2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex
);
48 static LIST_HEAD(mc_devices
);
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 * apei/ghes and i7core_edac to be used at the same time.
54 static const char *edac_mc_owner
;
56 static struct mem_ctl_info
*error_desc_to_mci(struct edac_raw_error_desc
*e
)
58 return container_of(e
, struct mem_ctl_info
, error_desc
);
61 unsigned int edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
64 struct mem_ctl_info
*mci
= dimm
->mci
;
68 for (i
= 0; i
< mci
->n_layers
; i
++) {
69 n
= snprintf(p
, len
, "%s %d ",
70 edac_layer_name
[mci
->layers
[i
].type
],
82 #ifdef CONFIG_EDAC_DEBUG
84 static void edac_mc_dump_channel(struct rank_info
*chan
)
86 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
87 edac_dbg(4, " channel = %p\n", chan
);
88 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
89 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
92 static void edac_mc_dump_dimm(struct dimm_info
*dimm
)
99 edac_dimm_info_location(dimm
, location
, sizeof(location
));
101 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102 dimm
->mci
->csbased
? "rank" : "dimm",
103 dimm
->idx
, location
, dimm
->csrow
, dimm
->cschannel
);
104 edac_dbg(4, " dimm = %p\n", dimm
);
105 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
107 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
108 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
111 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
113 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
114 edac_dbg(4, " csrow = %p\n", csrow
);
115 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
116 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
117 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
118 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
119 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
120 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
123 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
125 edac_dbg(3, "\tmci = %p\n", mci
);
126 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
127 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
128 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
129 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
130 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131 mci
->nr_csrows
, mci
->csrows
);
132 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133 mci
->tot_dimms
, mci
->dimms
);
134 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
135 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136 mci
->mod_name
, mci
->ctl_name
);
137 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
140 #endif /* CONFIG_EDAC_DEBUG */
142 const char * const edac_mem_types
[] = {
143 [MEM_EMPTY
] = "Empty",
144 [MEM_RESERVED
] = "Reserved",
145 [MEM_UNKNOWN
] = "Unknown",
149 [MEM_SDR
] = "Unbuffered-SDR",
150 [MEM_RDR
] = "Registered-SDR",
151 [MEM_DDR
] = "Unbuffered-DDR",
152 [MEM_RDDR
] = "Registered-DDR",
154 [MEM_DDR2
] = "Unbuffered-DDR2",
155 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
156 [MEM_RDDR2
] = "Registered-DDR2",
158 [MEM_DDR3
] = "Unbuffered-DDR3",
159 [MEM_RDDR3
] = "Registered-DDR3",
160 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
161 [MEM_LPDDR3
] = "Low-Power-DDR3-RAM",
162 [MEM_DDR4
] = "Unbuffered-DDR4",
163 [MEM_RDDR4
] = "Registered-DDR4",
164 [MEM_LPDDR4
] = "Low-Power-DDR4-RAM",
165 [MEM_LRDDR4
] = "Load-Reduced-DDR4-RAM",
166 [MEM_DDR5
] = "Unbuffered-DDR5",
167 [MEM_NVDIMM
] = "Non-volatile-RAM",
168 [MEM_WIO2
] = "Wide-IO-2",
170 EXPORT_SYMBOL_GPL(edac_mem_types
);
173 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
174 * @p: pointer to a pointer with the memory offset to be used. At
175 * return, this will be incremented to point to the next offset
176 * @size: Size of the data structure to be reserved
177 * @n_elems: Number of elements that should be reserved
179 * If 'size' is a constant, the compiler will optimize this whole function
180 * down to either a no-op or the addition of a constant to the value of '*p'.
182 * The 'p' pointer is absolutely needed to keep the proper advancing
183 * further in memory to the proper offsets when allocating the struct along
184 * with its embedded structs, as edac_device_alloc_ctl_info() does it
185 * above, for example.
187 * At return, the pointer 'p' will be incremented to be used on a next call
190 void *edac_align_ptr(void **p
, unsigned int size
, int n_elems
)
192 unsigned int align
, r
;
195 *p
+= size
* n_elems
;
198 * 'p' can possibly be an unaligned item X such that sizeof(X) is
199 * 'size'. Adjust 'p' so that its alignment is at least as
200 * stringent as what the compiler would provide for X and return
201 * the aligned result.
202 * Here we assume that the alignment of a "long long" is the most
203 * stringent alignment that the compiler will ever provide by default.
