm32_dma_device
*dmadev
, u32 reg
)
242 return readl_relaxed(dmadev
->base
+ reg
);
245 static void stm32_dma_write(struct stm32_dma_device
*dmadev
, u32 reg
, u32 val
)
247 writel_relaxed(val
, dmadev
->base
+ reg
);
250 static int stm32_dma_get_width(struct stm32_dma_chan
*chan
,
251 enum dma_slave_buswidth width
)
254 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
255 return STM32_DMA_BYTE
;
256 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
257 return STM32_DMA_HALF_WORD
;
258 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
259 return STM32_DMA_WORD
;
261 dev_err(chan2dev(chan
), "Dma bus width not supported\n");
266 static enum dma_slave_buswidth
stm32_dma_get_max_width(u32 buf_len
,
270 enum dma_slave_buswidth max_width
;
273 if (threshold
== STM32_DMA_FIFO_THRESHOLD_FULL
)
274 max_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
276 max_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
278 while ((buf_len
< max_width
|| buf_len
% max_width
) &&
279 max_width
> DMA_SLAVE_BUSWIDTH_1_BYTE
)
280 max_width
= max_width
>> 1;
282 if (do_div(addr
, max_width
))
283 max_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
288 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst
, u32 threshold
,
289 enum dma_slave_buswidth width
)
293 if (threshold
== STM32_DMA_FIFO_THRESHOLD_NONE
)
296 if (width
!= DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
299 * If number of beats fit in several whole bursts
300 * this configuration is allowed.
302 remaining
= ((STM32_DMA_FIFO_SIZE
/ width
) *
303 (threshold
+ 1) / 4) % burst
;
315 static bool stm32_dma_is_burst_possible(u32 buf_len
, u32 threshold
)
317 /* If FIFO direct mode, burst is not possible */
318 if (threshold
== STM32_DMA_FIFO_THRESHOLD_NONE
)
322 * Buffer or period length has to be aligned on FIFO depth.
323 * Otherwise bytes may be stuck within FIFO at buffer or period
326 return ((buf_len
% ((threshold
+ 1) * 4)) == 0);
329 static u32
stm32_dma_get_best_burst(u32 buf_len
, u32 max_burst
, u32 threshold
,
330 enum dma_slave_buswidth width
)
332 u32 best_burst
= max_burst
;
334 if (best_burst
== 1 || !stm32_dma_is_burst_possible(buf_len
, threshold
))
337 while ((buf_len
< best_burst
* width
&& best_burst
> 1) ||
338 !stm32_dma_fifo_threshold_is_allowed(best_burst
, threshold
,
340 if (best_burst
> STM32_DMA_MIN_BURST
)
341 best_burst
= best_burst
>> 1;
349 static int stm32_dma_get_burst(struct stm32_dma_chan
*chan
, u32 maxburst
)
354 return STM32_DMA_BURST_SINGLE
;
356 return STM32_DMA_BURST_INCR4
;
358 return STM32_DMA_BURST_INCR8
;
360 return STM32_DMA_BURST_INCR16
;
362 dev_err(chan2dev(chan
), "Dma burst size not supported\n");
367 static void stm32_dma_set_fifo_config(struct stm32_dma_chan
*chan
,
368 u32 src_burst
, u32 dst_burst
)
370 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_MASK
;
371 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_DMEIE
;
373 if (!src_burst
&& !dst_burst
) {
374 /* Using direct mode */
375 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_DMEIE
;
377 /* Using FIFO mode */
378 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_MASK
;
382 static int stm32_dma_slave_config(struct dma_chan
*c
,
383 struct dma_slave_config
*config
)
385 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
387 memcpy(&chan
->dma_sconfig
, config
, sizeof(*config
));
389 chan
->config_init
= true;
394 static u32
stm32_dma_irq_status(struct stm32_dma_chan
*chan
)
396 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
400 * Read "flags" from DMA_xISR register corresponding to the selected
401 * DMA channel at the correct bit offset inside that register.
403 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
404 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
408 dma_isr
= stm32_dma_read(dmadev
, STM32_DMA_HISR
);
410 dma_isr
= stm32_dma_read(dmadev
, STM32_DMA_LISR
);
412 flags
= dma_isr
>> (((chan
->id
& 2) << 3) | ((chan
->id
& 1) * 6));
414 return flags
& STM32_DMA_MASKI
;
417 static void stm32_dma_irq_clear(struct stm32_dma_chan
*chan
, u32 flags
)
419 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
423 * Write "flags" to the DMA_xIFCR register corresponding to the selected
424 * DMA channel at the correct bit offset inside that register.
