Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / hwmon / lm85.c
blobc7bf5de7b70f05c4e27190aaf75dbada38d75152
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
6 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
7 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
8 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
9 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
11 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/jiffies.h>
19 #include <linux/i2c.h>
20 #include <linux/hwmon.h>
21 #include <linux/hwmon-vid.h>
22 #include <linux/hwmon-sysfs.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/util_macros.h>
27 /* Addresses to scan */
28 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
30 enum chips {
31 lm85, lm96000,
32 adm1027, adt7463, adt7468,
33 emc6d100, emc6d102, emc6d103, emc6d103s
36 /* The LM85 registers */
38 #define LM85_REG_IN(nr) (0x20 + (nr))
39 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
40 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
42 #define LM85_REG_TEMP(nr) (0x25 + (nr))
43 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
44 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
46 /* Fan speeds are LSB, MSB (2 bytes) */
47 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
48 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
50 #define LM85_REG_PWM(nr) (0x30 + (nr))
52 #define LM85_REG_COMPANY 0x3e
53 #define LM85_REG_VERSTEP 0x3f
55 #define ADT7468_REG_CFG5 0x7c
56 #define ADT7468_OFF64 (1 << 0)
57 #define ADT7468_HFPWM (1 << 1)
58 #define IS_ADT7468_OFF64(data) \
59 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
60 #define IS_ADT7468_HFPWM(data) \
61 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
63 /* These are the recognized values for the above regs */
64 #define LM85_COMPANY_NATIONAL 0x01
65 #define LM85_COMPANY_ANALOG_DEV 0x41
66 #define LM85_COMPANY_SMSC 0x5c
67 #define LM85_VERSTEP_LM85C 0x60
68 #define LM85_VERSTEP_LM85B 0x62
69 #define LM85_VERSTEP_LM96000_1 0x68
70 #define LM85_VERSTEP_LM96000_2 0x69
71 #define LM85_VERSTEP_ADM1027 0x60
72 #define LM85_VERSTEP_ADT7463 0x62
73 #define LM85_VERSTEP_ADT7463C 0x6A
74 #define LM85_VERSTEP_ADT7468_1 0x71
75 #define LM85_VERSTEP_ADT7468_2 0x72
76 #define LM85_VERSTEP_EMC6D100_A0 0x60
77 #define LM85_VERSTEP_EMC6D100_A1 0x61
78 #define LM85_VERSTEP_EMC6D102 0x65
79 #define LM85_VERSTEP_EMC6D103_A0 0x68
80 #define LM85_VERSTEP_EMC6D103_A1 0x69
81 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
83 #define LM85_REG_CONFIG 0x40
85 #define LM85_REG_ALARM1 0x41
86 #define LM85_REG_ALARM2 0x42
88 #define LM85_REG_VID 0x43
90 /* Automated FAN control */
91 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
92 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
93 #define LM85_REG_AFAN_SPIKE1 0x62
94 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
95 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
96 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
97 #define LM85_REG_AFAN_HYST1 0x6d
98 #define LM85_REG_AFAN_HYST2 0x6e
100 #define ADM1027_REG_EXTEND_ADC1 0x76
101 #define ADM1027_REG_EXTEND_ADC2 0x77
103 #define EMC6D100_REG_ALARM3 0x7d
104 /* IN5, IN6 and IN7 */
105 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
106 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
107 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
108 #define EMC6D102_REG_EXTEND_ADC1 0x85
109 #define EMC6D102_REG_EXTEND_ADC2 0x86
110 #define EMC6D102_REG_EXTEND_ADC3 0x87
111 #define EMC6D102_REG_EXTEND_ADC4 0x88
114 * Conversions. Rounding and limit checking is only done on the TO_REG
115 * variants. Note that you should be a bit careful with which arguments
116 * these macros are called: arguments may be evaluated more than once.
119 /* IN are scaled according to built-in resistors */
120 static const int lm85_scaling[] = { /* .001 Volts */
121 2500, 2250, 3300, 5000, 12000,
122 3300, 1500, 1800 /*EMC6D100*/
124 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
126 #define INS_TO_REG(n, val) \
127 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
128 lm85_scaling[n], 192)
130 #define INSEXT_FROM_REG(n, val, ext) \
131 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
133 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
135 /* FAN speed is measured using 90kHz clock */
136 static inline u16 FAN_TO_REG(unsigned long val)
138 if (!val)
139 return 0xffff;
140 return clamp_val(5400000 / val, 1, 0xfffe);
142 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
143 5400000 / (val))
145 /* Temperature is reported in .001 degC increments */
146 #define TEMP_TO_REG(val) \
147 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
148 #define TEMPEXT_FROM_REG(val, ext) \
149 SCALE(((val) << 4) + (ext), 16, 1000)
150 #define TEMP_FROM_REG(val) ((val) * 1000)
152 #define PWM_TO_REG(val) clamp_val(val, 0, 255)
153 #define PWM_FROM_REG(val) (val)
156 * ZONEs have the following parameters:
157 * Limit (low) temp, 1. degC
158 * Hysteresis (below limit), 1. degC (0-15)
159 * Range of speed control, .1 degC (2-80)
160 * Critical (high) temp, 1. degC
162 * FAN PWMs have the following parameters:
163 * Reference Zone, 1, 2, 3, etc.
164 * Spinup time, .05 sec
165 * PWM value at limit/low temp, 1 count
166 * PWM Frequency, 1. Hz
167 * PWM is Min or OFF below limit, flag
168 * Invert PWM output, flag
170 * Some chips filter the temp, others the fan.