204 * As far as I know, this is a reasonable assumption.
206 if (size
> sizeof(long))
207 align
= sizeof(long long);
208 else if (size
> sizeof(int))
209 align
= sizeof(long);
210 else if (size
> sizeof(short))
212 else if (size
> sizeof(char))
213 align
= sizeof(short);
217 r
= (unsigned long)p
% align
;
224 return (void *)(((unsigned long)ptr
) + align
- r
);
227 static void _edac_mc_free(struct mem_ctl_info
*mci
)
229 put_device(&mci
->dev
);
232 static void mci_release(struct device
*dev
)
234 struct mem_ctl_info
*mci
= container_of(dev
, struct mem_ctl_info
, dev
);
235 struct csrow_info
*csr
;
239 for (i
= 0; i
< mci
->tot_dimms
; i
++)
240 kfree(mci
->dimms
[i
]);
245 for (row
= 0; row
< mci
->nr_csrows
; row
++) {
246 csr
= mci
->csrows
[row
];
251 for (chn
= 0; chn
< mci
->num_cschannel
; chn
++)
252 kfree(csr
->channels
[chn
]);
253 kfree(csr
->channels
);
262 static int edac_mc_alloc_csrows(struct mem_ctl_info
*mci
)
264 unsigned int tot_channels
= mci
->num_cschannel
;
265 unsigned int tot_csrows
= mci
->nr_csrows
;
266 unsigned int row
, chn
;
269 * Alocate and fill the csrow/channels structs
271 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
275 for (row
= 0; row
< tot_csrows
; row
++) {
276 struct csrow_info
*csr
;
278 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
282 mci
->csrows
[row
] = csr
;
283 csr
->csrow_idx
= row
;
285 csr
->nr_channels
= tot_channels
;
286 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
291 for (chn
= 0; chn
< tot_channels
; chn
++) {
292 struct rank_info
*chan
;
294 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
298 csr
->channels
[chn
] = chan
;
299 chan
->chan_idx
= chn
;
307 static int edac_mc_alloc_dimms(struct mem_ctl_info
*mci
)
309 unsigned int pos
[EDAC_MAX_LAYERS
];
310 unsigned int row
, chn
, idx
;
315 * Allocate and fill the dimm structs
317 mci
->dimms
= kcalloc(mci
->tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
321 memset(&pos
, 0, sizeof(pos
));
324 for (idx
= 0; idx
< mci
->tot_dimms
; idx
++) {
325 struct dimm_info
*dimm
;
326 struct rank_info
*chan
;
329 chan
= mci
->csrows
[row
]->channels
[chn
];
331 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
334 mci
->dimms
[idx
] = dimm
;
339 * Copy DIMM location and initialize it.
341 len
= sizeof(dimm
->label
);
343 n
= snprintf(p
, len
, "mc#%u", mci
->mc_idx
);
346 for (layer
= 0; layer
< mci
->n_layers
; layer
++) {
347 n
= snprintf(p
, len
, "%s#%u",
348 edac_layer_name
[mci
->layers
[layer
].type
],
352 dimm
->location
[layer
] = pos
[layer
];
358 /* Link it to the csrows old API data */
361 dimm
->cschannel
= chn
;
363 /* Increment csrow location */
364 if (mci
->layers
[0].is_virt_csrow
) {
366 if (chn
== mci
->num_cschannel
) {
372 if (row
== mci
->nr_csrows
) {
378 /* Increment dimm location */
379 for (layer
= mci
->n_layers
- 1; layer
>= 0; layer
--) {
381 if (pos
[layer
] < mci
->layers
[layer
].size
)
390 struct mem_ctl_info
*edac_mc_alloc(unsigned int mc_num
,
391 unsigned int n_layers
,
392 struct edac_mc_layer
*layers
,
395 struct mem_ctl_info
*mci
;
396 struct edac_mc_layer
*layer
;
397 unsigned int idx
, size
, tot_dimms
= 1;
398 unsigned int tot_csrows
= 1, tot_channels
= 1;
399 void *pvt
, *ptr
= NULL
;
400 bool per_rank
= false;
402 if (WARN_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0))
406 * Calculate the total amount of dimms and csrows/cschannels while
407 * in the old API emulation mode
409 for (idx
= 0; idx
< n_layers
; idx
++) {
410 tot_dimms
*= layers
[idx
].size
;
412 if (layers
[idx
].is_virt_csrow
)
413 tot_csrows
*= layers
[idx
].size
;
415 tot_channels
*= layers
[idx
].size
;
417 if (layers
[idx
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
421 /* Figure out the offsets of the various items from the start of an mc
422 * structure. We want the alignment of each item to be at least as
423 * stringent as what the compiler would provide if we could simply
424 * hardcode everything into a single struct.
