2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE
,
208 PM_READ_ONLY
, /* metadata may not be changed */
210 PM_FAIL
, /* all I/O fails */
213 struct pool_features
{
216 bool zero_new_blocks
:1;
217 bool discard_enabled
:1;
218 bool discard_passdown
:1;
219 bool error_if_no_space
:1;
223 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
224 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
225 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list
;
231 struct dm_target
*ti
; /* Only set if a pool target is bound */
233 struct mapped_device
*pool_md
;
234 struct block_device
*data_dev
;
235 struct block_device
*md_dev
;
236 struct dm_pool_metadata
*pmd
;
238 dm_block_t low_water_blocks
;
239 uint32_t sectors_per_block
;
240 int sectors_per_block_shift
;
242 struct pool_features pf
;
243 bool low_water_triggered
:1; /* A dm event has been sent */
245 bool out_of_data_space
:1;
247 struct dm_bio_prison
*prison
;
248 struct dm_kcopyd_client
*copier
;
250 struct work_struct worker
;
251 struct workqueue_struct
*wq
;
252 struct throttle throttle
;
253 struct delayed_work waker
;
254 struct delayed_work no_space_timeout
;
256 unsigned long last_commit_jiffies
;
260 struct bio_list deferred_flush_bios
;
261 struct bio_list deferred_flush_completions
;
262 struct list_head prepared_mappings
;
263 struct list_head prepared_discards
;
264 struct list_head prepared_discards_pt2
;
265 struct list_head active_thins
;
267 struct dm_deferred_set
*shared_read_ds
;
268 struct dm_deferred_set
*all_io_ds
;
270 struct dm_thin_new_mapping
*next_mapping
;
272 process_bio_fn process_bio
;
273 process_bio_fn process_discard
;
275 process_cell_fn process_cell
;
276 process_cell_fn process_discard_cell
;
278 process_mapping_fn process_prepared_mapping
;
279 process_mapping_fn process_prepared_discard
;
280 process_mapping_fn process_prepared_discard_pt2
;
282 struct dm_bio_prison_cell
**cell_sort_array
;
284 mempool_t mapping_pool
;
286 struct bio flush_bio
;
289 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
291 static enum pool_mode
get_pool_mode(struct pool
*pool
)
293 return pool
->pf
.mode
;
296 static void notify_of_pool_mode_change(struct pool
*pool
)
298 const char *descs
[] = {
305 const char *extra_desc
= NULL
;
306 enum pool_mode mode
= get_pool_mode(pool
);
308 if (mode
== PM_OUT_OF_DATA_SPACE
) {
309 if (!pool
->pf
.error_if_no_space
)
310 extra_desc
= " (queue IO)";
312 extra_desc
= " (error IO)";
315 dm_table_event(pool
->ti
->table
);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool
->pool_md
),
318 descs
[(int)mode
], extra_desc
? : "");
322 * Target context for a pool.
325 struct dm_target
*ti
;
327 struct dm_dev
*data_dev
;
328 struct dm_dev
*metadata_dev
;
330 dm_block_t low_water_blocks
;
331 struct pool_features requested_pf
; /* Features requested during table load */
332 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
336 * Target context for a thin.
339 struct list_head list
;
340 struct dm_dev
*pool_dev
;
341 struct dm_dev
*origin_dev
;
342 sector_t origin_size
;
346 struct dm_thin_device
*td
;
347 struct mapped_device
*thin_md
;
351 struct list_head deferred_cells
;
352 struct bio_list deferred_bio_list
;
353 struct bio_list retry_on_resume_list
;
354 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
361 struct completion can_destroy
;
364 /*----------------------------------------------------------------*/
366 static bool block_size_is_power_of_two(struct pool
*pool
)
368 return pool
->sectors_per_block_shift
>= 0;
371 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
373 return block_size_is_power_of_two(pool
) ?
374 (b
<< pool
->sectors_per_block_shift
) :
375 (b
* pool
->sectors_per_block
);
378 /*----------------------------------------------------------------*/
382 struct blk_plug plug
;
383 struct bio
*parent_bio
;
387 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
392 blk_start_plug(&op
->plug
);
393 op
->parent_bio
= parent
;
397 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
399 struct thin_c
*tc
= op
->tc
;
400 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
401 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
403 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
404 GFP_NOWAIT
, 0, &op
->bio
);
407 static void end_discard(struct discard_op
*op
, int r
)
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
414 bio_chain(op
->bio
, op
->parent_bio
);
415 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
419 blk_finish_plug(&op
->plug
);
422 * Even if r is set, there could be sub discards in flight that we
425 if (r
&& !op
->parent_bio
->bi_status
)
426 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
427 bio_endio(op
->parent_bio
);
430 /*----------------------------------------------------------------*/
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
436 static void wake_worker(struct pool
*pool
)
438 queue_work(pool
->wq
, &pool
->worker
);
441 /*----------------------------------------------------------------*/
443 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
444 struct dm_bio_prison_cell
**cell_result
)
447 struct dm_bio_prison_cell
*cell_prealloc
;
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
453 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
455 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
458 * We reused an old cell; we can get rid of
461 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
466 static void cell_release(struct pool
*pool
,
467 struct dm_bio_prison_cell
*cell
,
468 struct bio_list
*bios
)
470 dm_cell_release(pool
->prison
, cell
, bios
);
471 dm_bio_prison_free_cell(pool
->prison
, cell
);
474 static void cell_visit_release(struct pool
*pool
,
475 void (*fn
)(void *, struct dm_bio_prison_cell
*),
477 struct dm_bio_prison_cell
*cell
)
479 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
480 dm_bio_prison_free_cell(pool
->prison
, cell
);
483 static void cell_release_no_holder(struct pool
*pool
,
484 struct dm_bio_prison_cell
*cell
,
485 struct bio_list
*bios
)
487 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
488 dm_bio_prison_free_cell(pool
->prison
, cell
);
491 static void cell_error_with_code(struct pool
*pool
,
492 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
494 dm_cell_error(pool
->prison
, cell
, error_code
);
495 dm_bio_prison_free_cell(pool
->prison
, cell
);
498 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
500 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
503 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
505 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
508 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
510 cell_error_with_code(pool
, cell
, 0);
513 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
515 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
518 /*----------------------------------------------------------------*/
521 * A global list of pools that uses a struct mapped_device as a key.
523 static struct dm_thin_pool_table
{
525 struct list_head pools
;
526 } dm_thin_pool_table
;
528 static void pool_table_init(void)
530 mutex_init(&dm_thin_pool_table
.mutex
);
531 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
534 static void pool_table_exit(void)
536 mutex_destroy(&dm_thin_pool_table
.mutex
);
539 static void __pool_table_insert(struct pool
*pool
)
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
542 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
545 static void __pool_table_remove(struct pool
*pool
)
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
548 list_del(&pool
->list
);
551 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
553 struct pool
*pool
= NULL
, *tmp
;
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
557 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
558 if (tmp
->pool_md
== md
) {
567 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
569 struct pool
*pool
= NULL
, *tmp
;
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
573 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
574 if (tmp
->md_dev
== md_dev
) {
583 /*----------------------------------------------------------------*/
585 struct dm_thin_endio_hook
{
587 struct dm_deferred_entry
*shared_read_entry
;
588 struct dm_deferred_entry
*all_io_entry
;
589 struct dm_thin_new_mapping
*overwrite_mapping
;
590 struct rb_node rb_node
;
591 struct dm_bio_prison_cell
*cell
;
594 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
596 bio_list_merge(bios
, master
);
597 bio_list_init(master
);
600 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
604 while ((bio
= bio_list_pop(bios
))) {
605 bio
->bi_status
= error
;
610 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
613 struct bio_list bios
;
615 bio_list_init(&bios
);
617 spin_lock_irq(&tc
->lock
);
618 __merge_bio_list(&bios
, master
);
619 spin_unlock_irq(&tc
->lock
);
621 error_bio_list(&bios
, error
);
624 static void requeue_deferred_cells(struct thin_c
*tc
)
626 struct pool
*pool
= tc
->pool
;
627 struct list_head cells
;
628 struct dm_bio_prison_cell
*cell
, *tmp
;
630 INIT_LIST_HEAD(&cells
);
632 spin_lock_irq(&tc
->lock
);
633 list_splice_init(&tc
->deferred_cells
, &cells
);
634 spin_unlock_irq(&tc
->lock
);
636 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
637 cell_requeue(pool
, cell
);
640 static void requeue_io(struct thin_c
*tc
)
642 struct bio_list bios
;
644 bio_list_init(&bios
);
646 spin_lock_irq(&tc
->lock
);
647 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
648 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
649 spin_unlock_irq(&tc
->lock
);
651 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
652 requeue_deferred_cells(tc
);
655 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
660 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
661 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
665 static void error_retry_list(struct pool
*pool
)
667 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
671 * This section of code contains the logic for processing a thin device's IO.
672 * Much of the code depends on pool object resources (lists, workqueues, etc)
673 * but most is exclusively called from the thin target rather than the thin-pool
677 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
679 struct pool
*pool
= tc
->pool
;
680 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
682 if (block_size_is_power_of_two(pool
))
683 block_nr
>>= pool
->sectors_per_block_shift
;
685 (void) sector_div(block_nr
, pool
->sectors_per_block
);
691 * Returns the _complete_ blocks that this bio covers.
693 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
694 dm_block_t
*begin
, dm_block_t
*end
)
696 struct pool
*pool
= tc
->pool
;
697 sector_t b
= bio
->bi_iter
.bi_sector
;
698 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
700 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
702 if (block_size_is_power_of_two(pool
)) {
703 b
>>= pool
->sectors_per_block_shift
;
704 e
>>= pool
->sectors_per_block_shift
;
706 (void) sector_div(b
, pool
->sectors_per_block
);
707 (void) sector_div(e
, pool
->sectors_per_block
);
711 /* Can happen if the bio is within a single block. */
718 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
720 struct pool
*pool
= tc
->pool
;
721 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
723 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
724 if (block_size_is_power_of_two(pool
))
725 bio
->bi_iter
.bi_sector
=
726 (block
<< pool
->sectors_per_block_shift
) |
727 (bi_sector
& (pool
->sectors_per_block
- 1));
729 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
730 sector_div(bi_sector
, pool
->sectors_per_block
);
733 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
735 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
738 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
740 return op_is_flush(bio
->bi_opf
) &&
741 dm_thin_changed_this_transaction(tc
->td
);
744 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
746 struct dm_thin_endio_hook
*h
;
748 if (bio_op(bio
) == REQ_OP_DISCARD
)
751 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
752 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
755 static void issue(struct thin_c
*tc
, struct bio
*bio
)
757 struct pool
*pool
= tc
->pool
;
759 if (!bio_triggers_commit(tc
, bio
)) {
760 submit_bio_noacct(bio
);
765 * Complete bio with an error if earlier I/O caused changes to
766 * the metadata that can't be committed e.g, due to I/O errors
767 * on the metadata device.
769 if (dm_thin_aborted_changes(tc
->td
)) {
775 * Batch together any bios that trigger commits and then issue a
776 * single commit for them in process_deferred_bios().
