2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 * Similar to ceiling(log_size(n))
34 static unsigned int int_log(unsigned int n
, unsigned int base
)
39 n
= dm_div_up(n
, base
);
47 * Calculate the index of the child node of the n'th node k'th key.
49 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
51 return (n
* CHILDREN_PER_NODE
) + k
;
55 * Return the n'th node of level l from table t.
57 static inline sector_t
*get_node(struct dm_table
*t
,
58 unsigned int l
, unsigned int n
)
60 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
67 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
69 for (; l
< t
->depth
- 1; l
++)
70 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
72 if (n
>= t
->counts
[l
])
73 return (sector_t
) - 1;
75 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
79 * Fills in a level of the btree based on the highs of the level
82 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
87 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
88 node
= get_node(t
, l
, n
);
90 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
91 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
97 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
103 * Check that we're not going to overflow.
105 if (nmemb
> (ULONG_MAX
/ elem_size
))
108 size
= nmemb
* elem_size
;
109 addr
= vzalloc(size
);
113 EXPORT_SYMBOL(dm_vcalloc
);
116 * highs, and targets are managed as dynamic arrays during a
119 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
122 struct dm_target
*n_targets
;
125 * Allocate both the target array and offset array at once.
127 n_highs
= (sector_t
*) dm_vcalloc(num
, sizeof(struct dm_target
) +
132 n_targets
= (struct dm_target
*) (n_highs
+ num
);
134 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
137 t
->num_allocated
= num
;
139 t
->targets
= n_targets
;
144 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
145 unsigned num_targets
, struct mapped_device
*md
)
147 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
152 INIT_LIST_HEAD(&t
->devices
);
155 num_targets
= KEYS_PER_NODE
;
157 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
164 if (alloc_targets(t
, num_targets
)) {
169 t
->type
= DM_TYPE_NONE
;
176 static void free_devices(struct list_head
*devices
, struct mapped_device
*md
)
178 struct list_head
*tmp
, *next
;
180 list_for_each_safe(tmp
, next
, devices
) {
181 struct dm_dev_internal
*dd
=
182 list_entry(tmp
, struct dm_dev_internal
, list
);
183 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 dm_device_name(md
), dd
->dm_dev
->name
);
185 dm_put_table_device(md
, dd
->dm_dev
);
190 void dm_table_destroy(struct dm_table
*t
)
197 /* free the indexes */
199 vfree(t
->index
[t
->depth
- 2]);
201 /* free the targets */
202 for (i
= 0; i
< t
->num_targets
; i
++) {
203 struct dm_target
*tgt
= t
->targets
+ i
;
208 dm_put_target_type(tgt
->type
);
213 /* free the device list */
214 free_devices(&t
->devices
, t
->md
);
216 dm_free_md_mempools(t
->mempools
);
222 * See if we've already got a device in the list.
224 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
226 struct dm_dev_internal
*dd
;
228 list_for_each_entry (dd
, l
, list
)
229 if (dd
->dm_dev
->bdev
->bd_dev
== dev
)
236 * If possible, this checks an area of a destination device is invalid.
238 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
239 sector_t start
, sector_t len
, void *data
)
241 struct queue_limits
*limits
= data
;
242 struct block_device
*bdev
= dev
->bdev
;
244 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
245 unsigned short logical_block_size_sectors
=
246 limits
->logical_block_size
>> SECTOR_SHIFT
;
247 char b
[BDEVNAME_SIZE
];
252 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
253 DMWARN("%s: %s too small for target: "
254 "start=%llu, len=%llu, dev_size=%llu",
255 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
256 (unsigned long long)start
,
257 (unsigned long long)len
,
258 (unsigned long long)dev_size
);
263 * If the target is mapped to zoned block device(s), check
264 * that the zones are not partially mapped.
266 if (bdev_zoned_model(bdev
) != BLK_ZONED_NONE
) {
267 unsigned int zone_sectors
= bdev_zone_sectors(bdev
);
269 if (start
& (zone_sectors
- 1)) {
270 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 dm_device_name(ti
->table
->md
),
272 (unsigned long long)start
,
273 zone_sectors
, bdevname(bdev
, b
));
278 * Note: The last zone of a zoned block device may be smaller
279 * than other zones. So for a target mapping the end of a
280 * zoned block device with such a zone, len would not be zone
281 * aligned. We do not allow such last smaller zone to be part
282 * of the mapping here to ensure that mappings with multiple
283 * devices do not end up with a smaller zone in the middle of
286 if (len
& (zone_sectors
- 1)) {
287 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 dm_device_name(ti
->table
->md
),
289 (unsigned long long)len
,
290 zone_sectors
, bdevname(bdev
, b
));
295 if (logical_block_size_sectors
<= 1)
298 if (start
& (logical_block_size_sectors
- 1)) {
299 DMWARN("%s: start=%llu not aligned to h/w "
300 "logical block size %u of %s",
301 dm_device_name(ti
->table
->md
),
302 (unsigned long long)start
,
303 limits
->logical_block_size
, bdevname(bdev
, b
));
307 if (len
& (logical_block_size_sectors
- 1)) {
308 DMWARN("%s: len=%llu not aligned to h/w "
309 "logical block size %u of %s",
310 dm_device_name(ti
->table
->md
),
311 (unsigned long long)len
,
312 limits
->logical_block_size
, bdevname(bdev
, b
));
320 * This upgrades the mode on an already open dm_dev, being
321 * careful to leave things as they were if we fail to reopen the
322 * device and not to touch the existing bdev field in case
323 * it is accessed concurrently.
