2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <linux/key-type.h>
38 #include <keys/user-type.h>
39 #include <keys/encrypted-type.h>
41 #include <linux/device-mapper.h>
43 #define DM_MSG_PREFIX "crypt"
46 * context holding the current state of a multi-part conversion
48 struct convert_context
{
49 struct completion restart
;
52 struct bvec_iter iter_in
;
53 struct bvec_iter iter_out
;
57 struct skcipher_request
*req
;
58 struct aead_request
*req_aead
;
64 * per bio private data
67 struct crypt_config
*cc
;
69 u8
*integrity_metadata
;
70 bool integrity_metadata_from_pool
;
71 struct work_struct work
;
72 struct tasklet_struct tasklet
;
74 struct convert_context ctx
;
80 struct rb_node rb_node
;
81 } CRYPTO_MINALIGN_ATTR
;
83 struct dm_crypt_request
{
84 struct convert_context
*ctx
;
85 struct scatterlist sg_in
[4];
86 struct scatterlist sg_out
[4];
92 struct crypt_iv_operations
{
93 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
95 void (*dtr
)(struct crypt_config
*cc
);
96 int (*init
)(struct crypt_config
*cc
);
97 int (*wipe
)(struct crypt_config
*cc
);
98 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
99 struct dm_crypt_request
*dmreq
);
100 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
101 struct dm_crypt_request
*dmreq
);
104 struct iv_benbi_private
{
108 #define LMK_SEED_SIZE 64 /* hash + 0 */
109 struct iv_lmk_private
{
110 struct crypto_shash
*hash_tfm
;
114 #define TCW_WHITENING_SIZE 16
115 struct iv_tcw_private
{
116 struct crypto_shash
*crc32_tfm
;
121 #define ELEPHANT_MAX_KEY_SIZE 32
122 struct iv_elephant_private
{
123 struct crypto_skcipher
*tfm
;
127 * Crypt: maps a linear range of a block device
128 * and encrypts / decrypts at the same time.
130 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
131 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
,
132 DM_CRYPT_NO_READ_WORKQUEUE
, DM_CRYPT_NO_WRITE_WORKQUEUE
,
133 DM_CRYPT_WRITE_INLINE
};
136 CRYPT_MODE_INTEGRITY_AEAD
, /* Use authenticated mode for cihper */
137 CRYPT_IV_LARGE_SECTORS
, /* Calculate IV from sector_size, not 512B sectors */
138 CRYPT_ENCRYPT_PREPROCESS
, /* Must preprocess data for encryption (elephant) */
142 * The fields in here must be read only after initialization.
144 struct crypt_config
{
148 struct percpu_counter n_allocated_pages
;
150 struct workqueue_struct
*io_queue
;
151 struct workqueue_struct
*crypt_queue
;
153 spinlock_t write_thread_lock
;
154 struct task_struct
*write_thread
;
155 struct rb_root write_tree
;
161 const struct crypt_iv_operations
*iv_gen_ops
;
163 struct iv_benbi_private benbi
;
164 struct iv_lmk_private lmk
;
165 struct iv_tcw_private tcw
;
166 struct iv_elephant_private elephant
;
169 unsigned int iv_size
;
170 unsigned short int sector_size
;
171 unsigned char sector_shift
;
174 struct crypto_skcipher
**tfms
;
175 struct crypto_aead
**tfms_aead
;
178 unsigned long cipher_flags
;
181 * Layout of each crypto request:
183 * struct skcipher_request
186 * struct dm_crypt_request
190 * The padding is added so that dm_crypt_request and the IV are
193 unsigned int dmreq_start
;
195 unsigned int per_bio_data_size
;
198 unsigned int key_size
;
199 unsigned int key_parts
; /* independent parts in key buffer */
200 unsigned int key_extra_size
; /* additional keys length */
201 unsigned int key_mac_size
; /* MAC key size for authenc(...) */
203 unsigned int integrity_tag_size
;
204 unsigned int integrity_iv_size
;
205 unsigned int on_disk_tag_size
;
208 * pool for per bio private data, crypto requests,
209 * encryption requeusts/buffer pages and integrity tags
211 unsigned tag_pool_max_sectors
;
217 struct mutex bio_alloc_lock
;
219 u8
*authenc_key
; /* space for keys in authenc() format (if used) */
224 #define MAX_TAG_SIZE 480
225 #define POOL_ENTRY_SIZE 512
227 static DEFINE_SPINLOCK(dm_crypt_clients_lock
);
228 static unsigned dm_crypt_clients_n
= 0;
229 static volatile unsigned long dm_crypt_pages_per_client
;
230 #define DM_CRYPT_MEMORY_PERCENT 2
231 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
233 static void clone_init(struct dm_crypt_io
*, struct bio
*);
234 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
235 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
236 struct scatterlist
*sg
);
238 static bool crypt_integrity_aead(struct crypt_config
*cc
);
241 * Use this to access cipher attributes that are independent of the key.
243 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
245 return cc
->cipher_tfm
.tfms
[0];
248 static struct crypto_aead
*any_tfm_aead(struct crypt_config
*cc
)
250 return cc
->cipher_tfm
.tfms_aead
[0];
254 * Different IV generation algorithms:
256 * plain: the initial vector is the 32-bit little-endian version of the sector
257 * number, padded with zeros if necessary.
259 * plain64: the initial vector is the 64-bit little-endian version of the sector
260 * number, padded with zeros if necessary.
262 * plain64be: the initial vector is the 64-bit big-endian version of the sector
263 * number, padded with zeros if necessary.
265 * essiv: "encrypted sector|salt initial vector", the sector number is
266 * encrypted with the bulk cipher using a salt as key. The salt
267 * should be derived from the bulk cipher's key via hashing.
269 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
270 * (needed for LRW-32-AES and possible other narrow block modes)
272 * null: the initial vector is always zero. Provides compatibility with
273 * obsolete loop_fish2 devices. Do not use for new devices.
275 * lmk: Compatible implementation of the block chaining mode used
276 * by the Loop-AES block device encryption system
277 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
278 * It operates on full 512 byte sectors and uses CBC
279 * with an IV derived from the sector number, the data and
280 * optionally extra IV seed.
281 * This means that after decryption the first block
282 * of sector must be tweaked according to decrypted data.
283 * Loop-AES can use three encryption schemes:
284 * version 1: is plain aes-cbc mode
285 * version 2: uses 64 multikey scheme with lmk IV generator
286 * version 3: the same as version 2 with additional IV seed
287 * (it uses 65 keys, last key is used as IV seed)
289 * tcw: Compatible implementation of the block chaining mode used
290 * by the TrueCrypt device encryption system (prior to version 4.1).
291 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
292 * It operates on full 512 byte sectors and uses CBC
293 * with an IV derived from initial key and the sector number.
294 * In addition, whitening value is applied on every sector, whitening
295 * is calculated from initial key, sector number and mixed using CRC32.
296 * Note that this encryption scheme is vulnerable to watermarking attacks
297 * and should be used for old compatible containers access only.
299 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
300 * The IV is encrypted little-endian byte-offset (with the same key
301 * and cipher as the volume).
303 * elephant: The extended version of eboiv with additional Elephant diffuser
304 * used with Bitlocker CBC mode.
305 * This mode was used in older Windows systems
306 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
309 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
310 struct dm_crypt_request
*dmreq
)
312 memset(iv
, 0, cc
->iv_size
);
313 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
318 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
319 struct dm_crypt_request
*dmreq
)
321 memset(iv
, 0, cc
->iv_size
);
322 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
327 static int crypt_iv_plain64be_gen(struct crypt_config
*cc
, u8
*iv
,
328 struct dm_crypt_request
*dmreq
)
330 memset(iv
, 0, cc
->iv_size
);
331 /* iv_size is at least of size u64; usually it is 16 bytes */
332 *(__be64
*)&iv
[cc
->iv_size
- sizeof(u64
)] = cpu_to_be64(dmreq
->iv_sector
);
337 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
338 struct dm_crypt_request
*dmreq
)
341 * ESSIV encryption of the IV is now handled by the crypto API,
342 * so just pass the plain sector number here.