778 spin_lock_irq(&pool
->lock
);
779 bio_list_add(&pool
->deferred_flush_bios
, bio
);
780 spin_unlock_irq(&pool
->lock
);
783 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
785 remap_to_origin(tc
, bio
);
789 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
792 remap(tc
, bio
, block
);
796 /*----------------------------------------------------------------*/
799 * Bio endio functions.
801 struct dm_thin_new_mapping
{
802 struct list_head list
;
808 * Track quiescing, copying and zeroing preparation actions. When this
809 * counter hits zero the block is prepared and can be inserted into the
812 atomic_t prepare_actions
;
816 dm_block_t virt_begin
, virt_end
;
817 dm_block_t data_block
;
818 struct dm_bio_prison_cell
*cell
;
821 * If the bio covers the whole area of a block then we can avoid
822 * zeroing or copying. Instead this bio is hooked. The bio will
823 * still be in the cell, so care has to be taken to avoid issuing
827 bio_end_io_t
*saved_bi_end_io
;
830 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
832 struct pool
*pool
= m
->tc
->pool
;
834 if (atomic_dec_and_test(&m
->prepare_actions
)) {
835 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
840 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
843 struct pool
*pool
= m
->tc
->pool
;
845 spin_lock_irqsave(&pool
->lock
, flags
);
846 __complete_mapping_preparation(m
);
847 spin_unlock_irqrestore(&pool
->lock
, flags
);
850 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
852 struct dm_thin_new_mapping
*m
= context
;
854 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
855 complete_mapping_preparation(m
);
858 static void overwrite_endio(struct bio
*bio
)
860 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
861 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
863 bio
->bi_end_io
= m
->saved_bi_end_io
;
865 m
->status
= bio
->bi_status
;
866 complete_mapping_preparation(m
);
869 /*----------------------------------------------------------------*/
876 * Prepared mapping jobs.
880 * This sends the bios in the cell, except the original holder, back
881 * to the deferred_bios list.
883 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
885 struct pool
*pool
= tc
->pool
;
889 spin_lock_irqsave(&tc
->lock
, flags
);
890 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
891 has_work
= !bio_list_empty(&tc
->deferred_bio_list
);
892 spin_unlock_irqrestore(&tc
->lock
, flags
);
898 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
902 struct bio_list defer_bios
;
903 struct bio_list issue_bios
;
906 static void __inc_remap_and_issue_cell(void *context
,
907 struct dm_bio_prison_cell
*cell
)
909 struct remap_info
*info
= context
;
912 while ((bio
= bio_list_pop(&cell
->bios
))) {
913 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
914 bio_list_add(&info
->defer_bios
, bio
);
916 inc_all_io_entry(info
->tc
->pool
, bio
);
919 * We can't issue the bios with the bio prison lock
920 * held, so we add them to a list to issue on
921 * return from this function.
923 bio_list_add(&info
->issue_bios
, bio
);
928 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
929 struct dm_bio_prison_cell
*cell
,
933 struct remap_info info
;
936 bio_list_init(&info
.defer_bios
);
937 bio_list_init(&info
.issue_bios
);
940 * We have to be careful to inc any bios we're about to issue
941 * before the cell is released, and avoid a race with new bios
942 * being added to the cell.
944 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
947 while ((bio
= bio_list_pop(&info
.defer_bios
)))
948 thin_defer_bio(tc
, bio
);
950 while ((bio
= bio_list_pop(&info
.issue_bios
)))
951 remap_and_issue(info
.tc
, bio
, block
);
954 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
956 cell_error(m
->tc
->pool
, m
->cell
);
958 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
961 static void complete_overwrite_bio(struct thin_c
*tc
, struct bio
*bio
)
963 struct pool
*pool
= tc
->pool
;
966 * If the bio has the REQ_FUA flag set we must commit the metadata
967 * before signaling its completion.
969 if (!bio_triggers_commit(tc
, bio
)) {
975 * Complete bio with an error if earlier I/O caused changes to the
976 * metadata that can't be committed, e.g, due to I/O errors on the
979 if (dm_thin_aborted_changes(tc
->td
)) {
985 * Batch together any bios that trigger commits and then issue a
986 * single commit for them in process_deferred_bios().
988 spin_lock_irq(&pool
->lock
);
989 bio_list_add(&pool
->deferred_flush_completions
, bio
);
990 spin_unlock_irq(&pool
->lock
);
993 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
995 struct thin_c
*tc
= m
->tc
;
996 struct pool
*pool
= tc
->pool
;
997 struct bio
*bio
= m
->bio
;
1001 cell_error(pool
, m
->cell
);
1006 * Commit the prepared block into the mapping btree.
1007 * Any I/O for this block arriving after this point will get
1008 * remapped to it directly.
1010 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
1012 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
1013 cell_error(pool
, m
->cell
);
1018 * Release any bios held while the block was being provisioned.
1019 * If we are processing a write bio that completely covers the block,
1020 * we already processed it so can ignore it now when processing
1021 * the bios in the cell.
1024 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1025 complete_overwrite_bio(tc
, bio
);
1027 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
1028 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
1029 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1034 mempool_free(m
, &pool
->mapping_pool
);
1037 /*----------------------------------------------------------------*/
1039 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
1041 struct thin_c
*tc
= m
->tc
;
1043 cell_defer_no_holder(tc
, m
->cell
);
1044 mempool_free(m
, &tc
->pool
->mapping_pool
);
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
1049 bio_io_error(m
->bio
);
1050 free_discard_mapping(m
);
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
1056 free_discard_mapping(m
);
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
1062 struct thin_c
*tc
= m
->tc
;
1064 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1066 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1067 bio_io_error(m
->bio
);
1071 cell_defer_no_holder(tc
, m
->cell
);
1072 mempool_free(m
, &tc
->pool
->mapping_pool
);
1075 /*----------------------------------------------------------------*/
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1078 struct bio
*discard_parent
)
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1086 struct thin_c
*tc
= m
->tc
;
1087 struct pool
*pool
= tc
->pool
;
1088 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1089 struct discard_op op
;
1091 begin_discard(&op
, tc
, discard_parent
);
1093 /* find start of unmapped run */
1094 for (; b
< end
; b
++) {
1095 r
= dm_pool_block_is_shared(pool
->pmd
, b
, &shared
);
1106 /* find end of run */
1107 for (e
= b
+ 1; e
!= end
; e
++) {
1108 r
= dm_pool_block_is_shared(pool
->pmd
, e
, &shared
);
1116 r
= issue_discard(&op
, b
, e
);
1123 end_discard(&op
, r
);
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1128 unsigned long flags
;
1129 struct pool
*pool
= m
->tc
->pool
;
1131 spin_lock_irqsave(&pool
->lock
, flags
);
1132 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1133 spin_unlock_irqrestore(&pool
->lock
, flags
);
1137 static void passdown_endio(struct bio
*bio
)
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1143 queue_passdown_pt2(bio
->bi_private
);
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1150 struct thin_c
*tc
= m
->tc
;
1151 struct pool
*pool
= tc
->pool
;
1152 struct bio
*discard_parent
;
1153 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1160 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1162 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1163 bio_io_error(m
->bio
);
1164 cell_defer_no_holder(tc
, m
->cell
);
1165 mempool_free(m
, &pool
->mapping_pool
);
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1173 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1175 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1176 bio_io_error(m
->bio
);
1177 cell_defer_no_holder(tc
, m
->cell
);
1178 mempool_free(m
, &pool
->mapping_pool
);
1182 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1183 if (!discard_parent
) {
1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 dm_device_name(tc
->pool
->pool_md
));
1186 queue_passdown_pt2(m
);
1189 discard_parent
->bi_end_io
= passdown_endio
;
1190 discard_parent
->bi_private
= m
;
1192 if (m
->maybe_shared
)
1193 passdown_double_checking_shared_status(m
, discard_parent
);
1195 struct discard_op op
;
1197 begin_discard(&op
, tc
, discard_parent
);
1198 r
= issue_discard(&op
, m
->data_block
, data_end
);
1199 end_discard(&op
, r
);
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1207 struct thin_c
*tc
= m
->tc
;
1208 struct pool
*pool
= tc
->pool
;
1211 * The passdown has completed, so now we can decrement all those
1214 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1215 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1217 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1218 bio_io_error(m
->bio
);
1222 cell_defer_no_holder(tc
, m
->cell
);
1223 mempool_free(m
, &pool
->mapping_pool
);
1226 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1227 process_mapping_fn
*fn
)
1229 struct list_head maps
;
1230 struct dm_thin_new_mapping
*m
, *tmp
;
1232 INIT_LIST_HEAD(&maps
);
1233 spin_lock_irq(&pool
->lock
);
1234 list_splice_init(head
, &maps
);
1235 spin_unlock_irq(&pool
->lock
);
1237 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1242 * Deferred bio jobs.
1244 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1246 return bio
->bi_iter
.bi_size
==
1247 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1250 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1252 return (bio_data_dir(bio
) == WRITE
) &&
1253 io_overlaps_block(pool
, bio
);
1256 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1259 *save
= bio
->bi_end_io
;
1260 bio
->bi_end_io
= fn
;
1263 static int ensure_next_mapping(struct pool
*pool
)
1265 if (pool
->next_mapping
)
1268 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1270 return pool
->next_mapping
? 0 : -ENOMEM
;
1273 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1275 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1277 BUG_ON(!pool
->next_mapping
);
1279 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1280 INIT_LIST_HEAD(&m
->list
);
1283 pool
->next_mapping
= NULL
;
1288 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1289 sector_t begin
, sector_t end
)
1291 struct dm_io_region to
;
1293 to
.bdev
= tc
->pool_dev
->bdev
;
1295 to
.count
= end
- begin
;
1297 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1300 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1301 dm_block_t data_begin
,
1302 struct dm_thin_new_mapping
*m
)
1304 struct pool
*pool
= tc
->pool
;
1305 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1307 h
->overwrite_mapping
= m
;
1309 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1310 inc_all_io_entry(pool
, bio
);
1311 remap_and_issue(tc
, bio
, data_begin
);
1315 * A partial copy also needs to zero the uncopied region.
1317 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1318 struct dm_dev
*origin
, dm_block_t data_origin
,
1319 dm_block_t data_dest
,
1320 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1323 struct pool
*pool
= tc
->pool
;
1324 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1327 m
->virt_begin
= virt_block
;
1328 m
->virt_end
= virt_block
+ 1u;
1329 m
->data_block
= data_dest
;
1333 * quiesce action + copy action + an extra reference held for the
1334 * duration of this function (we may need to inc later for a
1337 atomic_set(&m
->prepare_actions
, 3);
1339 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1340 complete_mapping_preparation(m
); /* already quiesced */
1343 * IO to pool_dev remaps to the pool target's data_dev.
1345 * If the whole block of data is being overwritten, we can issue the
1346 * bio immediately. Otherwise we use kcopyd to clone the data first.
1348 if (io_overwrites_block(pool
, bio
))
1349 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1351 struct dm_io_region from
, to
;
1353 from
.bdev
= origin
->bdev
;
1354 from
.sector
= data_origin
* pool
->sectors_per_block
;
1357 to
.bdev
= tc
->pool_dev
->bdev
;
1358 to
.sector
= data_dest
* pool
->sectors_per_block
;
1361 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1362 0, copy_complete
, m
);
1365 * Do we need to zero a tail region?