325 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
326 struct mapped_device
*md
)
329 struct dm_dev
*old_dev
, *new_dev
;
331 old_dev
= dd
->dm_dev
;
333 r
= dm_get_table_device(md
, dd
->dm_dev
->bdev
->bd_dev
,
334 dd
->dm_dev
->mode
| new_mode
, &new_dev
);
338 dd
->dm_dev
= new_dev
;
339 dm_put_table_device(md
, old_dev
);
345 * Convert the path to a device
347 dev_t
dm_get_dev_t(const char *path
)
351 if (lookup_bdev(path
, &dev
))
352 dev
= name_to_dev_t(path
);
355 EXPORT_SYMBOL_GPL(dm_get_dev_t
);
358 * Add a device to the list, or just increment the usage count if
359 * it's already present.
361 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
362 struct dm_dev
**result
)
366 struct dm_dev_internal
*dd
;
367 struct dm_table
*t
= ti
->table
;
371 dev
= dm_get_dev_t(path
);
375 dd
= find_device(&t
->devices
, dev
);
377 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
381 if ((r
= dm_get_table_device(t
->md
, dev
, mode
, &dd
->dm_dev
))) {
386 refcount_set(&dd
->count
, 1);
387 list_add(&dd
->list
, &t
->devices
);
390 } else if (dd
->dm_dev
->mode
!= (mode
| dd
->dm_dev
->mode
)) {
391 r
= upgrade_mode(dd
, mode
, t
->md
);
395 refcount_inc(&dd
->count
);
397 *result
= dd
->dm_dev
;
400 EXPORT_SYMBOL(dm_get_device
);
402 static int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
403 sector_t start
, sector_t len
, void *data
)
405 struct queue_limits
*limits
= data
;
406 struct block_device
*bdev
= dev
->bdev
;
407 struct request_queue
*q
= bdev_get_queue(bdev
);
408 char b
[BDEVNAME_SIZE
];
411 DMWARN("%s: Cannot set limits for nonexistent device %s",
412 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
416 if (blk_stack_limits(limits
, &q
->limits
,
417 get_start_sect(bdev
) + start
) < 0)
418 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
419 "physical_block_size=%u, logical_block_size=%u, "
420 "alignment_offset=%u, start=%llu",
421 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
422 q
->limits
.physical_block_size
,
423 q
->limits
.logical_block_size
,
424 q
->limits
.alignment_offset
,
425 (unsigned long long) start
<< SECTOR_SHIFT
);
430 * Decrement a device's use count and remove it if necessary.
432 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
435 struct list_head
*devices
= &ti
->table
->devices
;
436 struct dm_dev_internal
*dd
;
438 list_for_each_entry(dd
, devices
, list
) {
439 if (dd
->dm_dev
== d
) {
445 DMWARN("%s: device %s not in table devices list",
446 dm_device_name(ti
->table
->md
), d
->name
);
449 if (refcount_dec_and_test(&dd
->count
)) {
450 dm_put_table_device(ti
->table
->md
, d
);
455 EXPORT_SYMBOL(dm_put_device
);
458 * Checks to see if the target joins onto the end of the table.
460 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
462 struct dm_target
*prev
;
464 if (!table
->num_targets
)
467 prev
= &table
->targets
[table
->num_targets
- 1];
468 return (ti
->begin
== (prev
->begin
+ prev
->len
));
472 * Used to dynamically allocate the arg array.
474 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
475 * process messages even if some device is suspended. These messages have a
476 * small fixed number of arguments.
478 * On the other hand, dm-switch needs to process bulk data using messages and
479 * excessive use of GFP_NOIO could cause trouble.
481 static char **realloc_argv(unsigned *size
, char **old_argv
)
488 new_size
= *size
* 2;
494 argv
= kmalloc_array(new_size
, sizeof(*argv
), gfp
);
495 if (argv
&& old_argv
) {
496 memcpy(argv
, old_argv
, *size
* sizeof(*argv
));
505 * Destructively splits up the argument list to pass to ctr.
507 int dm_split_args(int *argc
, char ***argvp
, char *input
)
509 char *start
, *end
= input
, *out
, **argv
= NULL
;
510 unsigned array_size
= 0;
519 argv
= realloc_argv(&array_size
, argv
);
524 /* Skip whitespace */
525 start
= skip_spaces(end
);
528 break; /* success, we hit the end */
530 /* 'out' is used to remove any back-quotes */
533 /* Everything apart from '\0' can be quoted */
534 if (*end
== '\\' && *(end
+ 1)) {
541 break; /* end of token */
546 /* have we already filled the array ? */
547 if ((*argc
+ 1) > array_size
) {
548 argv
= realloc_argv(&array_size
, argv
);
553 /* we know this is whitespace */
557 /* terminate the string and put it in the array */
568 * Impose necessary and sufficient conditions on a devices's table such
569 * that any incoming bio which respects its logical_block_size can be
570 * processed successfully. If it falls across the boundary between
571 * two or more targets, the size of each piece it gets split into must
572 * be compatible with the logical_block_size of the target processing it.
574 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
575 struct queue_limits
*limits
)
578 * This function uses arithmetic modulo the logical_block_size
579 * (in units of 512-byte sectors).
581 unsigned short device_logical_block_size_sects
=
582 limits
->logical_block_size
>> SECTOR_SHIFT
;
585 * Offset of the start of the next table entry, mod logical_block_size.
587 unsigned short next_target_start
= 0;
590 * Given an aligned bio that extends beyond the end of a
591 * target, how many sectors must the next target handle?
593 unsigned short remaining
= 0;
595 struct dm_target
*ti
;
596 struct queue_limits ti_limits
;
600 * Check each entry in the table in turn.