344 memset(iv
, 0, cc
->iv_size
);
345 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
350 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
356 if (crypt_integrity_aead(cc
))
357 bs
= crypto_aead_blocksize(any_tfm_aead(cc
));
359 bs
= crypto_skcipher_blocksize(any_tfm(cc
));
362 /* we need to calculate how far we must shift the sector count
363 * to get the cipher block count, we use this shift in _gen */
365 if (1 << log
!= bs
) {
366 ti
->error
= "cypher blocksize is not a power of 2";
371 ti
->error
= "cypher blocksize is > 512";
375 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
380 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
384 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
385 struct dm_crypt_request
*dmreq
)
389 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
391 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
392 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
397 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
398 struct dm_crypt_request
*dmreq
)
400 memset(iv
, 0, cc
->iv_size
);
405 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
407 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
409 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
410 crypto_free_shash(lmk
->hash_tfm
);
411 lmk
->hash_tfm
= NULL
;
413 kfree_sensitive(lmk
->seed
);
417 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
420 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
422 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
423 ti
->error
= "Unsupported sector size for LMK";
427 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0,
428 CRYPTO_ALG_ALLOCATES_MEMORY
);
429 if (IS_ERR(lmk
->hash_tfm
)) {
430 ti
->error
= "Error initializing LMK hash";
431 return PTR_ERR(lmk
->hash_tfm
);
434 /* No seed in LMK version 2 */
435 if (cc
->key_parts
== cc
->tfms_count
) {
440 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
442 crypt_iv_lmk_dtr(cc
);
443 ti
->error
= "Error kmallocing seed storage in LMK";
450 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
452 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
453 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
455 /* LMK seed is on the position of LMK_KEYS + 1 key */
457 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
458 crypto_shash_digestsize(lmk
->hash_tfm
));
463 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
465 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
468 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
473 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
474 struct dm_crypt_request
*dmreq
,
477 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
478 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
479 struct md5_state md5state
;
483 desc
->tfm
= lmk
->hash_tfm
;
485 r
= crypto_shash_init(desc
);
490 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
495 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
496 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
500 /* Sector is cropped to 56 bits here */
501 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
502 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
503 buf
[2] = cpu_to_le32(4024);
505 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
509 /* No MD5 padding here */
510 r
= crypto_shash_export(desc
, &md5state
);
514 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
515 __cpu_to_le32s(&md5state
.hash
[i
]);
516 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
521 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
522 struct dm_crypt_request
*dmreq
)
524 struct scatterlist
*sg
;
528 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
529 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
530 src
= kmap_atomic(sg_page(sg
));
531 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ sg
->offset
);
534 memset(iv
, 0, cc
->iv_size
);
539 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
540 struct dm_crypt_request
*dmreq
)
542 struct scatterlist
*sg
;
546 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
549 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
550 dst
= kmap_atomic(sg_page(sg
));
551 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ sg
->offset
);
553 /* Tweak the first block of plaintext sector */
555 crypto_xor(dst
+ sg
->offset
, iv
, cc
->iv_size
);
561 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
563 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
565 kfree_sensitive(tcw
->iv_seed
);
567 kfree_sensitive(tcw
->whitening
);
568 tcw
->whitening
= NULL
;
570 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
571 crypto_free_shash(tcw
->crc32_tfm
);
572 tcw
->crc32_tfm
= NULL
;
575 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
578 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
580 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
581 ti
->error
= "Unsupported sector size for TCW";
585 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
586 ti
->error
= "Wrong key size for TCW";
590 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0,
591 CRYPTO_ALG_ALLOCATES_MEMORY
);
592 if (IS_ERR(tcw
->crc32_tfm
)) {
593 ti
->error
= "Error initializing CRC32 in TCW";
594 return PTR_ERR(tcw
->crc32_tfm
);
597 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
598 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
599 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
600 crypt_iv_tcw_dtr(cc
);
601 ti
->error
= "Error allocating seed storage in TCW";
608 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
610 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
611 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
613 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
614 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
620 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
622 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
624 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
625 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
630 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
631 struct dm_crypt_request
*dmreq
,
634 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
635 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
636 u8 buf
[TCW_WHITENING_SIZE
];
637 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
640 /* xor whitening with sector number */
641 crypto_xor_cpy(buf
, tcw
->whitening
, (u8
*)§or
, 8);
642 crypto_xor_cpy(&buf
[8], tcw
->whitening
+ 8, (u8
*)§or
, 8);
644 /* calculate crc32 for every 32bit part and xor it */
645 desc
->tfm
= tcw
->crc32_tfm
;
646 for (i
= 0; i
< 4; i
++) {
647 r
= crypto_shash_init(desc
);
650 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
653 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
657 crypto_xor(&buf
[0], &buf
[12], 4);
658 crypto_xor(&buf
[4], &buf
[8], 4);
660 /* apply whitening (8 bytes) to whole sector */
661 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
662 crypto_xor(data
+ i
* 8, buf
, 8);
664 memzero_explicit(buf
, sizeof(buf
));
668 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
669 struct dm_crypt_request
*dmreq
)
671 struct scatterlist
*sg
;
672 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
673 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
677 /* Remove whitening from ciphertext */
678 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
679 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
680 src
= kmap_atomic(sg_page(sg
));
681 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ sg
->offset
);
686 crypto_xor_cpy(iv
, tcw
->iv_seed
, (u8
*)§or
, 8);
688 crypto_xor_cpy(&iv
[8], tcw
->iv_seed
+ 8, (u8
*)§or
,
694 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
695 struct dm_crypt_request
*dmreq
)
697 struct scatterlist
*sg
;
701 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
704 /* Apply whitening on ciphertext */
705 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
706 dst
= kmap_atomic(sg_page(sg
));
707 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ sg
->offset
);
713 static int crypt_iv_random_gen(struct crypt_config
*cc
, u8
*iv
,
714 struct dm_crypt_request
*dmreq
)
716 /* Used only for writes, there must be an additional space to store IV */
717 get_random_bytes(iv
, cc
->iv_size
);
721 static int crypt_iv_eboiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
724 if (crypt_integrity_aead(cc
)) {
725 ti
->error
= "AEAD transforms not supported for EBOIV";
729 if (crypto_skcipher_blocksize(any_tfm(cc
)) != cc
->iv_size
) {
730 ti
->error
= "Block size of EBOIV cipher does "
731 "not match IV size of block cipher";
738 static int crypt_iv_eboiv_gen(struct crypt_config
*cc
, u8
*iv
,
739 struct dm_crypt_request
*dmreq
)
741 u8 buf
[MAX_CIPHER_BLOCKSIZE
] __aligned(__alignof__(__le64
));
742 struct skcipher_request
*req
;
743 struct scatterlist src
, dst
;
744 DECLARE_CRYPTO_WAIT(wait
);
747 req
= skcipher_request_alloc(any_tfm(cc
), GFP_NOIO
);
751 memset(buf
, 0, cc
->iv_size
);
752 *(__le64
*)buf
= cpu_to_le64(dmreq
->iv_sector
* cc
->sector_size
);
754 sg_init_one(&src
, page_address(ZERO_PAGE(0)), cc
->iv_size
);
755 sg_init_one(&dst
, iv
, cc
->iv_size
);
756 skcipher_request_set_crypt(req
, &src
, &dst
, cc
->iv_size
, buf
);
757 skcipher_request_set_callback(req
, 0, crypto_req_done
, &wait
);
758 err
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
759 skcipher_request_free(req
);
764 static void crypt_iv_elephant_dtr(struct crypt_config
*cc
)
766 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
768 crypto_free_skcipher(elephant
->tfm
);
769 elephant
->tfm
= NULL
;
772 static int crypt_iv_elephant_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
775 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
778 elephant
->tfm
= crypto_alloc_skcipher("ecb(aes)", 0,
779 CRYPTO_ALG_ALLOCATES_MEMORY
);
780 if (IS_ERR(elephant
->tfm
)) {
781 r
= PTR_ERR(elephant
->tfm
);
782 elephant
->tfm
= NULL
;
786 r
= crypt_iv_eboiv_ctr(cc
, ti
, NULL
);
788 crypt_iv_elephant_dtr(cc
);
792 static void diffuser_disk_to_cpu(u32
*d
, size_t n
)
794 #ifndef __LITTLE_ENDIAN
797 for (i
= 0; i
< n
; i
++)
798 d
[i
] = le32_to_cpu((__le32
)d
[i
]);
802 static void diffuser_cpu_to_disk(__le32
*d
, size_t n
)
804 #ifndef __LITTLE_ENDIAN
807 for (i
= 0; i
< n
; i
++)
808 d
[i
] = cpu_to_le32((u32
)d
[i
]);
812 static void diffuser_a_decrypt(u32
*d
, size_t n
)
816 for (i
= 0; i
< 5; i
++) {
821 while (i1
< (n
- 1)) {
822 d
[i1
] += d
[i2
] ^ (d
[i3
] << 9 | d
[i3
] >> 23);
828 d
[i1
] += d
[i2
] ^ d
[i3
];
834 d
[i1
] += d
[i2
] ^ (d
[i3
] << 13 | d
[i3
] >> 19);
837 d
[i1
] += d
[i2
] ^ d
[i3
];
843 static void diffuser_a_encrypt(u32
*d
, size_t n
)
847 for (i
= 0; i
< 5; i
++) {
853 d
[i1
] -= d
[i2
] ^ d
[i3
];
856 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 13 | d
[i3
] >> 19);
862 d
[i1
] -= d
[i2
] ^ d
[i3
];
868 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 9 | d
[i3
] >> 23);
874 static void diffuser_b_decrypt(u32
*d
, size_t n
)
878 for (i
= 0; i
< 3; i
++) {
883 while (i1
< (n
- 1)) {
884 d
[i1
] += d
[i2
] ^ d
[i3
];
887 d
[i1
] += d
[i2
] ^ (d
[i3
] << 10 | d
[i3
] >> 22);
893 d
[i1
] += d
[i2
] ^ d
[i3
];
899 d
[i1
] += d
[i2
] ^ (d
[i3
] << 25 | d
[i3
] >> 7);
905 static void diffuser_b_encrypt(u32
*d
, size_t n
)
909 for (i
= 0; i
< 3; i
++) {
915 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 25 | d
[i3
] >> 7);
921 d
[i1
] -= d
[i2
] ^ d
[i3
];
927 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 10 | d
[i3
] >> 22);
930 d
[i1
] -= d
[i2
] ^ d
[i3
];
936 static int crypt_iv_elephant(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
)
938 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
939 u8
*es
, *ks
, *data
, *data2
, *data_offset
;
940 struct skcipher_request
*req
;
941 struct scatterlist
*sg
, *sg2
, src
, dst
;
942 DECLARE_CRYPTO_WAIT(wait
);
945 req
= skcipher_request_alloc(elephant
->tfm
, GFP_NOIO
);
946 es
= kzalloc(16, GFP_NOIO
); /* Key for AES */
947 ks
= kzalloc(32, GFP_NOIO
); /* Elephant sector key */
949 if (!req
|| !es
|| !ks
) {
954 *(__le64
*)es
= cpu_to_le64(dmreq
->iv_sector
* cc
->sector_size
);
957 sg_init_one(&src
, es
, 16);
958 sg_init_one(&dst
, ks
, 16);
959 skcipher_request_set_crypt(req
, &src
, &dst
, 16, NULL
);
960 skcipher_request_set_callback(req
, 0, crypto_req_done
, &wait
);
961 r
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
967 sg_init_one(&dst
, &ks
[16], 16);
968 r
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
972 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
973 data
= kmap_atomic(sg_page(sg
));
974 data_offset
= data
+ sg
->offset
;
976 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
977 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
978 sg2
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
979 data2
= kmap_atomic(sg_page(sg2
));
980 memcpy(data_offset
, data2
+ sg2
->offset
, cc
->sector_size
);
981 kunmap_atomic(data2
);
984 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
985 diffuser_disk_to_cpu((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
986 diffuser_b_decrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
987 diffuser_a_decrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
988 diffuser_cpu_to_disk((__le32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
991 for (i
= 0; i
< (cc
->sector_size
/ 32); i
++)
992 crypto_xor(data_offset
+ i
* 32, ks
, 32);
994 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
995 diffuser_disk_to_cpu((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
996 diffuser_a_encrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
997 diffuser_b_encrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
998 diffuser_cpu_to_disk((__le32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
1001 kunmap_atomic(data
);
1003 kfree_sensitive(ks
);
1004 kfree_sensitive(es
);