1367 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1368 atomic_inc(&m
->prepare_actions
);
1370 data_dest
* pool
->sectors_per_block
+ len
,
1371 (data_dest
+ 1) * pool
->sectors_per_block
);
1375 complete_mapping_preparation(m
); /* drop our ref */
1378 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1379 dm_block_t data_origin
, dm_block_t data_dest
,
1380 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1382 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1383 data_origin
, data_dest
, cell
, bio
,
1384 tc
->pool
->sectors_per_block
);
1387 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1388 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1391 struct pool
*pool
= tc
->pool
;
1392 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1394 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1396 m
->virt_begin
= virt_block
;
1397 m
->virt_end
= virt_block
+ 1u;
1398 m
->data_block
= data_block
;
1402 * If the whole block of data is being overwritten or we are not
1403 * zeroing pre-existing data, we can issue the bio immediately.
1404 * Otherwise we use kcopyd to zero the data first.
1406 if (pool
->pf
.zero_new_blocks
) {
1407 if (io_overwrites_block(pool
, bio
))
1408 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1410 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1411 (data_block
+ 1) * pool
->sectors_per_block
);
1413 process_prepared_mapping(m
);
1416 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1417 dm_block_t data_dest
,
1418 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1420 struct pool
*pool
= tc
->pool
;
1421 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1422 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1424 if (virt_block_end
<= tc
->origin_size
)
1425 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1426 virt_block
, data_dest
, cell
, bio
,
1427 pool
->sectors_per_block
);
1429 else if (virt_block_begin
< tc
->origin_size
)
1430 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1431 virt_block
, data_dest
, cell
, bio
,
1432 tc
->origin_size
- virt_block_begin
);
1435 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1438 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1440 static void requeue_bios(struct pool
*pool
);
1442 static bool is_read_only_pool_mode(enum pool_mode mode
)
1444 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1447 static bool is_read_only(struct pool
*pool
)
1449 return is_read_only_pool_mode(get_pool_mode(pool
));
1452 static void check_for_metadata_space(struct pool
*pool
)
1455 const char *ooms_reason
= NULL
;
1458 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1460 ooms_reason
= "Could not get free metadata blocks";
1462 ooms_reason
= "No free metadata blocks";
1464 if (ooms_reason
&& !is_read_only(pool
)) {
1465 DMERR("%s", ooms_reason
);
1466 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1470 static void check_for_data_space(struct pool
*pool
)
1475 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1478 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1483 set_pool_mode(pool
, PM_WRITE
);
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1492 static int commit(struct pool
*pool
)
1496 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1499 r
= dm_pool_commit_metadata(pool
->pmd
);
1501 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1503 check_for_metadata_space(pool
);
1504 check_for_data_space(pool
);
1510 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1512 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1513 DMWARN("%s: reached low water mark for data device: sending event.",
1514 dm_device_name(pool
->pool_md
));
1515 spin_lock_irq(&pool
->lock
);
1516 pool
->low_water_triggered
= true;
1517 spin_unlock_irq(&pool
->lock
);
1518 dm_table_event(pool
->ti
->table
);
1522 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1525 dm_block_t free_blocks
;
1526 struct pool
*pool
= tc
->pool
;
1528 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1531 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1533 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1537 check_low_water_mark(pool
, free_blocks
);
1541 * Try to commit to see if that will free up some
1548 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1550 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1555 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1560 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1563 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1565 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1569 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1571 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1576 /* Let's commit before we use up the metadata reserve. */
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1589 static void retry_on_resume(struct bio
*bio
)
1591 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1592 struct thin_c
*tc
= h
->tc
;
1594 spin_lock_irq(&tc
->lock
);
1595 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1596 spin_unlock_irq(&tc
->lock
);
1599 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1601 enum pool_mode m
= get_pool_mode(pool
);
1605 /* Shouldn't get here */
1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607 return BLK_STS_IOERR
;
1609 case PM_OUT_OF_DATA_SPACE
:
1610 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1612 case PM_OUT_OF_METADATA_SPACE
:
1615 return BLK_STS_IOERR
;
1617 /* Shouldn't get here */
1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619 return BLK_STS_IOERR
;
1623 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1625 blk_status_t error
= should_error_unserviceable_bio(pool
);
1628 bio
->bi_status
= error
;
1631 retry_on_resume(bio
);
1634 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1637 struct bio_list bios
;
1640 error
= should_error_unserviceable_bio(pool
);
1642 cell_error_with_code(pool
, cell
, error
);
1646 bio_list_init(&bios
);
1647 cell_release(pool
, cell
, &bios
);
1649 while ((bio
= bio_list_pop(&bios
)))
1650 retry_on_resume(bio
);
1653 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1654 struct dm_bio_prison_cell
*virt_cell
)
1656 struct pool
*pool
= tc
->pool
;
1657 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1660 * We don't need to lock the data blocks, since there's no
1661 * passdown. We only lock data blocks for allocation and breaking sharing.
1664 m
->virt_begin
= virt_cell
->key
.block_begin
;
1665 m
->virt_end
= virt_cell
->key
.block_end
;
1666 m
->cell
= virt_cell
;
1667 m
->bio
= virt_cell
->holder
;
1669 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1670 pool
->process_prepared_discard(m
);
1673 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1676 struct pool
*pool
= tc
->pool
;
1680 struct dm_cell_key data_key
;
1681 struct dm_bio_prison_cell
*data_cell
;
1682 struct dm_thin_new_mapping
*m
;
1683 dm_block_t virt_begin
, virt_end
, data_begin
;
1685 while (begin
!= end
) {
1686 r
= ensure_next_mapping(pool
);
1688 /* we did our best */
1691 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1692 &data_begin
, &maybe_shared
);
1695 * Silently fail, letting any mappings we've
1700 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1701 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1702 /* contention, we'll give up with this range */
1708 * IO may still be going to the destination block. We must
1709 * quiesce before we can do the removal.
1711 m
= get_next_mapping(pool
);
1713 m
->maybe_shared
= maybe_shared
;
1714 m
->virt_begin
= virt_begin
;
1715 m
->virt_end
= virt_end
;
1716 m
->data_block
= data_begin
;
1717 m
->cell
= data_cell
;
1721 * The parent bio must not complete before sub discard bios are
1722 * chained to it (see end_discard's bio_chain)!
1724 * This per-mapping bi_remaining increment is paired with
1725 * the implicit decrement that occurs via bio_endio() in
1728 bio_inc_remaining(bio
);
1729 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1730 pool
->process_prepared_discard(m
);
1736 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1738 struct bio
*bio
= virt_cell
->holder
;
1739 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1742 * The virt_cell will only get freed once the origin bio completes.
1743 * This means it will remain locked while all the individual
1744 * passdown bios are in flight.
1746 h
->cell
= virt_cell
;
1747 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1750 * We complete the bio now, knowing that the bi_remaining field
1751 * will prevent completion until the sub range discards have
1757 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1759 dm_block_t begin
, end
;
1760 struct dm_cell_key virt_key
;
1761 struct dm_bio_prison_cell
*virt_cell
;
1763 get_bio_block_range(tc
, bio
, &begin
, &end
);
1766 * The discard covers less than a block.
1772 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1773 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1775 * Potential starvation issue: We're relying on the
1776 * fs/application being well behaved, and not trying to
1777 * send IO to a region at the same time as discarding it.
1778 * If they do this persistently then it's possible this
1779 * cell will never be granted.
1783 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1786 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1787 struct dm_cell_key
*key
,
1788 struct dm_thin_lookup_result
*lookup_result
,
1789 struct dm_bio_prison_cell
*cell
)
1792 dm_block_t data_block
;
1793 struct pool
*pool
= tc
->pool
;
1795 r
= alloc_data_block(tc
, &data_block
);
1798 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1799 data_block
, cell
, bio
);
1803 retry_bios_on_resume(pool
, cell
);
1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1809 cell_error(pool
, cell
);
1814 static void __remap_and_issue_shared_cell(void *context
,
1815 struct dm_bio_prison_cell
*cell
)
1817 struct remap_info
*info
= context
;
1820 while ((bio
= bio_list_pop(&cell
->bios
))) {
1821 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1822 bio_op(bio
) == REQ_OP_DISCARD
)
1823 bio_list_add(&info
->defer_bios
, bio
);
1825 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1827 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1828 inc_all_io_entry(info
->tc
->pool
, bio
);
1829 bio_list_add(&info
->issue_bios
, bio
);
1834 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1835 struct dm_bio_prison_cell
*cell
,
1839 struct remap_info info
;
1842 bio_list_init(&info
.defer_bios
);
1843 bio_list_init(&info
.issue_bios
);
1845 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1848 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1849 thin_defer_bio(tc
, bio
);
1851 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1852 remap_and_issue(tc
, bio
, block
);
1855 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1857 struct dm_thin_lookup_result
*lookup_result
,
1858 struct dm_bio_prison_cell
*virt_cell
)
1860 struct dm_bio_prison_cell
*data_cell
;
1861 struct pool
*pool
= tc
->pool
;
1862 struct dm_cell_key key
;
1865 * If cell is already occupied, then sharing is already in the process
1866 * of being broken so we have nothing further to do here.
1868 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1869 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1870 cell_defer_no_holder(tc
, virt_cell
);
1874 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1875 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1876 cell_defer_no_holder(tc
, virt_cell
);
1878 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1880 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1881 inc_all_io_entry(pool
, bio
);
1882 remap_and_issue(tc
, bio
, lookup_result
->block
);
1884 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1885 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1889 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1890 struct dm_bio_prison_cell
*cell
)
1893 dm_block_t data_block
;
1894 struct pool
*pool
= tc
->pool
;
1897 * Remap empty bios (flushes) immediately, without provisioning.
1899 if (!bio
->bi_iter
.bi_size
) {
1900 inc_all_io_entry(pool
, bio
);
1901 cell_defer_no_holder(tc
, cell
);
1903 remap_and_issue(tc
, bio
, 0);
1908 * Fill read bios with zeroes and complete them immediately.
1910 if (bio_data_dir(bio
) == READ
) {
1912 cell_defer_no_holder(tc
, cell
);
1917 r
= alloc_data_block(tc
, &data_block
);
1921 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1923 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1927 retry_bios_on_resume(pool
, cell
);
1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1933 cell_error(pool
, cell
);
1938 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1941 struct pool
*pool
= tc
->pool
;
1942 struct bio
*bio
= cell
->holder
;
1943 dm_block_t block
= get_bio_block(tc
, bio
);
1944 struct dm_thin_lookup_result lookup_result
;
1946 if (tc
->requeue_mode
) {
1947 cell_requeue(pool
, cell
);
1951 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1954 if (lookup_result
.shared
)
1955 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1957 inc_all_io_entry(pool
, bio
);
1958 remap_and_issue(tc
, bio
, lookup_result
.block
);
1959 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1964 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1965 inc_all_io_entry(pool
, bio
);
1966 cell_defer_no_holder(tc
, cell
);
1968 if (bio_end_sector(bio
) <= tc
->origin_size
)
1969 remap_to_origin_and_issue(tc
, bio
);
1971 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1973 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1974 remap_to_origin_and_issue(tc
, bio
);
1981 provision_block(tc
, bio
, block
, cell
);
1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1987 cell_defer_no_holder(tc
, cell
);
1993 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1995 struct pool
*pool
= tc
->pool
;
1996 dm_block_t block
= get_bio_block(tc
, bio
);
1997 struct dm_bio_prison_cell
*cell
;
1998 struct dm_cell_key key
;
2001 * If cell is already occupied, then the block is already
2002 * being provisioned so we have nothing further to do here.