602 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
603 ti
= dm_table_get_target(table
, i
);
605 blk_set_stacking_limits(&ti_limits
);
607 /* combine all target devices' limits */
608 if (ti
->type
->iterate_devices
)
609 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
613 * If the remaining sectors fall entirely within this
614 * table entry are they compatible with its logical_block_size?
616 if (remaining
< ti
->len
&&
617 remaining
& ((ti_limits
.logical_block_size
>>
622 (unsigned short) ((next_target_start
+ ti
->len
) &
623 (device_logical_block_size_sects
- 1));
624 remaining
= next_target_start
?
625 device_logical_block_size_sects
- next_target_start
: 0;
629 DMWARN("%s: table line %u (start sect %llu len %llu) "
630 "not aligned to h/w logical block size %u",
631 dm_device_name(table
->md
), i
,
632 (unsigned long long) ti
->begin
,
633 (unsigned long long) ti
->len
,
634 limits
->logical_block_size
);
641 int dm_table_add_target(struct dm_table
*t
, const char *type
,
642 sector_t start
, sector_t len
, char *params
)
644 int r
= -EINVAL
, argc
;
646 struct dm_target
*tgt
;
649 DMERR("%s: target type %s must appear alone in table",
650 dm_device_name(t
->md
), t
->targets
->type
->name
);
654 BUG_ON(t
->num_targets
>= t
->num_allocated
);
656 tgt
= t
->targets
+ t
->num_targets
;
657 memset(tgt
, 0, sizeof(*tgt
));
660 DMERR("%s: zero-length target", dm_device_name(t
->md
));
664 tgt
->type
= dm_get_target_type(type
);
666 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
), type
);
670 if (dm_target_needs_singleton(tgt
->type
)) {
671 if (t
->num_targets
) {
672 tgt
->error
= "singleton target type must appear alone in table";
678 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
679 tgt
->error
= "target type may not be included in a read-only table";
683 if (t
->immutable_target_type
) {
684 if (t
->immutable_target_type
!= tgt
->type
) {
685 tgt
->error
= "immutable target type cannot be mixed with other target types";
688 } else if (dm_target_is_immutable(tgt
->type
)) {
689 if (t
->num_targets
) {
690 tgt
->error
= "immutable target type cannot be mixed with other target types";
693 t
->immutable_target_type
= tgt
->type
;
696 if (dm_target_has_integrity(tgt
->type
))
697 t
->integrity_added
= 1;
702 tgt
->error
= "Unknown error";
705 * Does this target adjoin the previous one ?
707 if (!adjoin(t
, tgt
)) {
708 tgt
->error
= "Gap in table";
712 r
= dm_split_args(&argc
, &argv
, params
);
714 tgt
->error
= "couldn't split parameters (insufficient memory)";
718 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
723 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
725 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
726 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
727 dm_device_name(t
->md
), type
);
732 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
733 dm_put_target_type(tgt
->type
);
738 * Target argument parsing helpers.
740 static int validate_next_arg(const struct dm_arg
*arg
,
741 struct dm_arg_set
*arg_set
,
742 unsigned *value
, char **error
, unsigned grouped
)
744 const char *arg_str
= dm_shift_arg(arg_set
);
748 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
749 (*value
< arg
->min
) ||
750 (*value
> arg
->max
) ||
751 (grouped
&& arg_set
->argc
< *value
)) {
759 int dm_read_arg(const struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
760 unsigned *value
, char **error
)
762 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
764 EXPORT_SYMBOL(dm_read_arg
);
766 int dm_read_arg_group(const struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
767 unsigned *value
, char **error
)
769 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
771 EXPORT_SYMBOL(dm_read_arg_group
);
773 const char *dm_shift_arg(struct dm_arg_set
*as
)
786 EXPORT_SYMBOL(dm_shift_arg
);
788 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
790 BUG_ON(as
->argc
< num_args
);
791 as
->argc
-= num_args
;
792 as
->argv
+= num_args
;
794 EXPORT_SYMBOL(dm_consume_args
);
796 static bool __table_type_bio_based(enum dm_queue_mode table_type
)
798 return (table_type
== DM_TYPE_BIO_BASED
||
799 table_type
== DM_TYPE_DAX_BIO_BASED
);
802 static bool __table_type_request_based(enum dm_queue_mode table_type
)
804 return table_type
== DM_TYPE_REQUEST_BASED
;
807 void dm_table_set_type(struct dm_table
*t
, enum dm_queue_mode type
)
811 EXPORT_SYMBOL_GPL(dm_table_set_type
);
813 /* validate the dax capability of the target device span */
814 int device_supports_dax(struct dm_target
*ti
, struct dm_dev
*dev
,
815 sector_t start
, sector_t len
, void *data
)
817 int blocksize
= *(int *) data
, id
;
820 id
= dax_read_lock();
821 rc
= dax_supported(dev
->dax_dev
, dev
->bdev
, blocksize
, start
, len
);
827 /* Check devices support synchronous DAX */
828 static int device_dax_synchronous(struct dm_target
*ti
, struct dm_dev
*dev
,
829 sector_t start
, sector_t len
, void *data
)
831 return dev
->dax_dev
&& dax_synchronous(dev
->dax_dev
);
834 bool dm_table_supports_dax(struct dm_table
*t
,
835 iterate_devices_callout_fn iterate_fn
, int *blocksize
)
837 struct dm_target
*ti
;
840 /* Ensure that all targets support DAX. */
841 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
842 ti
= dm_table_get_target(t
, i
);
844 if (!ti
->type
->direct_access