1005 skcipher_request_free(req
);
1009 static int crypt_iv_elephant_gen(struct crypt_config
*cc
, u8
*iv
,
1010 struct dm_crypt_request
*dmreq
)
1014 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
1015 r
= crypt_iv_elephant(cc
, dmreq
);
1020 return crypt_iv_eboiv_gen(cc
, iv
, dmreq
);
1023 static int crypt_iv_elephant_post(struct crypt_config
*cc
, u8
*iv
,
1024 struct dm_crypt_request
*dmreq
)
1026 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
1027 return crypt_iv_elephant(cc
, dmreq
);
1032 static int crypt_iv_elephant_init(struct crypt_config
*cc
)
1034 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
1035 int key_offset
= cc
->key_size
- cc
->key_extra_size
;
1037 return crypto_skcipher_setkey(elephant
->tfm
, &cc
->key
[key_offset
], cc
->key_extra_size
);
1040 static int crypt_iv_elephant_wipe(struct crypt_config
*cc
)
1042 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
1043 u8 key
[ELEPHANT_MAX_KEY_SIZE
];
1045 memset(key
, 0, cc
->key_extra_size
);
1046 return crypto_skcipher_setkey(elephant
->tfm
, key
, cc
->key_extra_size
);
1049 static const struct crypt_iv_operations crypt_iv_plain_ops
= {
1050 .generator
= crypt_iv_plain_gen
1053 static const struct crypt_iv_operations crypt_iv_plain64_ops
= {
1054 .generator
= crypt_iv_plain64_gen
1057 static const struct crypt_iv_operations crypt_iv_plain64be_ops
= {
1058 .generator
= crypt_iv_plain64be_gen
1061 static const struct crypt_iv_operations crypt_iv_essiv_ops
= {
1062 .generator
= crypt_iv_essiv_gen
1065 static const struct crypt_iv_operations crypt_iv_benbi_ops
= {
1066 .ctr
= crypt_iv_benbi_ctr
,
1067 .dtr
= crypt_iv_benbi_dtr
,
1068 .generator
= crypt_iv_benbi_gen
1071 static const struct crypt_iv_operations crypt_iv_null_ops
= {
1072 .generator
= crypt_iv_null_gen
1075 static const struct crypt_iv_operations crypt_iv_lmk_ops
= {
1076 .ctr
= crypt_iv_lmk_ctr
,
1077 .dtr
= crypt_iv_lmk_dtr
,
1078 .init
= crypt_iv_lmk_init
,
1079 .wipe
= crypt_iv_lmk_wipe
,
1080 .generator
= crypt_iv_lmk_gen
,
1081 .post
= crypt_iv_lmk_post
1084 static const struct crypt_iv_operations crypt_iv_tcw_ops
= {
1085 .ctr
= crypt_iv_tcw_ctr
,
1086 .dtr
= crypt_iv_tcw_dtr
,
1087 .init
= crypt_iv_tcw_init
,
1088 .wipe
= crypt_iv_tcw_wipe
,
1089 .generator
= crypt_iv_tcw_gen
,
1090 .post
= crypt_iv_tcw_post
1093 static const struct crypt_iv_operations crypt_iv_random_ops
= {
1094 .generator
= crypt_iv_random_gen
1097 static const struct crypt_iv_operations crypt_iv_eboiv_ops
= {
1098 .ctr
= crypt_iv_eboiv_ctr
,
1099 .generator
= crypt_iv_eboiv_gen
1102 static const struct crypt_iv_operations crypt_iv_elephant_ops
= {
1103 .ctr
= crypt_iv_elephant_ctr
,
1104 .dtr
= crypt_iv_elephant_dtr
,
1105 .init
= crypt_iv_elephant_init
,
1106 .wipe
= crypt_iv_elephant_wipe
,
1107 .generator
= crypt_iv_elephant_gen
,
1108 .post
= crypt_iv_elephant_post
1112 * Integrity extensions
1114 static bool crypt_integrity_aead(struct crypt_config
*cc
)
1116 return test_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
1119 static bool crypt_integrity_hmac(struct crypt_config
*cc
)
1121 return crypt_integrity_aead(cc
) && cc
->key_mac_size
;
1124 /* Get sg containing data */
1125 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
1126 struct scatterlist
*sg
)
1128 if (unlikely(crypt_integrity_aead(cc
)))
1134 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io
*io
, struct bio
*bio
)
1136 struct bio_integrity_payload
*bip
;
1137 unsigned int tag_len
;
1140 if (!bio_sectors(bio
) || !io
->cc
->on_disk_tag_size
)
1143 bip
= bio_integrity_alloc(bio
, GFP_NOIO
, 1);
1145 return PTR_ERR(bip
);
1147 tag_len
= io
->cc
->on_disk_tag_size
* (bio_sectors(bio
) >> io
->cc
->sector_shift
);
1149 bip
->bip_iter
.bi_size
= tag_len
;
1150 bip
->bip_iter
.bi_sector
= io
->cc
->start
+ io
->sector
;
1152 ret
= bio_integrity_add_page(bio
, virt_to_page(io
->integrity_metadata
),
1153 tag_len
, offset_in_page(io
->integrity_metadata
));
1154 if (unlikely(ret
!= tag_len
))
1160 static int crypt_integrity_ctr(struct crypt_config
*cc
, struct dm_target
*ti
)
1162 #ifdef CONFIG_BLK_DEV_INTEGRITY
1163 struct blk_integrity
*bi
= blk_get_integrity(cc
->dev
->bdev
->bd_disk
);
1164 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
1166 /* From now we require underlying device with our integrity profile */
1167 if (!bi
|| strcasecmp(bi
->profile
->name
, "DM-DIF-EXT-TAG")) {
1168 ti
->error
= "Integrity profile not supported.";
1172 if (bi
->tag_size
!= cc
->on_disk_tag_size
||
1173 bi
->tuple_size
!= cc
->on_disk_tag_size
) {
1174 ti
->error
= "Integrity profile tag size mismatch.";
1177 if (1 << bi
->interval_exp
!= cc
->sector_size
) {
1178 ti
->error
= "Integrity profile sector size mismatch.";
1182 if (crypt_integrity_aead(cc
)) {
1183 cc
->integrity_tag_size
= cc
->on_disk_tag_size
- cc
->integrity_iv_size
;
1184 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md
),
1185 cc
->integrity_tag_size
, cc
->integrity_iv_size
);
1187 if (crypto_aead_setauthsize(any_tfm_aead(cc
), cc
->integrity_tag_size
)) {
1188 ti
->error
= "Integrity AEAD auth tag size is not supported.";
1191 } else if (cc
->integrity_iv_size
)
1192 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md
),
1193 cc
->integrity_iv_size
);
1195 if ((cc
->integrity_tag_size
+ cc
->integrity_iv_size
) != bi
->tag_size
) {
1196 ti
->error
= "Not enough space for integrity tag in the profile.";
1202 ti
->error
= "Integrity profile not supported.";
1207 static void crypt_convert_init(struct crypt_config
*cc
,
1208 struct convert_context
*ctx
,
1209 struct bio
*bio_out
, struct bio
*bio_in
,
1212 ctx
->bio_in
= bio_in
;
1213 ctx
->bio_out
= bio_out
;
1215 ctx
->iter_in
= bio_in
->bi_iter
;
1217 ctx
->iter_out
= bio_out
->bi_iter
;
1218 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
1219 init_completion(&ctx
->restart
);
1222 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
1225 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
1228 static void *req_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
)
1230 return (void *)((char *)dmreq
- cc
->dmreq_start
);
1233 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
1234 struct dm_crypt_request
*dmreq
)
1236 if (crypt_integrity_aead(cc
))
1237 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1238 crypto_aead_alignmask(any_tfm_aead(cc
)) + 1);
1240 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1241 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
1244 static u8
*org_iv_of_dmreq(struct crypt_config
*cc
,
1245 struct dm_crypt_request
*dmreq
)
1247 return iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
;
1250 static __le64
*org_sector_of_dmreq(struct crypt_config
*cc
,
1251 struct dm_crypt_request
*dmreq
)
1253 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+ cc
->iv_size
;
1254 return (__le64
*) ptr
;
1257 static unsigned int *org_tag_of_dmreq(struct crypt_config
*cc
,
1258 struct dm_crypt_request
*dmreq
)
1260 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+
1261 cc
->iv_size
+ sizeof(uint64_t);
1262 return (unsigned int*)ptr
;
1265 static void *tag_from_dmreq(struct crypt_config
*cc
,
1266 struct dm_crypt_request
*dmreq
)
1268 struct convert_context
*ctx
= dmreq
->ctx
;
1269 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1271 return &io
->integrity_metadata
[*org_tag_of_dmreq(cc
, dmreq
) *
1272 cc
->on_disk_tag_size
];
1275 static void *iv_tag_from_dmreq(struct crypt_config
*cc
,
1276 struct dm_crypt_request
*dmreq
)
1278 return tag_from_dmreq(cc
, dmreq
) + cc
->integrity_tag_size
;
1281 static int crypt_convert_block_aead(struct crypt_config
*cc
,
1282 struct convert_context
*ctx
,
1283 struct aead_request
*req
,
1284 unsigned int tag_offset
)
1286 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1287 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1288 struct dm_crypt_request
*dmreq
;
1289 u8
*iv
, *org_iv
, *tag_iv
, *tag
;
1293 BUG_ON(cc
->integrity_iv_size
&& cc
->integrity_iv_size
!= cc
->iv_size
);
1295 /* Reject unexpected unaligned bio. */
1296 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1299 dmreq
= dmreq_of_req(cc
, req
);
1300 dmreq
->iv_sector
= ctx
->cc_sector
;
1301 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1302 dmreq
->iv_sector
>>= cc
->sector_shift
;
1305 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1307 sector
= org_sector_of_dmreq(cc
, dmreq
);
1308 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1310 iv
= iv_of_dmreq(cc
, dmreq
);
1311 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1312 tag
= tag_from_dmreq(cc
, dmreq
);
1313 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1316 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1317 * | (authenticated) | (auth+encryption) | |
1318 * | sector_LE | IV | sector in/out | tag in/out |
1320 sg_init_table(dmreq
->sg_in
, 4);
1321 sg_set_buf(&dmreq
->sg_in
[0], sector
, sizeof(uint64_t));
1322 sg_set_buf(&dmreq
->sg_in
[1], org_iv
, cc
->iv_size
);
1323 sg_set_page(&dmreq
->sg_in
[2], bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1324 sg_set_buf(&dmreq
->sg_in
[3], tag
, cc
->integrity_tag_size
);
1326 sg_init_table(dmreq
->sg_out
, 4);
1327 sg_set_buf(&dmreq
->sg_out
[0], sector
, sizeof(uint64_t));
1328 sg_set_buf(&dmreq
->sg_out
[1], org_iv
, cc
->iv_size
);
1329 sg_set_page(&dmreq
->sg_out
[2], bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1330 sg_set_buf(&dmreq
->sg_out
[3], tag
, cc
->integrity_tag_size
);
1332 if (cc
->iv_gen_ops
) {
1333 /* For READs use IV stored in integrity metadata */
1334 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1335 memcpy(org_iv
, tag_iv
, cc
->iv_size
);
1337 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1340 /* Store generated IV in integrity metadata */
1341 if (cc
->integrity_iv_size
)
1342 memcpy(tag_iv
, org_iv
, cc
->iv_size
);
1344 /* Working copy of IV, to be modified in crypto API */
1345 memcpy(iv
, org_iv
, cc
->iv_size
);
1348 aead_request_set_ad(req
, sizeof(uint64_t) + cc
->iv_size
);
1349 if (bio_data_dir(ctx
->bio_in
) == WRITE
) {
1350 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1351 cc
->sector_size
, iv
);
1352 r
= crypto_aead_encrypt(req
);
1353 if (cc
->integrity_tag_size
+ cc
->integrity_iv_size
!= cc
->on_disk_tag_size
)
1354 memset(tag
+ cc
->integrity_tag_size
+ cc
->integrity_iv_size
, 0,
1355 cc
->on_disk_tag_size
- (cc
->integrity_tag_size
+ cc
->integrity_iv_size
));
1357 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1358 cc
->sector_size
+ cc
->integrity_tag_size
, iv
);
1359 r
= crypto_aead_decrypt(req
);
1362 if (r
== -EBADMSG
) {
1363 char b
[BDEVNAME_SIZE
];
1364 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx
->bio_in
, b
),
1365 (unsigned long long)le64_to_cpu(*sector
));
1368 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1369 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1371 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1372 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1377 static int crypt_convert_block_skcipher(struct crypt_config
*cc
,
1378 struct convert_context
*ctx
,
1379 struct skcipher_request
*req
,
1380 unsigned int tag_offset
)
1382 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1383 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1384 struct scatterlist
*sg_in
, *sg_out
;
1385 struct dm_crypt_request
*dmreq
;
1386 u8
*iv
, *org_iv
, *tag_iv
;
1390 /* Reject unexpected unaligned bio. */
1391 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1394 dmreq
= dmreq_of_req(cc
, req
);
1395 dmreq
->iv_sector
= ctx
->cc_sector
;
1396 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1397 dmreq
->iv_sector
>>= cc
->sector_shift
;
1400 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1402 iv
= iv_of_dmreq(cc
, dmreq
);
1403 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1404 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1406 sector
= org_sector_of_dmreq(cc
, dmreq
);
1407 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1409 /* For skcipher we use only the first sg item */
1410 sg_in
= &dmreq
->sg_in
[0];
1411 sg_out
= &dmreq
->sg_out
[0];
1413 sg_init_table(sg_in
, 1);
1414 sg_set_page(sg_in
, bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1416 sg_init_table(sg_out
, 1);
1417 sg_set_page(sg_out
, bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1419 if (cc
->iv_gen_ops
) {
1420 /* For READs use IV stored in integrity metadata */
1421 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1422 memcpy(org_iv
, tag_iv
, cc
->integrity_iv_size
);
1424 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1427 /* Data can be already preprocessed in generator */
1428 if (test_bit(CRYPT_ENCRYPT_PREPROCESS
, &cc
->cipher_flags
))
1430 /* Store generated IV in integrity metadata */
1431 if (cc
->integrity_iv_size
)
1432 memcpy(tag_iv
, org_iv
, cc
->integrity_iv_size
);
1434 /* Working copy of IV, to be modified in crypto API */
1435 memcpy(iv
, org_iv
, cc
->iv_size
);
1438 skcipher_request_set_crypt(req
, sg_in
, sg_out
, cc
->sector_size
, iv
);
1440 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
1441 r
= crypto_skcipher_encrypt(req
);
1443 r
= crypto_skcipher_decrypt(req
);
1445 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1446 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1448 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1449 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1454 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1457 static void crypt_alloc_req_skcipher(struct crypt_config
*cc
,
1458 struct convert_context
*ctx
)
1460 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
1463 ctx
->r
.req
= mempool_alloc(&cc
->req_pool
, GFP_NOIO
);
1465 skcipher_request_set_tfm(ctx
->r
.req
, cc
->cipher_tfm
.tfms
[key_index
]);
1468 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1469 * requests if driver request queue is full.
