1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2014 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
21 /** Common macros to normal and dedicated DMA registers **/
23 #define SUN4I_DMA_CFG_LOADING BIT(31)
24 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
25 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
26 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
27 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
28 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
29 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
30 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
31 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
33 /** Normal DMA register values **/
35 /* Normal DMA source/destination data request type values */
36 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
37 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
39 /** Normal DMA register layout **/
41 /* Dedicated DMA source/destination address mode values */
42 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
43 #define SUN4I_NDMA_ADDR_MODE_IO 1
45 /* Normal DMA configuration register layout */
46 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
47 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
48 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
49 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
50 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
52 /** Dedicated DMA register values **/
54 /* Dedicated DMA source/destination address mode values */
55 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
56 #define SUN4I_DDMA_ADDR_MODE_IO 1
57 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
58 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
60 /* Dedicated DMA source/destination data request type values */
61 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
62 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
64 /** Dedicated DMA register layout **/
66 /* Dedicated DMA configuration register layout */
67 #define SUN4I_DDMA_CFG_BUSY BIT(30)
68 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
69 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
70 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
71 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
73 /* Dedicated DMA parameter register layout */
74 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
75 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
76 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
77 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
79 /** DMA register offsets **/
81 /* General register offsets */
82 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
83 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
85 /* Normal DMA register offsets */
86 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
87 #define SUN4I_NDMA_CFG_REG 0x0
88 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
89 #define SUN4I_NDMA_DST_ADDR_REG 0x8
90 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
92 /* Dedicated DMA register offsets */
93 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
94 #define SUN4I_DDMA_CFG_REG 0x0
95 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
96 #define SUN4I_DDMA_DST_ADDR_REG 0x8
97 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
98 #define SUN4I_DDMA_PARA_REG 0x18
103 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
104 * that's 16 channels. As for endpoints, there's 29 and 21
105 * respectively. Given that the Normal DMA endpoints (other than
106 * SDRAM) can be used as tx/rx, we need 78 vchans in total
108 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
109 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
110 #define SUN4I_DMA_NR_MAX_CHANNELS \
111 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
112 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
113 #define SUN4I_DDMA_NR_MAX_VCHANS 21
114 #define SUN4I_DMA_NR_MAX_VCHANS \
115 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
117 /* This set of SUN4I_DDMA timing parameters were found experimentally while
118 * working with the SPI driver and seem to make it behave correctly */
119 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
120 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
121 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
122 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
123 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
125 struct sun4i_dma_pchan
{
