2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
32 #define DM_MSG_PREFIX "core"
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
41 static const char *_name
= DM_NAME
;
43 static unsigned int major
= 0;
44 static unsigned int _major
= 0;
46 static DEFINE_IDR(_minor_idr
);
48 static DEFINE_SPINLOCK(_minor_lock
);
50 static void do_deferred_remove(struct work_struct
*w
);
52 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
54 static struct workqueue_struct
*deferred_remove_workqueue
;
56 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
59 void dm_issue_global_event(void)
61 atomic_inc(&dm_global_event_nr
);
62 wake_up(&dm_global_eventq
);
66 * One of these is allocated (on-stack) per original bio.
73 unsigned sector_count
;
77 * One of these is allocated per clone bio.
79 #define DM_TIO_MAGIC 7282014
84 unsigned target_bio_nr
;
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
94 #define DM_IO_MAGIC 5191977
97 struct mapped_device
*md
;
100 struct bio
*orig_bio
;
101 unsigned long start_time
;
102 spinlock_t endio_lock
;
103 struct dm_stats_aux stats_aux
;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio
;
108 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
110 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
111 if (!tio
->inside_dm_io
)
112 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
113 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
115 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
117 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
119 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
120 if (io
->magic
== DM_IO_MAGIC
)
121 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
122 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
123 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
127 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
129 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
133 #define MINOR_ALLOCED ((void *)-1)
136 * Bits for the md->flags field.
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node
= DM_NUMA_NODE
;
152 * For mempools pre-allocation at the table loading time.
154 struct dm_md_mempools
{
156 struct bio_set io_bs
;
159 struct table_device
{
160 struct list_head list
;
162 struct dm_dev dm_dev
;
166 * Bio-based DM's mempools' reserved IOs set by the user.
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
171 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
173 int param
= READ_ONCE(*module_param
);
174 int modified_param
= 0;
175 bool modified
= true;
178 modified_param
= min
;
179 else if (param
> max
)
180 modified_param
= max
;
185 (void)cmpxchg(module_param
, param
, modified_param
);
186 param
= modified_param
;
192 unsigned __dm_get_module_param(unsigned *module_param
,
193 unsigned def
, unsigned max
)
195 unsigned param
= READ_ONCE(*module_param
);
196 unsigned modified_param
= 0;
199 modified_param
= def
;
200 else if (param
> max
)
201 modified_param
= max
;
203 if (modified_param
) {
204 (void)cmpxchg(module_param
, param
, modified_param
);
205 param
= modified_param
;
211 unsigned dm_get_reserved_bio_based_ios(void)
213 return __dm_get_module_param(&reserved_bio_based_ios
,
214 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
218 static unsigned dm_get_numa_node(void)
220 return __dm_get_module_param_int(&dm_numa_node
,
221 DM_NUMA_NODE
, num_online_nodes() - 1);
224 static int __init
local_init(void)
228 r
= dm_uevent_init();
232 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
233 if (!deferred_remove_workqueue
) {
235 goto out_uevent_exit
;
239 r
= register_blkdev(_major
, _name
);
241 goto out_free_workqueue
;
249 destroy_workqueue(deferred_remove_workqueue
);
256 static void local_exit(void)
258 flush_scheduled_work();
259 destroy_workqueue(deferred_remove_workqueue
);
261 unregister_blkdev(_major
, _name
);
266 DMINFO("cleaned up");
269 static int (*_inits
[])(void) __initdata
= {
280 static void (*_exits
[])(void) = {
291 static int __init
dm_init(void)
293 const int count
= ARRAY_SIZE(_inits
);
297 for (i
= 0; i
< count
; i
++) {
312 static void __exit
dm_exit(void)
314 int i
= ARRAY_SIZE(_exits
);
320 * Should be empty by this point.