426 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
427 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
428 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
429 size
= ((unsigned long)pvt
) + sz_pvt
;
431 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
434 per_rank
? "ranks" : "dimms",
435 tot_csrows
* tot_channels
);
437 mci
= kzalloc(size
, GFP_KERNEL
);
441 mci
->dev
.release
= mci_release
;
442 device_initialize(&mci
->dev
);
444 /* Adjust pointers so they point within the memory we just allocated
445 * rather than an imaginary chunk of memory located at address 0.
447 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
448 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
450 /* setup index and various internal pointers */
451 mci
->mc_idx
= mc_num
;
452 mci
->tot_dimms
= tot_dimms
;
454 mci
->n_layers
= n_layers
;
456 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
457 mci
->nr_csrows
= tot_csrows
;
458 mci
->num_cschannel
= tot_channels
;
459 mci
->csbased
= per_rank
;
461 if (edac_mc_alloc_csrows(mci
))
464 if (edac_mc_alloc_dimms(mci
))
467 mci
->op_state
= OP_ALLOC
;
476 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
478 void edac_mc_free(struct mem_ctl_info
*mci
)
484 EXPORT_SYMBOL_GPL(edac_mc_free
);
486 bool edac_has_mcs(void)
490 mutex_lock(&mem_ctls_mutex
);
492 ret
= list_empty(&mc_devices
);
494 mutex_unlock(&mem_ctls_mutex
);
498 EXPORT_SYMBOL_GPL(edac_has_mcs
);
500 /* Caller must hold mem_ctls_mutex */
501 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
503 struct mem_ctl_info
*mci
;
504 struct list_head
*item
;
508 list_for_each(item
, &mc_devices
) {
509 mci
= list_entry(item
, struct mem_ctl_info
, link
);
511 if (mci
->pdev
== dev
)
521 * scan list of controllers looking for the one that manages
523 * @dev: pointer to a struct device related with the MCI
525 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
527 struct mem_ctl_info
*ret
;
529 mutex_lock(&mem_ctls_mutex
);
530 ret
= __find_mci_by_dev(dev
);
531 mutex_unlock(&mem_ctls_mutex
);
535 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
538 * edac_mc_workq_function
539 * performs the operation scheduled by a workq request
541 static void edac_mc_workq_function(struct work_struct
*work_req
)
543 struct delayed_work
*d_work
= to_delayed_work(work_req
);
544 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
546 mutex_lock(&mem_ctls_mutex
);
548 if (mci
->op_state
!= OP_RUNNING_POLL
) {
549 mutex_unlock(&mem_ctls_mutex
);
553 if (edac_op_state
== EDAC_OPSTATE_POLL
)
554 mci
->edac_check(mci
);
556 mutex_unlock(&mem_ctls_mutex
);
558 /* Queue ourselves again. */
559 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
563 * edac_mc_reset_delay_period(unsigned long value)
565 * user space has updated our poll period value, need to
566 * reset our workq delays
568 void edac_mc_reset_delay_period(unsigned long value
)
570 struct mem_ctl_info
*mci
;
571 struct list_head
*item
;
573 mutex_lock(&mem_ctls_mutex
);
575 list_for_each(item
, &mc_devices
) {
576 mci
= list_entry(item
, struct mem_ctl_info
, link
);
578 if (mci
->op_state
== OP_RUNNING_POLL
)
579 edac_mod_work(&mci
->work
, value
);
581 mutex_unlock(&mem_ctls_mutex
);
586 /* Return 0 on success, 1 on failure.
587 * Before calling this function, caller must
588 * assign a unique value to mci->mc_idx.