126 /* Register base of channel */
128 /* vchan currently being serviced */
129 struct sun4i_dma_vchan
*vchan
;
130 /* Is this a dedicated pchan? */
134 struct sun4i_dma_vchan
{
135 struct virt_dma_chan vc
;
136 struct dma_slave_config cfg
;
137 struct sun4i_dma_pchan
*pchan
;
138 struct sun4i_dma_promise
*processing
;
139 struct sun4i_dma_contract
*contract
;
144 struct sun4i_dma_promise
{
150 struct list_head list
;
153 /* A contract is a set of promises */
154 struct sun4i_dma_contract
{
155 struct virt_dma_desc vd
;
156 struct list_head demands
;
157 struct list_head completed_demands
;
161 struct sun4i_dma_dev
{
162 DECLARE_BITMAP(pchans_used
, SUN4I_DMA_NR_MAX_CHANNELS
);
163 struct dma_device slave
;
164 struct sun4i_dma_pchan
*pchans
;
165 struct sun4i_dma_vchan
*vchans
;
172 static struct sun4i_dma_dev
*to_sun4i_dma_dev(struct dma_device
*dev
)
174 return container_of(dev
, struct sun4i_dma_dev
, slave
);
177 static struct sun4i_dma_vchan
*to_sun4i_dma_vchan(struct dma_chan
*chan
)
179 return container_of(chan
, struct sun4i_dma_vchan
, vc
.chan
);
182 static struct sun4i_dma_contract
*to_sun4i_dma_contract(struct virt_dma_desc
*vd
)
184 return container_of(vd
, struct sun4i_dma_contract
, vd
);
187 static struct device
*chan2dev(struct dma_chan
*chan
)
189 return &chan
->dev
->device
;
192 static int convert_burst(u32 maxburst
)
197 /* 1 -> 0, 4 -> 1, 8 -> 2 */
198 return (maxburst
>> 2);
201 static int convert_buswidth(enum dma_slave_buswidth addr_width
)
203 if (addr_width
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
206 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
207 return (addr_width
>> 1);
210 static void sun4i_dma_free_chan_resources(struct dma_chan
*chan
)
212 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
214 vchan_free_chan_resources(&vchan
->vc
);
217 static struct sun4i_dma_pchan
*find_and_use_pchan(struct sun4i_dma_dev
*priv
,
218 struct sun4i_dma_vchan
*vchan
)
220 struct sun4i_dma_pchan
*pchan
= NULL
, *pchans
= priv
->pchans
;
225 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
226 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
228 if (vchan
->is_dedicated
) {
229 i
= SUN4I_NDMA_NR_MAX_CHANNELS
;
230 max
= SUN4I_DMA_NR_MAX_CHANNELS
;
233 max
= SUN4I_NDMA_NR_MAX_CHANNELS
;
236 spin_lock_irqsave(&priv
->lock
, flags
);
237 for_each_clear_bit_from(i
, priv
->pchans_used
, max
) {
239 pchan
->vchan
= vchan
;
240 set_bit(i
, priv
->pchans_used
);
243 spin_unlock_irqrestore(&priv
->lock
, flags
);
248 static void release_pchan(struct sun4i_dma_dev
*priv
,
249 struct sun4i_dma_pchan
*pchan
)
252 int nr
= pchan
- priv
->pchans
;
254 spin_lock_irqsave(&priv
->lock
, flags
);
257 clear_bit(nr
, priv
->pchans_used
);
259 spin_unlock_irqrestore(&priv
->lock
, flags
);
262 static void configure_pchan(struct sun4i_dma_pchan
*pchan
,
263 struct sun4i_dma_promise
*d
)
266 * Configure addresses and misc parameters depending on type
267 * SUN4I_DDMA has an extra field with timing parameters
269 if (pchan
->is_dedicated
) {
270 writel_relaxed(d
->src
, pchan
->base
+ SUN4I_DDMA_SRC_ADDR_REG
);
271 writel_relaxed(d
->dst
, pchan
->base
+ SUN4I_DDMA_DST_ADDR_REG
);
272 writel_relaxed(d
->len
, pchan
->base
+ SUN4I_DDMA_BYTE_COUNT_REG
);
273 writel_relaxed(d
->para
, pchan
->base
+ SUN4I_DDMA_PARA_REG
);
274 writel_relaxed(d
->cfg
, pchan
->base
+ SUN4I_DDMA_CFG_REG
);
276 writel_relaxed(d
->src
, pchan
->base
+ SUN4I_NDMA_SRC_ADDR_REG
);
277 writel_relaxed(d
->dst
, pchan
->base
+ SUN4I_NDMA_DST_ADDR_REG
);
278 writel_relaxed(d
->len
, pchan
->base
+ SUN4I_NDMA_BYTE_COUNT_REG
);
279 writel_relaxed(d
->cfg
, pchan
->base
+ SUN4I_NDMA_CFG_REG
);
283 static void set_pchan_interrupt(struct sun4i_dma_dev
*priv
,
284 struct sun4i_dma_pchan
*pchan
,
288 int pchan_number
= pchan
- priv
->pchans
;
291 spin_lock_irqsave(&priv
->lock
, flags
);
293 reg
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
296 reg
|= BIT(pchan_number
* 2);
298 reg
&= ~BIT(pchan_number
* 2);
301 reg
|= BIT(pchan_number
* 2 + 1);
303 reg
&= ~BIT(pchan_number
* 2 + 1);
305 writel_relaxed(reg
, priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
307 spin_unlock_irqrestore(&priv
->lock
, flags
);
311 * Execute pending operations on a vchan
313 * When given a vchan, this function will try to acquire a suitable
314 * pchan and, if successful, will configure it to fulfill a promise
315 * from the next pending contract.
317 * This function must be called with &vchan->vc.lock held.