426 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
427 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
429 flags
&= STM32_DMA_MASKI
;
430 dma_ifcr
= flags
<< (((chan
->id
& 2) << 3) | ((chan
->id
& 1) * 6));
433 stm32_dma_write(dmadev
, STM32_DMA_HIFCR
, dma_ifcr
);
435 stm32_dma_write(dmadev
, STM32_DMA_LIFCR
, dma_ifcr
);
438 static int stm32_dma_disable_chan(struct stm32_dma_chan
*chan
)
440 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
441 u32 dma_scr
, id
, reg
;
444 reg
= STM32_DMA_SCR(id
);
445 dma_scr
= stm32_dma_read(dmadev
, reg
);
447 if (dma_scr
& STM32_DMA_SCR_EN
) {
448 dma_scr
&= ~STM32_DMA_SCR_EN
;
449 stm32_dma_write(dmadev
, reg
, dma_scr
);
451 return readl_relaxed_poll_timeout_atomic(dmadev
->base
+ reg
,
452 dma_scr
, !(dma_scr
& STM32_DMA_SCR_EN
),
459 static void stm32_dma_stop(struct stm32_dma_chan
*chan
)
461 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
462 u32 dma_scr
, dma_sfcr
, status
;
465 /* Disable interrupts */
466 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
467 dma_scr
&= ~STM32_DMA_SCR_IRQ_MASK
;
468 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), dma_scr
);
469 dma_sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
470 dma_sfcr
&= ~STM32_DMA_SFCR_FEIE
;
471 stm32_dma_write(dmadev
, STM32_DMA_SFCR(chan
->id
), dma_sfcr
);
474 ret
= stm32_dma_disable_chan(chan
);
478 /* Clear interrupt status if it is there */
479 status
= stm32_dma_irq_status(chan
);
481 dev_dbg(chan2dev(chan
), "%s(): clearing interrupt: 0x%08x\n",
483 stm32_dma_irq_clear(chan
, status
);
489 static int stm32_dma_terminate_all(struct dma_chan
*c
)
491 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
495 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
498 vchan_terminate_vdesc(&chan
->desc
->vdesc
);
500 stm32_dma_stop(chan
);
504 vchan_get_all_descriptors(&chan
->vchan
, &head
);
505 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
506 vchan_dma_desc_free_list(&chan
->vchan
, &head
);
511 static void stm32_dma_synchronize(struct dma_chan
*c
)
513 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
515 vchan_synchronize(&chan
->vchan
);
518 static void stm32_dma_dump_reg(struct stm32_dma_chan
*chan
)
520 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
521 u32 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
522 u32 ndtr
= stm32_dma_read(dmadev
, STM32_DMA_SNDTR(chan
->id
));
523 u32 spar
= stm32_dma_read(dmadev
, STM32_DMA_SPAR(chan
->id
));
524 u32 sm0ar
= stm32_dma_read(dmadev
, STM32_DMA_SM0AR(chan
->id
));
525 u32 sm1ar
= stm32_dma_read(dmadev
, STM32_DMA_SM1AR(chan
->id
));
526 u32 sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
528 dev_dbg(chan2dev(chan
), "SCR: 0x%08x\n", scr
);
529 dev_dbg(chan2dev(chan
), "NDTR: 0x%08x\n", ndtr
);
530 dev_dbg(chan2dev(chan
), "SPAR: 0x%08x\n", spar
);
531 dev_dbg(chan2dev(chan
), "SM0AR: 0x%08x\n", sm0ar
);
532 dev_dbg(chan2dev(chan
), "SM1AR: 0x%08x\n", sm1ar
);
533 dev_dbg(chan2dev(chan
), "SFCR: 0x%08x\n", sfcr
);
536 static void stm32_dma_configure_next_sg(struct stm32_dma_chan
*chan
);
538 static void stm32_dma_start_transfer(struct stm32_dma_chan
*chan
)
540 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
541 struct virt_dma_desc
*vdesc
;
542 struct stm32_dma_sg_req
*sg_req
;
543 struct stm32_dma_chan_reg
*reg
;
547 ret
= stm32_dma_disable_chan(chan
);
552 vdesc
= vchan_next_desc(&chan
->vchan
);
556 list_del(&vdesc
->node
);
558 chan
->desc
= to_stm32_dma_desc(vdesc
);
562 if (chan
->next_sg
== chan
->desc
->num_sgs
)
565 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
566 reg
= &sg_req
->chan_reg
;
568 reg
->dma_scr
&= ~STM32_DMA_SCR_EN
;
569 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), reg
->dma_scr
);
570 stm32_dma_write(dmadev
, STM32_DMA_SPAR(chan
->id
), reg
->dma_spar
);
571 stm32_dma_write(dmadev
, STM32_DMA_SM0AR(chan
->id
), reg
->dma_sm0ar
);
572 stm32_dma_write(dmadev
, STM32_DMA_SFCR(chan
->id
), reg
->dma_sfcr
);
573 stm32_dma_write(dmadev
, STM32_DMA_SM1AR(chan
->id
), reg
->dma_sm1ar
);
574 stm32_dma_write(dmadev
, STM32_DMA_SNDTR(chan
->id
), reg
->dma_sndtr
);
578 /* Clear interrupt status if it is there */
579 status
= stm32_dma_irq_status(chan
);
581 stm32_dma_irq_clear(chan
, status
);
583 if (chan
->desc
->cyclic
)
584 stm32_dma_configure_next_sg(chan
);
586 stm32_dma_dump_reg(chan
);
589 reg
->dma_scr
|= STM32_DMA_SCR_EN
;
590 stm32_dma_write(dmadev
, STM32_DMA_SCR(chan
->id
), reg
->dma_scr
);
594 dev_dbg(chan2dev(chan
), "vchan %pK: started\n", &chan
->vchan
);
597 static void stm32_dma_configure_next_sg(struct stm32_dma_chan
*chan
)
599 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