1471 skcipher_request_set_callback(ctx
->r
.req
,
1472 CRYPTO_TFM_REQ_MAY_BACKLOG
,
1473 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req
));
1476 static void crypt_alloc_req_aead(struct crypt_config
*cc
,
1477 struct convert_context
*ctx
)
1479 if (!ctx
->r
.req_aead
)
1480 ctx
->r
.req_aead
= mempool_alloc(&cc
->req_pool
, GFP_NOIO
);
1482 aead_request_set_tfm(ctx
->r
.req_aead
, cc
->cipher_tfm
.tfms_aead
[0]);
1485 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1486 * requests if driver request queue is full.
1488 aead_request_set_callback(ctx
->r
.req_aead
,
1489 CRYPTO_TFM_REQ_MAY_BACKLOG
,
1490 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req_aead
));
1493 static void crypt_alloc_req(struct crypt_config
*cc
,
1494 struct convert_context
*ctx
)
1496 if (crypt_integrity_aead(cc
))
1497 crypt_alloc_req_aead(cc
, ctx
);
1499 crypt_alloc_req_skcipher(cc
, ctx
);
1502 static void crypt_free_req_skcipher(struct crypt_config
*cc
,
1503 struct skcipher_request
*req
, struct bio
*base_bio
)
1505 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1507 if ((struct skcipher_request
*)(io
+ 1) != req
)
1508 mempool_free(req
, &cc
->req_pool
);
1511 static void crypt_free_req_aead(struct crypt_config
*cc
,
1512 struct aead_request
*req
, struct bio
*base_bio
)
1514 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1516 if ((struct aead_request
*)(io
+ 1) != req
)
1517 mempool_free(req
, &cc
->req_pool
);
1520 static void crypt_free_req(struct crypt_config
*cc
, void *req
, struct bio
*base_bio
)
1522 if (crypt_integrity_aead(cc
))
1523 crypt_free_req_aead(cc
, req
, base_bio
);
1525 crypt_free_req_skcipher(cc
, req
, base_bio
);
1529 * Encrypt / decrypt data from one bio to another one (can be the same one)
1531 static blk_status_t
crypt_convert(struct crypt_config
*cc
,
1532 struct convert_context
*ctx
, bool atomic
)
1534 unsigned int tag_offset
= 0;
1535 unsigned int sector_step
= cc
->sector_size
>> SECTOR_SHIFT
;
1538 atomic_set(&ctx
->cc_pending
, 1);
1540 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
1542 crypt_alloc_req(cc
, ctx
);
1543 atomic_inc(&ctx
->cc_pending
);
1545 if (crypt_integrity_aead(cc
))
1546 r
= crypt_convert_block_aead(cc
, ctx
, ctx
->r
.req_aead
, tag_offset
);
1548 r
= crypt_convert_block_skcipher(cc
, ctx
, ctx
->r
.req
, tag_offset
);
1552 * The request was queued by a crypto driver
1553 * but the driver request queue is full, let's wait.
1556 wait_for_completion(&ctx
->restart
);
1557 reinit_completion(&ctx
->restart
);
1560 * The request is queued and processed asynchronously,
1561 * completion function kcryptd_async_done() will be called.
1565 ctx
->cc_sector
+= sector_step
;
1569 * The request was already processed (synchronously).
1572 atomic_dec(&ctx
->cc_pending
);
1573 ctx
->cc_sector
+= sector_step
;
1579 * There was a data integrity error.
1582 atomic_dec(&ctx
->cc_pending
);
1583 return BLK_STS_PROTECTION
;
1585 * There was an error while processing the request.
1588 atomic_dec(&ctx
->cc_pending
);
1589 return BLK_STS_IOERR
;
1596 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
1599 * Generate a new unfragmented bio with the given size
1600 * This should never violate the device limitations (but only because
1601 * max_segment_size is being constrained to PAGE_SIZE).
1603 * This function may be called concurrently. If we allocate from the mempool
1604 * concurrently, there is a possibility of deadlock. For example, if we have
1605 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1606 * the mempool concurrently, it may deadlock in a situation where both processes
1607 * have allocated 128 pages and the mempool is exhausted.
1609 * In order to avoid this scenario we allocate the pages under a mutex.
1611 * In order to not degrade performance with excessive locking, we try
1612 * non-blocking allocations without a mutex first but on failure we fallback
1613 * to blocking allocations with a mutex.
1615 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
1617 struct crypt_config
*cc
= io
->cc
;
1619 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1620 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
1621 unsigned i
, len
, remaining_size
;
1625 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1626 mutex_lock(&cc
->bio_alloc_lock
);
1628 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, &cc
->bs
);
1632 clone_init(io
, clone
);
1634 remaining_size
= size
;
1636 for (i
= 0; i
< nr_iovecs
; i
++) {
1637 page
= mempool_alloc(&cc
->page_pool
, gfp_mask
);
1639 crypt_free_buffer_pages(cc
, clone
);
1641 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1645 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1647 bio_add_page(clone
, page
, len
, 0);
1649 remaining_size
-= len
;
1652 /* Allocate space for integrity tags */
1653 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1654 crypt_free_buffer_pages(cc
, clone
);
1659 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1660 mutex_unlock(&cc
->bio_alloc_lock
);
1665 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1668 struct bvec_iter_all iter_all
;
1670 bio_for_each_segment_all(bv
, clone
, iter_all
) {
1671 BUG_ON(!bv
->bv_page
);
1672 mempool_free(bv
->bv_page
, &cc
->page_pool
);
1676 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1677 struct bio
*bio
, sector_t sector
)
1681 io
->sector
= sector
;
1683 io
->ctx
.r
.req
= NULL
;
1684 io
->integrity_metadata
= NULL
;
1685 io
->integrity_metadata_from_pool
= false;
1686 atomic_set(&io
->io_pending
, 0);
1689 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1691 atomic_inc(&io
->io_pending
);
1695 * One of the bios was finished. Check for completion of
1696 * the whole request and correctly clean up the buffer.
1698 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1700 struct crypt_config
*cc
= io
->cc
;
1701 struct bio
*base_bio
= io
->base_bio
;
1702 blk_status_t error
= io
->error
;
1704 if (!atomic_dec_and_test(&io
->io_pending
))
1708 crypt_free_req(cc
, io
->ctx
.r
.req
, base_bio
);
1710 if (unlikely(io
->integrity_metadata_from_pool
))
1711 mempool_free(io
->integrity_metadata
, &io
->cc
->tag_pool
);
1713 kfree(io
->integrity_metadata
);
1715 base_bio
->bi_status
= error
;
1716 bio_endio(base_bio
);
1720 * kcryptd/kcryptd_io:
1722 * Needed because it would be very unwise to do decryption in an
1723 * interrupt context.
1725 * kcryptd performs the actual encryption or decryption.
1727 * kcryptd_io performs the IO submission.
1729 * They must be separated as otherwise the final stages could be
1730 * starved by new requests which can block in the first stages due
1731 * to memory allocation.
1733 * The work is done per CPU global for all dm-crypt instances.
1734 * They should not depend on each other and do not block.
1736 static void crypt_endio(struct bio
*clone
)
1738 struct dm_crypt_io
*io
= clone
->bi_private
;
1739 struct crypt_config
*cc
= io
->cc
;
1740 unsigned rw
= bio_data_dir(clone
);
1744 * free the processed pages
1747 crypt_free_buffer_pages(cc
, clone
);
1749 error
= clone
->bi_status
;
1752 if (rw
== READ
&& !error
) {
1753 kcryptd_queue_crypt(io
);
1757 if (unlikely(error
))
1760 crypt_dec_pending(io
);
1763 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1765 struct crypt_config
*cc
= io
->cc
;
1767 clone
->bi_private
= io
;
1768 clone
->bi_end_io
= crypt_endio
;
1769 bio_set_dev(clone
, cc
->dev
->bdev
);
1770 clone
->bi_opf
= io
->base_bio
->bi_opf
;
1773 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1775 struct crypt_config
*cc
= io
->cc
;
1779 * We need the original biovec array in order to decrypt
1780 * the whole bio data *afterwards* -- thanks to immutable
1781 * biovecs we don't need to worry about the block layer
1782 * modifying the biovec array; so leverage bio_clone_fast().
1784 clone
= bio_clone_fast(io
->base_bio
, gfp
, &cc
->bs
);
1788 crypt_inc_pending(io
);
1790 clone_init(io
, clone
);
1791 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1793 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1794 crypt_dec_pending(io
);
1799 submit_bio_noacct(clone
);
1803 static void kcryptd_io_read_work(struct work_struct
*work
)
1805 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1807 crypt_inc_pending(io
);
1808 if (kcryptd_io_read(io
, GFP_NOIO
))
1809 io
->error
= BLK_STS_RESOURCE
;
1810 crypt_dec_pending(io
);
1813 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1815 struct crypt_config
*cc
= io
->cc
;
1817 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1818 queue_work(cc
->io_queue
, &io
->work
);
1821 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1823 struct bio
*clone
= io
->ctx
.bio_out
;
1825 submit_bio_noacct(clone
);
1828 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1830 static int dmcrypt_write(void *data
)
1832 struct crypt_config
*cc
= data
;
1833 struct dm_crypt_io
*io
;
1836 struct rb_root write_tree
;
1837 struct blk_plug plug
;
1839 spin_lock_irq(&cc
->write_thread_lock
);
1842 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1845 set_current_state(TASK_INTERRUPTIBLE
);
1847 spin_unlock_irq(&cc
->write_thread_lock
);
1849 if (unlikely(kthread_should_stop())) {
1850 set_current_state(TASK_RUNNING
);
1856 set_current_state(TASK_RUNNING
);
1857 spin_lock_irq(&cc
->write_thread_lock
);
1858 goto continue_locked
;
1861 write_tree
= cc
->write_tree
;
1862 cc
->write_tree
= RB_ROOT
;
1863 spin_unlock_irq(&cc
->write_thread_lock
);
1865 BUG_ON(rb_parent(write_tree
.rb_node
));
1868 * Note: we cannot walk the tree here with rb_next because
1869 * the structures may be freed when kcryptd_io_write is called.