171 * Filter constant (or disabled) .1 seconds
174 /* These are the zone temperature range encodings in .001 degree C */
175 static const int lm85_range_map[] = {
176 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
177 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
180 static int RANGE_TO_REG(long range)
182 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
184 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
186 /* These are the PWM frequency encodings */
187 static const int lm85_freq_map[] = { /* 1 Hz */
188 10, 15, 23, 30, 38, 47, 61, 94
191 static const int lm96000_freq_map[] = { /* 1 Hz */
192 10, 15, 23, 30, 38, 47, 61, 94,
193 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
196 static const int adm1027_freq_map[] = { /* 1 Hz */
197 11, 15, 22, 29, 35, 44, 59, 88
200 static int FREQ_TO_REG(const int *map,
201 unsigned int map_size, unsigned long freq)
203 return find_closest(freq, map, map_size);
206 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
208 return map[reg % map_size];
212 * Since we can't use strings, I'm abusing these numbers
213 * to stand in for the following meanings:
214 * 1 -- PWM responds to Zone 1
215 * 2 -- PWM responds to Zone 2
216 * 3 -- PWM responds to Zone 3
217 * 23 -- PWM responds to the higher temp of Zone 2 or 3
218 * 123 -- PWM responds to highest of Zone 1, 2, or 3
219 * 0 -- PWM is always at 0% (ie, off)
220 * -1 -- PWM is always at 100%
221 * -2 -- PWM responds to manual control
224 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
225 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
227 static int ZONE_TO_REG(int zone)
229 int i;
231 for (i = 0; i <= 7; ++i)
232 if (zone == lm85_zone_map[i])
233 break;
234 if (i > 7) /* Not found. */
235 i = 3; /* Always 100% */
236 return i << 5;
239 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
240 #define HYST_FROM_REG(val) ((val) * 1000)
243 * Chip sampling rates
245 * Some sensors are not updated more frequently than once per second
246 * so it doesn't make sense to read them more often than that.
247 * We cache the results and return the saved data if the driver
248 * is called again before a second has elapsed.
250 * Also, there is significant configuration data for this chip
251 * given the automatic PWM fan control that is possible. There
252 * are about 47 bytes of config data to only 22 bytes of actual
253 * readings. So, we keep the config data up to date in the cache
254 * when it is written and only sample it once every 1 *minute*
256 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
257 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
260 * LM85 can automatically adjust fan speeds based on temperature
261 * This structure encapsulates an entire Zone config. There are
262 * three zones (one for each temperature input) on the lm85
264 struct lm85_zone {
265 s8 limit; /* Low temp limit */
266 u8 hyst; /* Low limit hysteresis. (0-15) */
267 u8 range; /* Temp range, encoded */
268 s8 critical; /* "All fans ON" temp limit */
269 u8 max_desired; /*
270 * Actual "max" temperature specified. Preserved
271 * to prevent "drift" as other autofan control
272 * values change.
276 struct lm85_autofan {
277 u8 config; /* Register value */
278 u8 min_pwm; /* Minimum PWM value, encoded */
279 u8 min_off; /* Min PWM or OFF below "limit", flag */
283 * For each registered chip, we need to keep some data in memory.
284 * The structure is dynamically allocated.
286 struct lm85_data {
287 struct i2c_client *client;
288 const struct attribute_group *groups[6];
289 const int *freq_map;
290 unsigned int freq_map_size;
292 enum chips type;
294 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
296 struct mutex update_lock;
297 int valid; /* !=0 if following fields are valid */
298 unsigned long last_reading; /* In jiffies */
299 unsigned long last_config; /* In jiffies */
301 u8 in[8]; /* Register value */
302 u8 in_max[8]; /* Register value */
303 u8 in_min[8]; /* Register value */
304 s8 temp[3]; /* Register value */
305 s8 temp_min[3]; /* Register value */
306 s8 temp_max[3]; /* Register value */
307 u16 fan[4]; /* Register value */
308 u16 fan_min[4]; /* Register value */
309 u8 pwm[3]; /* Register value */
310 u8 pwm_freq[3]; /* Register encoding */
311 u8 temp_ext[3]; /* Decoded values */
312 u8 in_ext[8]; /* Decoded values */
313 u8 vid; /* Register value */
314 u8 vrm; /* VRM version */
315 u32 alarms; /* Register encoding, combined */
316 u8 cfg5; /* Config Register 5 on ADT7468 */
317 struct lm85_autofan autofan[3];
318 struct lm85_zone zone[3];
321 static int lm85_read_value(struct i2c_client *client, u8 reg)
323 int res;
325 /* What size location is it? */
326 switch (reg) {
327 case LM85_REG_FAN(0): /* Read WORD data */
328 case LM85_REG_FAN(1):
329 case LM85_REG_FAN(2):
330 case LM85_REG_FAN(3):
331 case LM85_REG_FAN_MIN(0):
332 case LM85_REG_FAN_MIN(1):
333 case LM85_REG_FAN_MIN(2):
334 case LM85_REG_FAN_MIN(3):
335 case LM85_REG_ALARM1: /* Read both bytes at once */
336 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
337 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
338 break;
339 default: /* Read BYTE data */
340 res = i2c_smbus_read_byte_data(client, reg);
341 break;
344 return res;
347 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
349 switch (reg) {
350 case LM85_REG_FAN(0): /* Write WORD data */
351 case LM85_REG_FAN(1):
352 case LM85_REG_FAN(2):
353 case LM85_REG_FAN(3):
354 case LM85_REG_FAN_MIN(0):
355 case LM85_REG_FAN_MIN(1):
356 case LM85_REG_FAN_MIN(2):
357 case LM85_REG_FAN_MIN(3):
358 /* NOTE: ALARM is read only, so not included here */
359 i2c_smbus_write_byte_data(client, reg, value & 0xff);
360 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
361 break;
362 default: /* Write BYTE data */
363 i2c_smbus_write_byte_data(client, reg, value);
364 break;
368 static struct lm85_data *lm85_update_device(struct device *dev)
370 struct lm85_data *data = dev_get_drvdata(dev);
371 struct i2c_client *client = data->client;
372 int i;
374 mutex_lock(&data->update_lock);
376 if (!data->valid ||
377 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
378 /* Things that change quickly */
379 dev_dbg(&client->dev, "Reading sensor values\n");
382 * Have to read extended bits first to "freeze" the
383 * more significant bits that are read later.