600 struct stm32_dma_sg_req
*sg_req
;
601 u32 dma_scr
, dma_sm0ar
, dma_sm1ar
, id
;
604 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
606 if (dma_scr
& STM32_DMA_SCR_DBM
) {
607 if (chan
->next_sg
== chan
->desc
->num_sgs
)
610 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
612 if (dma_scr
& STM32_DMA_SCR_CT
) {
613 dma_sm0ar
= sg_req
->chan_reg
.dma_sm0ar
;
614 stm32_dma_write(dmadev
, STM32_DMA_SM0AR(id
), dma_sm0ar
);
615 dev_dbg(chan2dev(chan
), "CT=1 <=> SM0AR: 0x%08x\n",
616 stm32_dma_read(dmadev
, STM32_DMA_SM0AR(id
)));
618 dma_sm1ar
= sg_req
->chan_reg
.dma_sm1ar
;
619 stm32_dma_write(dmadev
, STM32_DMA_SM1AR(id
), dma_sm1ar
);
620 dev_dbg(chan2dev(chan
), "CT=0 <=> SM1AR: 0x%08x\n",
621 stm32_dma_read(dmadev
, STM32_DMA_SM1AR(id
)));
626 static void stm32_dma_handle_chan_done(struct stm32_dma_chan
*chan
)
629 if (chan
->desc
->cyclic
) {
630 vchan_cyclic_callback(&chan
->desc
->vdesc
);
632 stm32_dma_configure_next_sg(chan
);
635 if (chan
->next_sg
== chan
->desc
->num_sgs
) {
636 vchan_cookie_complete(&chan
->desc
->vdesc
);
639 stm32_dma_start_transfer(chan
);
644 static irqreturn_t
stm32_dma_chan_irq(int irq
, void *devid
)
646 struct stm32_dma_chan
*chan
= devid
;
647 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
648 u32 status
, scr
, sfcr
;
650 spin_lock(&chan
->vchan
.lock
);
652 status
= stm32_dma_irq_status(chan
);
653 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
654 sfcr
= stm32_dma_read(dmadev
, STM32_DMA_SFCR(chan
->id
));
656 if (status
& STM32_DMA_FEI
) {
657 stm32_dma_irq_clear(chan
, STM32_DMA_FEI
);
658 status
&= ~STM32_DMA_FEI
;
659 if (sfcr
& STM32_DMA_SFCR_FEIE
) {
660 if (!(scr
& STM32_DMA_SCR_EN
) &&
661 !(status
& STM32_DMA_TCI
))
662 dev_err(chan2dev(chan
), "FIFO Error\n");
664 dev_dbg(chan2dev(chan
), "FIFO over/underrun\n");
667 if (status
& STM32_DMA_DMEI
) {
668 stm32_dma_irq_clear(chan
, STM32_DMA_DMEI
);
669 status
&= ~STM32_DMA_DMEI
;
670 if (sfcr
& STM32_DMA_SCR_DMEIE
)
671 dev_dbg(chan2dev(chan
), "Direct mode overrun\n");
674 if (status
& STM32_DMA_TCI
) {
675 stm32_dma_irq_clear(chan
, STM32_DMA_TCI
);
676 if (scr
& STM32_DMA_SCR_TCIE
)
677 stm32_dma_handle_chan_done(chan
);
678 status
&= ~STM32_DMA_TCI
;
681 if (status
& STM32_DMA_HTI
) {
682 stm32_dma_irq_clear(chan
, STM32_DMA_HTI
);
683 status
&= ~STM32_DMA_HTI
;
687 stm32_dma_irq_clear(chan
, status
);
688 dev_err(chan2dev(chan
), "DMA error: status=0x%08x\n", status
);
689 if (!(scr
& STM32_DMA_SCR_EN
))
690 dev_err(chan2dev(chan
), "chan disabled by HW\n");
693 spin_unlock(&chan
->vchan
.lock
);
698 static void stm32_dma_issue_pending(struct dma_chan
*c
)
700 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
703 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
704 if (vchan_issue_pending(&chan
->vchan
) && !chan
->desc
&& !chan
->busy
) {
705 dev_dbg(chan2dev(chan
), "vchan %pK: issued\n", &chan
->vchan
);
706 stm32_dma_start_transfer(chan
);
709 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
712 static int stm32_dma_set_xfer_param(struct stm32_dma_chan
*chan
,
713 enum dma_transfer_direction direction
,
714 enum dma_slave_buswidth
*buswidth
,
715 u32 buf_len
, dma_addr_t buf_addr
)
717 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
718 int src_bus_width
, dst_bus_width
;
719 int src_burst_size
, dst_burst_size
;
720 u32 src_maxburst
, dst_maxburst
, src_best_burst
, dst_best_burst
;
723 src_addr_width
= chan
->dma_sconfig
.src_addr_width
;
724 dst_addr_width
= chan
->dma_sconfig
.dst_addr_width
;
725 src_maxburst
= chan
->dma_sconfig
.src_maxburst
;
726 dst_maxburst
= chan
->dma_sconfig
.dst_maxburst
;
727 fifoth
= chan
->threshold
;
731 /* Set device data size */
732 dst_bus_width
= stm32_dma_get_width(chan
, dst_addr_width
);
733 if (dst_bus_width
< 0)
734 return dst_bus_width
;
736 /* Set device burst size */
737 dst_best_burst
= stm32_dma_get_best_burst(buf_len
,
742 dst_burst_size
= stm32_dma_get_burst(chan
, dst_best_burst
);
743 if (dst_burst_size
< 0)
744 return dst_burst_size
;
746 /* Set memory data size */
747 src_addr_width
= stm32_dma_get_max_width(buf_len
, buf_addr
,
749 chan
->mem_width
= src_addr_width
;
750 src_bus_width
= stm32_dma_get_width(chan
, src_addr_width
);
751 if (src_bus_width
< 0)
752 return src_bus_width
;
754 /* Set memory burst size */
755 src_maxburst
= STM32_DMA_MAX_BURST
;
756 src_best_burst
= stm32_dma_get_best_burst(buf_len
,
760 src_burst_size
= stm32_dma_get_burst(chan
, src_best_burst
);
761 if (src_burst_size
< 0)
762 return src_burst_size
;
764 dma_scr
= STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV
) |