1871 blk_start_plug(&plug
);
1873 io
= crypt_io_from_node(rb_first(&write_tree
));
1874 rb_erase(&io
->rb_node
, &write_tree
);
1875 kcryptd_io_write(io
);
1876 } while (!RB_EMPTY_ROOT(&write_tree
));
1877 blk_finish_plug(&plug
);
1882 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1884 struct bio
*clone
= io
->ctx
.bio_out
;
1885 struct crypt_config
*cc
= io
->cc
;
1886 unsigned long flags
;
1888 struct rb_node
**rbp
, *parent
;
1890 if (unlikely(io
->error
)) {
1891 crypt_free_buffer_pages(cc
, clone
);
1893 crypt_dec_pending(io
);
1897 /* crypt_convert should have filled the clone bio */
1898 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1900 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1902 if ((likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) ||
1903 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
)) {
1904 submit_bio_noacct(clone
);
1908 spin_lock_irqsave(&cc
->write_thread_lock
, flags
);
1909 if (RB_EMPTY_ROOT(&cc
->write_tree
))
1910 wake_up_process(cc
->write_thread
);
1911 rbp
= &cc
->write_tree
.rb_node
;
1913 sector
= io
->sector
;
1916 if (sector
< crypt_io_from_node(parent
)->sector
)
1917 rbp
= &(*rbp
)->rb_left
;
1919 rbp
= &(*rbp
)->rb_right
;
1921 rb_link_node(&io
->rb_node
, parent
, rbp
);
1922 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1923 spin_unlock_irqrestore(&cc
->write_thread_lock
, flags
);
1926 static bool kcryptd_crypt_write_inline(struct crypt_config
*cc
,
1927 struct convert_context
*ctx
)
1930 if (!test_bit(DM_CRYPT_WRITE_INLINE
, &cc
->flags
))
1934 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1935 * constraints so they do not need to be issued inline by
1936 * kcryptd_crypt_write_convert().
1938 switch (bio_op(ctx
->bio_in
)) {
1940 case REQ_OP_WRITE_SAME
:
1941 case REQ_OP_WRITE_ZEROES
:
1948 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1950 struct crypt_config
*cc
= io
->cc
;
1951 struct convert_context
*ctx
= &io
->ctx
;
1954 sector_t sector
= io
->sector
;
1958 * Prevent io from disappearing until this function completes.
1960 crypt_inc_pending(io
);
1961 crypt_convert_init(cc
, ctx
, NULL
, io
->base_bio
, sector
);
1963 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1964 if (unlikely(!clone
)) {
1965 io
->error
= BLK_STS_IOERR
;
1969 io
->ctx
.bio_out
= clone
;
1970 io
->ctx
.iter_out
= clone
->bi_iter
;
1972 sector
+= bio_sectors(clone
);
1974 crypt_inc_pending(io
);
1975 r
= crypt_convert(cc
, ctx
,
1976 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
));
1979 crypt_finished
= atomic_dec_and_test(&ctx
->cc_pending
);
1980 if (!crypt_finished
&& kcryptd_crypt_write_inline(cc
, ctx
)) {
1981 /* Wait for completion signaled by kcryptd_async_done() */
1982 wait_for_completion(&ctx
->restart
);
1986 /* Encryption was already finished, submit io now */
1987 if (crypt_finished
) {
1988 kcryptd_crypt_write_io_submit(io
, 0);
1989 io
->sector
= sector
;
1993 crypt_dec_pending(io
);
1996 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1998 crypt_dec_pending(io
);
2001 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
2003 struct crypt_config
*cc
= io
->cc
;
2006 crypt_inc_pending(io
);
2008 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
2011 r
= crypt_convert(cc
, &io
->ctx
,
2012 test_bit(DM_CRYPT_NO_READ_WORKQUEUE
, &cc
->flags
));
2016 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
2017 kcryptd_crypt_read_done(io
);
2019 crypt_dec_pending(io
);
2022 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
2025 struct dm_crypt_request
*dmreq
= async_req
->data
;
2026 struct convert_context
*ctx
= dmreq
->ctx
;
2027 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
2028 struct crypt_config
*cc
= io
->cc
;
2031 * A request from crypto driver backlog is going to be processed now,
2032 * finish the completion and continue in crypt_convert().
2033 * (Callback will be called for the second time for this request.)
2035 if (error
== -EINPROGRESS
) {
2036 complete(&ctx
->restart
);
2040 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
2041 error
= cc
->iv_gen_ops
->post(cc
, org_iv_of_dmreq(cc
, dmreq
), dmreq
);
2043 if (error
== -EBADMSG
) {
2044 char b
[BDEVNAME_SIZE
];
2045 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx
->bio_in
, b
),
2046 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc
, dmreq
)));
2047 io
->error
= BLK_STS_PROTECTION
;
2048 } else if (error
< 0)
2049 io
->error
= BLK_STS_IOERR
;
2051 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
2053 if (!atomic_dec_and_test(&ctx
->cc_pending
))
2057 * The request is fully completed: for inline writes, let
2058 * kcryptd_crypt_write_convert() do the IO submission.
2060 if (bio_data_dir(io
->base_bio
) == READ
) {
2061 kcryptd_crypt_read_done(io
);
2065 if (kcryptd_crypt_write_inline(cc
, ctx
)) {
2066 complete(&ctx
->restart
);
2070 kcryptd_crypt_write_io_submit(io
, 1);
2073 static void kcryptd_crypt(struct work_struct
*work
)
2075 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
2077 if (bio_data_dir(io
->base_bio
) == READ
)
2078 kcryptd_crypt_read_convert(io
);
2080 kcryptd_crypt_write_convert(io
);
2083 static void kcryptd_crypt_tasklet(unsigned long work
)
2085 kcryptd_crypt((struct work_struct
*)work
);
2088 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
2090 struct crypt_config
*cc
= io
->cc
;
2092 if ((bio_data_dir(io
->base_bio
) == READ
&& test_bit(DM_CRYPT_NO_READ_WORKQUEUE
, &cc
->flags
)) ||
2093 (bio_data_dir(io
->base_bio
) == WRITE
&& test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
))) {
2095 /* Crypto API's "skcipher_walk_first() refuses to work in hard IRQ context */
2096 tasklet_init(&io
->tasklet
, kcryptd_crypt_tasklet
, (unsigned long)&io
->work
);
2097 tasklet_schedule(&io
->tasklet
);
2101 kcryptd_crypt(&io
->work
);
2105 INIT_WORK(&io
->work
, kcryptd_crypt
);
2106 queue_work(cc
->crypt_queue
, &io
->work
);
2109 static void crypt_free_tfms_aead(struct crypt_config
*cc
)
2111 if (!cc
->cipher_tfm
.tfms_aead
)
2114 if (cc
->cipher_tfm
.tfms_aead
[0] && !IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
2115 crypto_free_aead(cc
->cipher_tfm
.tfms_aead
[0]);
2116 cc
->cipher_tfm
.tfms_aead
[0] = NULL
;
2119 kfree(cc
->cipher_tfm
.tfms_aead
);
2120 cc
->cipher_tfm
.tfms_aead
= NULL
;
2123 static void crypt_free_tfms_skcipher(struct crypt_config
*cc
)
2127 if (!cc
->cipher_tfm
.tfms
)
2130 for (i
= 0; i
< cc
->tfms_count
; i
++)
2131 if (cc
->cipher_tfm
.tfms
[i
] && !IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
2132 crypto_free_skcipher(cc
->cipher_tfm
.tfms
[i
]);
2133 cc
->cipher_tfm
.tfms
[i
] = NULL
;
2136 kfree(cc
->cipher_tfm
.tfms
);
2137 cc
->cipher_tfm
.tfms
= NULL
;
2140 static void crypt_free_tfms(struct crypt_config
*cc
)
2142 if (crypt_integrity_aead(cc
))
2143 crypt_free_tfms_aead(cc
);
2145 crypt_free_tfms_skcipher(cc
);
2148 static int crypt_alloc_tfms_skcipher(struct crypt_config
*cc
, char *ciphermode
)
2153 cc
->cipher_tfm
.tfms
= kcalloc(cc
->tfms_count
,
2154 sizeof(struct crypto_skcipher
*),
2156 if (!cc
->cipher_tfm
.tfms
)
2159 for (i
= 0; i
< cc
->tfms_count
; i
++) {
2160 cc
->cipher_tfm
.tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0,
2161 CRYPTO_ALG_ALLOCATES_MEMORY
);
2162 if (IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
2163 err
= PTR_ERR(cc
->cipher_tfm
.tfms
[i
]);
2164 crypt_free_tfms(cc
);
2170 * dm-crypt performance can vary greatly depending on which crypto
2171 * algorithm implementation is used. Help people debug performance
2172 * problems by logging the ->cra_driver_name.
2174 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode
,
2175 crypto_skcipher_alg(any_tfm(cc
))->base
.cra_driver_name
);
2179 static int crypt_alloc_tfms_aead(struct crypt_config
*cc
, char *ciphermode
)
2183 cc
->cipher_tfm
.tfms
= kmalloc(sizeof(struct crypto_aead
*), GFP_KERNEL
);
2184 if (!cc
->cipher_tfm
.tfms
)
2187 cc
->cipher_tfm
.tfms_aead
[0] = crypto_alloc_aead(ciphermode
, 0,
2188 CRYPTO_ALG_ALLOCATES_MEMORY
);
2189 if (IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
2190 err
= PTR_ERR(cc
->cipher_tfm
.tfms_aead
[0]);
2191 crypt_free_tfms(cc
);
2195 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode
,
2196 crypto_aead_alg(any_tfm_aead(cc
))->base
.cra_driver_name
);
2200 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
2202 if (crypt_integrity_aead(cc
))
2203 return crypt_alloc_tfms_aead(cc
, ciphermode
);
2205 return crypt_alloc_tfms_skcipher(cc
, ciphermode
);
2208 static unsigned crypt_subkey_size(struct crypt_config
*cc
)
2210 return (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
2213 static unsigned crypt_authenckey_size(struct crypt_config
*cc
)
2215 return crypt_subkey_size(cc
) + RTA_SPACE(sizeof(struct crypto_authenc_key_param
));
2219 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2220 * the key must be for some reason in special format.
2221 * This funcion converts cc->key to this special format.