319 static int __execute_vchan_pending(struct sun4i_dma_dev
*priv
,
320 struct sun4i_dma_vchan
*vchan
)
322 struct sun4i_dma_promise
*promise
= NULL
;
323 struct sun4i_dma_contract
*contract
= NULL
;
324 struct sun4i_dma_pchan
*pchan
;
325 struct virt_dma_desc
*vd
;
328 lockdep_assert_held(&vchan
->vc
.lock
);
330 /* We need a pchan to do anything, so secure one if available */
331 pchan
= find_and_use_pchan(priv
, vchan
);
336 * Channel endpoints must not be repeated, so if this vchan
337 * has already submitted some work, we can't do anything else
339 if (vchan
->processing
) {
340 dev_dbg(chan2dev(&vchan
->vc
.chan
),
341 "processing something to this endpoint already\n");
347 /* Figure out which contract we're working with today */
348 vd
= vchan_next_desc(&vchan
->vc
);
350 dev_dbg(chan2dev(&vchan
->vc
.chan
),
351 "No pending contract found");
356 contract
= to_sun4i_dma_contract(vd
);
357 if (list_empty(&contract
->demands
)) {
358 /* The contract has been completed so mark it as such */
359 list_del(&contract
->vd
.node
);
360 vchan_cookie_complete(&contract
->vd
);
361 dev_dbg(chan2dev(&vchan
->vc
.chan
),
362 "Empty contract found and marked complete");
364 } while (list_empty(&contract
->demands
));
366 /* Now find out what we need to do */
367 promise
= list_first_entry(&contract
->demands
,
368 struct sun4i_dma_promise
, list
);
369 vchan
->processing
= promise
;
371 /* ... and make it reality */
373 vchan
->contract
= contract
;
374 vchan
->pchan
= pchan
;
375 set_pchan_interrupt(priv
, pchan
, contract
->is_cyclic
, 1);
376 configure_pchan(pchan
, promise
);
382 release_pchan(priv
, pchan
);
386 static int sanitize_config(struct dma_slave_config
*sconfig
,
387 enum dma_transfer_direction direction
)
391 if ((sconfig
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) ||
392 !sconfig
->dst_maxburst
)
395 if (sconfig
->src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
396 sconfig
->src_addr_width
= sconfig
->dst_addr_width
;
398 if (!sconfig
->src_maxburst
)
399 sconfig
->src_maxburst
= sconfig
->dst_maxburst
;
404 if ((sconfig
->src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) ||
405 !sconfig
->src_maxburst
)
408 if (sconfig
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
409 sconfig
->dst_addr_width
= sconfig
->src_addr_width
;
411 if (!sconfig
->dst_maxburst
)
412 sconfig
->dst_maxburst
= sconfig
->src_maxburst
;
423 * Generate a promise, to be used in a normal DMA contract.
425 * A NDMA promise contains all the information required to program the
426 * normal part of the DMA Engine and get data copied. A non-executed
427 * promise will live in the demands list on a contract. Once it has been
428 * completed, it will be moved to the completed demands list for later freeing.
429 * All linked promises will be freed when the corresponding contract is freed
431 static struct sun4i_dma_promise
*
432 generate_ndma_promise(struct dma_chan
*chan
, dma_addr_t src
, dma_addr_t dest
,
433 size_t len
, struct dma_slave_config
*sconfig
,
434 enum dma_transfer_direction direction
)
436 struct sun4i_dma_promise
*promise
;
439 ret
= sanitize_config(sconfig
, direction
);
443 promise
= kzalloc(sizeof(*promise
), GFP_NOWAIT
);
450 promise
->cfg
= SUN4I_DMA_CFG_LOADING
|
451 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN
;
453 dev_dbg(chan2dev(chan
),
454 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
455 sconfig
->src_maxburst
, sconfig
->dst_maxburst
,
456 sconfig
->src_addr_width
, sconfig
->dst_addr_width
);
459 ret
= convert_burst(sconfig
->src_maxburst
);
462 promise
->cfg
|= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret
);
464 /* Destination burst */
465 ret
= convert_burst(sconfig
->dst_maxburst
);
468 promise
->cfg
|= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret
);
470 /* Source bus width */
471 ret
= convert_buswidth(sconfig
->src_addr_width
);
474 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret
);
476 /* Destination bus width */
477 ret
= convert_buswidth(sconfig
->dst_addr_width
);
480 promise
->cfg
|= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret
);
490 * Generate a promise, to be used in a dedicated DMA contract.
492 * A DDMA promise contains all the information required to program the
493 * Dedicated part of the DMA Engine and get data copied. A non-executed
494 * promise will live in the demands list on a contract. Once it has been
495 * completed, it will be moved to the completed demands list for later freeing.
496 * All linked promises will be freed when the corresponding contract is freed
498 static struct sun4i_dma_promise
*
499 generate_ddma_promise(struct dma_chan
*chan
, dma_addr_t src
, dma_addr_t dest
,
500 size_t len
, struct dma_slave_config
*sconfig
)
502 struct sun4i_dma_promise
*promise
;
505 promise
= kzalloc(sizeof(*promise
), GFP_NOWAIT
);
512 promise
->cfg
= SUN4I_DMA_CFG_LOADING
|
513 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN
;
516 ret
= convert_burst(sconfig
->src_maxburst
);
519 promise
->cfg
|= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret
);
521 /* Destination burst */
522 ret
= convert_burst(sconfig
->dst_maxburst
);
525 promise
->cfg
|= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret
);
527 /* Source bus width */
528 ret
= convert_buswidth(sconfig
->src_addr_width
);
531 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret
);
533 /* Destination bus width */
534 ret
= convert_buswidth(sconfig
->dst_addr_width
);
537 promise
->cfg
|= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret
);
547 * Generate a contract
549 * Contracts function as DMA descriptors. As our hardware does not support
550 * linked lists, we need to implement SG via software. We use a contract
551 * to hold all the pieces of the request and process them serially one
552 * after another. Each piece is represented as a promise.