765 STM32_DMA_SCR_PSIZE(dst_bus_width
) |
766 STM32_DMA_SCR_MSIZE(src_bus_width
) |
767 STM32_DMA_SCR_PBURST(dst_burst_size
) |
768 STM32_DMA_SCR_MBURST(src_burst_size
);
770 /* Set FIFO threshold */
771 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_FTH_MASK
;
772 if (fifoth
!= STM32_DMA_FIFO_THRESHOLD_NONE
)
773 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_FTH(fifoth
);
775 /* Set peripheral address */
776 chan
->chan_reg
.dma_spar
= chan
->dma_sconfig
.dst_addr
;
777 *buswidth
= dst_addr_width
;
781 /* Set device data size */
782 src_bus_width
= stm32_dma_get_width(chan
, src_addr_width
);
783 if (src_bus_width
< 0)
784 return src_bus_width
;
786 /* Set device burst size */
787 src_best_burst
= stm32_dma_get_best_burst(buf_len
,
791 chan
->mem_burst
= src_best_burst
;
792 src_burst_size
= stm32_dma_get_burst(chan
, src_best_burst
);
793 if (src_burst_size
< 0)
794 return src_burst_size
;
796 /* Set memory data size */
797 dst_addr_width
= stm32_dma_get_max_width(buf_len
, buf_addr
,
799 chan
->mem_width
= dst_addr_width
;
800 dst_bus_width
= stm32_dma_get_width(chan
, dst_addr_width
);
801 if (dst_bus_width
< 0)
802 return dst_bus_width
;
804 /* Set memory burst size */
805 dst_maxburst
= STM32_DMA_MAX_BURST
;
806 dst_best_burst
= stm32_dma_get_best_burst(buf_len
,
810 chan
->mem_burst
= dst_best_burst
;
811 dst_burst_size
= stm32_dma_get_burst(chan
, dst_best_burst
);
812 if (dst_burst_size
< 0)
813 return dst_burst_size
;
815 dma_scr
= STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM
) |
816 STM32_DMA_SCR_PSIZE(src_bus_width
) |
817 STM32_DMA_SCR_MSIZE(dst_bus_width
) |
818 STM32_DMA_SCR_PBURST(src_burst_size
) |
819 STM32_DMA_SCR_MBURST(dst_burst_size
);
821 /* Set FIFO threshold */
822 chan
->chan_reg
.dma_sfcr
&= ~STM32_DMA_SFCR_FTH_MASK
;
823 if (fifoth
!= STM32_DMA_FIFO_THRESHOLD_NONE
)
824 chan
->chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_FTH(fifoth
);
826 /* Set peripheral address */
827 chan
->chan_reg
.dma_spar
= chan
->dma_sconfig
.src_addr
;
828 *buswidth
= chan
->dma_sconfig
.src_addr_width
;
832 dev_err(chan2dev(chan
), "Dma direction is not supported\n");
836 stm32_dma_set_fifo_config(chan
, src_best_burst
, dst_best_burst
);
838 /* Set DMA control register */
839 chan
->chan_reg
.dma_scr
&= ~(STM32_DMA_SCR_DIR_MASK
|
840 STM32_DMA_SCR_PSIZE_MASK
| STM32_DMA_SCR_MSIZE_MASK
|
841 STM32_DMA_SCR_PBURST_MASK
| STM32_DMA_SCR_MBURST_MASK
);
842 chan
->chan_reg
.dma_scr
|= dma_scr
;
847 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg
*regs
)
849 memset(regs
, 0, sizeof(struct stm32_dma_chan_reg
));
852 static struct dma_async_tx_descriptor
*stm32_dma_prep_slave_sg(
853 struct dma_chan
*c
, struct scatterlist
*sgl
,
854 u32 sg_len
, enum dma_transfer_direction direction
,
855 unsigned long flags
, void *context
)
857 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
858 struct stm32_dma_desc
*desc
;
859 struct scatterlist
*sg
;
860 enum dma_slave_buswidth buswidth
;
864 if (!chan
->config_init
) {
865 dev_err(chan2dev(chan
), "dma channel is not configured\n");
870 dev_err(chan2dev(chan
), "Invalid segment length %d\n", sg_len
);
874 desc
= kzalloc(struct_size(desc
, sg_req
, sg_len
), GFP_NOWAIT
);
878 /* Set peripheral flow controller */
879 if (chan
->dma_sconfig
.device_fc
)
880 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_PFCTRL
;
882 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_PFCTRL
;
884 for_each_sg(sgl
, sg
, sg_len
, i
) {
885 ret
= stm32_dma_set_xfer_param(chan
, direction
, &buswidth
,
891 desc
->sg_req
[i
].len
= sg_dma_len(sg
);
893 nb_data_items
= desc
->sg_req
[i
].len
/ buswidth
;
894 if (nb_data_items
> STM32_DMA_ALIGNED_MAX_DATA_ITEMS
) {
895 dev_err(chan2dev(chan
), "nb items not supported\n");
899 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
900 desc
->sg_req
[i
].chan_reg
.dma_scr
= chan
->chan_reg
.dma_scr
;
901 desc
->sg_req
[i
].chan_reg
.dma_sfcr
= chan
->chan_reg
.dma_sfcr
;
902 desc
->sg_req
[i
].chan_reg
.dma_spar
= chan
->chan_reg
.dma_spar
;
903 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= sg_dma_address(sg
);
904 desc
->sg_req
[i
].chan_reg
.dma_sm1ar
= sg_dma_address(sg
);
905 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= nb_data_items
;
908 desc
->num_sgs
= sg_len
;
909 desc
->cyclic
= false;
911 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
918 static struct dma_async_tx_descriptor
*stm32_dma_prep_dma_cyclic(
919 struct dma_chan
*c
, dma_addr_t buf_addr
, size_t buf_len
,
920 size_t period_len
, enum dma_transfer_direction direction
,
923 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
924 struct stm32_dma_desc
