Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / md / dm-zoned-target.c
blob697f9de37355eecc555bc5052f13e8867571b9e0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 Western Digital Corporation or its affiliates.
5 * This file is released under the GPL.
6 */
8 #include "dm-zoned.h"
10 #include <linux/module.h>
12 #define DM_MSG_PREFIX "zoned"
14 #define DMZ_MIN_BIOS 8192
17 * Zone BIO context.
19 struct dmz_bioctx {
20 struct dmz_dev *dev;
21 struct dm_zone *zone;
22 struct bio *bio;
23 refcount_t ref;
27 * Chunk work descriptor.
29 struct dm_chunk_work {
30 struct work_struct work;
31 refcount_t refcount;
32 struct dmz_target *target;
33 unsigned int chunk;
34 struct bio_list bio_list;
38 * Target descriptor.
40 struct dmz_target {
41 struct dm_dev **ddev;
42 unsigned int nr_ddevs;
44 unsigned int flags;
46 /* Zoned block device information */
47 struct dmz_dev *dev;
49 /* For metadata handling */
50 struct dmz_metadata *metadata;
52 /* For chunk work */
53 struct radix_tree_root chunk_rxtree;
54 struct workqueue_struct *chunk_wq;
55 struct mutex chunk_lock;
57 /* For cloned BIOs to zones */
58 struct bio_set bio_set;
60 /* For flush */
61 spinlock_t flush_lock;
62 struct bio_list flush_list;
63 struct delayed_work flush_work;
64 struct workqueue_struct *flush_wq;
68 * Flush intervals (seconds).
70 #define DMZ_FLUSH_PERIOD (10 * HZ)
73 * Target BIO completion.
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
77 struct dmz_bioctx *bioctx =
78 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
80 if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81 bio->bi_status = status;
82 if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83 bioctx->dev->flags |= DMZ_CHECK_BDEV;
85 if (refcount_dec_and_test(&bioctx->ref)) {
86 struct dm_zone *zone = bioctx->zone;
88 if (zone) {
89 if (bio->bi_status != BLK_STS_OK &&
90 bio_op(bio) == REQ_OP_WRITE &&
91 dmz_is_seq(zone))
92 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93 dmz_deactivate_zone(zone);
95 bio_endio(bio);
100 * Completion callback for an internally cloned target BIO. This terminates the
101 * target BIO when there are no more references to its context.
103 static void dmz_clone_endio(struct bio *clone)
105 struct dmz_bioctx *bioctx = clone->bi_private;
106 blk_status_t status = clone->bi_status;
108 bio_put(clone);
109 dmz_bio_endio(bioctx->bio, status);
113 * Issue a clone of a target BIO. The clone may only partially process the
114 * original target BIO.
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117 struct bio *bio, sector_t chunk_block,
118 unsigned int nr_blocks)
120 struct dmz_bioctx *bioctx =
121 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122 struct dmz_dev *dev = zone->dev;
123 struct bio *clone;
125 if (dev->flags & DMZ_BDEV_DYING)
126 return -EIO;
128 clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
129 if (!clone)
130 return -ENOMEM;
132 bio_set_dev(clone, dev->bdev);
133 bioctx->dev = dev;
134 clone->bi_iter.bi_sector =
135 dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
136 clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
137 clone->bi_end_io = dmz_clone_endio;
138 clone->bi_private = bioctx;
140 bio_advance(bio, clone->bi_iter.bi_size);
142 refcount_inc(&bioctx->ref);
143 submit_bio_noacct(clone);
145 if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
146 zone->wp_block += nr_blocks;
148 return 0;
152 * Zero out pages of discarded blocks accessed by a read BIO.
154 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
155 sector_t chunk_block, unsigned int nr_blocks)
157 unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
159 /* Clear nr_blocks */
160 swap(bio->bi_iter.bi_size, size);
161 zero_fill_bio(bio);
162 swap(bio->bi_iter.bi_size, size);
164 bio_advance(bio, size);
168 * Process a read BIO.