384 * There are 2 additional resolution bits per channel and we
385 * have room for 4, so we shift them to the left.
387 if (data->type == adm1027 || data->type == adt7463 ||
388 data->type == adt7468) {
389 int ext1 = lm85_read_value(client,
390 ADM1027_REG_EXTEND_ADC1);
391 int ext2 = lm85_read_value(client,
392 ADM1027_REG_EXTEND_ADC2);
393 int val = (ext1 << 8) + ext2;
395 for (i = 0; i <= 4; i++)
396 data->in_ext[i] =
397 ((val >> (i * 2)) & 0x03) << 2;
399 for (i = 0; i <= 2; i++)
400 data->temp_ext[i] =
401 (val >> ((i + 4) * 2)) & 0x0c;
404 data->vid = lm85_read_value(client, LM85_REG_VID);
406 for (i = 0; i <= 3; ++i) {
407 data->in[i] =
408 lm85_read_value(client, LM85_REG_IN(i));
409 data->fan[i] =
410 lm85_read_value(client, LM85_REG_FAN(i));
413 if (!data->has_vid5)
414 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
416 if (data->type == adt7468)
417 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
419 for (i = 0; i <= 2; ++i) {
420 data->temp[i] =
421 lm85_read_value(client, LM85_REG_TEMP(i));
422 data->pwm[i] =
423 lm85_read_value(client, LM85_REG_PWM(i));
425 if (IS_ADT7468_OFF64(data))
426 data->temp[i] -= 64;
429 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
431 if (data->type == emc6d100) {
432 /* Three more voltage sensors */
433 for (i = 5; i <= 7; ++i) {
434 data->in[i] = lm85_read_value(client,
435 EMC6D100_REG_IN(i));
437 /* More alarm bits */
438 data->alarms |= lm85_read_value(client,
439 EMC6D100_REG_ALARM3) << 16;
440 } else if (data->type == emc6d102 || data->type == emc6d103 ||
441 data->type == emc6d103s) {
443 * Have to read LSB bits after the MSB ones because
444 * the reading of the MSB bits has frozen the
445 * LSBs (backward from the ADM1027).
447 int ext1 = lm85_read_value(client,
448 EMC6D102_REG_EXTEND_ADC1);
449 int ext2 = lm85_read_value(client,
450 EMC6D102_REG_EXTEND_ADC2);
451 int ext3 = lm85_read_value(client,
452 EMC6D102_REG_EXTEND_ADC3);
453 int ext4 = lm85_read_value(client,
454 EMC6D102_REG_EXTEND_ADC4);
455 data->in_ext[0] = ext3 & 0x0f;
456 data->in_ext[1] = ext4 & 0x0f;
457 data->in_ext[2] = ext4 >> 4;
458 data->in_ext[3] = ext3 >> 4;
459 data->in_ext[4] = ext2 >> 4;
461 data->temp_ext[0] = ext1 & 0x0f;
462 data->temp_ext[1] = ext2 & 0x0f;
463 data->temp_ext[2] = ext1 >> 4;
466 data->last_reading = jiffies;
467 } /* last_reading */
469 if (!data->valid ||
470 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
471 /* Things that don't change often */
472 dev_dbg(&client->dev, "Reading config values\n");
474 for (i = 0; i <= 3; ++i) {
475 data->in_min[i] =
476 lm85_read_value(client, LM85_REG_IN_MIN(i));
477 data->in_max[i] =
478 lm85_read_value(client, LM85_REG_IN_MAX(i));
479 data->fan_min[i] =
480 lm85_read_value(client, LM85_REG_FAN_MIN(i));
483 if (!data->has_vid5) {
484 data->in_min[4] = lm85_read_value(client,
485 LM85_REG_IN_MIN(4));
486 data->in_max[4] = lm85_read_value(client,
487 LM85_REG_IN_MAX(4));
490 if (data->type == emc6d100) {
491 for (i = 5; i <= 7; ++i) {
492 data->in_min[i] = lm85_read_value(client,
493 EMC6D100_REG_IN_MIN(i));
494 data->in_max[i] = lm85_read_value(client,
495 EMC6D100_REG_IN_MAX(i));
499 for (i = 0; i <= 2; ++i) {
500 int val;
502 data->temp_min[i] =
503 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
504 data->temp_max[i] =
505 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
507 data->autofan[i].config =
508 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
509 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
510 data->pwm_freq[i] = val % data->freq_map_size;
511 data->zone[i].range = val >> 4;
512 data->autofan[i].min_pwm =
513 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
514 data->zone[i].limit =
515 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
516 data->zone[i].critical =
517 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
519 if (IS_ADT7468_OFF64(data)) {
520 data->temp_min[i] -= 64;
521 data->temp_max[i] -= 64;
522 data->zone[i].limit -= 64;
523 data->zone[i].critical -= 64;
527 if (data->type != emc6d103s) {
528 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
529 data->autofan[0].min_off = (i & 0x20) != 0;
530 data->autofan[1].min_off = (i & 0x40) != 0;
531 data->autofan[2].min_off = (i & 0x80) != 0;
533 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
534 data->zone[0].hyst = i >> 4;
535 data->zone[1].hyst = i & 0x0f;
537 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
538 data->zone[2].hyst = i >> 4;
541 data->last_config = jiffies;
542 } /* last_config */
544 data->valid = 1;
546 mutex_unlock(&data->update_lock);
548 return data;
551 /* 4 Fans */
552 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
553 char *buf)
555 int nr = to_sensor_dev_attr(attr)->index;
556 struct lm85_data *data = lm85_update_device(dev);
557 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
560 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
561 char *buf)
563 int nr = to_sensor_dev_attr(attr)->index;
564 struct lm85_data *data = lm85_update_device(dev);
565 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
568 static ssize_t fan_min_store(struct device *dev,
569 struct device_attribute *attr, const char *buf,
570 size_t count)
572 int nr = to_sensor_dev_attr(attr)->index;
573 struct lm85_data *data = dev_get_drvdata(dev);
574 struct i2c_client *client = data->client;
575 unsigned long val;
576 int err;
578 err = kstrtoul(buf, 10, &val);
579 if (err)
580 return err;
582 mutex_lock(&data->update_lock);
583 data->fan_min[nr] = FAN_TO_REG(val);
584 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
585 mutex_unlock(&data->update_lock);
586 return count;
589 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
590 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
591 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
592 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
593 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