*desc
;
925 enum dma_slave_buswidth buswidth
;
926 u32 num_periods
, nb_data_items
;
929 if (!buf_len
|| !period_len
) {
930 dev_err(chan2dev(chan
), "Invalid buffer/period len\n");
934 if (!chan
->config_init
) {
935 dev_err(chan2dev(chan
), "dma channel is not configured\n");
939 if (buf_len
% period_len
) {
940 dev_err(chan2dev(chan
), "buf_len not multiple of period_len\n");
945 * We allow to take more number of requests till DMA is
946 * not started. The driver will loop over all requests.
947 * Once DMA is started then new requests can be queued only after
948 * terminating the DMA.
951 dev_err(chan2dev(chan
), "Request not allowed when dma busy\n");
955 ret
= stm32_dma_set_xfer_param(chan
, direction
, &buswidth
, period_len
,
960 nb_data_items
= period_len
/ buswidth
;
961 if (nb_data_items
> STM32_DMA_ALIGNED_MAX_DATA_ITEMS
) {
962 dev_err(chan2dev(chan
), "number of items not supported\n");
966 /* Enable Circular mode or double buffer mode */
967 if (buf_len
== period_len
)
968 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_CIRC
;
970 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_DBM
;
972 /* Clear periph ctrl if client set it */
973 chan
->chan_reg
.dma_scr
&= ~STM32_DMA_SCR_PFCTRL
;
975 num_periods
= buf_len
/ period_len
;
977 desc
= kzalloc(struct_size(desc
, sg_req
, num_periods
), GFP_NOWAIT
);
981 for (i
= 0; i
< num_periods
; i
++) {
982 desc
->sg_req
[i
].len
= period_len
;
984 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
985 desc
->sg_req
[i
].chan_reg
.dma_scr
= chan
->chan_reg
.dma_scr
;
986 desc
->sg_req
[i
].chan_reg
.dma_sfcr
= chan
->chan_reg
.dma_sfcr
;
987 desc
->sg_req
[i
].chan_reg
.dma_spar
= chan
->chan_reg
.dma_spar
;
988 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= buf_addr
;
989 desc
->sg_req
[i
].chan_reg
.dma_sm1ar
= buf_addr
;
990 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= nb_data_items
;
991 buf_addr
+= period_len
;
994 desc
->num_sgs
= num_periods
;
997 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
1000 static struct dma_async_tx_descriptor
*stm32_dma_prep_dma_memcpy(
1001 struct dma_chan
*c
, dma_addr_t dest
,
1002 dma_addr_t src
, size_t len
, unsigned long flags
)
1004 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1005 enum dma_slave_buswidth max_width
;
1006 struct stm32_dma_desc
*desc
;
1007 size_t xfer_count
, offset
;
1008 u32 num_sgs
, best_burst
, dma_burst
, threshold
;
1011 num_sgs
= DIV_ROUND_UP(len
, STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
1012 desc
= kzalloc(struct_size(desc
, sg_req
, num_sgs
), GFP_NOWAIT
);
1016 threshold
= chan
->threshold
;
1018 for (offset
= 0, i
= 0; offset
< len
; offset
+= xfer_count
, i
++) {
1019 xfer_count
= min_t(size_t, len
- offset
,
1020 STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
1022 /* Compute best burst size */
1023 max_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1024 best_burst
= stm32_dma_get_best_burst(len
, STM32_DMA_MAX_BURST
,
1025 threshold
, max_width
);
1026 dma_burst
= stm32_dma_get_burst(chan
, best_burst
);
1028 stm32_dma_clear_reg(&desc
->sg_req
[i
].chan_reg
);
1029 desc
->sg_req
[i
].chan_reg
.dma_scr
=
1030 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM
) |
1031 STM32_DMA_SCR_PBURST(dma_burst
) |
1032 STM32_DMA_SCR_MBURST(dma_burst
) |
1033 STM32_DMA_SCR_MINC
|
1034 STM32_DMA_SCR_PINC
|
1035 STM32_DMA_SCR_TCIE
|
1037 desc
->sg_req
[i
].chan_reg
.dma_sfcr
|= STM32_DMA_SFCR_MASK
;
1038 desc
->sg_req
[i
].chan_reg
.dma_sfcr
|=
1039 STM32_DMA_SFCR_FTH(threshold
);
1040 desc
->sg_req
[i
].chan_reg
.dma_spar
= src
+ offset
;
1041 desc
->sg_req
[i
].chan_reg
.dma_sm0ar
= dest
+ offset
;
1042 desc
->sg_req
[i
].chan_reg
.dma_sndtr
= xfer_count
;
1043 desc
->sg_req
[i
].len
= xfer_count
;
1046 desc
->num_sgs
= num_sgs
;
1047 desc
->cyclic
= false;
1049 return vchan_tx_prep(&chan
->vchan
, &desc
->vdesc
, flags
);
1052 static u32
stm32_dma_get_remaining_bytes(struct stm32_dma_chan
*chan
)
1054 u32 dma_scr
, width
, ndtr
;
1055 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1057 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(chan
->id
));
1058 width
= STM32_DMA_SCR_PSIZE_GET(dma_scr
);
1059 ndtr
= stm32_dma_read(dmadev
, STM32_DMA_SNDTR(chan
->id
));
1061 return ndtr
<< width
;
1065 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066 * @chan: dma channel
1068 * This function called when IRQ are disable, checks that the hardware has not
1069 * switched on the next transfer in double buffer mode. The test is done by
1070 * comparing the next_sg memory address with the hardware related register
1071 * (based on CT bit value).