170 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
171 struct bio *bio)
173 struct dmz_metadata *zmd = dmz->metadata;
174 sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
175 unsigned int nr_blocks = dmz_bio_blocks(bio);
176 sector_t end_block = chunk_block + nr_blocks;
177 struct dm_zone *rzone, *bzone;
178 int ret;
180 /* Read into unmapped chunks need only zeroing the BIO buffer */
181 if (!zone) {
182 zero_fill_bio(bio);
183 return 0;
186 DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
187 dmz_metadata_label(zmd),
188 (unsigned long long)dmz_bio_chunk(zmd, bio),
189 (dmz_is_rnd(zone) ? "RND" :
190 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
191 zone->id,
192 (unsigned long long)chunk_block, nr_blocks);
194 /* Check block validity to determine the read location */
195 bzone = zone->bzone;
196 while (chunk_block < end_block) {
197 nr_blocks = 0;
198 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
199 chunk_block < zone->wp_block) {
200 /* Test block validity in the data zone */
201 ret = dmz_block_valid(zmd, zone, chunk_block);
202 if (ret < 0)
203 return ret;
204 if (ret > 0) {
205 /* Read data zone blocks */
206 nr_blocks = ret;
207 rzone = zone;
212 * No valid blocks found in the data zone.
213 * Check the buffer zone, if there is one.
215 if (!nr_blocks && bzone) {
216 ret = dmz_block_valid(zmd, bzone, chunk_block);
217 if (ret < 0)
218 return ret;
219 if (ret > 0) {
220 /* Read buffer zone blocks */
221 nr_blocks = ret;
222 rzone = bzone;
226 if (nr_blocks) {
227 /* Valid blocks found: read them */
228 nr_blocks = min_t(unsigned int, nr_blocks,
229 end_block - chunk_block);
230 ret = dmz_submit_bio(dmz, rzone, bio,
231 chunk_block, nr_blocks);
232 if (ret)
233 return ret;
234 chunk_block += nr_blocks;
235 } else {
236 /* No valid block: zeroout the current BIO block */
237 dmz_handle_read_zero(dmz, bio, chunk_block, 1);
238 chunk_block++;
242 return 0;
246 * Write blocks directly in a data zone, at the write pointer.
247 * If a buffer zone is assigned, invalidate the blocks written
248 * in place.
250 static int dmz_handle_direct_write(struct dmz_target *dmz,
251 struct dm_zone *zone, struct bio *bio,
252 sector_t chunk_block,
253 unsigned int nr_blocks)
255 struct dmz_metadata *zmd = dmz->metadata;
256 struct dm_zone *bzone = zone->bzone;
257 int ret;
259 if (dmz_is_readonly(zone))
260 return -EROFS;
262 /* Submit write */
263 ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
264 if (ret)
265 return ret;
268 * Validate the blocks in the data zone and invalidate
269 * in the buffer zone, if there is one.
271 ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
272 if (ret == 0 && bzone)
273 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
275 return ret;
279 * Write blocks in the buffer zone of @zone.
280 * If no buffer zone is assigned yet, get one.
281 * Called with @zone write locked.
283 static int dmz_handle_buffered_write(struct dmz_target *dmz,
284 struct dm_zone *zone, struct bio *bio,
285 sector_t chunk_block,
286 unsigned int nr_blocks)
288 struct dmz_metadata *zmd = dmz->metadata;
289 struct dm_zone *bzone;
290 int ret;
292 /* Get the buffer zone. One will be allocated if needed */
293 bzone = dmz_get_chunk_buffer(zmd, zone);
294 if (IS_ERR(bzone))
295 return PTR_ERR(bzone);
297 if (dmz_is_readonly(bzone))
298 return -EROFS;
300 /* Submit write */
301 ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
302 if (ret)
303 return ret;
306 * Validate the blocks in the buffer zone
307 * and invalidate in the data zone.
309 ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
310 if (ret == 0 && chunk_block < zone->wp_block)
311 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
313 return ret;
317 * Process a write BIO.