594 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
595 static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
596 static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
598 /* vid, vrm, alarms */
600 static ssize_t cpu0_vid_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
603 struct lm85_data *data = lm85_update_device(dev);
604 int vid;
606 if (data->has_vid5) {
607 /* 6-pin VID (VRM 10) */
608 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
609 } else {
610 /* 5-pin VID (VRM 9) */
611 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
614 return sprintf(buf, "%d\n", vid);
617 static DEVICE_ATTR_RO(cpu0_vid);
619 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
620 char *buf)
622 struct lm85_data *data = dev_get_drvdata(dev);
623 return sprintf(buf, "%ld\n", (long) data->vrm);
626 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
627 const char *buf, size_t count)
629 struct lm85_data *data = dev_get_drvdata(dev);
630 unsigned long val;
631 int err;
633 err = kstrtoul(buf, 10, &val);
634 if (err)
635 return err;
637 if (val > 255)
638 return -EINVAL;
640 data->vrm = val;
641 return count;
644 static DEVICE_ATTR_RW(vrm);
646 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
647 char *buf)
649 struct lm85_data *data = lm85_update_device(dev);
650 return sprintf(buf, "%u\n", data->alarms);
653 static DEVICE_ATTR_RO(alarms);
655 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
656 char *buf)
658 int nr = to_sensor_dev_attr(attr)->index;
659 struct lm85_data *data = lm85_update_device(dev);
660 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
663 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
664 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
665 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
666 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
667 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
668 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
669 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
670 static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
671 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
672 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
673 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
674 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
675 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
676 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
677 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
678 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
679 static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
681 /* pwm */
683 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
686 int nr = to_sensor_dev_attr(attr)->index;
687 struct lm85_data *data = lm85_update_device(dev);
688 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
691 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
692 const char *buf, size_t count)
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct lm85_data *data = dev_get_drvdata(dev);
696 struct i2c_client *client = data->client;
697 unsigned long val;
698 int err;
700 err = kstrtoul(buf, 10, &val);
701 if (err)
702 return err;
704 mutex_lock(&data->update_lock);
705 data->pwm[nr] = PWM_TO_REG(val);
706 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
707 mutex_unlock(&data->update_lock);
708 return count;
711 static ssize_t pwm_enable_show(struct device *dev,
712 struct device_attribute *attr, char *buf)
714 int nr = to_sensor_dev_attr(attr)->index;
715 struct lm85_data *data = lm85_update_device(dev);
716 int pwm_zone, enable;
718 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
719 switch (pwm_zone) {
720 case -1: /* PWM is always at 100% */
721 enable = 0;
722 break;
723 case 0: /* PWM is always at 0% */
724 case -2: /* PWM responds to manual control */
725 enable = 1;
726 break;
727 default: /* PWM in automatic mode */
728 enable = 2;
730 return sprintf(buf, "%d\n", enable);
733 static ssize_t pwm_enable_store(struct device *dev,
734 struct device_attribute *attr,
735 const char *buf, size_t count)
737 int nr = to_sensor_dev_attr(attr)->index;
738 struct lm85_data *data = dev_get_drvdata(dev);
739 struct i2c_client *client = data->client;
740 u8 config;
741 unsigned long val;
742 int err;
744 err = kstrtoul(buf, 10, &val);
745 if (err)
746 return err;
748 switch (val) {
749 case 0:
750 config = 3;
751 break;
752 case 1:
753 config = 7;
754 break;
755 case 2:
757 * Here we have to choose arbitrarily one of the 5 possible
758 * configurations; I go for the safest
760 config = 6;
761 break;
762 default:
763 return -EINVAL;
766 mutex_lock(&data->update_lock);
767 data->autofan[nr].config = lm85_read_value(client,
768 LM85_REG_AFAN_CONFIG(nr));
769 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
770 | (config << 5);
771 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
772 data->autofan[nr].config);
773 mutex_unlock(&data->update_lock);
774 return count;
777 static ssize_t pwm_freq_show(struct device *dev,
778 struct device_attribute *attr, char *buf)
780 int nr = to_sensor_dev_attr(attr)->index;
781 struct lm85_data *data = lm85_update_device(dev);
782 int freq;
784 if (IS_ADT7468_HFPWM(data))
785 freq = 22500;
786 else
787 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
788 data->pwm_freq[nr]);
790 return sprintf(buf, "%d\n", freq);
793 static ssize_t pwm_freq_store(struct device *dev,
794 struct device_attribute *attr, const char *buf,
795 size_t count)
797 int nr = to_sensor_dev_attr(attr)->index;
798 struct lm85_data *data = dev_get_drvdata(dev);
799 struct i2c_client *client = data->client;
800 unsigned long val;
801 int err;
803 err = kstrtoul(buf, 10, &val);
804 if (err)
805 return err;
807 mutex_lock(&data->update_lock);
809 * The ADT7468 has a special high-frequency PWM output mode,
810 * where all PWM outputs are driven by a 22.5 kHz clock.
811 * This might confuse the user, but there's not much we can do.