322 idr_destroy(&_minor_idr
);
326 * Block device functions
328 int dm_deleting_md(struct mapped_device
*md
)
330 return test_bit(DMF_DELETING
, &md
->flags
);
333 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
335 struct mapped_device
*md
;
337 spin_lock(&_minor_lock
);
339 md
= bdev
->bd_disk
->private_data
;
343 if (test_bit(DMF_FREEING
, &md
->flags
) ||
344 dm_deleting_md(md
)) {
350 atomic_inc(&md
->open_count
);
352 spin_unlock(&_minor_lock
);
354 return md
? 0 : -ENXIO
;
357 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
359 struct mapped_device
*md
;
361 spin_lock(&_minor_lock
);
363 md
= disk
->private_data
;
367 if (atomic_dec_and_test(&md
->open_count
) &&
368 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
369 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
373 spin_unlock(&_minor_lock
);
376 int dm_open_count(struct mapped_device
*md
)
378 return atomic_read(&md
->open_count
);
382 * Guarantees nothing is using the device before it's deleted.
384 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
388 spin_lock(&_minor_lock
);
390 if (dm_open_count(md
)) {
393 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
394 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
397 set_bit(DMF_DELETING
, &md
->flags
);
399 spin_unlock(&_minor_lock
);
404 int dm_cancel_deferred_remove(struct mapped_device
*md
)
408 spin_lock(&_minor_lock
);
410 if (test_bit(DMF_DELETING
, &md
->flags
))
413 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
415 spin_unlock(&_minor_lock
);
420 static void do_deferred_remove(struct work_struct
*w
)
422 dm_deferred_remove();
425 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
427 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
429 return dm_get_geometry(md
, geo
);
432 #ifdef CONFIG_BLK_DEV_ZONED
433 int dm_report_zones_cb(struct blk_zone
*zone
, unsigned int idx
, void *data
)
435 struct dm_report_zones_args
*args
= data
;
436 sector_t sector_diff
= args
->tgt
->begin
- args
->start
;
439 * Ignore zones beyond the target range.
441 if (zone
->start
>= args
->start
+ args
->tgt
->len
)
445 * Remap the start sector and write pointer position of the zone
446 * to match its position in the target range.
448 zone
->start
+= sector_diff
;
449 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
450 if (zone
->cond
== BLK_ZONE_COND_FULL
)
451 zone
->wp
= zone
->start
+ zone
->len
;
452 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
453 zone
->wp
= zone
->start
;
455 zone
->wp
+= sector_diff
;
458 args
->next_sector
= zone
->start
+ zone
->len
;
459 return args
->orig_cb(zone
, args
->zone_idx
++, args
->orig_data
);
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb
);
463 static int dm_blk_report_zones(struct gendisk
*disk
, sector_t sector
,
464 unsigned int nr_zones
, report_zones_cb cb
, void *data
)
466 struct mapped_device
*md
= disk
->private_data
;
467 struct dm_table
*map
;
469 struct dm_report_zones_args args
= {
470 .next_sector
= sector
,
475 if (dm_suspended_md(md
))
478 map
= dm_get_live_table(md
, &srcu_idx
);
485 struct dm_target
*tgt
;
487 tgt
= dm_table_find_target(map
, args
.next_sector
);
488 if (WARN_ON_ONCE(!tgt
->type
->report_zones
)) {
494 ret
= tgt
->type
->report_zones(tgt
, &args
,
495 nr_zones
- args
.zone_idx
);
498 } while (args
.zone_idx
< nr_zones
&&
499 args
.next_sector
< get_capacity(disk
));
503 dm_put_live_table(md
, srcu_idx
);
507 #define dm_blk_report_zones NULL
508 #endif /* CONFIG_BLK_DEV_ZONED */
510 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
511 struct block_device
**bdev
)
513 struct dm_target
*tgt
;
514 struct dm_table
*map
;
519 map
= dm_get_live_table(md
, srcu_idx
);
520 if (!map
|| !dm_table_get_size(map
))
523 /* We only support devices that have a single target */
524 if (dm_table_get_num_targets(map
) != 1)
527 tgt
= dm_table_get_target(map
, 0);
528 if (!tgt
->type
->prepare_ioctl
)
531 if (dm_suspended_md(md
))
534 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
535 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
536 dm_put_live_table(md
, *srcu_idx
);
544 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
546 dm_put_live_table(md
, srcu_idx
);
549 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
550 unsigned int cmd
, unsigned long arg
)
552 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
555 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
561 * Target determined this ioctl is being issued against a
562 * subset of the parent bdev; require extra privileges.