2004 build_virtual_key(tc
->td
, block
, &key
);
2005 if (bio_detain(pool
, &key
, bio
, &cell
))
2008 process_cell(tc
, cell
);
2011 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
2012 struct dm_bio_prison_cell
*cell
)
2015 int rw
= bio_data_dir(bio
);
2016 dm_block_t block
= get_bio_block(tc
, bio
);
2017 struct dm_thin_lookup_result lookup_result
;
2019 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
2022 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
2023 handle_unserviceable_bio(tc
->pool
, bio
);
2025 cell_defer_no_holder(tc
, cell
);
2027 inc_all_io_entry(tc
->pool
, bio
);
2028 remap_and_issue(tc
, bio
, lookup_result
.block
);
2030 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
2036 cell_defer_no_holder(tc
, cell
);
2038 handle_unserviceable_bio(tc
->pool
, bio
);
2042 if (tc
->origin_dev
) {
2043 inc_all_io_entry(tc
->pool
, bio
);
2044 remap_to_origin_and_issue(tc
, bio
);
2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2056 cell_defer_no_holder(tc
, cell
);
2062 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2064 __process_bio_read_only(tc
, bio
, NULL
);
2067 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2069 __process_bio_read_only(tc
, cell
->holder
, cell
);
2072 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2077 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2082 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2084 cell_success(tc
->pool
, cell
);
2087 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2089 cell_error(tc
->pool
, cell
);
2093 * FIXME: should we also commit due to size of transaction, measured in
2096 static int need_commit_due_to_time(struct pool
*pool
)
2098 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2099 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2102 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2105 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2107 struct rb_node
**rbp
, *parent
;
2108 struct dm_thin_endio_hook
*pbd
;
2109 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2111 rbp
= &tc
->sort_bio_list
.rb_node
;
2115 pbd
= thin_pbd(parent
);
2117 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2118 rbp
= &(*rbp
)->rb_left
;
2120 rbp
= &(*rbp
)->rb_right
;
2123 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2124 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2125 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2128 static void __extract_sorted_bios(struct thin_c
*tc
)
2130 struct rb_node
*node
;
2131 struct dm_thin_endio_hook
*pbd
;
2134 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2135 pbd
= thin_pbd(node
);
2136 bio
= thin_bio(pbd
);
2138 bio_list_add(&tc
->deferred_bio_list
, bio
);
2139 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2142 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2145 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2148 struct bio_list bios
;
2150 bio_list_init(&bios
);
2151 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2152 bio_list_init(&tc
->deferred_bio_list
);
2154 /* Sort deferred_bio_list using rb-tree */
2155 while ((bio
= bio_list_pop(&bios
)))
2156 __thin_bio_rb_add(tc
, bio
);
2159 * Transfer the sorted bios in sort_bio_list back to
2160 * deferred_bio_list to allow lockless submission of
2163 __extract_sorted_bios(tc
);
2166 static void process_thin_deferred_bios(struct thin_c
*tc
)
2168 struct pool
*pool
= tc
->pool
;
2170 struct bio_list bios
;
2171 struct blk_plug plug
;
2174 if (tc
->requeue_mode
) {
2175 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2176 BLK_STS_DM_REQUEUE
);
2180 bio_list_init(&bios
);
2182 spin_lock_irq(&tc
->lock
);
2184 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2185 spin_unlock_irq(&tc
->lock
);
2189 __sort_thin_deferred_bios(tc
);
2191 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2192 bio_list_init(&tc
->deferred_bio_list
);
2194 spin_unlock_irq(&tc
->lock
);
2196 blk_start_plug(&plug
);
2197 while ((bio
= bio_list_pop(&bios
))) {
2199 * If we've got no free new_mapping structs, and processing
2200 * this bio might require one, we pause until there are some
2201 * prepared mappings to process.
2203 if (ensure_next_mapping(pool
)) {
2204 spin_lock_irq(&tc
->lock
);
2205 bio_list_add(&tc
->deferred_bio_list
, bio
);
2206 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2207 spin_unlock_irq(&tc
->lock
);
2211 if (bio_op(bio
) == REQ_OP_DISCARD
)
2212 pool
->process_discard(tc
, bio
);
2214 pool
->process_bio(tc
, bio
);
2216 if ((count
++ & 127) == 0) {
2217 throttle_work_update(&pool
->throttle
);
2218 dm_pool_issue_prefetches(pool
->pmd
);
2221 blk_finish_plug(&plug
);
2224 static int cmp_cells(const void *lhs
, const void *rhs
)
2226 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2227 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2229 BUG_ON(!lhs_cell
->holder
);
2230 BUG_ON(!rhs_cell
->holder
);
2232 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2235 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2241 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2244 struct dm_bio_prison_cell
*cell
, *tmp
;
2246 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2247 if (count
>= CELL_SORT_ARRAY_SIZE
)
2250 pool
->cell_sort_array
[count
++] = cell
;
2251 list_del(&cell
->user_list
);
2254 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2259 static void process_thin_deferred_cells(struct thin_c
*tc
)
2261 struct pool
*pool
= tc
->pool
;
2262 struct list_head cells
;
2263 struct dm_bio_prison_cell
*cell
;
2264 unsigned i
, j
, count
;
2266 INIT_LIST_HEAD(&cells
);
2268 spin_lock_irq(&tc
->lock
);
2269 list_splice_init(&tc
->deferred_cells
, &cells
);
2270 spin_unlock_irq(&tc
->lock
);
2272 if (list_empty(&cells
))
2276 count
= sort_cells(tc
->pool
, &cells
);
2278 for (i
= 0; i
< count
; i
++) {
2279 cell
= pool
->cell_sort_array
[i
];
2280 BUG_ON(!cell
->holder
);
2283 * If we've got no free new_mapping structs, and processing
2284 * this bio might require one, we pause until there are some
2285 * prepared mappings to process.
2287 if (ensure_next_mapping(pool
)) {
2288 for (j
= i
; j
< count
; j
++)
2289 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2291 spin_lock_irq(&tc
->lock
);
2292 list_splice(&cells
, &tc
->deferred_cells
);
2293 spin_unlock_irq(&tc
->lock
);
2297 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2298 pool
->process_discard_cell(tc
, cell
);
2300 pool
->process_cell(tc
, cell
);
2302 } while (!list_empty(&cells
));
2305 static void thin_get(struct thin_c
*tc
);
2306 static void thin_put(struct thin_c
*tc
);
2309 * We can't hold rcu_read_lock() around code that can block. So we
2310 * find a thin with the rcu lock held; bump a refcount; then drop
2313 static struct thin_c
*get_first_thin(struct pool
*pool
)
2315 struct thin_c
*tc
= NULL
;
2318 if (!list_empty(&pool
->active_thins
)) {
2319 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2327 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2329 struct thin_c
*old_tc
= tc
;
2332 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2344 static void process_deferred_bios(struct pool
*pool
)
2347 struct bio_list bios
, bio_completions
;
2350 tc
= get_first_thin(pool
);
2352 process_thin_deferred_cells(tc
);
2353 process_thin_deferred_bios(tc
);
2354 tc
= get_next_thin(pool
, tc
);
2358 * If there are any deferred flush bios, we must commit the metadata
2359 * before issuing them or signaling their completion.
2361 bio_list_init(&bios
);
2362 bio_list_init(&bio_completions
);
2364 spin_lock_irq(&pool
->lock
);
2365 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2366 bio_list_init(&pool
->deferred_flush_bios
);
2368 bio_list_merge(&bio_completions
, &pool
->deferred_flush_completions
);
2369 bio_list_init(&pool
->deferred_flush_completions
);
2370 spin_unlock_irq(&pool
->lock
);
2372 if (bio_list_empty(&bios
) && bio_list_empty(&bio_completions
) &&
2373 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2377 bio_list_merge(&bios
, &bio_completions
);
2379 while ((bio
= bio_list_pop(&bios
)))
2383 pool
->last_commit_jiffies
= jiffies
;
2385 while ((bio
= bio_list_pop(&bio_completions
)))
2388 while ((bio
= bio_list_pop(&bios
))) {
2390 * The data device was flushed as part of metadata commit,
2391 * so complete redundant flushes immediately.
2393 if (bio
->bi_opf
& REQ_PREFLUSH
)
2396 submit_bio_noacct(bio
);
2400 static void do_worker(struct work_struct
*ws
)
2402 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2404 throttle_work_start(&pool
->throttle
);
2405 dm_pool_issue_prefetches(pool
->pmd
);
2406 throttle_work_update(&pool
->throttle
);
2407 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2408 throttle_work_update(&pool
->throttle
);
2409 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2410 throttle_work_update(&pool
->throttle
);
2411 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2412 throttle_work_update(&pool
->throttle
);
2413 process_deferred_bios(pool
);
2414 throttle_work_complete(&pool
->throttle
);
2418 * We want to commit periodically so that not too much
2419 * unwritten data builds up.
2421 static void do_waker(struct work_struct
*ws
)
2423 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2425 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2429 * We're holding onto IO to allow userland time to react. After the
2430 * timeout either the pool will have been resized (and thus back in
2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2433 static void do_no_space_timeout(struct work_struct
*ws
)
2435 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2438 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2439 pool
->pf
.error_if_no_space
= true;
2440 notify_of_pool_mode_change(pool
);
2441 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2445 /*----------------------------------------------------------------*/
2448 struct work_struct worker
;
2449 struct completion complete
;
2452 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2454 return container_of(ws
, struct pool_work
, worker
);
2457 static void pool_work_complete(struct pool_work
*pw
)
2459 complete(&pw
->complete
);
2462 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2463 void (*fn
)(struct work_struct
*))
2465 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2466 init_completion(&pw
->complete
);
2467 queue_work(pool
->wq
, &pw
->worker
);
2468 wait_for_completion(&pw
->complete
);
2471 /*----------------------------------------------------------------*/
2473 struct noflush_work
{
2474 struct pool_work pw
;
2478 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2480 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2483 static void do_noflush_start(struct work_struct
*ws
)
2485 struct noflush_work
*w
= to_noflush(ws
);
2486 w
->tc
->requeue_mode
= true;
2488 pool_work_complete(&w
->pw
);
2491 static void do_noflush_stop(struct work_struct
*ws
)
2493 struct noflush_work
*w
= to_noflush(ws
);
2494 w
->tc
->requeue_mode
= false;
2495 pool_work_complete(&w
->pw
);
2498 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2500 struct noflush_work w
;
2503 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2506 /*----------------------------------------------------------------*/
2508 static bool passdown_enabled(struct pool_c
*pt
)
2510 return pt
->adjusted_pf
.discard_passdown
;
2513 static void set_discard_callbacks(struct pool
*pool
)
2515 struct pool_c
*pt
= pool
->ti
->private;
2517 if (passdown_enabled(pt
)) {
2518 pool
->process_discard_cell
= process_discard_cell_passdown
;
2519 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2520 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2522 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2523 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2527 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2529 struct pool_c
*pt
= pool
->ti
->private;
2530 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2531 enum pool_mode old_mode
= get_pool_mode(pool
);
2532 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2535 * Never allow the pool to transition to PM_WRITE mode if user
2536 * intervention is required to verify metadata and data consistency.