813 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
814 data->cfg5 &= ~ADT7468_HFPWM;
815 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
816 } else { /* Low freq. mode */
817 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
818 data->freq_map_size, val);
819 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
820 (data->zone[nr].range << 4)
821 | data->pwm_freq[nr]);
822 if (data->type == adt7468) {
823 data->cfg5 |= ADT7468_HFPWM;
824 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
827 mutex_unlock(&data->update_lock);
828 return count;
831 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
832 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
833 static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
834 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
835 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
836 static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
837 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
838 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
839 static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
841 /* Voltages */
843 static ssize_t in_show(struct device *dev, struct device_attribute *attr,
844 char *buf)
846 int nr = to_sensor_dev_attr(attr)->index;
847 struct lm85_data *data = lm85_update_device(dev);
848 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
849 data->in_ext[nr]));
852 static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
855 int nr = to_sensor_dev_attr(attr)->index;
856 struct lm85_data *data = lm85_update_device(dev);
857 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
860 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
861 const char *buf, size_t count)
863 int nr = to_sensor_dev_attr(attr)->index;
864 struct lm85_data *data = dev_get_drvdata(dev);
865 struct i2c_client *client = data->client;
866 long val;
867 int err;
869 err = kstrtol(buf, 10, &val);
870 if (err)
871 return err;
873 mutex_lock(&data->update_lock);
874 data->in_min[nr] = INS_TO_REG(nr, val);
875 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
876 mutex_unlock(&data->update_lock);
877 return count;
880 static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
881 char *buf)
883 int nr = to_sensor_dev_attr(attr)->index;
884 struct lm85_data *data = lm85_update_device(dev);
885 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
888 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
889 const char *buf, size_t count)
891 int nr = to_sensor_dev_attr(attr)->index;
892 struct lm85_data *data = dev_get_drvdata(dev);
893 struct i2c_client *client = data->client;
894 long val;
895 int err;
897 err = kstrtol(buf, 10, &val);
898 if (err)
899 return err;
901 mutex_lock(&data->update_lock);
902 data->in_max[nr] = INS_TO_REG(nr, val);
903 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
904 mutex_unlock(&data->update_lock);
905 return count;
908 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
909 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
910 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
911 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
912 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
913 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
914 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
915 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
916 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
917 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
918 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
919 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
920 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
921 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
922 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
923 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
924 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
925 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
926 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
927 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
928 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
929 static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
930 static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
931 static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
933 /* Temps */
935 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
936 char *buf)
938 int nr = to_sensor_dev_attr(attr)->index;
939 struct lm85_data *data = lm85_update_device(dev);
940 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
941 data->temp_ext[nr]));
944 static ssize_t temp_min_show(struct device *dev,
945 struct device_attribute *attr, char *buf)
947 int nr = to_sensor_dev_attr(attr)->index;
948 struct lm85_data *data = lm85_update_device(dev);
949 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
952 static ssize_t temp_min_store(struct device *dev,
953 struct device_attribute *attr, const char *buf,
954 size_t count)
956 int nr = to_sensor_dev_attr(attr)->index;
957 struct lm85_data *data = dev_get_drvdata(dev);
958 struct i2c_client *client = data->client;
959 long val;
960 int err;
962 err = kstrtol(buf, 10, &val);
963 if (err)
964 return err;
966 if (IS_ADT7468_OFF64(data))
967 val += 64;
969 mutex_lock(&data->update_lock);
970 data->temp_min[nr] = TEMP_TO_REG(val);
971 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
972 mutex_unlock(&data->update_lock);
973 return count;
976 static ssize_t temp_max_show(struct device *dev,
977 struct device_attribute *attr, char *buf)
979 int nr = to_sensor_dev_attr(attr)->index;
980 struct lm85_data *data = lm85_update_device(dev);
981 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
984 static ssize_t temp_max_store(struct device *dev,
985 struct device_attribute *attr, const char *buf,
986 size_t count)
988 int nr = to_sensor_dev_attr(attr)->index;
989 struct lm85_data *data = dev_get_drvdata(dev);
990 struct i2c_client *client = data->client;
991 long val;
992 int err;
994 err = kstrtol(buf, 10, &val);
995 if (err)
996 return err;
998 if (IS_ADT7468_OFF64(data))