554 static struct sun4i_dma_contract
*generate_dma_contract(void)
556 struct sun4i_dma_contract
*contract
;
558 contract
= kzalloc(sizeof(*contract
), GFP_NOWAIT
);
562 INIT_LIST_HEAD(&contract
->demands
);
563 INIT_LIST_HEAD(&contract
->completed_demands
);
569 * Get next promise on a cyclic transfer
571 * Cyclic contracts contain a series of promises which are executed on a
572 * loop. This function returns the next promise from a cyclic contract,
573 * so it can be programmed into the hardware.
575 static struct sun4i_dma_promise
*
576 get_next_cyclic_promise(struct sun4i_dma_contract
*contract
)
578 struct sun4i_dma_promise
*promise
;
580 promise
= list_first_entry_or_null(&contract
->demands
,
581 struct sun4i_dma_promise
, list
);
583 list_splice_init(&contract
->completed_demands
,
585 promise
= list_first_entry(&contract
->demands
,
586 struct sun4i_dma_promise
, list
);
593 * Free a contract and all its associated promises
595 static void sun4i_dma_free_contract(struct virt_dma_desc
*vd
)
597 struct sun4i_dma_contract
*contract
= to_sun4i_dma_contract(vd
);
598 struct sun4i_dma_promise
*promise
, *tmp
;
600 /* Free all the demands and completed demands */
601 list_for_each_entry_safe(promise
, tmp
, &contract
->demands
, list
)
604 list_for_each_entry_safe(promise
, tmp
, &contract
->completed_demands
, list
)
610 static struct dma_async_tx_descriptor
*
611 sun4i_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
612 dma_addr_t src
, size_t len
, unsigned long flags
)
614 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
615 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
616 struct sun4i_dma_promise
*promise
;
617 struct sun4i_dma_contract
*contract
;
619 contract
= generate_dma_contract();
624 * We can only do the copy to bus aligned addresses, so
625 * choose the best one so we get decent performance. We also
626 * maximize the burst size for this same reason.
628 sconfig
->src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
629 sconfig
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
630 sconfig
->src_maxburst
= 8;
631 sconfig
->dst_maxburst
= 8;
633 if (vchan
->is_dedicated
)
634 promise
= generate_ddma_promise(chan
, src
, dest
, len
, sconfig
);
636 promise
= generate_ndma_promise(chan
, src
, dest
, len
, sconfig
,
644 /* Configure memcpy mode */
645 if (vchan
->is_dedicated
) {
646 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM
) |
647 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM
);
649 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
) |
650 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
);
653 /* Fill the contract with our only promise */
654 list_add_tail(&promise
->list
, &contract
->demands
);
656 /* And add it to the vchan */
657 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
660 static struct dma_async_tx_descriptor
*
661 sun4i_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t buf
, size_t len
,
662 size_t period_len
, enum dma_transfer_direction dir
,
665 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
666 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
667 struct sun4i_dma_promise
*promise
;
668 struct sun4i_dma_contract
*contract
;
669 dma_addr_t src
, dest
;
671 int nr_periods
, offset
, plength
, i
;
672 u8 ram_type
, io_mode
, linear_mode
;
674 if (!is_slave_direction(dir
)) {
675 dev_err(chan2dev(chan
), "Invalid DMA direction\n");
679 contract
= generate_dma_contract();
683 contract
->is_cyclic
= 1;
685 if (vchan
->is_dedicated
) {
686 io_mode
= SUN4I_DDMA_ADDR_MODE_IO
;
687 linear_mode
= SUN4I_DDMA_ADDR_MODE_LINEAR
;
688 ram_type
= SUN4I_DDMA_DRQ_TYPE_SDRAM
;
690 io_mode
= SUN4I_NDMA_ADDR_MODE_IO
;
691 linear_mode
= SUN4I_NDMA_ADDR_MODE_LINEAR
;
692 ram_type
= SUN4I_NDMA_DRQ_TYPE_SDRAM
;
695 if (dir
== DMA_MEM_TO_DEV
) {
697 dest
= sconfig
->dst_addr
;
698 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan
->endpoint
) |
699 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode
) |
700 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type
) |
701 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode
);
703 src
= sconfig
->src_addr
;
705 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type
) |
706 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode
) |
707 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan
->endpoint
) |
708 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode
);
712 * We will be using half done interrupts to make two periods
713 * out of a promise, so we need to program the DMA engine less
718 * The engine can interrupt on half-transfer, so we can use