)
847 if (!ti
->type
->iterate_devices
||
848 !ti
->type
->iterate_devices(ti
, iterate_fn
, blocksize
))
855 static int device_is_rq_stackable(struct dm_target
*ti
, struct dm_dev
*dev
,
856 sector_t start
, sector_t len
, void *data
)
858 struct block_device
*bdev
= dev
->bdev
;
859 struct request_queue
*q
= bdev_get_queue(bdev
);
861 /* request-based cannot stack on partitions! */
862 if (bdev_is_partition(bdev
))
865 return queue_is_mq(q
);
868 static int dm_table_determine_type(struct dm_table
*t
)
871 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
872 struct dm_target
*tgt
;
873 struct list_head
*devices
= dm_table_get_devices(t
);
874 enum dm_queue_mode live_md_type
= dm_get_md_type(t
->md
);
875 int page_size
= PAGE_SIZE
;
877 if (t
->type
!= DM_TYPE_NONE
) {
878 /* target already set the table's type */
879 if (t
->type
== DM_TYPE_BIO_BASED
) {
880 /* possibly upgrade to a variant of bio-based */
881 goto verify_bio_based
;
883 BUG_ON(t
->type
== DM_TYPE_DAX_BIO_BASED
);
884 goto verify_rq_based
;
887 for (i
= 0; i
< t
->num_targets
; i
++) {
888 tgt
= t
->targets
+ i
;
889 if (dm_target_hybrid(tgt
))
891 else if (dm_target_request_based(tgt
))
896 if (bio_based
&& request_based
) {
897 DMERR("Inconsistent table: different target types"
898 " can't be mixed up");
903 if (hybrid
&& !bio_based
&& !request_based
) {
905 * The targets can work either way.
906 * Determine the type from the live device.
907 * Default to bio-based if device is new.
909 if (__table_type_request_based(live_md_type
))
917 /* We must use this table as bio-based */
918 t
->type
= DM_TYPE_BIO_BASED
;
919 if (dm_table_supports_dax(t
, device_supports_dax
, &page_size
) ||
920 (list_empty(devices
) && live_md_type
== DM_TYPE_DAX_BIO_BASED
)) {
921 t
->type
= DM_TYPE_DAX_BIO_BASED
;
926 BUG_ON(!request_based
); /* No targets in this table */
928 t
->type
= DM_TYPE_REQUEST_BASED
;
932 * Request-based dm supports only tables that have a single target now.
933 * To support multiple targets, request splitting support is needed,
934 * and that needs lots of changes in the block-layer.
935 * (e.g. request completion process for partial completion.)
937 if (t
->num_targets
> 1) {
938 DMERR("request-based DM doesn't support multiple targets");
942 if (list_empty(devices
)) {
944 struct dm_table
*live_table
= dm_get_live_table(t
->md
, &srcu_idx
);
946 /* inherit live table's type */
948 t
->type
= live_table
->type
;
949 dm_put_live_table(t
->md
, srcu_idx
);
953 tgt
= dm_table_get_immutable_target(t
);
955 DMERR("table load rejected: immutable target is required");
957 } else if (tgt
->max_io_len
) {
958 DMERR("table load rejected: immutable target that splits IO is not supported");
962 /* Non-request-stackable devices can't be used for request-based dm */
963 if (!tgt
->type
->iterate_devices
||
964 !tgt
->type
->iterate_devices(tgt
, device_is_rq_stackable
, NULL
)) {
965 DMERR("table load rejected: including non-request-stackable devices");
972 enum dm_queue_mode
dm_table_get_type(struct dm_table
*t
)
977 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
979 return t
->immutable_target_type
;
982 struct dm_target
*dm_table_get_immutable_target(struct dm_table
*t
)
984 /* Immutable target is implicitly a singleton */
985 if (t
->num_targets
> 1 ||
986 !dm_target_is_immutable(t
->targets
[0].type
))
992 struct dm_target
*dm_table_get_wildcard_target(struct dm_table
*t
)
994 struct dm_target
*ti
;
997 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
998 ti
= dm_table_get_target(t
, i
);
999 if (dm_target_is_wildcard(ti
->type
))
1006 bool dm_table_bio_based(struct dm_table
*t
)
1008 return __table_type_bio_based(dm_table_get_type(t
));
1011 bool dm_table_request_based(struct dm_table
*t
)
1013 return __table_type_request_based(dm_table_get_type(t
));
1016 static int dm_table_alloc_md_mempools(struct dm_table
*t
, struct mapped_device
*md
)
1018 enum dm_queue_mode type
= dm_table_get_type(t
);
1019 unsigned per_io_data_size
= 0;
1020 unsigned min_pool_size
= 0;
1021 struct dm_target
*ti
;
1024 if (unlikely(type
== DM_TYPE_NONE
)) {
1025 DMWARN("no table type is set, can't allocate mempools");
1029 if (__table_type_bio_based(type
))
1030 for (i
= 0; i
< t
->num_targets
; i
++) {
1031 ti
= t
->targets
+ i
;
1032 per_io_data_size
= max(per_io_data_size
, ti
->per_io_data_size
);
1033 min_pool_size
= max(min_pool_size
, ti
->num_flush_bios
);
1036 t
->mempools
= dm_alloc_md_mempools(md
, type
, t
->integrity_supported
,
1037 per_io_data_size
, min_pool_size
);
1044 void dm_table_free_md_mempools(struct dm_table
*t
)
1046 dm_free_md_mempools(t
->mempools
);
1050 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
1055 static int setup_indexes(struct dm_table
*t
)
1058 unsigned int total
= 0;
1061 /* allocate the space for *all* the indexes */
1062 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1063 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
1064 total
+= t
->counts
[i
];
1067 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
1071 /* set up internal nodes, bottom-up */
1072 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1073 t
->index
[i
] = indexes
;
1074 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
1075 setup_btree_index(i
, t
);
1082 * Builds the btree to index the map.