999 val += 64;
1001 mutex_lock(&data->update_lock);
1002 data->temp_max[nr] = TEMP_TO_REG(val);
1003 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004 mutex_unlock(&data->update_lock);
1005 return count;
1008 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1018 /* Automatic PWM control */
1020 static ssize_t pwm_auto_channels_show(struct device *dev,
1021 struct device_attribute *attr,
1022 char *buf)
1024 int nr = to_sensor_dev_attr(attr)->index;
1025 struct lm85_data *data = lm85_update_device(dev);
1026 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1029 static ssize_t pwm_auto_channels_store(struct device *dev,
1030 struct device_attribute *attr,
1031 const char *buf, size_t count)
1033 int nr = to_sensor_dev_attr(attr)->index;
1034 struct lm85_data *data = dev_get_drvdata(dev);
1035 struct i2c_client *client = data->client;
1036 long val;
1037 int err;
1039 err = kstrtol(buf, 10, &val);
1040 if (err)
1041 return err;
1043 mutex_lock(&data->update_lock);
1044 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045 | ZONE_TO_REG(val);
1046 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047 data->autofan[nr].config);
1048 mutex_unlock(&data->update_lock);
1049 return count;
1052 static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053 struct device_attribute *attr, char *buf)
1055 int nr = to_sensor_dev_attr(attr)->index;
1056 struct lm85_data *data = lm85_update_device(dev);
1057 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1060 static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061 struct device_attribute *attr,
1062 const char *buf, size_t count)
1064 int nr = to_sensor_dev_attr(attr)->index;
1065 struct lm85_data *data = dev_get_drvdata(dev);
1066 struct i2c_client *client = data->client;
1067 unsigned long val;
1068 int err;
1070 err = kstrtoul(buf, 10, &val);
1071 if (err)
1072 return err;
1074 mutex_lock(&data->update_lock);
1075 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077 data->autofan[nr].min_pwm);
1078 mutex_unlock(&data->update_lock);
1079 return count;
1082 static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083 struct device_attribute *attr,
1084 char *buf)
1086 int nr = to_sensor_dev_attr(attr)->index;
1087 struct lm85_data *data = lm85_update_device(dev);
1088 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1091 static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092 struct device_attribute *attr,
1093 const char *buf, size_t count)
1095 int nr = to_sensor_dev_attr(attr)->index;
1096 struct lm85_data *data = dev_get_drvdata(dev);
1097 struct i2c_client *client = data->client;
1098 u8 tmp;
1099 long val;
1100 int err;
1102 err = kstrtol(buf, 10, &val);
1103 if (err)
1104 return err;
1106 mutex_lock(&data->update_lock);
1107 data->autofan[nr].min_off = val;
1108 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109 tmp &= ~(0x20 << nr);
1110 if (data->autofan[nr].min_off)
1111 tmp |= 0x20 << nr;
1112 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113 mutex_unlock(&data->update_lock);
1114 return count;
1117 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1127 /* Temperature settings for automatic PWM control */
1129 static ssize_t temp_auto_temp_off_show(struct device *dev,
1130 struct device_attribute *attr,
1131 char *buf)
1133 int nr = to_sensor_dev_attr(attr)->index;
1134 struct lm85_data *data = lm85_update_device(dev);
1135 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136 HYST_FROM_REG(data->zone[nr].hyst));
1139 static ssize_t temp_auto_temp_off_store(struct device *dev,
1140 struct device_attribute *attr,
1141 const char *buf, size_t count)
1143 int nr = to_sensor_dev_attr(attr)->index;
1144 struct lm85_data *data = dev_get_drvdata(dev);
1145 struct i2c_client *client = data->client;
1146 int min;
1147 long val;
1148 int err;
1150 err = kstrtol(buf, 10, &val);
1151 if (err)
1152 return err;
1154 mutex_lock(&data->update_lock);
1155 min = TEMP_FROM_REG(data->zone[nr].limit);
1156 data->zone[nr].hyst = HYST_TO_REG(min - val);
1157 if (nr == 0 || nr == 1) {
1158 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159 (data->zone[0].hyst << 4)
1160 | data->zone[1].hyst);
1161 } else {
1162 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163 (data->zone[2].hyst << 4));
1165 mutex_unlock(&data->update_lock);
1166 return count;
1169 static ssize_t temp_auto_temp_min_show(struct device *dev,
1170 struct device_attribute *attr,
1171 char *buf)
1173 int nr = to_sensor_dev_attr(attr)->index;
1174 struct lm85_data *data = lm85_update_device(dev);
1175 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1178 static ssize_t temp_auto_temp_min_store(struct device *dev,
1179 struct device_attribute *attr,
1180 const char *buf, size_t count)
1182 int nr = to_sensor_dev_attr(attr)->index;
1183 struct lm85_data *data = dev_get_drvdata(dev);
1184 struct i2c_client *client = data->client;
1185 long val;
1186 int err;
1188 err = kstrtol(buf, 10, &val);
1189 if (err)
1190 return err;
1192 mutex_lock(&data->update_lock);
1193 data->zone[nr].limit = TEMP_TO_REG(val);
1194 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195 data->zone[nr].limit);
1197 /* Update temp_auto_max and temp_auto_range */
1198 data->zone[nr].range = RANGE_TO_REG(
1199 TEMP_FROM_REG(data->zone[nr].max_desired) -
1200 TEMP_FROM_REG(data->zone[nr].limit));
1201 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202 ((data->zone[nr].range & 0x0f) << 4)
1203 | data->pwm_freq[nr]);
1205 mutex_unlock(&data->update_lock);
1206 return count;
1209 static ssize_t temp_auto_temp_max_show(struct device *dev,
1210 struct device_attribute *attr,
1211 char *buf)
1213 int nr = to_sensor_dev_attr(attr)->index;
1214 struct lm85_data *data = lm85_update_device(dev);
1215 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216 RANGE_FROM_REG(data->zone[nr].range));
1219 static ssize_t temp_auto_temp_max_store(struct device *dev,
1220 struct device_attribute *attr,
1221 const char *buf, size_t count)
1223 int nr = to_sensor_dev_attr(attr)->index;
1224 struct lm85_data *data = dev_get_drvdata(dev);