2538 if (new_mode
== PM_WRITE
&& needs_check
) {
2539 DMERR("%s: unable to switch pool to write mode until repaired.",
2540 dm_device_name(pool
->pool_md
));
2541 if (old_mode
!= new_mode
)
2542 new_mode
= old_mode
;
2544 new_mode
= PM_READ_ONLY
;
2547 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2548 * not going to recover without a thin_repair. So we never let the
2549 * pool move out of the old mode.
2551 if (old_mode
== PM_FAIL
)
2552 new_mode
= old_mode
;
2556 dm_pool_metadata_read_only(pool
->pmd
);
2557 pool
->process_bio
= process_bio_fail
;
2558 pool
->process_discard
= process_bio_fail
;
2559 pool
->process_cell
= process_cell_fail
;
2560 pool
->process_discard_cell
= process_cell_fail
;
2561 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2562 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2564 error_retry_list(pool
);
2567 case PM_OUT_OF_METADATA_SPACE
:
2569 dm_pool_metadata_read_only(pool
->pmd
);
2570 pool
->process_bio
= process_bio_read_only
;
2571 pool
->process_discard
= process_bio_success
;
2572 pool
->process_cell
= process_cell_read_only
;
2573 pool
->process_discard_cell
= process_cell_success
;
2574 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2575 pool
->process_prepared_discard
= process_prepared_discard_success
;
2577 error_retry_list(pool
);
2580 case PM_OUT_OF_DATA_SPACE
:
2582 * Ideally we'd never hit this state; the low water mark
2583 * would trigger userland to extend the pool before we
2584 * completely run out of data space. However, many small
2585 * IOs to unprovisioned space can consume data space at an
2586 * alarming rate. Adjust your low water mark if you're
2587 * frequently seeing this mode.
2589 pool
->out_of_data_space
= true;
2590 pool
->process_bio
= process_bio_read_only
;
2591 pool
->process_discard
= process_discard_bio
;
2592 pool
->process_cell
= process_cell_read_only
;
2593 pool
->process_prepared_mapping
= process_prepared_mapping
;
2594 set_discard_callbacks(pool
);
2596 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2597 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2601 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2602 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2603 pool
->out_of_data_space
= false;
2604 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2605 dm_pool_metadata_read_write(pool
->pmd
);
2606 pool
->process_bio
= process_bio
;
2607 pool
->process_discard
= process_discard_bio
;
2608 pool
->process_cell
= process_cell
;
2609 pool
->process_prepared_mapping
= process_prepared_mapping
;
2610 set_discard_callbacks(pool
);
2614 pool
->pf
.mode
= new_mode
;
2616 * The pool mode may have changed, sync it so bind_control_target()
2617 * doesn't cause an unexpected mode transition on resume.
2619 pt
->adjusted_pf
.mode
= new_mode
;
2621 if (old_mode
!= new_mode
)
2622 notify_of_pool_mode_change(pool
);
2625 static void abort_transaction(struct pool
*pool
)
2627 const char *dev_name
= dm_device_name(pool
->pool_md
);
2629 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2630 if (dm_pool_abort_metadata(pool
->pmd
)) {
2631 DMERR("%s: failed to abort metadata transaction", dev_name
);
2632 set_pool_mode(pool
, PM_FAIL
);
2635 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2636 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2637 set_pool_mode(pool
, PM_FAIL
);
2641 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2643 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2644 dm_device_name(pool
->pool_md
), op
, r
);
2646 abort_transaction(pool
);
2647 set_pool_mode(pool
, PM_READ_ONLY
);
2650 /*----------------------------------------------------------------*/
2653 * Mapping functions.
2657 * Called only while mapping a thin bio to hand it over to the workqueue.
2659 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2661 struct pool
*pool
= tc
->pool
;
2663 spin_lock_irq(&tc
->lock
);
2664 bio_list_add(&tc
->deferred_bio_list
, bio
);
2665 spin_unlock_irq(&tc
->lock
);
2670 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2672 struct pool
*pool
= tc
->pool
;
2674 throttle_lock(&pool
->throttle
);
2675 thin_defer_bio(tc
, bio
);
2676 throttle_unlock(&pool
->throttle
);
2679 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2681 struct pool
*pool
= tc
->pool
;
2683 throttle_lock(&pool
->throttle
);
2684 spin_lock_irq(&tc
->lock
);
2685 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2686 spin_unlock_irq(&tc
->lock
);
2687 throttle_unlock(&pool
->throttle
);
2692 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2694 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2697 h
->shared_read_entry
= NULL
;
2698 h
->all_io_entry
= NULL
;
2699 h
->overwrite_mapping
= NULL
;
2704 * Non-blocking function called from the thin target's map function.
2706 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2709 struct thin_c
*tc
= ti
->private;
2710 dm_block_t block
= get_bio_block(tc
, bio
);
2711 struct dm_thin_device
*td
= tc
->td
;
2712 struct dm_thin_lookup_result result
;
2713 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2714 struct dm_cell_key key
;
2716 thin_hook_bio(tc
, bio
);
2718 if (tc
->requeue_mode
) {
2719 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2721 return DM_MAPIO_SUBMITTED
;
2724 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2726 return DM_MAPIO_SUBMITTED
;
2729 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2730 thin_defer_bio_with_throttle(tc
, bio
);
2731 return DM_MAPIO_SUBMITTED
;
2735 * We must hold the virtual cell before doing the lookup, otherwise
2736 * there's a race with discard.
2738 build_virtual_key(tc
->td
, block
, &key
);
2739 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2740 return DM_MAPIO_SUBMITTED
;
2742 r
= dm_thin_find_block(td
, block
, 0, &result
);
2745 * Note that we defer readahead too.
2749 if (unlikely(result
.shared
)) {
2751 * We have a race condition here between the
2752 * result.shared value returned by the lookup and
2753 * snapshot creation, which may cause new
2756 * To avoid this always quiesce the origin before
2757 * taking the snap. You want to do this anyway to
2758 * ensure a consistent application view
2761 * More distant ancestors are irrelevant. The
2762 * shared flag will be set in their case.
2764 thin_defer_cell(tc
, virt_cell
);
2765 return DM_MAPIO_SUBMITTED
;
2768 build_data_key(tc
->td
, result
.block
, &key
);
2769 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2770 cell_defer_no_holder(tc
, virt_cell
);
2771 return DM_MAPIO_SUBMITTED
;
2774 inc_all_io_entry(tc
->pool
, bio
);
2775 cell_defer_no_holder(tc
, data_cell
);
2776 cell_defer_no_holder(tc
, virt_cell
);
2778 remap(tc
, bio
, result
.block
);
2779 return DM_MAPIO_REMAPPED
;
2783 thin_defer_cell(tc
, virt_cell
);
2784 return DM_MAPIO_SUBMITTED
;
2788 * Must always call bio_io_error on failure.
2789 * dm_thin_find_block can fail with -EINVAL if the
2790 * pool is switched to fail-io mode.
2793 cell_defer_no_holder(tc
, virt_cell
);
2794 return DM_MAPIO_SUBMITTED
;
2798 static void requeue_bios(struct pool
*pool
)
2803 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2804 spin_lock_irq(&tc
->lock
);
2805 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2806 bio_list_init(&tc
->retry_on_resume_list
);
2807 spin_unlock_irq(&tc
->lock
);
2812 /*----------------------------------------------------------------
2813 * Binding of control targets to a pool object
2814 *--------------------------------------------------------------*/
2815 static bool data_dev_supports_discard(struct pool_c
*pt
)
2817 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2819 return q
&& blk_queue_discard(q
);
2822 static bool is_factor(sector_t block_size
, uint32_t n
)
2824 return !sector_div(block_size
, n
);
2828 * If discard_passdown was enabled verify that the data device
2829 * supports discards. Disable discard_passdown if not.
2831 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2833 struct pool
*pool
= pt
->pool
;
2834 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2835 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2836 const char *reason
= NULL
;
2837 char buf
[BDEVNAME_SIZE
];
2839 if (!pt
->adjusted_pf
.discard_passdown
)
2842 if (!data_dev_supports_discard(pt
))
2843 reason
= "discard unsupported";
2845 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2846 reason
= "max discard sectors smaller than a block";
2849 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2850 pt
->adjusted_pf
.discard_passdown
= false;
2854 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2856 struct pool_c
*pt
= ti
->private;
2859 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2861 enum pool_mode old_mode
= get_pool_mode(pool
);
2862 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2865 * Don't change the pool's mode until set_pool_mode() below.
2866 * Otherwise the pool's process_* function pointers may
2867 * not match the desired pool mode.
2869 pt
->adjusted_pf
.mode
= old_mode
;
2872 pool
->pf
= pt
->adjusted_pf
;
2873 pool
->low_water_blocks
= pt
->low_water_blocks
;
2875 set_pool_mode(pool
, new_mode
);
2880 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2886 /*----------------------------------------------------------------
2888 *--------------------------------------------------------------*/
2889 /* Initialize pool features. */
2890 static void pool_features_init(struct pool_features
*pf
)
2892 pf
->mode
= PM_WRITE
;
2893 pf
->zero_new_blocks
= true;
2894 pf
->discard_enabled
= true;
2895 pf
->discard_passdown
= true;
2896 pf
->error_if_no_space
= false;
2899 static void __pool_destroy(struct pool
*pool
)
2901 __pool_table_remove(pool
);
2903 vfree(pool
->cell_sort_array
);
2904 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2907 dm_bio_prison_destroy(pool
->prison
);
2908 dm_kcopyd_client_destroy(pool
->copier
);
2911 destroy_workqueue(pool
->wq
);
2913 if (pool
->next_mapping
)
2914 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2915 mempool_exit(&pool
->mapping_pool
);
2916 bio_uninit(&pool
->flush_bio
);
2917 dm_deferred_set_destroy(pool
->shared_read_ds
);
2918 dm_deferred_set_destroy(pool
->all_io_ds
);
2922 static struct kmem_cache
*_new_mapping_cache
;
2924 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2925 struct block_device
*metadata_dev
,
2926 struct block_device
*data_dev
,
2927 unsigned long block_size
,
2928 int read_only
, char **error
)
2933 struct dm_pool_metadata
*pmd
;
2934 bool format_device
= read_only
? false : true;
2936 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2938 *error
= "Error creating metadata object";
2939 return (struct pool
*)pmd
;
2942 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2944 *error
= "Error allocating memory for pool";
2945 err_p
= ERR_PTR(-ENOMEM
);
2950 pool
->sectors_per_block
= block_size
;
2951 if (block_size
& (block_size
- 1))
2952 pool
->sectors_per_block_shift
= -1;
2954 pool
->sectors_per_block_shift
= __ffs(block_size
);
2955 pool
->low_water_blocks
= 0;
2956 pool_features_init(&pool
->pf
);
2957 pool
->prison
= dm_bio_prison_create();
2958 if (!pool
->prison
) {
2959 *error
= "Error creating pool's bio prison";
2960 err_p
= ERR_PTR(-ENOMEM
);
2964 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2965 if (IS_ERR(pool
->copier
)) {
2966 r
= PTR_ERR(pool
->copier
);
2967 *error
= "Error creating pool's kcopyd client";
2969 goto bad_kcopyd_client
;
2973 * Create singlethreaded workqueue that will service all devices
2974 * that use this metadata.