1084 static int dm_table_build_index(struct dm_table
*t
)
1087 unsigned int leaf_nodes
;
1089 /* how many indexes will the btree have ? */
1090 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1091 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1093 /* leaf layer has already been set up */
1094 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1095 t
->index
[t
->depth
- 1] = t
->highs
;
1098 r
= setup_indexes(t
);
1103 static bool integrity_profile_exists(struct gendisk
*disk
)
1105 return !!blk_get_integrity(disk
);
1109 * Get a disk whose integrity profile reflects the table's profile.
1110 * Returns NULL if integrity support was inconsistent or unavailable.
1112 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
)
1114 struct list_head
*devices
= dm_table_get_devices(t
);
1115 struct dm_dev_internal
*dd
= NULL
;
1116 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1119 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1120 struct dm_target
*ti
= dm_table_get_target(t
, i
);
1121 if (!dm_target_passes_integrity(ti
->type
))
1125 list_for_each_entry(dd
, devices
, list
) {
1126 template_disk
= dd
->dm_dev
->bdev
->bd_disk
;
1127 if (!integrity_profile_exists(template_disk
))
1129 else if (prev_disk
&&
1130 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1132 prev_disk
= template_disk
;
1135 return template_disk
;
1139 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1140 dm_device_name(t
->md
),
1141 prev_disk
->disk_name
,
1142 template_disk
->disk_name
);
1147 * Register the mapped device for blk_integrity support if the
1148 * underlying devices have an integrity profile. But all devices may
1149 * not have matching profiles (checking all devices isn't reliable
1150 * during table load because this table may use other DM device(s) which
1151 * must be resumed before they will have an initialized integity
1152 * profile). Consequently, stacked DM devices force a 2 stage integrity
1153 * profile validation: First pass during table load, final pass during
1156 static int dm_table_register_integrity(struct dm_table
*t
)
1158 struct mapped_device
*md
= t
->md
;
1159 struct gendisk
*template_disk
= NULL
;
1161 /* If target handles integrity itself do not register it here. */
1162 if (t
->integrity_added
)
1165 template_disk
= dm_table_get_integrity_disk(t
);
1169 if (!integrity_profile_exists(dm_disk(md
))) {
1170 t
->integrity_supported
= true;
1172 * Register integrity profile during table load; we can do
1173 * this because the final profile must match during resume.
1175 blk_integrity_register(dm_disk(md
),
1176 blk_get_integrity(template_disk
));
1181 * If DM device already has an initialized integrity
1182 * profile the new profile should not conflict.
1184 if (blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1185 DMWARN("%s: conflict with existing integrity profile: "
1186 "%s profile mismatch",
1187 dm_device_name(t
->md
),
1188 template_disk
->disk_name
);
1192 /* Preserve existing integrity profile */
1193 t
->integrity_supported
= true;
1198 * Prepares the table for use by building the indices,
1199 * setting the type, and allocating mempools.
1201 int dm_table_complete(struct dm_table
*t
)
1205 r
= dm_table_determine_type(t
);
1207 DMERR("unable to determine table type");
1211 r
= dm_table_build_index(t
);
1213 DMERR("unable to build btrees");
1217 r
= dm_table_register_integrity(t
);
1219 DMERR("could not register integrity profile.");
1223 r
= dm_table_alloc_md_mempools(t
, t
->md
);
1225 DMERR("unable to allocate mempools");
1230 static DEFINE_MUTEX(_event_lock
);
1231 void dm_table_event_callback(struct dm_table
*t
,
1232 void (*fn
)(void *), void *context
)
1234 mutex_lock(&_event_lock
);
1236 t
->event_context
= context
;
1237 mutex_unlock(&_event_lock
);
1240 void dm_table_event(struct dm_table
*t
)
1242 mutex_lock(&_event_lock
);
1244 t
->event_fn(t
->event_context
);
1245 mutex_unlock(&_event_lock
);
1247 EXPORT_SYMBOL(dm_table_event
);
1249 inline sector_t
dm_table_get_size(struct dm_table
*t
)
1251 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1253 EXPORT_SYMBOL(dm_table_get_size
);
1255 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1257 if (index
>= t
->num_targets
)
1260 return t
->targets
+ index
;
1264 * Search the btree for the correct target.
1266 * Caller should check returned pointer for NULL
1267 * to trap I/O beyond end of device.
1269 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1271 unsigned int l
, n
= 0, k
= 0;
1274 if (unlikely(sector
>= dm_table_get_size(t
)))
1277 for (l
= 0; l
< t
->depth
; l
++) {
1278 n
= get_child(n
, k
);
1279 node
= get_node(t
, l
, n
);
1281 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1282 if (node
[k
] >= sector
)
1286 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1289 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1290 sector_t start
, sector_t len
, void *data
)
1292 unsigned *num_devices
= data
;
1300 * Check whether a table has no data devices attached using each
1301 * target's iterate_devices method.
1302 * Returns false if the result is unknown because a target doesn't
1303 * support iterate_devices.