1073 * Returns true if expected current transfer is still running or double
1074 * buffer mode is not activated.
1076 static bool stm32_dma_is_current_sg(struct stm32_dma_chan
*chan
)
1078 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1079 struct stm32_dma_sg_req
*sg_req
;
1080 u32 dma_scr
, dma_smar
, id
;
1083 dma_scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
1085 if (!(dma_scr
& STM32_DMA_SCR_DBM
))
1088 sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
1090 if (dma_scr
& STM32_DMA_SCR_CT
) {
1091 dma_smar
= stm32_dma_read(dmadev
, STM32_DMA_SM0AR(id
));
1092 return (dma_smar
== sg_req
->chan_reg
.dma_sm0ar
);
1095 dma_smar
= stm32_dma_read(dmadev
, STM32_DMA_SM1AR(id
));
1097 return (dma_smar
== sg_req
->chan_reg
.dma_sm1ar
);
1100 static size_t stm32_dma_desc_residue(struct stm32_dma_chan
*chan
,
1101 struct stm32_dma_desc
*desc
,
1104 u32 modulo
, burst_size
;
1107 struct stm32_dma_sg_req
*sg_req
= &chan
->desc
->sg_req
[chan
->next_sg
];
1111 * Calculate the residue means compute the descriptors
1113 * - the sg_req currently transferred
1114 * - the Hardware remaining position in this sg (NDTR bits field).
1116 * A race condition may occur if DMA is running in cyclic or double
1117 * buffer mode, since the DMA register are automatically reloaded at end
1118 * of period transfer. The hardware may have switched to the next
1119 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1121 * In this case the SxNDTR reg could (or not) correspond to the new
1122 * transfer position, and not the expected one.
1123 * The strategy implemented in the stm32 driver is to:
1124 * - read the SxNDTR register
1125 * - crosscheck that hardware is still in current transfer.
1126 * In case of switch, we can assume that the DMA is at the beginning of
1127 * the next transfer. So we approximate the residue in consequence, by
1128 * pointing on the beginning of next transfer.
1130 * This race condition doesn't apply for none cyclic mode, as double
1131 * buffer is not used. In such situation registers are updated by the
1135 residue
= stm32_dma_get_remaining_bytes(chan
);
1137 if (!stm32_dma_is_current_sg(chan
)) {
1139 if (n_sg
== chan
->desc
->num_sgs
)
1141 residue
= sg_req
->len
;
1145 * In cyclic mode, for the last period, residue = remaining bytes
1147 * else for all other periods in cyclic mode, and in sg mode,
1148 * residue = remaining bytes from NDTR + remaining
1149 * periods/sg to be transferred
1151 if (!chan
->desc
->cyclic
|| n_sg
!= 0)
1152 for (i
= n_sg
; i
< desc
->num_sgs
; i
++)
1153 residue
+= desc
->sg_req
[i
].len
;
1155 if (!chan
->mem_burst
)
1158 burst_size
= chan
->mem_burst
* chan
->mem_width
;
1159 modulo
= residue
% burst_size
;
1161 residue
= residue
- modulo
+ burst_size
;
1166 static enum dma_status
stm32_dma_tx_status(struct dma_chan
*c
,
1167 dma_cookie_t cookie
,
1168 struct dma_tx_state
*state
)
1170 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1171 struct virt_dma_desc
*vdesc
;
1172 enum dma_status status
;
1173 unsigned long flags
;
1176 status
= dma_cookie_status(c
, cookie
, state
);
1177 if (status
== DMA_COMPLETE
|| !state
)
1180 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
1181 vdesc
= vchan_find_desc(&chan
->vchan
, cookie
);
1182 if (chan
->desc
&& cookie
== chan
->desc
->vdesc
.tx
.cookie
)
1183 residue
= stm32_dma_desc_residue(chan
, chan
->desc
,
1186 residue
= stm32_dma_desc_residue(chan
,
1187 to_stm32_dma_desc(vdesc
), 0);
1188 dma_set_residue(state
, residue
);
1190 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
1195 static int stm32_dma_alloc_chan_resources(struct dma_chan
*c
)
1197 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1198 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1201 chan
->config_init
= false;
1203 ret
= pm_runtime_get_sync(dmadev
->ddev
.dev
);
1207 ret
= stm32_dma_disable_chan(chan
);
1209 pm_runtime_put(dmadev
->ddev