319 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
320 struct bio *bio)
322 struct dmz_metadata *zmd = dmz->metadata;
323 sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
324 unsigned int nr_blocks = dmz_bio_blocks(bio);
326 if (!zone)
327 return -ENOSPC;
329 DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
330 dmz_metadata_label(zmd),
331 (unsigned long long)dmz_bio_chunk(zmd, bio),
332 (dmz_is_rnd(zone) ? "RND" :
333 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
334 zone->id,
335 (unsigned long long)chunk_block, nr_blocks);
337 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
338 chunk_block == zone->wp_block) {
340 * zone is a random zone or it is a sequential zone
341 * and the BIO is aligned to the zone write pointer:
342 * direct write the zone.
344 return dmz_handle_direct_write(dmz, zone, bio,
345 chunk_block, nr_blocks);
349 * This is an unaligned write in a sequential zone:
350 * use buffered write.
352 return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
356 * Process a discard BIO.
358 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
359 struct bio *bio)
361 struct dmz_metadata *zmd = dmz->metadata;
362 sector_t block = dmz_bio_block(bio);
363 unsigned int nr_blocks = dmz_bio_blocks(bio);
364 sector_t chunk_block = dmz_chunk_block(zmd, block);
365 int ret = 0;
367 /* For unmapped chunks, there is nothing to do */
368 if (!zone)
369 return 0;
371 if (dmz_is_readonly(zone))
372 return -EROFS;
374 DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
375 dmz_metadata_label(dmz->metadata),
376 (unsigned long long)dmz_bio_chunk(zmd, bio),
377 zone->id,
378 (unsigned long long)chunk_block, nr_blocks);
381 * Invalidate blocks in the data zone and its
382 * buffer zone if one is mapped.
384 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
385 chunk_block < zone->wp_block)
386 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
387 if (ret == 0 && zone->bzone)
388 ret = dmz_invalidate_blocks(zmd, zone->bzone,
389 chunk_block, nr_blocks);
390 return ret;
394 * Process a BIO.
396 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
397 struct bio *bio)
399 struct dmz_bioctx *bioctx =
400 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
401 struct dmz_metadata *zmd = dmz->metadata;
402 struct dm_zone *zone;
403 int ret;
405 dmz_lock_metadata(zmd);
408 * Get the data zone mapping the chunk. There may be no
409 * mapping for read and discard. If a mapping is obtained,
410 + the zone returned will be set to active state.
412 zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
413 bio_op(bio));
414 if (IS_ERR(zone)) {
415 ret = PTR_ERR(zone);
416 goto out;
419 /* Process the BIO */
420 if (zone) {
421 dmz_activate_zone(zone);
422 bioctx->zone = zone;
423 dmz_reclaim_bio_acc(zone->dev->reclaim);
426 switch (bio_op(bio)) {
427 case REQ_OP_READ:
428 ret = dmz_handle_read(dmz, zone, bio);
429 break;
430 case REQ_OP_WRITE:
431 ret = dmz_handle_write(dmz, zone, bio);
432 break;
433 case REQ_OP_DISCARD:
434 case REQ_OP_WRITE_ZEROES:
435 ret = dmz_handle_discard(dmz, zone, bio);
436 break;
437 default:
438 DMERR("(%s): Unsupported BIO operation 0x%x",
439 dmz_metadata_label(dmz->metadata), bio_op(bio));
440 ret = -EIO;
444 * Release the chunk mapping. This will check that the mapping
445 * is still valid, that is, that the zone used still has valid blocks.
447 if (zone)
448 dmz_put_chunk_mapping(zmd, zone);
449 out:
450 dmz_bio_endio(bio, errno_to_blk_status(ret));
452 dmz_unlock_metadata(zmd);
456 * Increment a chunk reference counter.
458 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
460 refcount_inc(&cw->refcount);
464 * Decrement a chunk work reference count and
465 * free it if it becomes 0.
467 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
469 if (refcount_dec_and_test(&cw->refcount)) {
470 WARN_ON(!bio_list_empty(&cw->bio_list));
471 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
472 kfree(cw);
477 * Chunk BIO work function.