1305 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1307 struct dm_target
*ti
;
1308 unsigned i
, num_devices
;
1310 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1311 ti
= dm_table_get_target(table
, i
);
1313 if (!ti
->type
->iterate_devices
)
1317 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1325 static int device_is_zoned_model(struct dm_target
*ti
, struct dm_dev
*dev
,
1326 sector_t start
, sector_t len
, void *data
)
1328 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1329 enum blk_zoned_model
*zoned_model
= data
;
1331 return q
&& blk_queue_zoned_model(q
) == *zoned_model
;
1334 static bool dm_table_supports_zoned_model(struct dm_table
*t
,
1335 enum blk_zoned_model zoned_model
)
1337 struct dm_target
*ti
;
1340 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1341 ti
= dm_table_get_target(t
, i
);
1343 if (zoned_model
== BLK_ZONED_HM
&&
1344 !dm_target_supports_zoned_hm(ti
->type
))
1347 if (!ti
->type
->iterate_devices
||
1348 !ti
->type
->iterate_devices(ti
, device_is_zoned_model
, &zoned_model
))
1355 static int device_matches_zone_sectors(struct dm_target
*ti
, struct dm_dev
*dev
,
1356 sector_t start
, sector_t len
, void *data
)
1358 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1359 unsigned int *zone_sectors
= data
;
1361 return q
&& blk_queue_zone_sectors(q
) == *zone_sectors
;
1364 static bool dm_table_matches_zone_sectors(struct dm_table
*t
,
1365 unsigned int zone_sectors
)
1367 struct dm_target
*ti
;
1370 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1371 ti
= dm_table_get_target(t
, i
);
1373 if (!ti
->type
->iterate_devices
||
1374 !ti
->type
->iterate_devices(ti
, device_matches_zone_sectors
, &zone_sectors
))
1381 static int validate_hardware_zoned_model(struct dm_table
*table
,
1382 enum blk_zoned_model zoned_model
,
1383 unsigned int zone_sectors
)
1385 if (zoned_model
== BLK_ZONED_NONE
)
1388 if (!dm_table_supports_zoned_model(table
, zoned_model
)) {
1389 DMERR("%s: zoned model is not consistent across all devices",
1390 dm_device_name(table
->md
));
1394 /* Check zone size validity and compatibility */
1395 if (!zone_sectors
|| !is_power_of_2(zone_sectors
))
1398 if (!dm_table_matches_zone_sectors(table
, zone_sectors
)) {
1399 DMERR("%s: zone sectors is not consistent across all devices",
1400 dm_device_name(table
->md
));
1408 * Establish the new table's queue_limits and validate them.
1410 int dm_calculate_queue_limits(struct dm_table
*table
,
1411 struct queue_limits
*limits
)
1413 struct dm_target
*ti
;
1414 struct queue_limits ti_limits
;
1416 enum blk_zoned_model zoned_model
= BLK_ZONED_NONE
;
1417 unsigned int zone_sectors
= 0;
1419 blk_set_stacking_limits(limits
);
1421 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1422 blk_set_stacking_limits(&ti_limits
);
1424 ti
= dm_table_get_target(table
, i
);
1426 if (!ti
->type
->iterate_devices
)
1427 goto combine_limits
;
1430 * Combine queue limits of all the devices this target uses.
1432 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1435 if (zoned_model
== BLK_ZONED_NONE
&& ti_limits
.zoned
!= BLK_ZONED_NONE
) {
1437 * After stacking all limits, validate all devices
1438 * in table support this zoned model and zone sectors.
1440 zoned_model
= ti_limits
.zoned
;
1441 zone_sectors
= ti_limits
.chunk_sectors
;
1444 /* Set I/O hints portion of queue limits */
1445 if (ti
->type
->io_hints
)
1446 ti
->type
->io_hints(ti
, &ti_limits
);
1449 * Check each device area is consistent with the target's
1450 * overall queue limits.
1452 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1458 * Merge this target's queue limits into the overall limits
1461 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1462 DMWARN("%s: adding target device "
1463 "(start sect %llu len %llu) "
1464 "caused an alignment inconsistency",
1465 dm_device_name(table
->md
),
1466 (unsigned long long) ti
->begin
,
1467 (unsigned long long) ti
->len
);
1471 * Verify that the zoned model and zone sectors, as determined before
1472 * any .io_hints override, are the same across all devices in the table.
1473 * - this is especially relevant if .io_hints is emulating a disk-managed
1474 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1477 if (limits
->zoned
!= BLK_ZONED_NONE
) {
1479 * ...IF the above limits stacking determined a zoned model
1480 * validate that all of the table's devices conform to it.
1482 zoned_model
= limits
->zoned
;
1483 zone_sectors
= limits
->chunk_sectors
;
1485 if (validate_hardware_zoned_model(table
, zoned_model
, zone_sectors
))
1488 return validate_hardware_logical_block_alignment(table
, limits
);
1492 * Verify that all devices have an integrity profile that matches the
1493 * DM device's registered integrity profile. If the profiles don't
1494 * match then unregister the DM device's integrity profile.
1496 static void dm_table_verify_integrity(struct dm_table
*t
)
1498 struct gendisk
*template_disk
= NULL
;
1500 if (t
->integrity_added
)
1503 if (t
->integrity_supported
) {
1505 * Verify that the original integrity profile
1506 * matches all the devices in this table.
1508 template_disk
= dm_table_get_integrity_disk(t
);
1509 if (template_disk
&&
1510 blk_integrity_compare(dm_disk(t
->md
), template_disk
) >= 0)
1514 if (integrity_profile_exists(dm_disk(t
->md
))) {
1515 DMWARN("%s: unable to establish an integrity profile",
1516 dm_device_name(t
->md
));
1517 blk_integrity_unregister(dm_disk(t
->md
));
1521 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1522 sector_t start
, sector_t len
, void *data
)
1524 unsigned long flush
= (unsigned long) data
;
1525 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1527 return q
&& (q
->queue_flags
& flush
);
1530 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned long flush
)
1532 struct dm_target
*ti
;
1536 * Require at least one underlying device to support flushes.