.dev
);
1214 static void stm32_dma_free_chan_resources(struct dma_chan
*c
)
1216 struct stm32_dma_chan
*chan
= to_stm32_dma_chan(c
);
1217 struct stm32_dma_device
*dmadev
= stm32_dma_get_dev(chan
);
1218 unsigned long flags
;
1220 dev_dbg(chan2dev(chan
), "Freeing channel %d\n", chan
->id
);
1223 spin_lock_irqsave(&chan
->vchan
.lock
, flags
);
1224 stm32_dma_stop(chan
);
1226 spin_unlock_irqrestore(&chan
->vchan
.lock
, flags
);
1229 pm_runtime_put(dmadev
->ddev
.dev
);
1231 vchan_free_chan_resources(to_virt_chan(c
));
1232 stm32_dma_clear_reg(&chan
->chan_reg
);
1233 chan
->threshold
= 0;
1236 static void stm32_dma_desc_free(struct virt_dma_desc
*vdesc
)
1238 kfree(container_of(vdesc
, struct stm32_dma_desc
, vdesc
));
1241 static void stm32_dma_set_config(struct stm32_dma_chan
*chan
,
1242 struct stm32_dma_cfg
*cfg
)
1244 stm32_dma_clear_reg(&chan
->chan_reg
);
1246 chan
->chan_reg
.dma_scr
= cfg
->stream_config
& STM32_DMA_SCR_CFG_MASK
;
1247 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_REQ(cfg
->request_line
);
1249 /* Enable Interrupts */
1250 chan
->chan_reg
.dma_scr
|= STM32_DMA_SCR_TEIE
| STM32_DMA_SCR_TCIE
;
1252 chan
->threshold
= STM32_DMA_THRESHOLD_FTR_GET(cfg
->features
);
1253 if (STM32_DMA_DIRECT_MODE_GET(cfg
->features
))
1254 chan
->threshold
= STM32_DMA_FIFO_THRESHOLD_NONE
;
1257 static struct dma_chan
*stm32_dma_of_xlate(struct of_phandle_args
*dma_spec
,
1258 struct of_dma
*ofdma
)
1260 struct stm32_dma_device
*dmadev
= ofdma
->of_dma_data
;
1261 struct device
*dev
= dmadev
->ddev
.dev
;
1262 struct stm32_dma_cfg cfg
;
1263 struct stm32_dma_chan
*chan
;
1266 if (dma_spec
->args_count
< 4) {
1267 dev_err(dev
, "Bad number of cells\n");
1271 cfg
.channel_id
= dma_spec
->args
[0];
1272 cfg
.request_line
= dma_spec
->args
[1];
1273 cfg
.stream_config
= dma_spec
->args
[2];
1274 cfg
.features
= dma_spec
->args
[3];
1276 if (cfg
.channel_id
>= STM32_DMA_MAX_CHANNELS
||
1277 cfg
.request_line
>= STM32_DMA_MAX_REQUEST_ID
) {
1278 dev_err(dev
, "Bad channel and/or request id\n");
1282 chan
= &dmadev
->chan
[cfg
.channel_id
];
1284 c
= dma_get_slave_channel(&chan
->vchan
.chan
);
1286 dev_err(dev
, "No more channels available\n");
1290 stm32_dma_set_config(chan
, &cfg
);
1295 static const struct of_device_id stm32_dma_of_match
[] = {
1296 { .compatible
= "st,stm32-dma", },
1299 MODULE_DEVICE_TABLE(of
, stm32_dma_of_match
);
1301 static int stm32_dma_probe(struct platform_device
*pdev
)
1303 struct stm32_dma_chan
*chan
;
1304 struct stm32_dma_device
*dmadev
;
1305 struct dma_device
*dd
;
1306 const struct of_device_id
*match
;
1307 struct resource
*res
;
1308 struct reset_control
*rst
;
1311 match
= of_match_device(stm32_dma_of_match
, &pdev
->dev
);
1313 dev_err(&pdev
->dev
, "Error: No device match found\n");
1317 dmadev
= devm_kzalloc(&pdev
->dev
, sizeof(*dmadev
), GFP_KERNEL
);
1323 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1324 dmadev
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1325 if (IS_ERR(dmadev
->base
))
1326 return PTR_ERR(dmadev
->base
);
1328 dmadev
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1329 if (IS_ERR(dmadev
->clk
))
1330 return dev_err_probe(&pdev
->dev
, PTR_ERR(dmadev
->clk
), "Can't get clock\n");
1332 ret
= clk_prepare_enable(dmadev
->clk
);
1334 dev_err(&pdev
->dev
, "clk_prep_enable error: %d\n", ret
);
1338 dmadev
->mem2mem
= of_property_read_bool(pdev
->dev
.of_node
,
1341 rst
= devm_reset_control_get(&pdev
->dev
, NULL
);
1344 if (ret
== -EPROBE_DEFER
)
1347 reset_control_assert(rst
);
1349 reset_control_deassert(rst
);
1352 dma_set_max_seg_size(&pdev
->dev
, STM32_DMA_ALIGNED_MAX_DATA_ITEMS
);
1354 dma_cap_set(DMA_SLAVE
, dd
->cap_mask
);
1355 dma_cap_set(DMA_PRIVATE
, dd
->cap_mask
);
1356 dma_cap_set(DMA_CYCLIC
, dd
->cap_mask
);
1357 dd
->device_alloc_chan_resources
= stm32_dma_alloc_chan_resources
;
1358 dd
->device_free_chan_resources