592 * called with the mem_ctls_mutex lock held
594 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
596 struct list_head
*item
, *insert_before
;
597 struct mem_ctl_info
*p
;
599 insert_before
= &mc_devices
;
601 p
= __find_mci_by_dev(mci
->pdev
);
602 if (unlikely(p
!= NULL
))
605 list_for_each(item
, &mc_devices
) {
606 p
= list_entry(item
, struct mem_ctl_info
, link
);
608 if (p
->mc_idx
>= mci
->mc_idx
) {
609 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
612 insert_before
= item
;
617 list_add_tail_rcu(&mci
->link
, insert_before
);
621 edac_printk(KERN_WARNING
, EDAC_MC
,
622 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
623 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
627 edac_printk(KERN_WARNING
, EDAC_MC
,
628 "bug in low-level driver: attempt to assign\n"
629 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
633 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
635 list_del_rcu(&mci
->link
);
637 /* these are for safe removal of devices from global list while
638 * NMI handlers may be traversing list
641 INIT_LIST_HEAD(&mci
->link
);
643 return list_empty(&mc_devices
);
646 struct mem_ctl_info
*edac_mc_find(int idx
)
648 struct mem_ctl_info
*mci
;
649 struct list_head
*item
;
651 mutex_lock(&mem_ctls_mutex
);
653 list_for_each(item
, &mc_devices
) {
654 mci
= list_entry(item
, struct mem_ctl_info
, link
);
655 if (mci
->mc_idx
== idx
)
661 mutex_unlock(&mem_ctls_mutex
);
664 EXPORT_SYMBOL(edac_mc_find
);
666 const char *edac_get_owner(void)
668 return edac_mc_owner
;
670 EXPORT_SYMBOL_GPL(edac_get_owner
);
672 /* FIXME - should a warning be printed if no error detection? correction? */
673 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
674 const struct attribute_group
**groups
)
679 #ifdef CONFIG_EDAC_DEBUG
680 if (edac_debug_level
>= 3)
681 edac_mc_dump_mci(mci
);
683 if (edac_debug_level
>= 4) {
684 struct dimm_info
*dimm
;
687 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
688 struct csrow_info
*csrow
= mci
->csrows
[i
];
692 for (j
= 0; j
< csrow
->nr_channels
; j
++)
693 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
696 edac_mc_dump_csrow(csrow
);
697 for (j
= 0; j
< csrow
->nr_channels
; j
++)
698 if (csrow
->channels
[j
]->dimm
->nr_pages
)
699 edac_mc_dump_channel(csrow
->channels
[j
]);
702 mci_for_each_dimm(mci
, dimm
)
703 edac_mc_dump_dimm(dimm
);
706 mutex_lock(&mem_ctls_mutex
);
708 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
713 if (add_mc_to_global_list(mci
))
716 /* set load time so that error rate can be tracked */
717 mci
->start_time
= jiffies
;
719 mci
->bus
= edac_get_sysfs_subsys();
721 if (edac_create_sysfs_mci_device(mci
, groups
)) {
722 edac_mc_printk(mci
, KERN_WARNING
,
723 "failed to create sysfs device\n");
727 if (mci
->edac_check
) {
728 mci
->op_state
= OP_RUNNING_POLL
;
730 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
731 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
734 mci
->op_state
= OP_RUNNING_INTERRUPT
;
737 /* Report action taken */
738 edac_mc_printk(mci
, KERN_INFO
,
739 "Giving out device to module %s controller %s: DEV %s (%s)\n",
740 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
741 edac_op_state_to_string(mci
->op_state
));
743 edac_mc_owner
= mci
->mod_name
;
745 mutex_unlock(&mem_ctls_mutex
);
749 del_mc_from_global_list(mci
);
752 mutex_unlock(&mem_ctls_mutex
);
755 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
757 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
759 struct mem_ctl_info
*mci
;
763 mutex_lock(&mem_ctls_mutex
);
765 /* find the requested mci struct in the global list */
766 mci
= __find_mci_by_dev(dev
);
768 mutex_unlock(&mem_ctls_mutex
);
772 /* mark MCI offline: */
773 mci
->op_state
= OP_OFFLINE
;
775 if (del_mc_from_global_list(mci
))
776 edac_mc_owner
= NULL
;
778 mutex_unlock(&mem_ctls_mutex
);
781 edac_stop_work(&mci
->work
);
783 /* remove from sysfs */
784 edac_remove_sysfs_mci_device(mci
);
786 edac_printk(KERN_INFO
, EDAC_MC
,
787 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
788 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
792 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
794 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
799 unsigned long flags
= 0;
803 /* ECC error page was not in our memory. Ignore it. */
804 if (!pfn_valid(page
))
807 /* Find the actual page structure then map it and fix */
808 pg
= pfn_to_page(page
);
811 local_irq_save(flags
);