564 if (!capable(CAP_SYS_RAWIO
)) {
566 "%s: sending ioctl %x to DM device without required privilege.",
573 if (!bdev
->bd_disk
->fops
->ioctl
)
576 r
= bdev
->bd_disk
->fops
->ioctl(bdev
, mode
, cmd
, arg
);
578 dm_unprepare_ioctl(md
, srcu_idx
);
582 u64
dm_start_time_ns_from_clone(struct bio
*bio
)
584 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
585 struct dm_io
*io
= tio
->io
;
587 return jiffies_to_nsecs(io
->start_time
);
589 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone
);
591 static void start_io_acct(struct dm_io
*io
)
593 struct mapped_device
*md
= io
->md
;
594 struct bio
*bio
= io
->orig_bio
;
596 io
->start_time
= bio_start_io_acct(bio
);
597 if (unlikely(dm_stats_used(&md
->stats
)))
598 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
599 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
600 false, 0, &io
->stats_aux
);
603 static void end_io_acct(struct dm_io
*io
)
605 struct mapped_device
*md
= io
->md
;
606 struct bio
*bio
= io
->orig_bio
;
607 unsigned long duration
= jiffies
- io
->start_time
;
609 bio_end_io_acct(bio
, io
->start_time
);
611 if (unlikely(dm_stats_used(&md
->stats
)))
612 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
613 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
614 true, duration
, &io
->stats_aux
);
616 /* nudge anyone waiting on suspend queue */
617 if (unlikely(wq_has_sleeper(&md
->wait
)))
621 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
624 struct dm_target_io
*tio
;
627 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
631 tio
= container_of(clone
, struct dm_target_io
, clone
);
632 tio
->inside_dm_io
= true;
635 io
= container_of(tio
, struct dm_io
, tio
);
636 io
->magic
= DM_IO_MAGIC
;
638 atomic_set(&io
->io_count
, 1);
641 spin_lock_init(&io
->endio_lock
);
648 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
650 bio_put(&io
->tio
.clone
);
653 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
654 unsigned target_bio_nr
, gfp_t gfp_mask
)
656 struct dm_target_io
*tio
;
658 if (!ci
->io
->tio
.io
) {
659 /* the dm_target_io embedded in ci->io is available */
662 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
666 tio
= container_of(clone
, struct dm_target_io
, clone
);
667 tio
->inside_dm_io
= false;
670 tio
->magic
= DM_TIO_MAGIC
;
673 tio
->target_bio_nr
= target_bio_nr
;
678 static void free_tio(struct dm_target_io
*tio
)
680 if (tio
->inside_dm_io
)
682 bio_put(&tio
->clone
);
686 * Add the bio to the list of deferred io.
688 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
692 spin_lock_irqsave(&md
->deferred_lock
, flags
);
693 bio_list_add(&md
->deferred
, bio
);
694 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
695 queue_work(md
->wq
, &md
->work
);
699 * Everyone (including functions in this file), should use this
700 * function to access the md->map field, and make sure they call
701 * dm_put_live_table() when finished.
703 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
705 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
707 return srcu_dereference(md
->map
, &md
->io_barrier
);
710 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
712 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
715 void dm_sync_table(struct mapped_device
*md
)
717 synchronize_srcu(&md
->io_barrier
);
718 synchronize_rcu_expedited();
722 * A fast alternative to dm_get_live_table/dm_put_live_table.