2976 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2978 *error
= "Error creating pool's workqueue";
2979 err_p
= ERR_PTR(-ENOMEM
);
2983 throttle_init(&pool
->throttle
);
2984 INIT_WORK(&pool
->worker
, do_worker
);
2985 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2986 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2987 spin_lock_init(&pool
->lock
);
2988 bio_list_init(&pool
->deferred_flush_bios
);
2989 bio_list_init(&pool
->deferred_flush_completions
);
2990 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2991 INIT_LIST_HEAD(&pool
->prepared_discards
);
2992 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
2993 INIT_LIST_HEAD(&pool
->active_thins
);
2994 pool
->low_water_triggered
= false;
2995 pool
->suspended
= true;
2996 pool
->out_of_data_space
= false;
2997 bio_init(&pool
->flush_bio
, NULL
, 0);
2999 pool
->shared_read_ds
= dm_deferred_set_create();
3000 if (!pool
->shared_read_ds
) {
3001 *error
= "Error creating pool's shared read deferred set";
3002 err_p
= ERR_PTR(-ENOMEM
);
3003 goto bad_shared_read_ds
;
3006 pool
->all_io_ds
= dm_deferred_set_create();
3007 if (!pool
->all_io_ds
) {
3008 *error
= "Error creating pool's all io deferred set";
3009 err_p
= ERR_PTR(-ENOMEM
);
3013 pool
->next_mapping
= NULL
;
3014 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
3015 _new_mapping_cache
);
3017 *error
= "Error creating pool's mapping mempool";
3019 goto bad_mapping_pool
;
3022 pool
->cell_sort_array
=
3023 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
3024 sizeof(*pool
->cell_sort_array
)));
3025 if (!pool
->cell_sort_array
) {
3026 *error
= "Error allocating cell sort array";
3027 err_p
= ERR_PTR(-ENOMEM
);
3028 goto bad_sort_array
;
3031 pool
->ref_count
= 1;
3032 pool
->last_commit_jiffies
= jiffies
;
3033 pool
->pool_md
= pool_md
;
3034 pool
->md_dev
= metadata_dev
;
3035 pool
->data_dev
= data_dev
;
3036 __pool_table_insert(pool
);
3041 mempool_exit(&pool
->mapping_pool
);
3043 dm_deferred_set_destroy(pool
->all_io_ds
);
3045 dm_deferred_set_destroy(pool
->shared_read_ds
);
3047 destroy_workqueue(pool
->wq
);
3049 dm_kcopyd_client_destroy(pool
->copier
);
3051 dm_bio_prison_destroy(pool
->prison
);
3055 if (dm_pool_metadata_close(pmd
))
3056 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3061 static void __pool_inc(struct pool
*pool
)
3063 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3067 static void __pool_dec(struct pool
*pool
)
3069 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3070 BUG_ON(!pool
->ref_count
);
3071 if (!--pool
->ref_count
)
3072 __pool_destroy(pool
);
3075 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3076 struct block_device
*metadata_dev
,
3077 struct block_device
*data_dev
,
3078 unsigned long block_size
, int read_only
,
3079 char **error
, int *created
)
3081 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3084 if (pool
->pool_md
!= pool_md
) {
3085 *error
= "metadata device already in use by a pool";
3086 return ERR_PTR(-EBUSY
);
3088 if (pool
->data_dev
!= data_dev
) {
3089 *error
= "data device already in use by a pool";
3090 return ERR_PTR(-EBUSY
);
3095 pool
= __pool_table_lookup(pool_md
);
3097 if (pool
->md_dev
!= metadata_dev
|| pool
->data_dev
!= data_dev
) {
3098 *error
= "different pool cannot replace a pool";
3099 return ERR_PTR(-EINVAL
);
3104 pool
= pool_create(pool_md
, metadata_dev
, data_dev
, block_size
, read_only
, error
);
3112 /*----------------------------------------------------------------
3113 * Pool target methods
3114 *--------------------------------------------------------------*/
3115 static void pool_dtr(struct dm_target
*ti
)
3117 struct pool_c
*pt
= ti
->private;
3119 mutex_lock(&dm_thin_pool_table
.mutex
);
3121 unbind_control_target(pt
->pool
, ti
);
3122 __pool_dec(pt
->pool
);
3123 dm_put_device(ti
, pt
->metadata_dev
);
3124 dm_put_device(ti
, pt
->data_dev
);
3127 mutex_unlock(&dm_thin_pool_table
.mutex
);
3130 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3131 struct dm_target
*ti
)
3135 const char *arg_name
;
3137 static const struct dm_arg _args
[] = {
3138 {0, 4, "Invalid number of pool feature arguments"},
3142 * No feature arguments supplied.
3147 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3151 while (argc
&& !r
) {
3152 arg_name
= dm_shift_arg(as
);
3155 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3156 pf
->zero_new_blocks
= false;
3158 else if (!strcasecmp(arg_name
, "ignore_discard"))
3159 pf
->discard_enabled
= false;
3161 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3162 pf
->discard_passdown
= false;
3164 else if (!strcasecmp(arg_name
, "read_only"))
3165 pf
->mode
= PM_READ_ONLY
;
3167 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3168 pf
->error_if_no_space
= true;
3171 ti
->error
= "Unrecognised pool feature requested";
3180 static void metadata_low_callback(void *context
)
3182 struct pool
*pool
= context
;
3184 DMWARN("%s: reached low water mark for metadata device: sending event.",
3185 dm_device_name(pool
->pool_md
));
3187 dm_table_event(pool
->ti
->table
);
3191 * We need to flush the data device **before** committing the metadata.
3193 * This ensures that the data blocks of any newly inserted mappings are
3194 * properly written to non-volatile storage and won't be lost in case of a
3197 * Failure to do so can result in data corruption in the case of internal or
3198 * external snapshots and in the case of newly provisioned blocks, when block
3199 * zeroing is enabled.
3201 static int metadata_pre_commit_callback(void *context
)
3203 struct pool
*pool
= context
;
3204 struct bio
*flush_bio
= &pool
->flush_bio
;
3206 bio_reset(flush_bio
);
3207 bio_set_dev(flush_bio
, pool
->data_dev
);
3208 flush_bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
3210 return submit_bio_wait(flush_bio
);
3213 static sector_t
get_dev_size(struct block_device
*bdev
)
3215 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3218 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3220 sector_t metadata_dev_size
= get_dev_size(bdev
);
3221 char buffer
[BDEVNAME_SIZE
];
3223 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3224 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3225 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3228 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3230 sector_t metadata_dev_size
= get_dev_size(bdev
);
3232 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3233 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3235 return metadata_dev_size
;
3238 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3240 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3242 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3244 return metadata_dev_size
;
3248 * When a metadata threshold is crossed a dm event is triggered, and
3249 * userland should respond by growing the metadata device. We could let
3250 * userland set the threshold, like we do with the data threshold, but I'm
3251 * not sure they know enough to do this well.
3253 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3256 * 4M is ample for all ops with the possible exception of thin
3257 * device deletion which is harmless if it fails (just retry the
3258 * delete after you've grown the device).
3260 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3261 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3265 * thin-pool <metadata dev> <data dev>
3266 * <data block size (sectors)>
3267 * <low water mark (blocks)>
3268 * [<#feature args> [<arg>]*]
3270 * Optional feature arguments are:
3271 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3272 * ignore_discard: disable discard
3273 * no_discard_passdown: don't pass discards down to the data device
3274 * read_only: Don't allow any changes to be made to the pool metadata.
3275 * error_if_no_space: error IOs, instead of queueing, if no space.
3277 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3279 int r
, pool_created
= 0;
3282 struct pool_features pf
;
3283 struct dm_arg_set as
;
3284 struct dm_dev
*data_dev
;
3285 unsigned long block_size
;
3286 dm_block_t low_water_blocks
;
3287 struct dm_dev
*metadata_dev
;
3288 fmode_t metadata_mode
;
3291 * FIXME Remove validation from scope of lock.
3293 mutex_lock(&dm_thin_pool_table
.mutex
);
3296 ti
->error
= "Invalid argument count";
3304 /* make sure metadata and data are different devices */
3305 if (!strcmp(argv
[0], argv
[1])) {
3306 ti
->error
= "Error setting metadata or data device";
3312 * Set default pool features.
3314 pool_features_init(&pf
);
3316 dm_consume_args(&as
, 4);
3317 r
= parse_pool_features(&as
, &pf
, ti
);
3321 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3322 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3324 ti
->error
= "Error opening metadata block device";
3327 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3329 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3331 ti
->error
= "Error getting data device";
3335 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3336 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3337 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3338 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3339 ti
->error
= "Invalid block size";
3344 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3345 ti
->error
= "Invalid low water mark";
3350 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3356 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
, data_dev
->bdev
,
3357 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3364 * 'pool_created' reflects whether this is the first table load.
3365 * Top level discard support is not allowed to be changed after
3366 * initial load. This would require a pool reload to trigger thin
3369 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3370 ti
->error
= "Discard support cannot be disabled once enabled";
3372 goto out_flags_changed
;
3377 pt
->metadata_dev
= metadata_dev
;
3378 pt
->data_dev
= data_dev
;
3379 pt
->low_water_blocks
= low_water_blocks
;
3380 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3381 ti
->num_flush_bios
= 1;
3384 * Only need to enable discards if the pool should pass
3385 * them down to the data device. The thin device's discard
3386 * processing will cause mappings to be removed from the btree.
3388 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3389 ti
->num_discard_bios
= 1;
3392 * Setting 'discards_supported' circumvents the normal
3393 * stacking of discard limits (this keeps the pool and
3394 * thin devices' discard limits consistent).
3396 ti
->discards_supported
= true;
3400 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3401 calc_metadata_threshold(pt
),
3402 metadata_low_callback
,
3405 goto out_flags_changed
;
3407 dm_pool_register_pre_commit_callback(pool
->pmd
,
3408 metadata_pre_commit_callback
, pool
);
3410 mutex_unlock(&dm_thin_pool_table
.mutex
);
3419 dm_put_device(ti
, data_dev
);
3421 dm_put_device(ti
, metadata_dev
);
3423 mutex_unlock(&dm_thin_pool_table
.mutex
);
3428 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3431 struct pool_c
*pt
= ti
->private;
3432 struct pool
*pool
= pt
->pool
;
3435 * As this is a singleton target, ti->begin is always zero.