1225 struct i2c_client *client = data->client;
1226 int min;
1227 long val;
1228 int err;
1230 err = kstrtol(buf, 10, &val);
1231 if (err)
1232 return err;
1234 mutex_lock(&data->update_lock);
1235 min = TEMP_FROM_REG(data->zone[nr].limit);
1236 data->zone[nr].max_desired = TEMP_TO_REG(val);
1237 data->zone[nr].range = RANGE_TO_REG(
1238 val - min);
1239 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240 ((data->zone[nr].range & 0x0f) << 4)
1241 | data->pwm_freq[nr]);
1242 mutex_unlock(&data->update_lock);
1243 return count;
1246 static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247 struct device_attribute *attr,
1248 char *buf)
1250 int nr = to_sensor_dev_attr(attr)->index;
1251 struct lm85_data *data = lm85_update_device(dev);
1252 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1255 static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256 struct device_attribute *attr,
1257 const char *buf, size_t count)
1259 int nr = to_sensor_dev_attr(attr)->index;
1260 struct lm85_data *data = dev_get_drvdata(dev);
1261 struct i2c_client *client = data->client;
1262 long val;
1263 int err;
1265 err = kstrtol(buf, 10, &val);
1266 if (err)
1267 return err;
1269 mutex_lock(&data->update_lock);
1270 data->zone[nr].critical = TEMP_TO_REG(val);
1271 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272 data->zone[nr].critical);
1273 mutex_unlock(&data->update_lock);
1274 return count;
1277 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1290 static struct attribute *lm85_attributes[] = {
1291 &sensor_dev_attr_fan1_input.dev_attr.attr,
1292 &sensor_dev_attr_fan2_input.dev_attr.attr,
1293 &sensor_dev_attr_fan3_input.dev_attr.attr,
1294 &sensor_dev_attr_fan4_input.dev_attr.attr,
1295 &sensor_dev_attr_fan1_min.dev_attr.attr,
1296 &sensor_dev_attr_fan2_min.dev_attr.attr,
1297 &sensor_dev_attr_fan3_min.dev_attr.attr,
1298 &sensor_dev_attr_fan4_min.dev_attr.attr,
1299 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1304 &sensor_dev_attr_pwm1.dev_attr.attr,
1305 &sensor_dev_attr_pwm2.dev_attr.attr,
1306 &sensor_dev_attr_pwm3.dev_attr.attr,
1307 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1314 &sensor_dev_attr_in0_input.dev_attr.attr,
1315 &sensor_dev_attr_in1_input.dev_attr.attr,
1316 &sensor_dev_attr_in2_input.dev_attr.attr,
1317 &sensor_dev_attr_in3_input.dev_attr.attr,
1318 &sensor_dev_attr_in0_min.dev_attr.attr,
1319 &sensor_dev_attr_in1_min.dev_attr.attr,
1320 &sensor_dev_attr_in2_min.dev_attr.attr,
1321 &sensor_dev_attr_in3_min.dev_attr.attr,
1322 &sensor_dev_attr_in0_max.dev_attr.attr,
1323 &sensor_dev_attr_in1_max.dev_attr.attr,
1324 &sensor_dev_attr_in2_max.dev_attr.attr,
1325 &sensor_dev_attr_in3_max.dev_attr.attr,
1326 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1327 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1328 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1329 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1331 &sensor_dev_attr_temp1_input.dev_attr.attr,
1332 &sensor_dev_attr_temp2_input.dev_attr.attr,
1333 &sensor_dev_attr_temp3_input.dev_attr.attr,
1334 &sensor_dev_attr_temp1_min.dev_attr.attr,
1335 &sensor_dev_attr_temp2_min.dev_attr.attr,
1336 &sensor_dev_attr_temp3_min.dev_attr.attr,
1337 &sensor_dev_attr_temp1_max.dev_attr.attr,
1338 &sensor_dev_attr_temp2_max.dev_attr.attr,
1339 &sensor_dev_attr_temp3_max.dev_attr.attr,
1340 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1344 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1346 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1353 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1363 &dev_attr_vrm.attr,
1364 &dev_attr_cpu0_vid.attr,
1365 &dev_attr_alarms.attr,
1366 NULL
1369 static const struct attribute_group lm85_group = {
1370 .attrs = lm85_attributes,
1373 static struct attribute *lm85_attributes_minctl[] = {
1374 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377 NULL
1380 static const struct attribute_group lm85_group_minctl = {
1381 .attrs = lm85_attributes_minctl,
1384 static struct attribute *lm85_attributes_temp_off[] = {
1385 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388 NULL
1391 static const struct attribute_group lm85_group_temp_off = {
1392 .attrs = lm85_attributes_temp_off,
1395 static struct attribute *lm85_attributes_in4[] = {
1396 &sensor_dev_attr_in4_input.dev_attr.attr,
1397 &sensor_dev_attr_in4_min.dev_attr.attr,
1398 &sensor_dev_attr_in4_max.dev_attr.attr,
1399 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1400 NULL
1403 static const struct attribute_group lm85_group_in4 = {
1404 .attrs = lm85_attributes_in4,
1407 static struct attribute *lm85_attributes_in567[] = {
1408 &sensor_dev_attr_in5_input.dev_attr.attr,
1409 &sensor_dev_attr_in6_input.dev_attr.attr,
1410 &sensor_dev_attr_in7_input.dev_attr.attr,
1411 &sensor_dev_attr_in5_min.dev_attr.attr,
1412 &sensor_dev_attr_in6_min.dev_attr.attr,
1413 &sensor_dev_attr_in7_min.dev_attr.attr,
1414 &sensor_dev_attr_in5_max.dev_attr.attr,
1415 &sensor_dev_attr_in6_max.dev_attr.attr,
1416 &sensor_dev_attr_in7_max.dev_attr.attr,
1417 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1418 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1419 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1420 NULL
1423 static const struct attribute_group lm85_group_in567 = {
1424 .attrs = lm85_attributes_in567,
1427 static void lm85_init_client(struct i2c_client *client)
1429 int value;
1431 /* Start monitoring if needed */
1432 value = lm85_read_value(client, LM85_REG_CONFIG);
1433 if (!(value & 0x01)) {
1434 dev_info(&client->dev, "Starting monitoring\n");
1435 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1438 /* Warn about unusual configuration bits */
1439 if (value & 0x02)
1440 dev_warn(&client->dev, "Device configuration is locked\n");
1441 if (!(value & 0x04))
1442 dev_warn(&client->dev, "Device is not ready\n");
1445 static int lm85_is_fake(struct i2c_client *client)
1448 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449 * emulate the former except that it has no hardware monitoring function
1450 * so the readings are always 0.