479 static void dmz_chunk_work(struct work_struct *work)
481 struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
482 struct dmz_target *dmz = cw->target;
483 struct bio *bio;
485 mutex_lock(&dmz->chunk_lock);
487 /* Process the chunk BIOs */
488 while ((bio = bio_list_pop(&cw->bio_list))) {
489 mutex_unlock(&dmz->chunk_lock);
490 dmz_handle_bio(dmz, cw, bio);
491 mutex_lock(&dmz->chunk_lock);
492 dmz_put_chunk_work(cw);
495 /* Queueing the work incremented the work refcount */
496 dmz_put_chunk_work(cw);
498 mutex_unlock(&dmz->chunk_lock);
502 * Flush work.
504 static void dmz_flush_work(struct work_struct *work)
506 struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
507 struct bio *bio;
508 int ret;
510 /* Flush dirty metadata blocks */
511 ret = dmz_flush_metadata(dmz->metadata);
512 if (ret)
513 DMDEBUG("(%s): Metadata flush failed, rc=%d",
514 dmz_metadata_label(dmz->metadata), ret);
516 /* Process queued flush requests */
517 while (1) {
518 spin_lock(&dmz->flush_lock);
519 bio = bio_list_pop(&dmz->flush_list);
520 spin_unlock(&dmz->flush_lock);
522 if (!bio)
523 break;
525 dmz_bio_endio(bio, errno_to_blk_status(ret));
528 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
532 * Get a chunk work and start it to process a new BIO.
533 * If the BIO chunk has no work yet, create one.
535 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
537 unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
538 struct dm_chunk_work *cw;
539 int ret = 0;
541 mutex_lock(&dmz->chunk_lock);
543 /* Get the BIO chunk work. If one is not active yet, create one */
544 cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
545 if (cw) {
546 dmz_get_chunk_work(cw);
547 } else {
548 /* Create a new chunk work */
549 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
550 if (unlikely(!cw)) {
551 ret = -ENOMEM;
552 goto out;
555 INIT_WORK(&cw->work, dmz_chunk_work);
556 refcount_set(&cw->refcount, 1);
557 cw->target = dmz;
558 cw->chunk = chunk;
559 bio_list_init(&cw->bio_list);
561 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
562 if (unlikely(ret)) {
563 kfree(cw);
564 goto out;
568 bio_list_add(&cw->bio_list, bio);
570 if (queue_work(dmz->chunk_wq, &cw->work))
571 dmz_get_chunk_work(cw);
572 out:
573 mutex_unlock(&dmz->chunk_lock);
574 return ret;
578 * Check if the backing device is being removed. If it's on the way out,
579 * start failing I/O. Reclaim and metadata components also call this
580 * function to cleanly abort operation in the event of such failure.
582 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
584 if (dmz_dev->flags & DMZ_BDEV_DYING)
585 return true;
587 if (dmz_dev->flags & DMZ_CHECK_BDEV)
588 return !dmz_check_bdev(dmz_dev);
590 if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
591 dmz_dev_warn(dmz_dev, "Backing device queue dying");
592 dmz_dev->flags |= DMZ_BDEV_DYING;
595 return dmz_dev->flags & DMZ_BDEV_DYING;
599 * Check the backing device availability. This detects such events as
600 * backing device going offline due to errors, media removals, etc.
601 * This check is less efficient than dmz_bdev_is_dying() and should
602 * only be performed as a part of error handling.
604 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
606 struct gendisk *disk;
608 dmz_dev->flags &= ~DMZ_CHECK_BDEV;
610 if (dmz_bdev_is_dying(dmz_dev))
611 return false;
613 disk = dmz_dev->bdev->bd_disk;
614 if (disk->fops->check_events &&
615 disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
616 dmz_dev_warn(dmz_dev, "Backing device offline");
617 dmz_dev->flags |= DMZ_BDEV_DYING;
620 return !(dmz_dev->flags & DMZ_BDEV_DYING);
624 * Process a new BIO.