719 * this feature to program the engine half as often as if we
720 * didn't use it (keep in mind the hardware doesn't support
723 * Say you have a set of periods (| marks the start/end, I for
724 * interrupt, P for programming the engine to do a new
725 * transfer), the easy but slow way would be to do
727 * |---|---|---|---| (periods / promises)
730 * Using half transfer interrupts you can do
732 * |-------|-------| (promises as configured on hw)
733 * |---|---|---|---| (periods)
736 * Which requires half the engine programming for the same
739 nr_periods
= DIV_ROUND_UP(len
/ period_len
, 2);
740 for (i
= 0; i
< nr_periods
; i
++) {
741 /* Calculate the offset in the buffer and the length needed */
742 offset
= i
* period_len
* 2;
743 plength
= min((len
- offset
), (period_len
* 2));
744 if (dir
== DMA_MEM_TO_DEV
)
749 /* Make the promise */
750 if (vchan
->is_dedicated
)
751 promise
= generate_ddma_promise(chan
, src
, dest
,
754 promise
= generate_ndma_promise(chan
, src
, dest
,
755 plength
, sconfig
, dir
);
758 /* TODO: should we free everything? */
761 promise
->cfg
|= endpoints
;
763 /* Then add it to the contract */
764 list_add_tail(&promise
->list
, &contract
->demands
);
767 /* And add it to the vchan */
768 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
771 static struct dma_async_tx_descriptor
*
772 sun4i_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
773 unsigned int sg_len
, enum dma_transfer_direction dir
,
774 unsigned long flags
, void *context
)
776 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
777 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
778 struct sun4i_dma_promise
*promise
;
779 struct sun4i_dma_contract
*contract
;
780 u8 ram_type
, io_mode
, linear_mode
;
781 struct scatterlist
*sg
;
782 dma_addr_t srcaddr
, dstaddr
;
789 if (!is_slave_direction(dir
)) {
790 dev_err(chan2dev(chan
), "Invalid DMA direction\n");
794 contract
= generate_dma_contract();
798 if (vchan
->is_dedicated
) {
799 io_mode
= SUN4I_DDMA_ADDR_MODE_IO
;
800 linear_mode
= SUN4I_DDMA_ADDR_MODE_LINEAR
;
801 ram_type
= SUN4I_DDMA_DRQ_TYPE_SDRAM
;
803 io_mode
= SUN4I_NDMA_ADDR_MODE_IO
;
804 linear_mode
= SUN4I_NDMA_ADDR_MODE_LINEAR
;
805 ram_type
= SUN4I_NDMA_DRQ_TYPE_SDRAM
;
808 if (dir
== DMA_MEM_TO_DEV
)
809 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan
->endpoint
) |
810 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode
) |
811 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type
) |
812 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode
);
814 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type
) |
815 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode
) |
816 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan
->endpoint
) |
817 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode
);
819 for_each_sg(sgl
, sg
, sg_len
, i
) {
820 /* Figure out addresses */
821 if (dir
== DMA_MEM_TO_DEV
) {
822 srcaddr
= sg_dma_address(sg
);
823 dstaddr
= sconfig
->dst_addr
;
825 srcaddr
= sconfig
->src_addr
;
826 dstaddr
= sg_dma_address(sg
);
830 * These are the magic DMA engine timings that keep SPI going.
831 * I haven't seen any interface on DMAEngine to configure
832 * timings, and so far they seem to work for everything we
833 * support, so I've kept them here. I don't know if other
834 * devices need different timings because, as usual, we only
835 * have the "para" bitfield meanings, but no comment on what
836 * the values should be when doing a certain operation :|
838 para
= SUN4I_DDMA_MAGIC_SPI_PARAMETERS
;
840 /* And make a suitable promise */
841 if (vchan
->is_dedicated
)
842 promise
= generate_ddma_promise(chan
, srcaddr
, dstaddr
,
846 promise
= generate_ndma_promise(chan
, srcaddr
, dstaddr
,
851 return NULL
; /* TODO: should we free everything? */
853 promise
->cfg
|= endpoints
;
854 promise
->para
= para
;
856 /* Then add it to the contract */
857 list_add_tail(&promise
->list
, &contract
->demands
);
861 * Once we've got all the promises ready, add the contract
862 * to the pending list on the vchan
864 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
867 static int sun4i_dma_terminate_all(struct dma_chan
*chan
)
869 struct sun4i_dma_dev
*priv
= to_sun4i_dma_dev(chan
->device
);
870 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
871 struct sun4i_dma_pchan
*pchan
= vchan
->pchan
;
875 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
876 vchan_get_all_descriptors(&vchan
->vc
, &head
);
877 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
880 * Clearing the configuration register will halt the pchan. Interrupts
881 * may still trigger, so don't forget to disable them.