723 * The caller must not block between these two functions.
725 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
728 return rcu_dereference(md
->map
);
731 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
736 static char *_dm_claim_ptr
= "I belong to device-mapper";
739 * Open a table device so we can use it as a map destination.
741 static int open_table_device(struct table_device
*td
, dev_t dev
,
742 struct mapped_device
*md
)
744 struct block_device
*bdev
;
748 BUG_ON(td
->dm_dev
.bdev
);
750 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
752 return PTR_ERR(bdev
);
754 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
756 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
760 td
->dm_dev
.bdev
= bdev
;
761 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
766 * Close a table device that we've been using.
768 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
770 if (!td
->dm_dev
.bdev
)
773 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
774 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
775 put_dax(td
->dm_dev
.dax_dev
);
776 td
->dm_dev
.bdev
= NULL
;
777 td
->dm_dev
.dax_dev
= NULL
;
780 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
783 struct table_device
*td
;
785 list_for_each_entry(td
, l
, list
)
786 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
792 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
793 struct dm_dev
**result
)
796 struct table_device
*td
;
798 mutex_lock(&md
->table_devices_lock
);
799 td
= find_table_device(&md
->table_devices
, dev
, mode
);
801 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
803 mutex_unlock(&md
->table_devices_lock
);
807 td
->dm_dev
.mode
= mode
;
808 td
->dm_dev
.bdev
= NULL
;
810 if ((r
= open_table_device(td
, dev
, md
))) {
811 mutex_unlock(&md
->table_devices_lock
);
816 format_dev_t(td
->dm_dev
.name
, dev
);
818 refcount_set(&td
->count
, 1);
819 list_add(&td
->list
, &md
->table_devices
);
821 refcount_inc(&td
->count
);
823 mutex_unlock(&md
->table_devices_lock
);
825 *result
= &td
->dm_dev
;
828 EXPORT_SYMBOL_GPL(dm_get_table_device
);
830 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
832 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
834 mutex_lock(&md
->table_devices_lock
);
835 if (refcount_dec_and_test(&td
->count
)) {
836 close_table_device(td
, md
);
840 mutex_unlock(&md
->table_devices_lock
);
842 EXPORT_SYMBOL(dm_put_table_device
);
844 static void free_table_devices(struct list_head
*devices
)
846 struct list_head
*tmp
, *next
;
848 list_for_each_safe(tmp
, next
, devices
) {
849 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
851 DMWARN("dm_destroy: %s still exists with %d references",
852 td
->dm_dev
.name
, refcount_read(&td
->count
));
858 * Get the geometry associated with a dm device
860 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
868 * Set the geometry of a device.
870 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
872 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
874 if (geo
->start
> sz
) {
875 DMWARN("Start sector is beyond the geometry limits.");
884 static int __noflush_suspending(struct mapped_device
*md
)
886 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
890 * Decrements the number of outstanding ios that a bio has been
891 * cloned into, completing the original io if necc.
893 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
896 blk_status_t io_error
;
898 struct mapped_device
*md
= io
->md
;
900 /* Push-back supersedes any I/O errors */
901 if (unlikely(error
)) {
902 spin_lock_irqsave(&io
->endio_lock
, flags
);
903 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
905 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
908 if (atomic_dec_and_test(&io
->io_count
)) {
909 if (io
->status
== BLK_STS_DM_REQUEUE
) {
911 * Target requested pushing back the I/O.
913 spin_lock_irqsave(&md
->deferred_lock
, flags
);
914 if (__noflush_suspending(md
))
915 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
916 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
918 /* noflush suspend was interrupted. */
919 io
->status
= BLK_STS_IOERR
;
920 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
923 io_error
= io
->status
;
928 if (io_error
== BLK_STS_DM_REQUEUE
)
931 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
933 * Preflush done for flush with data, reissue
934 * without REQ_PREFLUSH.