1537 * t->devices includes internal dm devices such as mirror logs
1538 * so we need to use iterate_devices here, which targets
1539 * supporting flushes must provide.
1541 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1542 ti
= dm_table_get_target(t
, i
);
1544 if (!ti
->num_flush_bios
)
1547 if (ti
->flush_supported
)
1550 if (ti
->type
->iterate_devices
&&
1551 ti
->type
->iterate_devices(ti
, device_flush_capable
, (void *) flush
))
1558 static int device_dax_write_cache_enabled(struct dm_target
*ti
,
1559 struct dm_dev
*dev
, sector_t start
,
1560 sector_t len
, void *data
)
1562 struct dax_device
*dax_dev
= dev
->dax_dev
;
1567 if (dax_write_cache_enabled(dax_dev
))
1572 static int dm_table_supports_dax_write_cache(struct dm_table
*t
)
1574 struct dm_target
*ti
;
1577 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1578 ti
= dm_table_get_target(t
, i
);
1580 if (ti
->type
->iterate_devices
&&
1581 ti
->type
->iterate_devices(ti
,
1582 device_dax_write_cache_enabled
, NULL
))
1589 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1590 sector_t start
, sector_t len
, void *data
)
1592 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1594 return q
&& blk_queue_nonrot(q
);
1597 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1598 sector_t start
, sector_t len
, void *data
)
1600 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1602 return q
&& !blk_queue_add_random(q
);
1605 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1606 iterate_devices_callout_fn func
)
1608 struct dm_target
*ti
;
1611 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1612 ti
= dm_table_get_target(t
, i
);
1614 if (!ti
->type
->iterate_devices
||
1615 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1622 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1623 sector_t start
, sector_t len
, void *data
)
1625 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1627 return q
&& !q
->limits
.max_write_same_sectors
;
1630 static bool dm_table_supports_write_same(struct dm_table
*t
)
1632 struct dm_target
*ti
;
1635 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1636 ti
= dm_table_get_target(t
, i
);
1638 if (!ti
->num_write_same_bios
)
1641 if (!ti
->type
->iterate_devices
||
1642 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1649 static int device_not_write_zeroes_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1650 sector_t start
, sector_t len
, void *data
)
1652 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1654 return q
&& !q
->limits
.max_write_zeroes_sectors
;
1657 static bool dm_table_supports_write_zeroes(struct dm_table
*t
)
1659 struct dm_target
*ti
;
1662 while (i
< dm_table_get_num_targets(t
)) {
1663 ti
= dm_table_get_target(t
, i
++);
1665 if (!ti
->num_write_zeroes_bios
)
1668 if (!ti
->type
->iterate_devices
||
1669 ti
->type
->iterate_devices(ti
, device_not_write_zeroes_capable
, NULL
))
1676 static int device_not_nowait_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1677 sector_t start
, sector_t len
, void *data
)
1679 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1681 return q
&& !blk_queue_nowait(q
);
1684 static bool dm_table_supports_nowait(struct dm_table
*t
)
1686 struct dm_target
*ti
;
1689 while (i
< dm_table_get_num_targets(t
)) {
1690 ti
= dm_table_get_target(t
, i
++);
1692 if (!dm_target_supports_nowait(ti
->type
))
1695 if (!ti
->type
->iterate_devices
||
1696 ti
->type
->iterate_devices(ti
, device_not_nowait_capable
, NULL
))
1703 static int device_not_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1704 sector_t start
, sector_t len
, void *data
)
1706 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1708 return q
&& !blk_queue_discard(q
);
1711 static bool dm_table_supports_discards(struct dm_table
*t
)
1713 struct dm_target
*ti
;
1716 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1717 ti
= dm_table_get_target(t
, i
);
1719 if (!ti
->num_discard_bios
)
1723 * Either the target provides discard support (as implied by setting
1724 * 'discards_supported') or it relies on _all_ data devices having
1727 if (!ti
->discards_supported
&&
1728 (!ti
->type
->iterate_devices
||
1729 ti
->type
->iterate_devices(ti
, device_not_discard_capable
, NULL
)))
1736 static int device_not_secure_erase_capable(struct dm_target
*ti
,
1737 struct dm_dev
*dev
, sector_t start
,
1738 sector_t len
, void *data
)
1740 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1742 return q
&& !blk_queue_secure_erase(q
);
1745 static bool dm_table_supports_secure_erase(struct dm_table
*t
)
1747 struct dm_target
*ti
;
1750 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1751 ti
= dm_table_get_target(t
, i
);
1753 if (!ti
->num_secure_erase_bios
)
1756 if (!ti
->type
->iterate_devices
||
1757 ti
->type
->iterate_devices(ti
, device_not_secure_erase_capable
, NULL
))
1764 static int device_requires_stable_pages(struct dm_target
*ti
,
1765 struct dm_dev
*dev
, sector_t start
,
1766 sector_t len
, void *data
)
1768 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1770 return q
&& blk_queue_stable_writes(q
);
1774 * If any underlying device requires stable pages, a table must require
1775 * them as well. Only targets that support iterate_devices are considered:
1776 * don't want error, zero, etc to require stable pages.