884 if (pchan
->is_dedicated
)
885 writel(0, pchan
->base
+ SUN4I_DDMA_CFG_REG
);
887 writel(0, pchan
->base
+ SUN4I_NDMA_CFG_REG
);
888 set_pchan_interrupt(priv
, pchan
, 0, 0);
889 release_pchan(priv
, pchan
);
892 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
893 /* Clear these so the vchan is usable again */
894 vchan
->processing
= NULL
;
896 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
898 vchan_dma_desc_free_list(&vchan
->vc
, &head
);
903 static int sun4i_dma_config(struct dma_chan
*chan
,
904 struct dma_slave_config
*config
)
906 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
908 memcpy(&vchan
->cfg
, config
, sizeof(*config
));
913 static struct dma_chan
*sun4i_dma_of_xlate(struct of_phandle_args
*dma_spec
,
914 struct of_dma
*ofdma
)
916 struct sun4i_dma_dev
*priv
= ofdma
->of_dma_data
;
917 struct sun4i_dma_vchan
*vchan
;
918 struct dma_chan
*chan
;
919 u8 is_dedicated
= dma_spec
->args
[0];
920 u8 endpoint
= dma_spec
->args
[1];
922 /* Check if type is Normal or Dedicated */
923 if (is_dedicated
!= 0 && is_dedicated
!= 1)
926 /* Make sure the endpoint looks sane */
927 if ((is_dedicated
&& endpoint
>= SUN4I_DDMA_DRQ_TYPE_LIMIT
) ||
928 (!is_dedicated
&& endpoint
>= SUN4I_NDMA_DRQ_TYPE_LIMIT
))
931 chan
= dma_get_any_slave_channel(&priv
->slave
);
935 /* Assign the endpoint to the vchan */
936 vchan
= to_sun4i_dma_vchan(chan
);
937 vchan
->is_dedicated
= is_dedicated
;
938 vchan
->endpoint
= endpoint
;
943 static enum dma_status
sun4i_dma_tx_status(struct dma_chan
*chan
,
945 struct dma_tx_state
*state
)
947 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
948 struct sun4i_dma_pchan
*pchan
= vchan
->pchan
;
949 struct sun4i_dma_contract
*contract
;
950 struct sun4i_dma_promise
*promise
;
951 struct virt_dma_desc
*vd
;
956 ret
= dma_cookie_status(chan
, cookie
, state
);
957 if (!state
|| (ret
== DMA_COMPLETE
))
960 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
961 vd
= vchan_find_desc(&vchan
->vc
, cookie
);
964 contract
= to_sun4i_dma_contract(vd
);
966 list_for_each_entry(promise
, &contract
->demands
, list
)
967 bytes
+= promise
->len
;
970 * The hardware is configured to return the remaining byte
971 * quantity. If possible, replace the first listed element's
972 * full size with the actual remaining amount
974 promise
= list_first_entry_or_null(&contract
->demands
,
975 struct sun4i_dma_promise
, list
);
976 if (promise
&& pchan
) {
977 bytes
-= promise
->len
;
978 if (pchan
->is_dedicated
)
979 bytes
+= readl(pchan
->base
+ SUN4I_DDMA_BYTE_COUNT_REG
);
981 bytes
+= readl(pchan
->base
+ SUN4I_NDMA_BYTE_COUNT_REG
);
986 dma_set_residue(state
, bytes
);
987 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
992 static void sun4i_dma_issue_pending(struct dma_chan
*chan
)
994 struct sun4i_dma_dev
*priv
= to_sun4i_dma_dev(chan
->device
);
995 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
998 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
1001 * If there are pending transactions for this vchan, push one of
1002 * them into the engine to get the ball rolling.