936 bio
->bi_opf
&= ~REQ_PREFLUSH
;
939 /* done with normal IO or empty flush */
941 bio
->bi_status
= io_error
;
947 void disable_discard(struct mapped_device
*md
)
949 struct queue_limits
*limits
= dm_get_queue_limits(md
);
951 /* device doesn't really support DISCARD, disable it */
952 limits
->max_discard_sectors
= 0;
953 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
956 void disable_write_same(struct mapped_device
*md
)
958 struct queue_limits
*limits
= dm_get_queue_limits(md
);
960 /* device doesn't really support WRITE SAME, disable it */
961 limits
->max_write_same_sectors
= 0;
964 void disable_write_zeroes(struct mapped_device
*md
)
966 struct queue_limits
*limits
= dm_get_queue_limits(md
);
968 /* device doesn't really support WRITE ZEROES, disable it */
969 limits
->max_write_zeroes_sectors
= 0;
972 static void clone_endio(struct bio
*bio
)
974 blk_status_t error
= bio
->bi_status
;
975 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
976 struct dm_io
*io
= tio
->io
;
977 struct mapped_device
*md
= tio
->io
->md
;
978 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
979 struct bio
*orig_bio
= io
->orig_bio
;
981 if (unlikely(error
== BLK_STS_TARGET
)) {
982 if (bio_op(bio
) == REQ_OP_DISCARD
&&
983 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
985 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
986 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
987 disable_write_same(md
);
988 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
989 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
990 disable_write_zeroes(md
);
994 * For zone-append bios get offset in zone of the written
995 * sector and add that to the original bio sector pos.
997 if (bio_op(orig_bio
) == REQ_OP_ZONE_APPEND
) {
998 sector_t written_sector
= bio
->bi_iter
.bi_sector
;
999 struct request_queue
*q
= orig_bio
->bi_disk
->queue
;
1000 u64 mask
= (u64
)blk_queue_zone_sectors(q
) - 1;
1002 orig_bio
->bi_iter
.bi_sector
+= written_sector
& mask
;
1006 int r
= endio(tio
->ti
, bio
, &error
);
1008 case DM_ENDIO_REQUEUE
:
1009 error
= BLK_STS_DM_REQUEUE
;
1013 case DM_ENDIO_INCOMPLETE
:
1014 /* The target will handle the io */
1017 DMWARN("unimplemented target endio return value: %d", r
);
1023 dec_pending(io
, error
);
1027 * Return maximum size of I/O possible at the supplied sector up to the current
1030 static inline sector_t
max_io_len_target_boundary(struct dm_target
*ti
,
1031 sector_t target_offset
)
1033 return ti
->len
- target_offset
;
1036 static sector_t
max_io_len(struct dm_target
*ti
, sector_t sector
)
1038 sector_t target_offset
= dm_target_offset(ti
, sector
);
1039 sector_t len
= max_io_len_target_boundary(ti
, target_offset
);
1043 * Does the target need to split IO even further?
1044 * - varied (per target) IO splitting is a tenet of DM; this
1045 * explains why stacked chunk_sectors based splitting via
1046 * blk_max_size_offset() isn't possible here. So pass in
1047 * ti->max_io_len to override stacked chunk_sectors.