813 virt_addr
= kmap_atomic(pg
);
815 /* Perform architecture specific atomic scrub operation */
816 edac_atomic_scrub(virt_addr
+ offset
, size
);
818 /* Unmap and complete */
819 kunmap_atomic(virt_addr
);
822 local_irq_restore(flags
);
825 /* FIXME - should return -1 */
826 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
828 struct csrow_info
**csrows
= mci
->csrows
;
831 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
834 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
835 struct csrow_info
*csrow
= csrows
[i
];
837 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
838 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
844 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
846 csrow
->first_page
, page
, csrow
->last_page
,
849 if ((page
>= csrow
->first_page
) &&
850 (page
<= csrow
->last_page
) &&
851 ((page
& csrow
->page_mask
) ==
852 (csrow
->first_page
& csrow
->page_mask
))) {
859 edac_mc_printk(mci
, KERN_ERR
,
860 "could not look up page error address %lx\n",
861 (unsigned long)page
);
865 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
867 const char *edac_layer_name
[] = {
868 [EDAC_MC_LAYER_BRANCH
] = "branch",
869 [EDAC_MC_LAYER_CHANNEL
] = "channel",
870 [EDAC_MC_LAYER_SLOT
] = "slot",
871 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
872 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
874 EXPORT_SYMBOL_GPL(edac_layer_name
);
876 static void edac_inc_ce_error(struct edac_raw_error_desc
*e
)
878 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
879 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
880 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
882 mci
->ce_mc
+= e
->error_count
;
885 dimm
->ce_count
+= e
->error_count
;
887 mci
->ce_noinfo_count
+= e
->error_count
;
890 static void edac_inc_ue_error(struct edac_raw_error_desc
*e
)
892 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
893 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
894 struct dimm_info
*dimm
= edac_get_dimm(mci
, pos
[0], pos
[1], pos
[2]);
896 mci
->ue_mc
+= e
->error_count
;
899 dimm
->ue_count
+= e
->error_count
;
901 mci
->ue_noinfo_count
+= e
->error_count
;
904 static void edac_ce_error(struct edac_raw_error_desc
*e
)
906 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
907 unsigned long remapped_page
;
909 if (edac_mc_get_log_ce()) {
910 edac_mc_printk(mci
, KERN_WARNING
,
911 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
912 e
->error_count
, e
->msg
,
914 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
915 e
->grain
, e
->syndrome
,
916 *e
->other_detail
? " - " : "",
920 edac_inc_ce_error(e
);
922 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
924 * Some memory controllers (called MCs below) can remap
925 * memory so that it is still available at a different
926 * address when PCI devices map into memory.
927 * MC's that can't do this, lose the memory where PCI
928 * devices are mapped. This mapping is MC-dependent
929 * and so we call back into the MC driver for it to
930 * map the MC page to a physical (CPU) page which can
931 * then be mapped to a virtual page - which can then
934 remapped_page
= mci
->ctl_page_to_phys
?
935 mci
->ctl_page_to_phys(mci
, e
->page_frame_number
) :
936 e
->page_frame_number
;
938 edac_mc_scrub_block(remapped_page
, e
->offset_in_page
, e
->grain
);
942 static void edac_ue_error(struct edac_raw_error_desc
*e
)
944 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
946 if (edac_mc_get_log_ue()) {
947 edac_mc_printk(mci
, KERN_WARNING
,
948 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
949 e
->error_count
, e
->msg
,
951 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
953 *e
->other_detail
? " - " : "",
957 edac_inc_ue_error(e
);
959 if (edac_mc_get_panic_on_ue()) {
960 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
963 e
->label
, e
->location
, e
->page_frame_number
, e
->offset_in_page
,
965 *e
->other_detail
? " - " : "",
970 static void edac_inc_csrow(struct edac_raw_error_desc
*e
, int row
, int chan
)
972 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
973 enum hw_event_mc_err_type type
= e
->type
;
974 u16 count
= e
->error_count
;
979 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
981 if (type
== HW_EVENT_ERR_CORRECTED
) {
982 mci
->csrows
[row
]->ce_count
+= count
;
984 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= count
;
986 mci
->csrows
[row
]->ue_count
+= count
;
990 void edac_raw_mc_handle_error(struct edac_raw_error_desc