2223 static void crypt_copy_authenckey(char *p
, const void *key
,
2224 unsigned enckeylen
, unsigned authkeylen
)
2226 struct crypto_authenc_key_param
*param
;
2229 rta
= (struct rtattr
*)p
;
2230 param
= RTA_DATA(rta
);
2231 param
->enckeylen
= cpu_to_be32(enckeylen
);
2232 rta
->rta_len
= RTA_LENGTH(sizeof(*param
));
2233 rta
->rta_type
= CRYPTO_AUTHENC_KEYA_PARAM
;
2234 p
+= RTA_SPACE(sizeof(*param
));
2235 memcpy(p
, key
+ enckeylen
, authkeylen
);
2237 memcpy(p
, key
, enckeylen
);
2240 static int crypt_setkey(struct crypt_config
*cc
)
2242 unsigned subkey_size
;
2245 /* Ignore extra keys (which are used for IV etc) */
2246 subkey_size
= crypt_subkey_size(cc
);
2248 if (crypt_integrity_hmac(cc
)) {
2249 if (subkey_size
< cc
->key_mac_size
)
2252 crypt_copy_authenckey(cc
->authenc_key
, cc
->key
,
2253 subkey_size
- cc
->key_mac_size
,
2257 for (i
= 0; i
< cc
->tfms_count
; i
++) {
2258 if (crypt_integrity_hmac(cc
))
2259 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
2260 cc
->authenc_key
, crypt_authenckey_size(cc
));
2261 else if (crypt_integrity_aead(cc
))
2262 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
2263 cc
->key
+ (i
* subkey_size
),
2266 r
= crypto_skcipher_setkey(cc
->cipher_tfm
.tfms
[i
],
2267 cc
->key
+ (i
* subkey_size
),
2273 if (crypt_integrity_hmac(cc
))
2274 memzero_explicit(cc
->authenc_key
, crypt_authenckey_size(cc
));
2281 static bool contains_whitespace(const char *str
)
2284 if (isspace(*str
++))
2289 static int set_key_user(struct crypt_config
*cc
, struct key
*key
)
2291 const struct user_key_payload
*ukp
;
2293 ukp
= user_key_payload_locked(key
);
2295 return -EKEYREVOKED
;
2297 if (cc
->key_size
!= ukp
->datalen
)
2300 memcpy(cc
->key
, ukp
->data
, cc
->key_size
);
2305 #if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2306 static int set_key_encrypted(struct crypt_config
*cc
, struct key
*key
)
2308 const struct encrypted_key_payload
*ekp
;
2310 ekp
= key
->payload
.data
[0];
2312 return -EKEYREVOKED
;
2314 if (cc
->key_size
!= ekp
->decrypted_datalen
)
2317 memcpy(cc
->key
, ekp
->decrypted_data
, cc
->key_size
);
2321 #endif /* CONFIG_ENCRYPTED_KEYS */
2323 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2325 char *new_key_string
, *key_desc
;
2327 struct key_type
*type
;
2329 int (*set_key
)(struct crypt_config
*cc
, struct key
*key
);
2332 * Reject key_string with whitespace. dm core currently lacks code for
2333 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2335 if (contains_whitespace(key_string
)) {
2336 DMERR("whitespace chars not allowed in key string");
2340 /* look for next ':' separating key_type from key_description */
2341 key_desc
= strpbrk(key_string
, ":");
2342 if (!key_desc
|| key_desc
== key_string
|| !strlen(key_desc
+ 1))
2345 if (!strncmp(key_string
, "logon:", key_desc
- key_string
+ 1)) {
2346 type
= &key_type_logon
;
2347 set_key
= set_key_user
;
2348 } else if (!strncmp(key_string
, "user:", key_desc
- key_string
+ 1)) {
2349 type
= &key_type_user
;
2350 set_key
= set_key_user
;
2351 #if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2352 } else if (!strncmp(key_string
, "encrypted:", key_desc
- key_string
+ 1)) {
2353 type
= &key_type_encrypted
;
2354 set_key
= set_key_encrypted
;
2360 new_key_string
= kstrdup(key_string
, GFP_KERNEL
);
2361 if (!new_key_string
)
2364 key
= request_key(type
, key_desc
+ 1, NULL
);
2366 kfree_sensitive(new_key_string
);
2367 return PTR_ERR(key
);
2370 down_read(&key
->sem
);
2372 ret
= set_key(cc
, key
);
2376 kfree_sensitive(new_key_string
);
2383 /* clear the flag since following operations may invalidate previously valid key */
2384 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2386 ret
= crypt_setkey(cc
);
2389 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2390 kfree_sensitive(cc
->key_string
);
2391 cc
->key_string
= new_key_string
;
2393 kfree_sensitive(new_key_string
);
2398 static int get_key_size(char **key_string
)
2403 if (*key_string
[0] != ':')
2404 return strlen(*key_string
) >> 1;
2406 /* look for next ':' in key string */
2407 colon
= strpbrk(*key_string
+ 1, ":");
2411 if (sscanf(*key_string
+ 1, "%u%c", &ret
, &dummy
) != 2 || dummy
!= ':')
2414 *key_string
= colon
;
2416 /* remaining key string should be :<logon|user>:<key_desc> */
2423 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2428 static int get_key_size(char **key_string
)
2430 return (*key_string
[0] == ':') ? -EINVAL
: strlen(*key_string
) >> 1;
2433 #endif /* CONFIG_KEYS */
2435 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
2438 int key_string_len
= strlen(key
);
2440 /* Hyphen (which gives a key_size of zero) means there is no key. */
2441 if (!cc
->key_size
&& strcmp(key
, "-"))
2444 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2445 if (key
[0] == ':') {
2446 r
= crypt_set_keyring_key(cc
, key
+ 1);
2450 /* clear the flag since following operations may invalidate previously valid key */
2451 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2453 /* wipe references to any kernel keyring key */
2454 kfree_sensitive(cc
->key_string
);
2455 cc
->key_string
= NULL
;
2457 /* Decode key from its hex representation. */
2458 if (cc
->key_size
&& hex2bin(cc
->key
, key
, cc
->key_size
) < 0)
2461 r
= crypt_setkey(cc
);
2463 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2466 /* Hex key string not needed after here, so wipe it. */
2467 memset(key
, '0', key_string_len
);
2472 static int crypt_wipe_key(struct crypt_config
*cc
)
2476 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2477 get_random_bytes(&cc
->key
, cc
->key_size
);
2479 /* Wipe IV private keys */
2480 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2481 r
= cc
->iv_gen_ops
->wipe(cc
);
2486 kfree_sensitive(cc
->key_string
);
2487 cc
->key_string
= NULL
;
2488 r
= crypt_setkey(cc
);
2489 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2494 static void crypt_calculate_pages_per_client(void)
2496 unsigned long pages
= (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT
/ 100;
2498 if (!dm_crypt_clients_n
)
2501 pages
/= dm_crypt_clients_n
;
2502 if (pages
< DM_CRYPT_MIN_PAGES_PER_CLIENT
)
2503 pages
= DM_CRYPT_MIN_PAGES_PER_CLIENT
;
2504 dm_crypt_pages_per_client
= pages
;
2507 static void *crypt_page_alloc(gfp_t gfp_mask
, void *pool_data
)
2509 struct crypt_config
*cc
= pool_data
;
2512 if (unlikely(percpu_counter_compare(&cc
->n_allocated_pages
, dm_crypt_pages_per_client
) >= 0) &&
2513 likely(gfp_mask
& __GFP_NORETRY
))
2516 page
= alloc_page(gfp_mask
);
2517 if (likely(page
!= NULL
))
2518 percpu_counter_add(&cc
->n_allocated_pages
, 1);
2523 static void crypt_page_free(void *page
, void *pool_data
)
2525 struct crypt_config
*cc
= pool_data
;
2528 percpu_counter_sub(&cc
->n_allocated_pages
, 1);
2531 static void crypt_dtr(struct dm_target
*ti
)
2533 struct crypt_config
*cc
= ti
->private;
2540 if (cc
->write_thread
)
2541 kthread_stop(cc
->write_thread
);
2544 destroy_workqueue(cc
->io_queue
);
2545 if (cc
->crypt_queue
)
2546 destroy_workqueue(cc
->crypt_queue
);
2548 crypt_free_tfms(cc
);
2550 bioset_exit(&cc
->bs
);
2552 mempool_exit(&cc
->page_pool
);
2553 mempool_exit(&cc
->req_pool
);
2554 mempool_exit(&cc
->tag_pool
);
2556 WARN_ON(percpu_counter_sum(&cc
->n_allocated_pages
) != 0);
2557 percpu_counter_destroy(&cc
->n_allocated_pages
);
2559 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
2560 cc
->iv_gen_ops
->dtr(cc
);
2563 dm_put_device(ti
, cc
->dev
);
2565 kfree_sensitive(cc
->cipher_string
);
2566 kfree_sensitive(cc
->key_string
);
2567 kfree_sensitive(cc
->cipher_auth
);
2568 kfree_sensitive(cc
->authenc_key
);
2570 mutex_destroy(&cc
->bio_alloc_lock
);
2572 /* Must zero key material before freeing */
2573 kfree_sensitive(cc
);
2575 spin_lock(&dm_crypt_clients_lock
);
2576 WARN_ON(!dm_crypt_clients_n
);
2577 dm_crypt_clients_n
--;
2578 crypt_calculate_pages_per_client();
2579 spin_unlock(&dm_crypt_clients_lock
);
2582 static int crypt_ctr_ivmode(struct dm_target
*ti
, const char *ivmode
)
2584 struct crypt_config
*cc
= ti
->private;
2586 if (crypt_integrity_aead(cc
))
2587 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2589 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2592 /* at least a 64 bit sector number should fit in our buffer */
2593 cc
->iv_size
= max(cc
->iv_size
,
2594 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
2596 DMWARN("Selected cipher does not support IVs");
2600 /* Choose ivmode, see comments at iv code. */
2602 cc
->iv_gen_ops
= NULL
;
2603 else if (strcmp(ivmode
, "plain") == 0)
2604 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
2605 else if (strcmp(ivmode
, "plain64") == 0)
2606 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
2607 else if (strcmp(ivmode
, "plain64be") == 0)
2608 cc
->iv_gen_ops
= &crypt_iv_plain64be_ops
;
2609 else if (strcmp(ivmode
, "essiv") == 0)
2610 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
2611 else if (strcmp(ivmode
, "benbi") == 0)
2612 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
2613 else if (strcmp(ivmode
, "null") == 0)
2614 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
2615 else if (strcmp(ivmode
, "eboiv") == 0)
2616 cc
->iv_gen_ops
= &crypt_iv_eboiv_ops
;
2617 else if (strcmp(ivmode
, "elephant") == 0) {
2618 cc
->iv_gen_ops
= &crypt_iv_elephant_ops
;
2620 cc
->key_extra_size
= cc
->key_size
/ 2;
2621 if (cc
->key_extra_size
> ELEPHANT_MAX_KEY_SIZE
)
2623 set_bit(CRYPT_ENCRYPT_PREPROCESS
, &cc
->cipher_flags
);
2624 } else if (strcmp(ivmode
, "lmk") == 0) {
2625 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
2627 * Version 2 and 3 is recognised according
2628 * to length of provided multi-key string.
2629 * If present (version 3), last key is used as IV seed.
2630 * All keys (including IV seed) are always the same size.
2632 if (cc
->key_size
% cc
->key_parts
) {
2634 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
2636 } else if (strcmp(ivmode
, "tcw") == 0) {
2637 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
2638 cc
->key_parts
+= 2; /* IV + whitening */
2639 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
2640 } else if (strcmp(ivmode
, "random") == 0) {
2641 cc
->iv_gen_ops
= &crypt_iv_random_ops
;
2642 /* Need storage space in integrity fields. */
2643 cc
->integrity_iv_size
= cc
->iv_size
;
2645 ti
->error
= "Invalid IV mode";
2653 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2654 * The HMAC is needed to calculate tag size (HMAC digest size).