3437 spin_lock_irq(&pool
->lock
);
3438 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3439 r
= DM_MAPIO_REMAPPED
;
3440 spin_unlock_irq(&pool
->lock
);
3445 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3448 struct pool_c
*pt
= ti
->private;
3449 struct pool
*pool
= pt
->pool
;
3450 sector_t data_size
= ti
->len
;
3451 dm_block_t sb_data_size
;
3453 *need_commit
= false;
3455 (void) sector_div(data_size
, pool
->sectors_per_block
);
3457 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3459 DMERR("%s: failed to retrieve data device size",
3460 dm_device_name(pool
->pool_md
));
3464 if (data_size
< sb_data_size
) {
3465 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3466 dm_device_name(pool
->pool_md
),
3467 (unsigned long long)data_size
, sb_data_size
);
3470 } else if (data_size
> sb_data_size
) {
3471 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3472 DMERR("%s: unable to grow the data device until repaired.",
3473 dm_device_name(pool
->pool_md
));
3478 DMINFO("%s: growing the data device from %llu to %llu blocks",
3479 dm_device_name(pool
->pool_md
),
3480 sb_data_size
, (unsigned long long)data_size
);
3481 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3483 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3487 *need_commit
= true;
3493 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3496 struct pool_c
*pt
= ti
->private;
3497 struct pool
*pool
= pt
->pool
;
3498 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3500 *need_commit
= false;
3502 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3504 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3506 DMERR("%s: failed to retrieve metadata device size",
3507 dm_device_name(pool
->pool_md
));
3511 if (metadata_dev_size
< sb_metadata_dev_size
) {
3512 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3513 dm_device_name(pool
->pool_md
),
3514 metadata_dev_size
, sb_metadata_dev_size
);
3517 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3518 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3519 DMERR("%s: unable to grow the metadata device until repaired.",
3520 dm_device_name(pool
->pool_md
));
3524 warn_if_metadata_device_too_big(pool
->md_dev
);
3525 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3526 dm_device_name(pool
->pool_md
),
3527 sb_metadata_dev_size
, metadata_dev_size
);
3529 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3530 set_pool_mode(pool
, PM_WRITE
);
3532 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3534 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3538 *need_commit
= true;
3545 * Retrieves the number of blocks of the data device from
3546 * the superblock and compares it to the actual device size,
3547 * thus resizing the data device in case it has grown.
3549 * This both copes with opening preallocated data devices in the ctr
3550 * being followed by a resume
3552 * calling the resume method individually after userspace has
3553 * grown the data device in reaction to a table event.
3555 static int pool_preresume(struct dm_target
*ti
)
3558 bool need_commit1
, need_commit2
;
3559 struct pool_c
*pt
= ti
->private;
3560 struct pool
*pool
= pt
->pool
;
3563 * Take control of the pool object.
3565 r
= bind_control_target(pool
, ti
);
3569 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3573 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3577 if (need_commit1
|| need_commit2
)
3578 (void) commit(pool
);
3583 static void pool_suspend_active_thins(struct pool
*pool
)
3587 /* Suspend all active thin devices */
3588 tc
= get_first_thin(pool
);
3590 dm_internal_suspend_noflush(tc
->thin_md
);
3591 tc
= get_next_thin(pool
, tc
);
3595 static void pool_resume_active_thins(struct pool
*pool
)
3599 /* Resume all active thin devices */
3600 tc
= get_first_thin(pool
);
3602 dm_internal_resume(tc
->thin_md
);
3603 tc
= get_next_thin(pool
, tc
);
3607 static void pool_resume(struct dm_target
*ti
)
3609 struct pool_c
*pt
= ti
->private;
3610 struct pool
*pool
= pt
->pool
;
3613 * Must requeue active_thins' bios and then resume
3614 * active_thins _before_ clearing 'suspend' flag.
3617 pool_resume_active_thins(pool
);
3619 spin_lock_irq(&pool
->lock
);
3620 pool
->low_water_triggered
= false;
3621 pool
->suspended
= false;
3622 spin_unlock_irq(&pool
->lock
);
3624 do_waker(&pool
->waker
.work
);
3627 static void pool_presuspend(struct dm_target
*ti
)
3629 struct pool_c
*pt
= ti
->private;
3630 struct pool
*pool
= pt
->pool
;
3632 spin_lock_irq(&pool
->lock
);
3633 pool
->suspended
= true;
3634 spin_unlock_irq(&pool
->lock
);
3636 pool_suspend_active_thins(pool
);
3639 static void pool_presuspend_undo(struct dm_target
*ti
)
3641 struct pool_c
*pt
= ti
->private;
3642 struct pool
*pool
= pt
->pool
;
3644 pool_resume_active_thins(pool
);
3646 spin_lock_irq(&pool
->lock
);
3647 pool
->suspended
= false;
3648 spin_unlock_irq(&pool
->lock
);
3651 static void pool_postsuspend(struct dm_target
*ti
)
3653 struct pool_c
*pt
= ti
->private;
3654 struct pool
*pool
= pt
->pool
;
3656 cancel_delayed_work_sync(&pool
->waker
);
3657 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3658 flush_workqueue(pool
->wq
);
3659 (void) commit(pool
);
3662 static int check_arg_count(unsigned argc
, unsigned args_required
)
3664 if (argc
!= args_required
) {
3665 DMWARN("Message received with %u arguments instead of %u.",
3666 argc
, args_required
);
3673 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3675 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3676 *dev_id
<= MAX_DEV_ID
)
3680 DMWARN("Message received with invalid device id: %s", arg
);
3685 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3690 r
= check_arg_count(argc
, 2);
3694 r
= read_dev_id(argv
[1], &dev_id
, 1);
3698 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3700 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3708 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3711 dm_thin_id origin_dev_id
;
3714 r
= check_arg_count(argc
, 3);
3718 r
= read_dev_id(argv
[1], &dev_id
, 1);
3722 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3726 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3728 DMWARN("Creation of new snapshot %s of device %s failed.",
3736 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3741 r
= check_arg_count(argc
, 2);
3745 r
= read_dev_id(argv
[1], &dev_id
, 1);
3749 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3751 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3756 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3758 dm_thin_id old_id
, new_id
;
3761 r
= check_arg_count(argc
, 3);
3765 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3766 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3770 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3771 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3775 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3777 DMWARN("Failed to change transaction id from %s to %s.",
3785 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3789 r
= check_arg_count(argc
, 1);
3793 (void) commit(pool
);
3795 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3797 DMWARN("reserve_metadata_snap message failed.");
3802 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3806 r
= check_arg_count(argc
, 1);
3810 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3812 DMWARN("release_metadata_snap message failed.");
3818 * Messages supported:
3819 * create_thin <dev_id>
3820 * create_snap <dev_id> <origin_id>
3822 * set_transaction_id <current_trans_id> <new_trans_id>
3823 * reserve_metadata_snap
3824 * release_metadata_snap
3826 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3827 char *result
, unsigned maxlen
)
3830 struct pool_c
*pt
= ti
->private;
3831 struct pool
*pool
= pt
->pool
;
3833 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3834 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3835 dm_device_name(pool
->pool_md
));
3839 if (!strcasecmp(argv
[0], "create_thin"))
3840 r
= process_create_thin_mesg(argc
, argv
, pool
);
3842 else if (!strcasecmp(argv
[0], "create_snap"))
3843 r
= process_create_snap_mesg(argc
, argv
, pool
);
3845 else if (!strcasecmp(argv
[0], "delete"))
3846 r
= process_delete_mesg(argc
, argv
, pool
);
3848 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3849 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3851 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3852 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3854 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3855 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3858 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3861 (void) commit(pool
);
3866 static void emit_flags(struct pool_features
*pf
, char *result
,
3867 unsigned sz
, unsigned maxlen
)
3869 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3870 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3871 pf
->error_if_no_space
;
3872 DMEMIT("%u ", count
);
3874 if (!pf
->zero_new_blocks
)
3875 DMEMIT("skip_block_zeroing ");
3877 if (!pf
->discard_enabled
)
3878 DMEMIT("ignore_discard ");
3880 if (!pf
->discard_passdown
)
3881 DMEMIT("no_discard_passdown ");
3883 if (pf
->mode
== PM_READ_ONLY
)
3884 DMEMIT("read_only ");
3886 if (pf
->error_if_no_space
)
3887 DMEMIT("error_if_no_space ");
3892 * <transaction id> <used metadata sectors>/<total metadata sectors>
3893 * <used data sectors>/<total data sectors> <held metadata root>
3894 * <pool mode> <discard config> <no space config> <needs_check>
3896 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3897 unsigned status_flags
, char *result
, unsigned maxlen
)
3901 uint64_t transaction_id
;
3902 dm_block_t nr_free_blocks_data
;
3903 dm_block_t nr_free_blocks_metadata
;
3904 dm_block_t nr_blocks_data
;
3905 dm_block_t nr_blocks_metadata
;
3906 dm_block_t held_root
;
3907 enum pool_mode mode
;
3908 char buf
[BDEVNAME_SIZE
];
3909 char buf2
[BDEVNAME_SIZE
];
3910 struct pool_c
*pt
= ti
->private;
3911 struct pool
*pool
= pt
->pool
;
3914 case STATUSTYPE_INFO
:
3915 if (get_pool_mode(pool
) == PM_FAIL
) {
3920 /* Commit to ensure statistics aren't out-of-date */
3921 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3922 (void) commit(pool
);
3924 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3926 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3927 dm_device_name(pool
->pool_md
), r
);
3931 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3933 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3934 dm_device_name(pool
->pool_md
), r
);
3938 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3940 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3941 dm_device_name(pool
->pool_md
), r
);
3945 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3947 DMERR("%s: dm_pool_get_free_block_count returned %d",
3948 dm_device_name(pool
->pool_md
), r
);
3952 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3954 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3955 dm_device_name(pool
->pool_md
), r
);
3959 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3961 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3962 dm_device_name(pool
->pool_md
), r
);
3966 DMEMIT("%llu %llu/%llu %llu/%llu ",
3967 (unsigned long long)transaction_id
,
3968 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3969 (unsigned long long)nr_blocks_metadata
,
3970 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3971 (unsigned long long)nr_blocks_data
);
3974 DMEMIT("%llu ", held_root
);
3978 mode
= get_pool_mode(pool
);
3979 if (mode
== PM_OUT_OF_DATA_SPACE
)
3980 DMEMIT("out_of_data_space ");
3981 else if (is_read_only_pool_mode(mode
))
3986 if (!pool
->pf
.discard_enabled
)
3987 DMEMIT("ignore_discard ");
3988 else if (pool
->pf
.discard_passdown
)
3989 DMEMIT("discard_passdown ");
3991 DMEMIT("no_discard_passdown ");
3993 if (pool
->pf
.error_if_no_space
)
3994 DMEMIT("error_if_no_space ");
3996 DMEMIT("queue_if_no_space ");
3998 if (dm_pool_metadata_needs_check(pool
->pmd
))
3999 DMEMIT("needs_check ");
4003 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
4007 case STATUSTYPE_TABLE
:
4008 DMEMIT("%s %s %lu %llu ",
4009 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
4010 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
4011 (unsigned long)pool
->sectors_per_block
,
4012 (unsigned long long)pt
->low_water_blocks
);
4013 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
4022 static int pool_iterate_devices(struct dm_target
*ti
,
4023 iterate_devices_callout_fn fn
, void *data
)
4025 struct pool_c
*pt
= ti
->private;
4027 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
4030 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4032 struct pool_c
*pt
= ti
->private;
4033 struct pool
*pool
= pt
->pool
;
4034 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
4037 * If max_sectors is smaller than pool->sectors_per_block adjust it
4038 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4039 * This is especially beneficial when the pool's data device is a RAID
4040 * device that has a full stripe width that matches pool->sectors_per_block
4041 * -- because even though partial RAID stripe-sized IOs will be issued to a
4042 * single RAID stripe; when aggregated they will end on a full RAID stripe
4043 * boundary.. which avoids additional partial RAID stripe writes cascading
4045 if (limits
->max_sectors
< pool
->sectors_per_block
) {
4046 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
4047 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
4048 limits
->max_sectors
--;
4049 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
4054 * If the system-determined stacked limits are compatible with the
4055 * pool's blocksize (io_opt is a factor) do not override them.