1004 if (vchan_issue_pending(&vchan
->vc
))
1005 __execute_vchan_pending(priv
, vchan
);
1007 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
1010 static irqreturn_t
sun4i_dma_interrupt(int irq
, void *dev_id
)
1012 struct sun4i_dma_dev
*priv
= dev_id
;
1013 struct sun4i_dma_pchan
*pchans
= priv
->pchans
, *pchan
;
1014 struct sun4i_dma_vchan
*vchan
;
1015 struct sun4i_dma_contract
*contract
;
1016 struct sun4i_dma_promise
*promise
;
1017 unsigned long pendirq
, irqs
, disableirqs
;
1018 int bit
, i
, free_room
, allow_mitigation
= 1;
1020 pendirq
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1027 for_each_set_bit(bit
, &pendirq
, 32) {
1028 pchan
= &pchans
[bit
>> 1];
1029 vchan
= pchan
->vchan
;
1030 if (!vchan
) /* a terminated channel may still interrupt */
1032 contract
= vchan
->contract
;
1035 * Disable the IRQ and free the pchan if it's an end
1036 * interrupt (odd bit)
1039 spin_lock(&vchan
->vc
.lock
);
1042 * Move the promise into the completed list now that
1043 * we're done with it
1045 list_del(&vchan
->processing
->list
);
1046 list_add_tail(&vchan
->processing
->list
,
1047 &contract
->completed_demands
);
1050 * Cyclic DMA transfers are special:
1051 * - There's always something we can dispatch
1052 * - We need to run the callback
1053 * - Latency is very important, as this is used by audio
1054 * We therefore just cycle through the list and dispatch
1055 * whatever we have here, reusing the pchan. There's
1056 * no need to run the thread after this.
1058 * For non-cyclic transfers we need to look around,
1059 * so we can program some more work, or notify the
1060 * client that their transfers have been completed.
1062 if (contract
->is_cyclic
) {
1063 promise
= get_next_cyclic_promise(contract
);
1064 vchan
->processing
= promise
;
1065 configure_pchan(pchan
, promise
);
1066 vchan_cyclic_callback(&contract
->vd
);
1068 vchan
->processing
= NULL
;
1069 vchan
->pchan
= NULL
;
1072 disableirqs
|= BIT(bit
);
1073 release_pchan(priv
, pchan
);
1076 spin_unlock(&vchan
->vc
.lock
);
1078 /* Half done interrupt */
1079 if (contract
->is_cyclic
)
1080 vchan_cyclic_callback(&contract
->vd
);
1082 disableirqs
|= BIT(bit
);
1086 /* Disable the IRQs for events we handled */
1087 spin_lock(&priv
->lock
);
1088 irqs
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1089 writel_relaxed(irqs
& ~disableirqs
,
1090 priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1091 spin_unlock(&priv
->lock
);
1093 /* Writing 1 to the pending field will clear the pending interrupt */
1094 writel_relaxed(pendirq
, priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1097 * If a pchan was freed, we may be able to schedule something else,
1098 * so have a look around
1101 for (i
= 0; i
< SUN4I_DMA_NR_MAX_VCHANS
; i
++) {
1102 vchan
= &priv
->vchans
[i
];
1103 spin_lock(&vchan
->vc
.lock
);
1104 __execute_vchan_pending(priv
, vchan
);
1105 spin_unlock(&vchan
->vc
.lock
);
1110 * Handle newer interrupts if some showed up, but only do it once
1111 * to avoid a too long a loop
1113 if (allow_mitigation
) {
1114 pendirq
= readl_relaxed(priv
->base
+
1115 SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1117 allow_mitigation
= 0;
1118 goto handle_pending
;
1125 static int sun4i_dma_probe(struct platform_device
*pdev
)
1127 struct sun4i_dma_dev
*priv
;
1128 struct resource
*res
;
1131 priv
= devm_kzalloc(&pdev
->dev
, sizeof(*priv
), GFP_KERNEL
);
1135 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1136 priv
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1137 if (IS_ERR(priv
->base
))
1138 return PTR_ERR(priv
->base
);
1140 priv
->irq
= platform_get_irq(pdev
, 0);
1144 priv
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1145 if (IS_ERR(priv
->clk
)) {
1146 dev_err(&pdev
->dev
, "No clock specified\n");
1147 return PTR_ERR(priv
->clk
);
1150 platform_set_drvdata(pdev
, priv
);
1151 spin_lock_init(&priv
->lock
);
1153 dma_cap_zero(priv
->slave
.cap_mask
);
1154 dma_cap_set(DMA_PRIVATE
, priv
->slave
.cap_mask
);
1155 dma_cap_set(DMA_MEMCPY
, priv
->slave
.cap_mask
);
1156 dma_cap_set(DMA_CYCLIC
, priv
->slave
.cap_mask
);
1157 dma_cap_set(DMA_SLAVE
, priv