626 static int dmz_map(struct dm_target *ti, struct bio *bio)
628 struct dmz_target *dmz = ti->private;
629 struct dmz_metadata *zmd = dmz->metadata;
630 struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
631 sector_t sector = bio->bi_iter.bi_sector;
632 unsigned int nr_sectors = bio_sectors(bio);
633 sector_t chunk_sector;
634 int ret;
636 if (dmz_dev_is_dying(zmd))
637 return DM_MAPIO_KILL;
639 DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
640 dmz_metadata_label(zmd),
641 bio_op(bio), (unsigned long long)sector, nr_sectors,
642 (unsigned long long)dmz_bio_chunk(zmd, bio),
643 (unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
644 (unsigned int)dmz_bio_blocks(bio));
646 if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
647 return DM_MAPIO_REMAPPED;
649 /* The BIO should be block aligned */
650 if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
651 return DM_MAPIO_KILL;
653 /* Initialize the BIO context */
654 bioctx->dev = NULL;
655 bioctx->zone = NULL;
656 bioctx->bio = bio;
657 refcount_set(&bioctx->ref, 1);
659 /* Set the BIO pending in the flush list */
660 if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
661 spin_lock(&dmz->flush_lock);
662 bio_list_add(&dmz->flush_list, bio);
663 spin_unlock(&dmz->flush_lock);
664 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
665 return DM_MAPIO_SUBMITTED;
668 /* Split zone BIOs to fit entirely into a zone */
669 chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
670 if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
671 dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
673 /* Now ready to handle this BIO */
674 ret = dmz_queue_chunk_work(dmz, bio);
675 if (ret) {
676 DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
677 dmz_metadata_label(zmd),
678 bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
679 ret);
680 return DM_MAPIO_REQUEUE;
683 return DM_MAPIO_SUBMITTED;
687 * Get zoned device information.
689 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
690 int idx, int nr_devs)
692 struct dmz_target *dmz = ti->private;
693 struct dm_dev *ddev;
694 struct dmz_dev *dev;
695 int ret;
696 struct block_device *bdev;
698 /* Get the target device */
699 ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
700 if (ret) {
701 ti->error = "Get target device failed";
702 return ret;
705 bdev = ddev->bdev;
706 if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
707 if (nr_devs == 1) {
708 ti->error = "Invalid regular device";
709 goto err;
711 if (idx != 0) {
712 ti->error = "First device must be a regular device";
713 goto err;
715 if (dmz->ddev[0]) {
716 ti->error = "Too many regular devices";
717 goto err;
719 dev = &dmz->dev[idx];
720 dev->flags = DMZ_BDEV_REGULAR;
721 } else {
722 if (dmz->ddev[idx]) {
723 ti->error = "Too many zoned devices";
724 goto err;
726 if (nr_devs > 1 && idx == 0) {
727 ti->error = "First device must be a regular device";
728 goto err;
730 dev = &dmz->dev[idx];
732 dev->bdev = bdev;
733 dev->dev_idx = idx;
734 (void)bdevname(dev->bdev, dev->name);
736 dev->capacity = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
737 if (ti->begin) {
738 ti->error = "Partial mapping is not supported";
739 goto err;
742 dmz->ddev[idx] = ddev;
744 return 0;
745 err:
746 dm_put_device(ti, ddev);
747 return -EINVAL;
751 * Cleanup zoned device information.
753 static void dmz_put_zoned_device(struct dm_target *ti)
755 struct dmz_target *dmz = ti->private;
756 int i;
758 for (i = 0; i < dmz->nr_ddevs; i++) {
759 if (dmz->ddev[i]) {
760 dm_put_device(ti, dmz->ddev[i]);
761 dmz->ddev[i] = NULL;
766 static int dmz_fixup_devices(struct dm_target *ti)
768 struct dmz_target *dmz = ti->private;
769 struct dmz_dev *reg_dev, *zoned_dev;
770 struct request_queue *q;
771 sector_t zone_nr_sectors = 0;
772 int i;
775 * When we have more than on devices, the first one must be a
776 * regular block device and the others zoned block devices.