1452 int i;
1453 u8 in_temp, fan;
1455 for (i = 0; i < 8; i++) {
1456 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458 if (in_temp != 0x00 || fan != 0xff)
1459 return 0;
1462 return 1;
1465 /* Return 0 if detection is successful, -ENODEV otherwise */
1466 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1468 struct i2c_adapter *adapter = client->adapter;
1469 int address = client->addr;
1470 const char *type_name = NULL;
1471 int company, verstep;
1473 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474 /* We need to be able to do byte I/O */
1475 return -ENODEV;
1478 /* Determine the chip type */
1479 company = lm85_read_value(client, LM85_REG_COMPANY);
1480 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1482 dev_dbg(&adapter->dev,
1483 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484 address, company, verstep);
1486 if (company == LM85_COMPANY_NATIONAL) {
1487 switch (verstep) {
1488 case LM85_VERSTEP_LM85C:
1489 type_name = "lm85c";
1490 break;
1491 case LM85_VERSTEP_LM85B:
1492 type_name = "lm85b";
1493 break;
1494 case LM85_VERSTEP_LM96000_1:
1495 case LM85_VERSTEP_LM96000_2:
1496 /* Check for Winbond WPCD377I */
1497 if (lm85_is_fake(client)) {
1498 dev_dbg(&adapter->dev,
1499 "Found Winbond WPCD377I, ignoring\n");
1500 return -ENODEV;
1502 type_name = "lm96000";
1503 break;
1505 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1506 switch (verstep) {
1507 case LM85_VERSTEP_ADM1027:
1508 type_name = "adm1027";
1509 break;
1510 case LM85_VERSTEP_ADT7463:
1511 case LM85_VERSTEP_ADT7463C:
1512 type_name = "adt7463";
1513 break;
1514 case LM85_VERSTEP_ADT7468_1:
1515 case LM85_VERSTEP_ADT7468_2:
1516 type_name = "adt7468";
1517 break;
1519 } else if (company == LM85_COMPANY_SMSC) {
1520 switch (verstep) {
1521 case LM85_VERSTEP_EMC6D100_A0:
1522 case LM85_VERSTEP_EMC6D100_A1:
1523 /* Note: we can't tell a '100 from a '101 */
1524 type_name = "emc6d100";
1525 break;
1526 case LM85_VERSTEP_EMC6D102:
1527 type_name = "emc6d102";
1528 break;
1529 case LM85_VERSTEP_EMC6D103_A0:
1530 case LM85_VERSTEP_EMC6D103_A1:
1531 type_name = "emc6d103";
1532 break;
1533 case LM85_VERSTEP_EMC6D103S:
1534 type_name = "emc6d103s";
1535 break;
1539 if (!type_name)
1540 return -ENODEV;
1542 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1544 return 0;
1547 static const struct i2c_device_id lm85_id[];
1549 static int lm85_probe(struct i2c_client *client)
1551 struct device *dev = &client->dev;
1552 struct device *hwmon_dev;
1553 struct lm85_data *data;
1554 int idx = 0;
1556 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557 if (!data)
1558 return -ENOMEM;
1560 data->client = client;
1561 if (client->dev.of_node)
1562 data->type = (enum chips)of_device_get_match_data(&client->dev);
1563 else
1564 data->type = i2c_match_id(lm85_id, client)->driver_data;
1565 mutex_init(&data->update_lock);
1567 /* Fill in the chip specific driver values */
1568 switch (data->type) {
1569 case adm1027:
1570 case adt7463:
1571 case adt7468:
1572 case emc6d100:
1573 case emc6d102:
1574 case emc6d103:
1575 case emc6d103s:
1576 data->freq_map = adm1027_freq_map;
1577 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578 break;
1579 case lm96000:
1580 data->freq_map = lm96000_freq_map;
1581 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582 break;
1583 default:
1584 data->freq_map = lm85_freq_map;
1585 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1588 /* Set the VRM version */
1589 data->vrm = vid_which_vrm();
1591 /* Initialize the LM85 chip */
1592 lm85_init_client(client);
1594 /* sysfs hooks */
1595 data->groups[idx++] = &lm85_group;
1597 /* minctl and temp_off exist on all chips except emc6d103s */
1598 if (data->type != emc6d103s) {
1599 data->groups[idx++] = &lm85_group_minctl;
1600 data->groups[idx++] = &lm85_group_temp_off;
1604 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605 * as a sixth digital VID input rather than an analog input.
1607 if (data->type == adt7463 || data->type == adt7468) {
1608 u8 vid = lm85_read_value(client, LM85_REG_VID);
1609 if (vid & 0x80)
1610 data->has_vid5 = true;
1613 if (!data->has_vid5)
1614 data->groups[idx++] = &lm85_group_in4;
1616 /* The EMC6D100 has 3 additional voltage inputs */
1617 if (data->type == emc6d100)
1618 data->groups[idx++] = &lm85_group_in567;
1620 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621 data, data->groups);
1622 return PTR_ERR_OR_ZERO(hwmon_dev);
1625 static const struct i2c_device_id lm85_id[] = {
1626 { "adm1027", adm1027 },
1627 { "adt7463", adt7463 },
1628 { "adt7468", adt7468 },
1629 { "lm85", lm85 },
1630 { "lm85b", lm85 },
1631 { "lm85c", lm85 },
1632 { "lm96000", lm96000 },
1633 { "emc6d100", emc6d100 },
1634 { "emc6d101", emc6d100 },
1635 { "emc6d102", emc6d102 },
1636 { "emc6d103", emc6d103 },
1637 { "emc6d103s", emc6d103s },
1640 MODULE_DEVICE_TABLE(i2c, lm85_id);
1642 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1644 .compatible = "adi,adm1027",
1645 .data = (void *)adm1027
1648 .compatible = "adi,adt7463",
1649 .data = (void *)adt7463
1652 .compatible = "adi,adt7468",
1653 .data = (void *)adt7468
1656 .compatible = "national,lm85",
1657 .data = (void *)lm85
1660 .compatible = "national,lm85b",
1661 .data = (void *)lm85
1664 .compatible = "national,lm85c",
1665 .data = (void *)lm85
1668 .compatible = "ti,lm96000",
1669 .data = (void *)lm96000
1672 .compatible = "smsc,emc6d100",
1673 .data = (void *)emc6d100
1676 .compatible = "smsc,emc6d101",
1677 .data = (void *)emc6d100
1680 .compatible = "smsc,emc6d102",
1681 .data = (void *)emc6d102
1684 .compatible = "smsc,emc6d103",
1685 .data = (void *)emc6d103
1688 .compatible = "smsc,emc6d103s",
1689 .data = (void *)emc6d103s
1691 { },
1693 MODULE_DEVICE_TABLE(of, lm85_of_match);
1695 static struct i2c_driver lm85_driver = {
1696 .class = I2C_CLASS_HWMON,
1697 .driver = {
1698 .name = "lm85",
1699 .of_match_table = of_match_ptr(lm85_of_match),
1701 .probe_new = lm85_probe,
1702 .id_table = lm85_id,
1703 .detect = lm85_detect,
1704 .address_list = normal_i2c,
1707 module_i2c_driver(lm85_driver);
1709 MODULE_LICENSE("GPL");
1710 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711 "Margit Schubert-While <margitsw@t-online.de>, "
1712 "Justin Thiessen <jthiessen@penguincomputing.com>");
1713 MODULE_DESCRIPTION("LM85-B, LM85-C driver");