2655 * This should be probably done by crypto-api calls (once available...)
2657 static int crypt_ctr_auth_cipher(struct crypt_config
*cc
, char *cipher_api
)
2659 char *start
, *end
, *mac_alg
= NULL
;
2660 struct crypto_ahash
*mac
;
2662 if (!strstarts(cipher_api
, "authenc("))
2665 start
= strchr(cipher_api
, '(');
2666 end
= strchr(cipher_api
, ',');
2667 if (!start
|| !end
|| ++start
> end
)
2670 mac_alg
= kzalloc(end
- start
+ 1, GFP_KERNEL
);
2673 strncpy(mac_alg
, start
, end
- start
);
2675 mac
= crypto_alloc_ahash(mac_alg
, 0, CRYPTO_ALG_ALLOCATES_MEMORY
);
2679 return PTR_ERR(mac
);
2681 cc
->key_mac_size
= crypto_ahash_digestsize(mac
);
2682 crypto_free_ahash(mac
);
2684 cc
->authenc_key
= kmalloc(crypt_authenckey_size(cc
), GFP_KERNEL
);
2685 if (!cc
->authenc_key
)
2691 static int crypt_ctr_cipher_new(struct dm_target
*ti
, char *cipher_in
, char *key
,
2692 char **ivmode
, char **ivopts
)
2694 struct crypt_config
*cc
= ti
->private;
2695 char *tmp
, *cipher_api
, buf
[CRYPTO_MAX_ALG_NAME
];
2701 * New format (capi: prefix)
2702 * capi:cipher_api_spec-iv:ivopts
2704 tmp
= &cipher_in
[strlen("capi:")];
2706 /* Separate IV options if present, it can contain another '-' in hash name */
2707 *ivopts
= strrchr(tmp
, ':');
2713 *ivmode
= strrchr(tmp
, '-');
2718 /* The rest is crypto API spec */
2721 /* Alloc AEAD, can be used only in new format. */
2722 if (crypt_integrity_aead(cc
)) {
2723 ret
= crypt_ctr_auth_cipher(cc
, cipher_api
);
2725 ti
->error
= "Invalid AEAD cipher spec";
2730 if (*ivmode
&& !strcmp(*ivmode
, "lmk"))
2731 cc
->tfms_count
= 64;
2733 if (*ivmode
&& !strcmp(*ivmode
, "essiv")) {
2735 ti
->error
= "Digest algorithm missing for ESSIV mode";
2738 ret
= snprintf(buf
, CRYPTO_MAX_ALG_NAME
, "essiv(%s,%s)",
2739 cipher_api
, *ivopts
);
2740 if (ret
< 0 || ret
>= CRYPTO_MAX_ALG_NAME
) {
2741 ti
->error
= "Cannot allocate cipher string";
2747 cc
->key_parts
= cc
->tfms_count
;
2749 /* Allocate cipher */
2750 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2752 ti
->error
= "Error allocating crypto tfm";
2756 if (crypt_integrity_aead(cc
))
2757 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2759 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2764 static int crypt_ctr_cipher_old(struct dm_target
*ti
, char *cipher_in
, char *key
,
2765 char **ivmode
, char **ivopts
)
2767 struct crypt_config
*cc
= ti
->private;
2768 char *tmp
, *cipher
, *chainmode
, *keycount
;
2769 char *cipher_api
= NULL
;
2773 if (strchr(cipher_in
, '(') || crypt_integrity_aead(cc
)) {
2774 ti
->error
= "Bad cipher specification";
2779 * Legacy dm-crypt cipher specification
2780 * cipher[:keycount]-mode-iv:ivopts
2783 keycount
= strsep(&tmp
, "-");
2784 cipher
= strsep(&keycount
, ":");
2788 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
2789 !is_power_of_2(cc
->tfms_count
)) {
2790 ti
->error
= "Bad cipher key count specification";
2793 cc
->key_parts
= cc
->tfms_count
;
2795 chainmode
= strsep(&tmp
, "-");
2796 *ivmode
= strsep(&tmp
, ":");
2800 * For compatibility with the original dm-crypt mapping format, if
2801 * only the cipher name is supplied, use cbc-plain.
2803 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !*ivmode
)) {
2808 if (strcmp(chainmode
, "ecb") && !*ivmode
) {
2809 ti
->error
= "IV mechanism required";
2813 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
2817 if (*ivmode
&& !strcmp(*ivmode
, "essiv")) {
2819 ti
->error
= "Digest algorithm missing for ESSIV mode";
2823 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
2824 "essiv(%s(%s),%s)", chainmode
, cipher
, *ivopts
);
2826 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
2827 "%s(%s)", chainmode
, cipher
);
2829 if (ret
< 0 || ret
>= CRYPTO_MAX_ALG_NAME
) {
2834 /* Allocate cipher */
2835 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2837 ti
->error
= "Error allocating crypto tfm";
2845 ti
->error
= "Cannot allocate cipher strings";
2849 static int crypt_ctr_cipher(struct dm_target
*ti
, char *cipher_in
, char *key
)
2851 struct crypt_config
*cc
= ti
->private;
2852 char *ivmode
= NULL
, *ivopts
= NULL
;
2855 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
2856 if (!cc
->cipher_string
) {
2857 ti
->error
= "Cannot allocate cipher strings";
2861 if (strstarts(cipher_in
, "capi:"))
2862 ret
= crypt_ctr_cipher_new(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2864 ret
= crypt_ctr_cipher_old(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2869 ret
= crypt_ctr_ivmode(ti
, ivmode
);
2873 /* Initialize and set key */
2874 ret
= crypt_set_key(cc
, key
);
2876 ti
->error
= "Error decoding and setting key";
2881 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
2882 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
2884 ti
->error
= "Error creating IV";
2889 /* Initialize IV (set keys for ESSIV etc) */
2890 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
2891 ret
= cc
->iv_gen_ops
->init(cc
);
2893 ti
->error
= "Error initialising IV";
2898 /* wipe the kernel key payload copy */
2900 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2905 static int crypt_ctr_optional(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2907 struct crypt_config
*cc
= ti
->private;
2908 struct dm_arg_set as
;
2909 static const struct dm_arg _args
[] = {
2910 {0, 8, "Invalid number of feature args"},
2912 unsigned int opt_params
, val
;
2913 const char *opt_string
, *sval
;
2917 /* Optional parameters */
2921 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
2925 while (opt_params
--) {
2926 opt_string
= dm_shift_arg(&as
);
2928 ti
->error
= "Not enough feature arguments";
2932 if (!strcasecmp(opt_string
, "allow_discards"))
2933 ti
->num_discard_bios
= 1;
2935 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
2936 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
2938 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
2939 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
2940 else if (!strcasecmp(opt_string
, "no_read_workqueue"))
2941 set_bit(DM_CRYPT_NO_READ_WORKQUEUE
, &cc
->flags
);
2942 else if (!strcasecmp(opt_string
, "no_write_workqueue"))
2943 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
);
2944 else if (sscanf(opt_string
, "integrity:%u:", &val
) == 1) {
2945 if (val
== 0 || val
> MAX_TAG_SIZE
) {
2946 ti
->error
= "Invalid integrity arguments";
2949 cc
->on_disk_tag_size
= val
;
2950 sval
= strchr(opt_string
+ strlen("integrity:"), ':') + 1;
2951 if (!strcasecmp(sval
, "aead")) {
2952 set_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
2953 } else if (strcasecmp(sval
, "none")) {
2954 ti
->error
= "Unknown integrity profile";
2958 cc
->cipher_auth
= kstrdup(sval
, GFP_KERNEL
);
2959 if (!cc
->cipher_auth
)
2961 } else if (sscanf(opt_string
, "sector_size:%hu%c", &cc
->sector_size
, &dummy
) == 1) {
2962 if (cc
->sector_size
< (1 << SECTOR_SHIFT
) ||
2963 cc
->sector_size
> 4096 ||
2964 (cc
->sector_size
& (cc
->sector_size
- 1))) {
2965 ti
->error
= "Invalid feature value for sector_size";
2968 if (ti
->len
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) {
2969 ti
->error
= "Device size is not multiple of sector_size feature";
2972 cc
->sector_shift
= __ffs(cc
->sector_size
) - SECTOR_SHIFT
;
2973 } else if (!strcasecmp(opt_string
, "iv_large_sectors"))
2974 set_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
2976 ti
->error
= "Invalid feature arguments";
2984 #ifdef CONFIG_BLK_DEV_ZONED
2986 static int crypt_report_zones(struct dm_target
*ti
,
2987 struct dm_report_zones_args
*args
, unsigned int nr_zones
)
2989 struct crypt_config
*cc
= ti
->private;
2990 sector_t sector
= cc
->start
+ dm_target_offset(ti
, args
->next_sector
);
2992 args
->start
= cc
->start
;
2993 return blkdev_report_zones(cc
->dev
->bdev
, sector
, nr_zones
,
2994 dm_report_zones_cb
, args
);
3000 * Construct an encryption mapping:
3001 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3003 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
3005 struct crypt_config
*cc
;
3006 const char *devname
= dm_table_device_name(ti
->table
);
3008 unsigned int align_mask
;
3009 unsigned long long tmpll
;
3011 size_t iv_size_padding
, additional_req_size
;
3015 ti
->error
= "Not enough arguments";
3019 key_size
= get_key_size(&argv
[1]);
3021 ti
->error
= "Cannot parse key size";
3025 cc
= kzalloc(struct_size(cc
, key
, key_size
), GFP_KERNEL
);
3027 ti
->error
= "Cannot allocate encryption context";
3030 cc
->key_size
= key_size
;
3031 cc
->sector_size
= (1 << SECTOR_SHIFT
);
3032 cc
->sector_shift
= 0;
3036 spin_lock(&dm_crypt_clients_lock
);
3037 dm_crypt_clients_n
++;
3038 crypt_calculate_pages_per_client();
3039 spin_unlock(&dm_crypt_clients_lock
);
3041 ret
= percpu_counter_init(&cc
->n_allocated_pages
, 0, GFP_KERNEL
);
3045 /* Optional parameters need to be read before cipher constructor */
3047 ret
= crypt_ctr_optional(ti
, argc
- 5, &argv
[5]);
3052 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
3056 if (crypt_integrity_aead(cc
)) {
3057 cc
->dmreq_start
= sizeof(struct aead_request
);
3058 cc
->dmreq_start
+= crypto_aead_reqsize(any_tfm_aead(cc
));
3059 align_mask
= crypto_aead_alignmask(any_tfm_aead(cc
));
3061 cc
->dmreq_start
= sizeof(struct skcipher_request
);
3062 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
3063 align_mask
= crypto_skcipher_alignmask(any_tfm(cc
));
3065 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
3067 if (align_mask
< CRYPTO_MINALIGN
) {
3068 /* Allocate the padding exactly */
3069 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
3073 * If the cipher requires greater alignment than kmalloc
3074 * alignment, we don't know the exact position of the
3075 * initialization vector. We must assume worst case.