778 if (dmz->nr_ddevs > 1) {
779 reg_dev = &dmz->dev[0];
780 if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
781 ti->error = "Primary disk is not a regular device";
782 return -EINVAL;
784 for (i = 1; i < dmz->nr_ddevs; i++) {
785 zoned_dev = &dmz->dev[i];
786 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
787 ti->error = "Secondary disk is not a zoned device";
788 return -EINVAL;
790 q = bdev_get_queue(zoned_dev->bdev);
791 if (zone_nr_sectors &&
792 zone_nr_sectors != blk_queue_zone_sectors(q)) {
793 ti->error = "Zone nr sectors mismatch";
794 return -EINVAL;
796 zone_nr_sectors = blk_queue_zone_sectors(q);
797 zoned_dev->zone_nr_sectors = zone_nr_sectors;
798 zoned_dev->nr_zones =
799 blkdev_nr_zones(zoned_dev->bdev->bd_disk);
801 } else {
802 reg_dev = NULL;
803 zoned_dev = &dmz->dev[0];
804 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
805 ti->error = "Disk is not a zoned device";
806 return -EINVAL;
808 q = bdev_get_queue(zoned_dev->bdev);
809 zoned_dev->zone_nr_sectors = blk_queue_zone_sectors(q);
810 zoned_dev->nr_zones = blkdev_nr_zones(zoned_dev->bdev->bd_disk);
813 if (reg_dev) {
814 sector_t zone_offset;
816 reg_dev->zone_nr_sectors = zone_nr_sectors;
817 reg_dev->nr_zones =
818 DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
819 reg_dev->zone_nr_sectors);
820 reg_dev->zone_offset = 0;
821 zone_offset = reg_dev->nr_zones;
822 for (i = 1; i < dmz->nr_ddevs; i++) {
823 dmz->dev[i].zone_offset = zone_offset;
824 zone_offset += dmz->dev[i].nr_zones;
827 return 0;
831 * Setup target.
833 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
835 struct dmz_target *dmz;
836 int ret, i;
838 /* Check arguments */
839 if (argc < 1) {
840 ti->error = "Invalid argument count";
841 return -EINVAL;
844 /* Allocate and initialize the target descriptor */
845 dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
846 if (!dmz) {
847 ti->error = "Unable to allocate the zoned target descriptor";
848 return -ENOMEM;
850 dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
851 if (!dmz->dev) {
852 ti->error = "Unable to allocate the zoned device descriptors";
853 kfree(dmz);
854 return -ENOMEM;
856 dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
857 if (!dmz->ddev) {
858 ti->error = "Unable to allocate the dm device descriptors";
859 ret = -ENOMEM;
860 goto err;
862 dmz->nr_ddevs = argc;
864 ti->private = dmz;
866 /* Get the target zoned block device */
867 for (i = 0; i < argc; i++) {
868 ret = dmz_get_zoned_device(ti, argv[i], i, argc);
869 if (ret)
870 goto err_dev;
872 ret = dmz_fixup_devices(ti);
873 if (ret)
874 goto err_dev;
876 /* Initialize metadata */
877 ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
878 dm_table_device_name(ti->table));
879 if (ret) {
880 ti->error = "Metadata initialization failed";
881 goto err_dev;
884 /* Set target (no write same support) */
885 ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
886 ti->num_flush_bios = 1;
887 ti->num_discard_bios = 1;
888 ti->num_write_zeroes_bios = 1;
889 ti->per_io_data_size = sizeof(struct dmz_bioctx);
890 ti->flush_supported = true;
891 ti->discards_supported = true;
893 /* The exposed capacity is the number of chunks that can be mapped */
894 ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
895 dmz_zone_nr_sectors_shift(dmz->metadata);
897 /* Zone BIO */
898 ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
899 if (ret) {
900 ti->error = "Create BIO set failed";
901 goto err_meta;
904 /* Chunk BIO work */
905 mutex_init(&dmz->chunk_lock);
906 INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