4057 if (io_opt_sectors
< pool
->sectors_per_block
||
4058 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
4059 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
4060 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
4062 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4063 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4067 * pt->adjusted_pf is a staging area for the actual features to use.
4068 * They get transferred to the live pool in bind_control_target()
4069 * called from pool_preresume().
4071 if (!pt
->adjusted_pf
.discard_enabled
) {
4073 * Must explicitly disallow stacking discard limits otherwise the
4074 * block layer will stack them if pool's data device has support.
4075 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4076 * user to see that, so make sure to set all discard limits to 0.
4078 limits
->discard_granularity
= 0;
4082 disable_passdown_if_not_supported(pt
);
4085 * The pool uses the same discard limits as the underlying data
4086 * device. DM core has already set this up.
4090 static struct target_type pool_target
= {
4091 .name
= "thin-pool",
4092 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4093 DM_TARGET_IMMUTABLE
,
4094 .version
= {1, 22, 0},
4095 .module
= THIS_MODULE
,
4099 .presuspend
= pool_presuspend
,
4100 .presuspend_undo
= pool_presuspend_undo
,
4101 .postsuspend
= pool_postsuspend
,
4102 .preresume
= pool_preresume
,
4103 .resume
= pool_resume
,
4104 .message
= pool_message
,
4105 .status
= pool_status
,
4106 .iterate_devices
= pool_iterate_devices
,
4107 .io_hints
= pool_io_hints
,
4110 /*----------------------------------------------------------------
4111 * Thin target methods
4112 *--------------------------------------------------------------*/
4113 static void thin_get(struct thin_c
*tc
)
4115 refcount_inc(&tc
->refcount
);
4118 static void thin_put(struct thin_c
*tc
)
4120 if (refcount_dec_and_test(&tc
->refcount
))
4121 complete(&tc
->can_destroy
);
4124 static void thin_dtr(struct dm_target
*ti
)
4126 struct thin_c
*tc
= ti
->private;
4128 spin_lock_irq(&tc
->pool
->lock
);
4129 list_del_rcu(&tc
->list
);
4130 spin_unlock_irq(&tc
->pool
->lock
);
4134 wait_for_completion(&tc
->can_destroy
);
4136 mutex_lock(&dm_thin_pool_table
.mutex
);
4138 __pool_dec(tc
->pool
);
4139 dm_pool_close_thin_device(tc
->td
);
4140 dm_put_device(ti
, tc
->pool_dev
);
4142 dm_put_device(ti
, tc
->origin_dev
);
4145 mutex_unlock(&dm_thin_pool_table
.mutex
);
4149 * Thin target parameters:
4151 * <pool_dev> <dev_id> [origin_dev]
4153 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154 * dev_id: the internal device identifier
4155 * origin_dev: a device external to the pool that should act as the origin
4157 * If the pool device has discards disabled, they get disabled for the thin
4160 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4164 struct dm_dev
*pool_dev
, *origin_dev
;
4165 struct mapped_device
*pool_md
;
4167 mutex_lock(&dm_thin_pool_table
.mutex
);
4169 if (argc
!= 2 && argc
!= 3) {
4170 ti
->error
= "Invalid argument count";
4175 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4177 ti
->error
= "Out of memory";
4181 tc
->thin_md
= dm_table_get_md(ti
->table
);
4182 spin_lock_init(&tc
->lock
);
4183 INIT_LIST_HEAD(&tc
->deferred_cells
);
4184 bio_list_init(&tc
->deferred_bio_list
);
4185 bio_list_init(&tc
->retry_on_resume_list
);
4186 tc
->sort_bio_list
= RB_ROOT
;
4189 if (!strcmp(argv
[0], argv
[2])) {
4190 ti
->error
= "Error setting origin device";
4192 goto bad_origin_dev
;
4195 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4197 ti
->error
= "Error opening origin device";
4198 goto bad_origin_dev
;
4200 tc
->origin_dev
= origin_dev
;
4203 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4205 ti
->error
= "Error opening pool device";
4208 tc
->pool_dev
= pool_dev
;
4210 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4211 ti
->error
= "Invalid device id";
4216 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4218 ti
->error
= "Couldn't get pool mapped device";
4223 tc
->pool
= __pool_table_lookup(pool_md
);
4225 ti
->error
= "Couldn't find pool object";
4227 goto bad_pool_lookup
;
4229 __pool_inc(tc
->pool
);
4231 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4232 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4237 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4239 ti
->error
= "Couldn't open thin internal device";
4243 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4247 ti
->num_flush_bios
= 1;
4248 ti
->flush_supported
= true;
4249 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4251 /* In case the pool supports discards, pass them on. */
4252 if (tc
->pool
->pf
.discard_enabled
) {
4253 ti
->discards_supported
= true;
4254 ti
->num_discard_bios
= 1;
4257 mutex_unlock(&dm_thin_pool_table
.mutex
);
4259 spin_lock_irq(&tc
->pool
->lock
);
4260 if (tc
->pool
->suspended
) {
4261 spin_unlock_irq(&tc
->pool
->lock
);
4262 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4263 ti
->error
= "Unable to activate thin device while pool is suspended";
4267 refcount_set(&tc
->refcount
, 1);
4268 init_completion(&tc
->can_destroy
);
4269 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4270 spin_unlock_irq(&tc
->pool
->lock
);
4272 * This synchronize_rcu() call is needed here otherwise we risk a
4273 * wake_worker() call finding no bios to process (because the newly
4274 * added tc isn't yet visible). So this reduces latency since we
4275 * aren't then dependent on the periodic commit to wake_worker().
4284 dm_pool_close_thin_device(tc
->td
);
4286 __pool_dec(tc
->pool
);
4290 dm_put_device(ti
, tc
->pool_dev
);
4293 dm_put_device(ti
, tc
->origin_dev
);
4297 mutex_unlock(&dm_thin_pool_table
.mutex
);
4302 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4304 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4306 return thin_bio_map(ti
, bio
);
4309 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4312 unsigned long flags
;
4313 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4314 struct list_head work
;
4315 struct dm_thin_new_mapping
*m
, *tmp
;
4316 struct pool
*pool
= h
->tc
->pool
;
4318 if (h
->shared_read_entry
) {
4319 INIT_LIST_HEAD(&work
);
4320 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4322 spin_lock_irqsave(&pool
->lock
, flags
);
4323 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4325 __complete_mapping_preparation(m
);
4327 spin_unlock_irqrestore(&pool
->lock
, flags
);
4330 if (h
->all_io_entry
) {
4331 INIT_LIST_HEAD(&work
);
4332 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4333 if (!list_empty(&work
)) {
4334 spin_lock_irqsave(&pool
->lock
, flags
);
4335 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4336 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4337 spin_unlock_irqrestore(&pool
->lock
, flags
);
4343 cell_defer_no_holder(h
->tc
, h
->cell
);
4345 return DM_ENDIO_DONE
;
4348 static void thin_presuspend(struct dm_target
*ti
)
4350 struct thin_c
*tc
= ti
->private;
4352 if (dm_noflush_suspending(ti
))
4353 noflush_work(tc
, do_noflush_start
);
4356 static void thin_postsuspend(struct dm_target
*ti
)
4358 struct thin_c
*tc
= ti
->private;
4361 * The dm_noflush_suspending flag has been cleared by now, so
4362 * unfortunately we must always run this.
4364 noflush_work(tc
, do_noflush_stop
);
4367 static int thin_preresume(struct dm_target
*ti
)
4369 struct thin_c
*tc
= ti
->private;
4372 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4378 * <nr mapped sectors> <highest mapped sector>
4380 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4381 unsigned status_flags
, char *result
, unsigned maxlen
)
4385 dm_block_t mapped
, highest
;
4386 char buf
[BDEVNAME_SIZE
];
4387 struct thin_c
*tc
= ti
->private;
4389 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4398 case STATUSTYPE_INFO
:
4399 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4401 DMERR("dm_thin_get_mapped_count returned %d", r
);
4405 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4407 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4411 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4413 DMEMIT("%llu", ((highest
+ 1) *
4414 tc
->pool
->sectors_per_block
) - 1);
4419 case STATUSTYPE_TABLE
:
4421 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4422 (unsigned long) tc
->dev_id
);
4424 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4435 static int thin_iterate_devices(struct dm_target
*ti
,
4436 iterate_devices_callout_fn fn
, void *data
)
4439 struct thin_c
*tc
= ti
->private;
4440 struct pool
*pool
= tc
->pool
;
4443 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4444 * we follow a more convoluted path through to the pool's target.
4447 return 0; /* nothing is bound */
4449 blocks
= pool
->ti
->len
;
4450 (void) sector_div(blocks
, pool
->sectors_per_block
);
4452 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4457 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4459 struct thin_c
*tc
= ti
->private;
4460 struct pool
*pool
= tc
->pool
;
4462 if (!pool
->pf
.discard_enabled
)
4465 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4466 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4469 static struct target_type thin_target
= {
4471 .version
= {1, 22, 0},
4472 .module
= THIS_MODULE
,
4476 .end_io
= thin_endio
,
4477 .preresume
= thin_preresume
,
4478 .presuspend
= thin_presuspend
,
4479 .postsuspend
= thin_postsuspend
,
4480 .status
= thin_status
,
4481 .iterate_devices
= thin_iterate_devices
,
4482 .io_hints
= thin_io_hints
,
4485 /*----------------------------------------------------------------*/
4487 static int __init
dm_thin_init(void)
4493 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4494 if (!_new_mapping_cache
)
4497 r
= dm_register_target(&thin_target
);
4499 goto bad_new_mapping_cache
;
4501 r
= dm_register_target(&pool_target
);
4503 goto bad_thin_target
;
4508 dm_unregister_target(&thin_target
);
4509 bad_new_mapping_cache
:
4510 kmem_cache_destroy(_new_mapping_cache
);
4515 static void dm_thin_exit(void)
4517 dm_unregister_target(&thin_target
);
4518 dm_unregister_target(&pool_target
);
4520 kmem_cache_destroy(_new_mapping_cache
);
4525 module_init(dm_thin_init
);
4526 module_exit(dm_thin_exit
);
4528 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4529 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4531 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4532 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4533 MODULE_LICENSE("GPL");