1778 static bool dm_table_requires_stable_pages(struct dm_table
*t
)
1780 struct dm_target
*ti
;
1783 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1784 ti
= dm_table_get_target(t
, i
);
1786 if (ti
->type
->iterate_devices
&&
1787 ti
->type
->iterate_devices(ti
, device_requires_stable_pages
, NULL
))
1794 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1795 struct queue_limits
*limits
)
1797 bool wc
= false, fua
= false;
1798 int page_size
= PAGE_SIZE
;
1801 * Copy table's limits to the DM device's request_queue
1803 q
->limits
= *limits
;
1805 if (dm_table_supports_nowait(t
))
1806 blk_queue_flag_set(QUEUE_FLAG_NOWAIT
, q
);
1808 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT
, q
);
1810 if (!dm_table_supports_discards(t
)) {
1811 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
1812 /* Must also clear discard limits... */
1813 q
->limits
.max_discard_sectors
= 0;
1814 q
->limits
.max_hw_discard_sectors
= 0;
1815 q
->limits
.discard_granularity
= 0;
1816 q
->limits
.discard_alignment
= 0;
1817 q
->limits
.discard_misaligned
= 0;
1819 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
1821 if (dm_table_supports_secure_erase(t
))
1822 blk_queue_flag_set(QUEUE_FLAG_SECERASE
, q
);
1824 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_WC
))) {
1826 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_FUA
)))
1829 blk_queue_write_cache(q
, wc
, fua
);
1831 if (dm_table_supports_dax(t
, device_supports_dax
, &page_size
)) {
1832 blk_queue_flag_set(QUEUE_FLAG_DAX
, q
);
1833 if (dm_table_supports_dax(t
, device_dax_synchronous
, NULL
))
1834 set_dax_synchronous(t
->md
->dax_dev
);
1837 blk_queue_flag_clear(QUEUE_FLAG_DAX
, q
);
1839 if (dm_table_supports_dax_write_cache(t
))
1840 dax_write_cache(t
->md
->dax_dev
, true);
1842 /* Ensure that all underlying devices are non-rotational. */
1843 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1844 blk_queue_flag_set(QUEUE_FLAG_NONROT
, q
);
1846 blk_queue_flag_clear(QUEUE_FLAG_NONROT
, q
);
1848 if (!dm_table_supports_write_same(t
))
1849 q
->limits
.max_write_same_sectors
= 0;
1850 if (!dm_table_supports_write_zeroes(t
))
1851 q
->limits
.max_write_zeroes_sectors
= 0;
1853 dm_table_verify_integrity(t
);
1856 * Some devices don't use blk_integrity but still want stable pages
1857 * because they do their own checksumming.
1859 if (dm_table_requires_stable_pages(t
))
1860 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES
, q
);
1862 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES
, q
);
1865 * Determine whether or not this queue's I/O timings contribute
1866 * to the entropy pool, Only request-based targets use this.
1867 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1870 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1871 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, q
);
1874 * For a zoned target, the number of zones should be updated for the
1875 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1876 * target, this is all that is needed.
1878 #ifdef CONFIG_BLK_DEV_ZONED
1879 if (blk_queue_is_zoned(q
)) {
1880 WARN_ON_ONCE(queue_is_mq(q
));
1881 q
->nr_zones
= blkdev_nr_zones(t
->md
->disk
);
1885 blk_queue_update_readahead(q
);
1888 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1890 return t
->num_targets
;
1893 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1898 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1902 EXPORT_SYMBOL(dm_table_get_mode
);
1910 static void suspend_targets(struct dm_table
*t
, enum suspend_mode mode
)
1912 int i
= t
->num_targets
;
1913 struct dm_target
*ti
= t
->targets
;
1915 lockdep_assert_held(&t
->md
->suspend_lock
);
1920 if (ti
->type
->presuspend
)
1921 ti
->type
->presuspend(ti
);
1923 case PRESUSPEND_UNDO
:
1924 if (ti
->type
->presuspend_undo
)
1925 ti
->type
->presuspend_undo(ti
);
1928 if (ti
->type
->postsuspend
)
1929 ti
->type
->postsuspend(ti
);
1936 void dm_table_presuspend_targets(struct dm_table
*t
)
1941 suspend_targets(t
, PRESUSPEND
);
1944 void dm_table_presuspend_undo_targets(struct dm_table
*t
)
1949 suspend_targets(t
, PRESUSPEND_UNDO
);
1952 void dm_table_postsuspend_targets(struct dm_table
*t
)
1957 suspend_targets(t
, POSTSUSPEND
);
1960 int dm_table_resume_targets(struct dm_table
*t
)
1964 lockdep_assert_held(&t
->md
->suspend_lock
);
1966 for (i
= 0; i
< t
->num_targets
; i
++) {
1967 struct dm_target
*ti
= t
->targets
+ i
;
1969 if (!ti
->type
->preresume
)
1972 r
= ti
->type
->preresume(ti
);
1974 DMERR("%s: %s: preresume failed, error = %d",
1975 dm_device_name(t
->md
), ti
->type
->name
, r
);
1980 for (i
= 0; i
< t
->num_targets
; i
++) {
1981 struct dm_target
*ti
= t
->targets
+ i
;
1983 if (ti
->type
->resume
)
1984 ti
->type
->resume(ti
);
1990 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
1994 EXPORT_SYMBOL(dm_table_get_md
);
1996 const char *dm_table_device_name(struct dm_table
*t
)
1998 return dm_device_name(t
->md
);
2000 EXPORT_SYMBOL_GPL(dm_table_device_name
);
2002 void dm_table_run_md_queue_async(struct dm_table
*t
)
2004 if (!dm_table_request_based(t
))
2008 blk_mq_run_hw_queues(t
->md
->queue
, true);
2010 EXPORT_SYMBOL(dm_table_run_md_queue_async
);