->slave
.cap_mask
);
1159 INIT_LIST_HEAD(&priv
->slave
.channels
);
1160 priv
->slave
.device_free_chan_resources
= sun4i_dma_free_chan_resources
;
1161 priv
->slave
.device_tx_status
= sun4i_dma_tx_status
;
1162 priv
->slave
.device_issue_pending
= sun4i_dma_issue_pending
;
1163 priv
->slave
.device_prep_slave_sg
= sun4i_dma_prep_slave_sg
;
1164 priv
->slave
.device_prep_dma_memcpy
= sun4i_dma_prep_dma_memcpy
;
1165 priv
->slave
.device_prep_dma_cyclic
= sun4i_dma_prep_dma_cyclic
;
1166 priv
->slave
.device_config
= sun4i_dma_config
;
1167 priv
->slave
.device_terminate_all
= sun4i_dma_terminate_all
;
1168 priv
->slave
.copy_align
= 2;
1169 priv
->slave
.src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1170 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1171 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1172 priv
->slave
.dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1173 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1174 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1175 priv
->slave
.directions
= BIT(DMA_DEV_TO_MEM
) |
1176 BIT(DMA_MEM_TO_DEV
);
1177 priv
->slave
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1179 priv
->slave
.dev
= &pdev
->dev
;
1181 priv
->pchans
= devm_kcalloc(&pdev
->dev
, SUN4I_DMA_NR_MAX_CHANNELS
,
1182 sizeof(struct sun4i_dma_pchan
), GFP_KERNEL
);
1183 priv
->vchans
= devm_kcalloc(&pdev
->dev
, SUN4I_DMA_NR_MAX_VCHANS
,
1184 sizeof(struct sun4i_dma_vchan
), GFP_KERNEL
);
1185 if (!priv
->vchans
|| !priv
->pchans
)
1189 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1190 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1193 for (i
= 0; i
< SUN4I_NDMA_NR_MAX_CHANNELS
; i
++)
1194 priv
->pchans
[i
].base
= priv
->base
+
1195 SUN4I_NDMA_CHANNEL_REG_BASE(i
);
1197 for (j
= 0; i
< SUN4I_DMA_NR_MAX_CHANNELS
; i
++, j
++) {
1198 priv
->pchans
[i
].base
= priv
->base
+
1199 SUN4I_DDMA_CHANNEL_REG_BASE(j
);
1200 priv
->pchans
[i
].is_dedicated
= 1;
1203 for (i
= 0; i
< SUN4I_DMA_NR_MAX_VCHANS
; i
++) {
1204 struct sun4i_dma_vchan
*vchan
= &priv
->vchans
[i
];
1206 spin_lock_init(&vchan
->vc
.lock
);
1207 vchan
->vc
.desc_free
= sun4i_dma_free_contract
;
1208 vchan_init(&vchan
->vc
, &priv
->slave
);
1211 ret
= clk_prepare_enable(priv
->clk
);
1213 dev_err(&pdev
->dev
, "Couldn't enable the clock\n");
1218 * Make sure the IRQs are all disabled and accounted for. The bootloader
1219 * likes to leave these dirty
1221 writel(0, priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1222 writel(0xFFFFFFFF, priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1224 ret
= devm_request_irq(&pdev
->dev
, priv
->irq
, sun4i_dma_interrupt
,
1225 0, dev_name(&pdev
->dev
), priv
);
1227 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
1228 goto err_clk_disable
;
1231 ret
= dma_async_device_register(&priv
->slave
);
1233 dev_warn(&pdev
->dev
, "Failed to register DMA engine device\n");
1234 goto err_clk_disable
;
1237 ret
= of_dma_controller_register(pdev
->dev
.of_node
, sun4i_dma_of_xlate
,
1240 dev_err(&pdev
->dev
, "of_dma_controller_register failed\n");
1241 goto err_dma_unregister
;
1244 dev_dbg(&pdev
->dev
, "Successfully probed SUN4I_DMA\n");
1249 dma_async_device_unregister(&priv
->slave
);
1251 clk_disable_unprepare(priv
->clk
);
1255 static int sun4i_dma_remove(struct platform_device
*pdev
)
1257 struct sun4i_dma_dev
*priv
= platform_get_drvdata(pdev
);
1259 /* Disable IRQ so no more work is scheduled */
1260 disable_irq(priv
->irq
);
1262 of_dma_controller_free(pdev
->dev
.of_node
);
1263 dma_async_device_unregister(&priv
->slave
);
1265 clk_disable_unprepare(priv
->clk
);
1270 static const struct of_device_id sun4i_dma_match
[] = {
1271 { .compatible
= "allwinner,sun4i-a10-dma" },
1274 MODULE_DEVICE_TABLE(of
, sun4i_dma_match
);
1276 static struct platform_driver sun4i_dma_driver
= {
1277 .probe
= sun4i_dma_probe
,
1278 .remove
= sun4i_dma_remove
,
1280 .name
= "sun4i-dma",
1281 .of_match_table
= sun4i_dma_match
,
1285 module_platform_driver(sun4i_dma_driver
);
1287 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1288 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1289 MODULE_LICENSE("GPL");