*e
)
992 struct mem_ctl_info
*mci
= error_desc_to_mci(e
);
995 /* Sanity-check driver-supplied grain value. */
996 if (WARN_ON_ONCE(!e
->grain
))
999 grain_bits
= fls_long(e
->grain
- 1);
1001 /* Report the error via the trace interface */
1002 if (IS_ENABLED(CONFIG_RAS
))
1003 trace_mc_event(e
->type
, e
->msg
, e
->label
, e
->error_count
,
1004 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1006 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1007 grain_bits
, e
->syndrome
, e
->other_detail
);
1009 if (e
->type
== HW_EVENT_ERR_CORRECTED
)
1014 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1016 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1017 struct mem_ctl_info
*mci
,
1018 const u16 error_count
,
1019 const unsigned long page_frame_number
,
1020 const unsigned long offset_in_page
,
1021 const unsigned long syndrome
,
1022 const int top_layer
,
1023 const int mid_layer
,
1024 const int low_layer
,
1026 const char *other_detail
)
1028 struct dimm_info
*dimm
;
1030 int row
= -1, chan
= -1;
1031 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1032 int i
, n_labels
= 0;
1033 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1034 bool any_memory
= true;
1036 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1038 /* Fills the error report buffer */
1039 memset(e
, 0, sizeof (*e
));
1040 e
->error_count
= error_count
;
1042 e
->top_layer
= top_layer
;
1043 e
->mid_layer
= mid_layer
;
1044 e
->low_layer
= low_layer
;
1045 e
->page_frame_number
= page_frame_number
;
1046 e
->offset_in_page
= offset_in_page
;
1047 e
->syndrome
= syndrome
;
1048 /* need valid strings here for both: */
1050 e
->other_detail
= other_detail
?: "";
1053 * Check if the event report is consistent and if the memory location is
1054 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1055 * error counters will be incremented.
1057 for (i
= 0; i
< mci
->n_layers
; i
++) {
1058 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1060 edac_mc_printk(mci
, KERN_ERR
,
1061 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1062 edac_layer_name
[mci
->layers
[i
].type
],
1063 pos
[i
], mci
->layers
[i
].size
);
1065 * Instead of just returning it, let's use what's
1066 * known about the error. The increment routines and
1067 * the DIMM filter logic will do the right thing by
1068 * pointing the likely damaged DIMMs.
1077 * Get the dimm label/grain that applies to the match criteria.
1078 * As the error algorithm may not be able to point to just one memory
1079 * stick, the logic here will get all possible labels that could
1080 * pottentially be affected by the error.
1081 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1082 * to have only the MC channel and the MC dimm (also called "branch")
1083 * but the channel is not known, as the memory is arranged in pairs,
1084 * where each memory belongs to a separate channel within the same
1090 mci_for_each_dimm(mci
, dimm
) {
1091 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1093 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1095 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1098 /* get the max grain, over the error match range */
1099 if (dimm
->grain
> e
->grain
)
1100 e
->grain
= dimm
->grain
;
1103 * If the error is memory-controller wide, there's no need to
1104 * seek for the affected DIMMs because the whole channel/memory
1105 * controller/... may be affected. Also, don't show errors for
1108 if (!dimm
->nr_pages
)
1112 if (n_labels
> EDAC_MAX_LABELS
) {
1116 if (p
!= e
->label
) {
1117 strcpy(p
, OTHER_LABEL
);
1118 p
+= strlen(OTHER_LABEL
);
1120 strcpy(p
, dimm
->label
);
1125 * get csrow/channel of the DIMM, in order to allow
1126 * incrementing the compat API counters
1128 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1129 mci
->csbased
? "rank" : "dimm",
1130 dimm
->csrow
, dimm
->cschannel
);
1133 else if (row
>= 0 && row
!= dimm
->csrow
)
1137 chan
= dimm
->cschannel
;
1138 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1143 strcpy(e
->label
, "any memory");
1144 else if (!*e
->label
)
1145 strcpy(e
->label
, "unknown memory");
1147 edac_inc_csrow(e
, row
, chan
);
1149 /* Fill the RAM location data */
1152 for (i
= 0; i
< mci
->n_layers
; i
++) {
1156 p
+= sprintf(p
, "%s:%d ",
1157 edac_layer_name
[mci
->layers
[i
].type
],
1160 if (p
> e
->location
)
1163 edac_raw_mc_handle_error(e
);
1165 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);