= stm32_dma_free_chan_resources
;
1359 dd
->device_tx_status
= stm32_dma_tx_status
;
1360 dd
->device_issue_pending
= stm32_dma_issue_pending
;
1361 dd
->device_prep_slave_sg
= stm32_dma_prep_slave_sg
;
1362 dd
->device_prep_dma_cyclic
= stm32_dma_prep_dma_cyclic
;
1363 dd
->device_config
= stm32_dma_slave_config
;
1364 dd
->device_terminate_all
= stm32_dma_terminate_all
;
1365 dd
->device_synchronize
= stm32_dma_synchronize
;
1366 dd
->src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1367 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1368 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1369 dd
->dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1370 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1371 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1372 dd
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1373 dd
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1374 dd
->copy_align
= DMAENGINE_ALIGN_32_BYTES
;
1375 dd
->max_burst
= STM32_DMA_MAX_BURST
;
1376 dd
->descriptor_reuse
= true;
1377 dd
->dev
= &pdev
->dev
;
1378 INIT_LIST_HEAD(&dd
->channels
);
1380 if (dmadev
->mem2mem
) {
1381 dma_cap_set(DMA_MEMCPY
, dd
->cap_mask
);
1382 dd
->device_prep_dma_memcpy
= stm32_dma_prep_dma_memcpy
;
1383 dd
->directions
|= BIT(DMA_MEM_TO_MEM
);
1386 for (i
= 0; i
< STM32_DMA_MAX_CHANNELS
; i
++) {
1387 chan
= &dmadev
->chan
[i
];
1389 chan
->vchan
.desc_free
= stm32_dma_desc_free
;
1390 vchan_init(&chan
->vchan
, dd
);
1393 ret
= dma_async_device_register(dd
);
1397 for (i
= 0; i
< STM32_DMA_MAX_CHANNELS
; i
++) {
1398 chan
= &dmadev
->chan
[i
];
1399 ret
= platform_get_irq(pdev
, i
);
1401 goto err_unregister
;
1404 ret
= devm_request_irq(&pdev
->dev
, chan
->irq
,
1405 stm32_dma_chan_irq
, 0,
1406 dev_name(chan2dev(chan
)), chan
);
1409 "request_irq failed with err %d channel %d\n",
1411 goto err_unregister
;
1415 ret
= of_dma_controller_register(pdev
->dev
.of_node
,
1416 stm32_dma_of_xlate
, dmadev
);
1419 "STM32 DMA DMA OF registration failed %d\n", ret
);
1420 goto err_unregister
;
1423 platform_set_drvdata(pdev
, dmadev
);
1425 pm_runtime_set_active(&pdev
->dev
);
1426 pm_runtime_enable(&pdev
->dev
);
1427 pm_runtime_get_noresume(&pdev
->dev
);
1428 pm_runtime_put(&pdev
->dev
);
1430 dev_info(&pdev
->dev
, "STM32 DMA driver registered\n");
1435 dma_async_device_unregister(dd
);
1437 clk_disable_unprepare(dmadev
->clk
);
1443 static int stm32_dma_runtime_suspend(struct device
*dev
)
1445 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1447 clk_disable_unprepare(dmadev
->clk
);
1452 static int stm32_dma_runtime_resume(struct device
*dev
)
1454 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1457 ret
= clk_prepare_enable(dmadev
->clk
);
1459 dev_err(dev
, "failed to prepare_enable clock\n");
1467 #ifdef CONFIG_PM_SLEEP
1468 static int stm32_dma_suspend(struct device
*dev
)
1470 struct stm32_dma_device
*dmadev
= dev_get_drvdata(dev
);
1473 ret
= pm_runtime_get_sync(dev
);
1477 for (id
= 0; id
< STM32_DMA_MAX_CHANNELS
; id
++) {
1478 scr
= stm32_dma_read(dmadev
, STM32_DMA_SCR(id
));
1479 if (scr
& STM32_DMA_SCR_EN
) {
1480 dev_warn(dev
, "Suspend is prevented by Chan %i\n", id
);
1485 pm_runtime_put_sync(dev
);
1487 pm_runtime_force_suspend(dev
);
1492 static int stm32_dma_resume(struct device
*dev
)
1494 return pm_runtime_force_resume(dev
);
1498 static const struct dev_pm_ops stm32_dma_pm_ops
= {
1499 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend
, stm32_dma_resume
)
1500 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend
,
1501 stm32_dma_runtime_resume
, NULL
)
1504 static struct platform_driver stm32_dma_driver
= {
1506 .name
= "stm32-dma",
1507 .of_match_table
= stm32_dma_of_match
,
1508 .pm
= &stm32_dma_pm_ops
,
1510 .probe
= stm32_dma_probe
,
1513 static int __init
stm32_dma_init(void)
1515 return platform_driver_register(&stm32_dma_driver
);
1517 subsys_initcall(stm32_dma_init
);