907 dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
908 WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
909 dmz_metadata_label(dmz->metadata));
910 if (!dmz->chunk_wq) {
911 ti->error = "Create chunk workqueue failed";
912 ret = -ENOMEM;
913 goto err_bio;
916 /* Flush work */
917 spin_lock_init(&dmz->flush_lock);
918 bio_list_init(&dmz->flush_list);
919 INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
920 dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
921 dmz_metadata_label(dmz->metadata));
922 if (!dmz->flush_wq) {
923 ti->error = "Create flush workqueue failed";
924 ret = -ENOMEM;
925 goto err_cwq;
927 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
929 /* Initialize reclaim */
930 for (i = 0; i < dmz->nr_ddevs; i++) {
931 ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
932 if (ret) {
933 ti->error = "Zone reclaim initialization failed";
934 goto err_fwq;
938 DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
939 dmz_metadata_label(dmz->metadata),
940 (unsigned long long)ti->len,
941 (unsigned long long)dmz_sect2blk(ti->len));
943 return 0;
944 err_fwq:
945 destroy_workqueue(dmz->flush_wq);
946 err_cwq:
947 destroy_workqueue(dmz->chunk_wq);
948 err_bio:
949 mutex_destroy(&dmz->chunk_lock);
950 bioset_exit(&dmz->bio_set);
951 err_meta:
952 dmz_dtr_metadata(dmz->metadata);
953 err_dev:
954 dmz_put_zoned_device(ti);
955 err:
956 kfree(dmz->dev);
957 kfree(dmz);
959 return ret;
963 * Cleanup target.
965 static void dmz_dtr(struct dm_target *ti)
967 struct dmz_target *dmz = ti->private;
968 int i;
970 flush_workqueue(dmz->chunk_wq);
971 destroy_workqueue(dmz->chunk_wq);
973 for (i = 0; i < dmz->nr_ddevs; i++)
974 dmz_dtr_reclaim(dmz->dev[i].reclaim);
976 cancel_delayed_work_sync(&dmz->flush_work);
977 destroy_workqueue(dmz->flush_wq);
979 (void) dmz_flush_metadata(dmz->metadata);
981 dmz_dtr_metadata(dmz->metadata);
983 bioset_exit(&dmz->bio_set);
985 dmz_put_zoned_device(ti);
987 mutex_destroy(&dmz->chunk_lock);
989 kfree(dmz->dev);
990 kfree(dmz);
994 * Setup target request queue limits.
996 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
998 struct dmz_target *dmz = ti->private;
999 unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
1001 limits->logical_block_size = DMZ_BLOCK_SIZE;
1002 limits->physical_block_size = DMZ_BLOCK_SIZE;
1004 blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1005 blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1007 limits->discard_alignment = DMZ_BLOCK_SIZE;
1008 limits->discard_granularity = DMZ_BLOCK_SIZE;
1009 limits->max_discard_sectors = chunk_sectors;
1010 limits->max_hw_discard_sectors = chunk_sectors;
1011 limits->max_write_zeroes_sectors = chunk_sectors;
1013 /* FS hint to try to align to the device zone size */
1014 limits->chunk_sectors = chunk_sectors;
1015 limits->max_sectors = chunk_sectors;
1017 /* We are exposing a drive-managed zoned block device */
1018 limits->zoned = BLK_ZONED_NONE;
1022 * Pass on ioctl to the backend device.
1024 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1026 struct dmz_target *dmz = ti->private;
1027 struct dmz_dev *dev = &dmz->dev[0];
1029 if (!dmz_check_bdev(dev))
1030 return -EIO;
1032 *bdev = dev->bdev;
1034 return 0;
1038 * Stop works on suspend.
1040 static void dmz_suspend(struct dm_target *ti)
1042 struct dmz_target *dmz = ti->private;
1043 int i;
1045 flush_workqueue(dmz->chunk_wq);
1046 for (i = 0; i < dmz->nr_ddevs; i++)
1047 dmz_suspend_reclaim(dmz->dev[i].reclaim);
1048 cancel_delayed_work_sync(&dmz->flush_work);
1052 * Restart works on resume or if suspend failed.