3077 iv_size_padding
= align_mask
;
3080 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3081 additional_req_size
= sizeof(struct dm_crypt_request
) +
3082 iv_size_padding
+ cc
->iv_size
+
3085 sizeof(unsigned int);
3087 ret
= mempool_init_kmalloc_pool(&cc
->req_pool
, MIN_IOS
, cc
->dmreq_start
+ additional_req_size
);
3089 ti
->error
= "Cannot allocate crypt request mempool";
3093 cc
->per_bio_data_size
= ti
->per_io_data_size
=
3094 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+ additional_req_size
,
3095 ARCH_KMALLOC_MINALIGN
);
3097 ret
= mempool_init(&cc
->page_pool
, BIO_MAX_PAGES
, crypt_page_alloc
, crypt_page_free
, cc
);
3099 ti
->error
= "Cannot allocate page mempool";
3103 ret
= bioset_init(&cc
->bs
, MIN_IOS
, 0, BIOSET_NEED_BVECS
);
3105 ti
->error
= "Cannot allocate crypt bioset";
3109 mutex_init(&cc
->bio_alloc_lock
);
3112 if ((sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) ||
3113 (tmpll
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1))) {
3114 ti
->error
= "Invalid iv_offset sector";
3117 cc
->iv_offset
= tmpll
;
3119 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
3121 ti
->error
= "Device lookup failed";
3126 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1 || tmpll
!= (sector_t
)tmpll
) {
3127 ti
->error
= "Invalid device sector";
3133 * For zoned block devices, we need to preserve the issuer write
3134 * ordering. To do so, disable write workqueues and force inline
3135 * encryption completion.
3137 if (bdev_is_zoned(cc
->dev
->bdev
)) {
3138 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
);
3139 set_bit(DM_CRYPT_WRITE_INLINE
, &cc
->flags
);
3142 if (crypt_integrity_aead(cc
) || cc
->integrity_iv_size
) {
3143 ret
= crypt_integrity_ctr(cc
, ti
);
3147 cc
->tag_pool_max_sectors
= POOL_ENTRY_SIZE
/ cc
->on_disk_tag_size
;
3148 if (!cc
->tag_pool_max_sectors
)
3149 cc
->tag_pool_max_sectors
= 1;
3151 ret
= mempool_init_kmalloc_pool(&cc
->tag_pool
, MIN_IOS
,
3152 cc
->tag_pool_max_sectors
* cc
->on_disk_tag_size
);
3154 ti
->error
= "Cannot allocate integrity tags mempool";
3158 cc
->tag_pool_max_sectors
<<= cc
->sector_shift
;
3162 cc
->io_queue
= alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM
, 1, devname
);
3163 if (!cc
->io_queue
) {
3164 ti
->error
= "Couldn't create kcryptd io queue";
3168 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
3169 cc
->crypt_queue
= alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
,
3172 cc
->crypt_queue
= alloc_workqueue("kcryptd/%s",
3173 WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
3174 num_online_cpus(), devname
);
3175 if (!cc
->crypt_queue
) {
3176 ti
->error
= "Couldn't create kcryptd queue";
3180 spin_lock_init(&cc
->write_thread_lock
);
3181 cc
->write_tree
= RB_ROOT
;
3183 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write/%s", devname
);
3184 if (IS_ERR(cc
->write_thread
)) {
3185 ret
= PTR_ERR(cc
->write_thread
);
3186 cc
->write_thread
= NULL
;
3187 ti
->error
= "Couldn't spawn write thread";
3190 wake_up_process(cc
->write_thread
);
3192 ti
->num_flush_bios
= 1;
3201 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
3203 struct dm_crypt_io
*io
;
3204 struct crypt_config
*cc
= ti
->private;
3207 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3208 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3209 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3211 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
||
3212 bio_op(bio
) == REQ_OP_DISCARD
)) {
3213 bio_set_dev(bio
, cc
->dev
->bdev
);
3214 if (bio_sectors(bio
))
3215 bio
->bi_iter
.bi_sector
= cc
->start
+
3216 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
3217 return DM_MAPIO_REMAPPED
;
3221 * Check if bio is too large, split as needed.
3223 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
3224 (bio_data_dir(bio
) == WRITE
|| cc
->on_disk_tag_size
))
3225 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
3228 * Ensure that bio is a multiple of internal sector encryption size
3229 * and is aligned to this size as defined in IO hints.
3231 if (unlikely((bio
->bi_iter
.bi_sector
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) != 0))
3232 return DM_MAPIO_KILL
;
3234 if (unlikely(bio
->bi_iter
.bi_size
& (cc
->sector_size
- 1)))
3235 return DM_MAPIO_KILL
;
3237 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
3238 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
3240 if (cc
->on_disk_tag_size
) {
3241 unsigned tag_len
= cc
->on_disk_tag_size
* (bio_sectors(bio
) >> cc
->sector_shift
);
3243 if (unlikely(tag_len
> KMALLOC_MAX_SIZE
) ||
3244 unlikely(!(io
->integrity_metadata
= kmalloc(tag_len
,
3245 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOMEMALLOC
| __GFP_NOWARN
)))) {
3246 if (bio_sectors(bio
) > cc
->tag_pool_max_sectors
)
3247 dm_accept_partial_bio(bio
, cc
->tag_pool_max_sectors
);
3248 io
->integrity_metadata
= mempool_alloc(&cc
->tag_pool
, GFP_NOIO
);
3249 io
->integrity_metadata_from_pool
= true;
3253 if (crypt_integrity_aead(cc
))
3254 io
->ctx
.r
.req_aead
= (struct aead_request
*)(io
+ 1);
3256 io
->ctx
.r
.req
= (struct skcipher_request
*)(io
+ 1);
3258 if (bio_data_dir(io
->base_bio
) == READ
) {
3259 if (kcryptd_io_read(io
, GFP_NOWAIT
))
3260 kcryptd_queue_read(io
);
3262 kcryptd_queue_crypt(io
);
3264 return DM_MAPIO_SUBMITTED
;
3267 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
3268 unsigned status_flags
, char *result
, unsigned maxlen
)
3270 struct crypt_config
*cc
= ti
->private;
3272 int num_feature_args
= 0;
3275 case STATUSTYPE_INFO
:
3279 case STATUSTYPE_TABLE
:
3280 DMEMIT("%s ", cc
->cipher_string
);
3282 if (cc
->key_size
> 0) {
3284 DMEMIT(":%u:%s", cc
->key_size
, cc
->key_string
);
3286 for (i
= 0; i
< cc
->key_size
; i
++)
3287 DMEMIT("%02x", cc
->key
[i
]);
3291 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
3292 cc
->dev
->name
, (unsigned long long)cc
->start
);
3294 num_feature_args
+= !!ti
->num_discard_bios
;
3295 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
3296 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
3297 num_feature_args
+= test_bit(DM_CRYPT_NO_READ_WORKQUEUE
, &cc
->flags
);
3298 num_feature_args
+= test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
);
3299 num_feature_args
+= cc
->sector_size
!= (1 << SECTOR_SHIFT
);
3300 num_feature_args
+= test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
3301 if (cc
->on_disk_tag_size
)
3303 if (num_feature_args
) {
3304 DMEMIT(" %d", num_feature_args
);
3305 if (ti
->num_discard_bios
)
3306 DMEMIT(" allow_discards");
3307 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
3308 DMEMIT(" same_cpu_crypt");
3309 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
3310 DMEMIT(" submit_from_crypt_cpus");
3311 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE
, &cc
->flags
))
3312 DMEMIT(" no_read_workqueue");
3313 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE
, &cc
->flags
))
3314 DMEMIT(" no_write_workqueue");
3315 if (cc
->on_disk_tag_size
)
3316 DMEMIT(" integrity:%u:%s", cc
->on_disk_tag_size
, cc
->cipher_auth
);
3317 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
))
3318 DMEMIT(" sector_size:%d", cc
->sector_size
);
3319 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
3320 DMEMIT(" iv_large_sectors");
3327 static void crypt_postsuspend(struct dm_target
*ti
)
3329 struct crypt_config
*cc
= ti
->private;
3331 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
3334 static int crypt_preresume(struct dm_target
*ti
)
3336 struct crypt_config
*cc
= ti
->private;
3338 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
3339 DMERR("aborting resume - crypt key is not set.");
3346 static void crypt_resume(struct dm_target
*ti
)
3348 struct crypt_config
*cc
= ti
->private;
3350 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
3353 /* Message interface
3357 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3358 char *result
, unsigned maxlen
)
3360 struct crypt_config
*cc
= ti
->private;
3361 int key_size
, ret
= -EINVAL
;
3366 if (!strcasecmp(argv
[0], "key")) {
3367 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
3368 DMWARN("not suspended during key manipulation.");
3371 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
3372 /* The key size may not be changed. */
3373 key_size
= get_key_size(&argv
[2]);
3374 if (key_size
< 0 || cc
->key_size
!= key_size
) {
3375 memset(argv
[2], '0', strlen(argv
[2]));
3379 ret
= crypt_set_key(cc
, argv
[2]);
3382 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
3383 ret
= cc
->iv_gen_ops
->init(cc
);
3384 /* wipe the kernel key payload copy */
3386 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
3389 if (argc
== 2 && !strcasecmp(argv
[1], "wipe"))
3390 return crypt_wipe_key(cc
);
3394 DMWARN("unrecognised message received.");
3398 static int crypt_iterate_devices(struct dm_target
*ti
,
3399 iterate_devices_callout_fn fn
, void *data
)
3401 struct crypt_config
*cc
= ti
->private;
3403 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
3406 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3408 struct crypt_config
*cc
= ti
->private;
3411 * Unfortunate constraint that is required to avoid the potential
3412 * for exceeding underlying device's max_segments limits -- due to
3413 * crypt_alloc_buffer() possibly allocating pages for the encryption
3414 * bio that are not as physically contiguous as the original bio.
3416 limits
->max_segment_size
= PAGE_SIZE
;
3418 limits
->logical_block_size
=
3419 max_t(unsigned, limits
->logical_block_size
, cc
->sector_size
);
3420 limits
->physical_block_size
=
3421 max_t(unsigned, limits
->physical_block_size
, cc
->sector_size
);
3422 limits
->io_min
= max_t(unsigned, limits
->io_min
, cc
->sector_size
);
3425 static struct target_type crypt_target
= {
3427 .version
= {1, 22, 0},
3428 .module
= THIS_MODULE
,
3431 #ifdef CONFIG_BLK_DEV_ZONED
3432 .features
= DM_TARGET_ZONED_HM
,
3433 .report_zones
= crypt_report_zones
,
3436 .status
= crypt_status
,
3437 .postsuspend
= crypt_postsuspend
,
3438 .preresume
= crypt_preresume
,
3439 .resume
= crypt_resume
,
3440 .message
= crypt_message
,
3441 .iterate_devices
= crypt_iterate_devices
,
3442 .io_hints
= crypt_io_hints
,
3445 static int __init
dm_crypt_init(void)
3449 r
= dm_register_target(&crypt_target
);
3451 DMERR("register failed %d", r
);
3456 static void __exit
dm_crypt_exit(void)
3458 dm_unregister_target(&crypt_target
);
3461 module_init(dm_crypt_init
);
3462 module_exit(dm_crypt_exit
);
3464 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3465 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
3466 MODULE_LICENSE("GPL");