1054 static void dmz_resume(struct dm_target *ti)
1056 struct dmz_target *dmz = ti->private;
1057 int i;
1059 queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1060 for (i = 0; i < dmz->nr_ddevs; i++)
1061 dmz_resume_reclaim(dmz->dev[i].reclaim);
1064 static int dmz_iterate_devices(struct dm_target *ti,
1065 iterate_devices_callout_fn fn, void *data)
1067 struct dmz_target *dmz = ti->private;
1068 unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1069 sector_t capacity;
1070 int i, r;
1072 for (i = 0; i < dmz->nr_ddevs; i++) {
1073 capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1074 r = fn(ti, dmz->ddev[i], 0, capacity, data);
1075 if (r)
1076 break;
1078 return r;
1081 static void dmz_status(struct dm_target *ti, status_type_t type,
1082 unsigned int status_flags, char *result,
1083 unsigned int maxlen)
1085 struct dmz_target *dmz = ti->private;
1086 ssize_t sz = 0;
1087 char buf[BDEVNAME_SIZE];
1088 struct dmz_dev *dev;
1089 int i;
1091 switch (type) {
1092 case STATUSTYPE_INFO:
1093 DMEMIT("%u zones %u/%u cache",
1094 dmz_nr_zones(dmz->metadata),
1095 dmz_nr_unmap_cache_zones(dmz->metadata),
1096 dmz_nr_cache_zones(dmz->metadata));
1097 for (i = 0; i < dmz->nr_ddevs; i++) {
1099 * For a multi-device setup the first device
1100 * contains only cache zones.
1102 if ((i == 0) &&
1103 (dmz_nr_cache_zones(dmz->metadata) > 0))
1104 continue;
1105 DMEMIT(" %u/%u random %u/%u sequential",
1106 dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1107 dmz_nr_rnd_zones(dmz->metadata, i),
1108 dmz_nr_unmap_seq_zones(dmz->metadata, i),
1109 dmz_nr_seq_zones(dmz->metadata, i));
1111 break;
1112 case STATUSTYPE_TABLE:
1113 dev = &dmz->dev[0];
1114 format_dev_t(buf, dev->bdev->bd_dev);
1115 DMEMIT("%s", buf);
1116 for (i = 1; i < dmz->nr_ddevs; i++) {
1117 dev = &dmz->dev[i];
1118 format_dev_t(buf, dev->bdev->bd_dev);
1119 DMEMIT(" %s", buf);
1121 break;
1123 return;
1126 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1127 char *result, unsigned int maxlen)
1129 struct dmz_target *dmz = ti->private;
1130 int r = -EINVAL;
1132 if (!strcasecmp(argv[0], "reclaim")) {
1133 int i;
1135 for (i = 0; i < dmz->nr_ddevs; i++)
1136 dmz_schedule_reclaim(dmz->dev[i].reclaim);
1137 r = 0;
1138 } else
1139 DMERR("unrecognized message %s", argv[0]);
1140 return r;
1143 static struct target_type dmz_type = {
1144 .name = "zoned",
1145 .version = {2, 0, 0},
1146 .features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
1147 .module = THIS_MODULE,
1148 .ctr = dmz_ctr,
1149 .dtr = dmz_dtr,
1150 .map = dmz_map,
1151 .io_hints = dmz_io_hints,
1152 .prepare_ioctl = dmz_prepare_ioctl,
1153 .postsuspend = dmz_suspend,
1154 .resume = dmz_resume,
1155 .iterate_devices = dmz_iterate_devices,
1156 .status = dmz_status,
1157 .message = dmz_message,
1160 static int __init dmz_init(void)
1162 return dm_register_target(&dmz_type);
1165 static void __exit dmz_exit(void)
1167 dm_unregister_target(&dmz_type);
1170 module_init(dmz_init);
1171 module_exit(dmz_exit);
1173 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1174 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1175 MODULE_LICENSE("GPL");