1049 if (ti
->max_io_len
) {
1050 max_len
= blk_max_size_offset(ti
->table
->md
->queue
,
1051 target_offset
, ti
->max_io_len
);
1059 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1061 if (len
> UINT_MAX
) {
1062 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1063 (unsigned long long)len
, UINT_MAX
);
1064 ti
->error
= "Maximum size of target IO is too large";
1068 ti
->max_io_len
= (uint32_t) len
;
1072 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1074 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1075 sector_t sector
, int *srcu_idx
)
1076 __acquires(md
->io_barrier
)
1078 struct dm_table
*map
;
1079 struct dm_target
*ti
;
1081 map
= dm_get_live_table(md
, srcu_idx
);
1085 ti
= dm_table_find_target(map
, sector
);
1092 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1093 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1095 struct mapped_device
*md
= dax_get_private(dax_dev
);
1096 sector_t sector
= pgoff
* PAGE_SECTORS
;
1097 struct dm_target
*ti
;
1098 long len
, ret
= -EIO
;
1101 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1105 if (!ti
->type
->direct_access
)
1107 len
= max_io_len(ti
, sector
) / PAGE_SECTORS
;
1110 nr_pages
= min(len
, nr_pages
);
1111 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1114 dm_put_live_table(md
, srcu_idx
);
1119 static bool dm_dax_supported(struct dax_device
*dax_dev
, struct block_device
*bdev
,
1120 int blocksize
, sector_t start
, sector_t len
)
1122 struct mapped_device
*md
= dax_get_private(dax_dev
);
1123 struct dm_table
*map
;
1127 map
= dm_get_live_table(md
, &srcu_idx
);
1131 ret
= dm_table_supports_dax(map
, device_supports_dax
, &blocksize
);
1134 dm_put_live_table(md
, srcu_idx
);
1139 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1140 void *addr
, size_t bytes
, struct iov_iter
*i
)
1142 struct mapped_device
*md
= dax_get_private(dax_dev
);
1143 sector_t sector
= pgoff
* PAGE_SECTORS
;
1144 struct dm_target
*ti
;
1148 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1152 if (!ti
->type
->dax_copy_from_iter
) {
1153 ret
= copy_from_iter(addr
, bytes
, i
);
1156 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1158 dm_put_live_table(md
, srcu_idx
);
1163 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1164 void *addr
, size_t bytes
, struct iov_iter
*i
)
1166 struct mapped_device
*md
= dax_get_private(dax_dev
);
1167 sector_t sector
= pgoff
* PAGE_SECTORS
;
1168 struct dm_target
*ti
;
1172 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1176 if (!ti
->type
->dax_copy_to_iter
) {
1177 ret
= copy_to_iter(addr
, bytes
, i
);
1180 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1182 dm_put_live_table(md
, srcu_idx
);
1187 static int dm_dax_zero_page_range(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1190 struct mapped_device
*md
= dax_get_private(dax_dev
);
1191 sector_t sector
= pgoff
* PAGE_SECTORS
;
1192 struct dm_target
*ti
;
1196 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1200 if (WARN_ON(!ti
->type
->dax_zero_page_range
)) {
1202 * ->zero_page_range() is mandatory dax operation. If we are
1203 * here, something is wrong.
1207 ret
= ti
->type
->dax_zero_page_range(ti
, pgoff
, nr_pages
);
1209 dm_put_live_table(md
, srcu_idx
);
1215 * A target may call dm_accept_partial_bio only from the map routine. It is
1216 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1217 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1219 * dm_accept_partial_bio informs the dm that the target only wants to process
1220 * additional n_sectors sectors of the bio and the rest of the data should be
1221 * sent in a next bio.
1223 * A diagram that explains the arithmetics:
1224 * +--------------------+---------------+-------+
1226 * +--------------------+---------------+-------+
1228 * <-------------- *tio->len_ptr --------------->
1229 * <------- bi_size ------->
1232 * Region 1 was already iterated over with bio_advance or similar function.
1233 * (it may be empty if the target doesn't use bio_advance)
1234 * Region 2 is the remaining bio size that the target wants to process.
1235 * (it may be empty if region 1 is non-empty, although there is no reason
1237 * The target requires that region 3 is to be sent in the next bio.
1239 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1240 * the partially processed part (the sum of regions 1+2) must be the same for all
1241 * copies of the bio.
1243 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1245 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1246 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1247 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1248 BUG_ON(bi_size
> *tio
->len_ptr
);
1249 BUG_ON(n_sectors
> bi_size
);
1250 *tio
->len_ptr
-= bi_size
- n_sectors
;
1251 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1253 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1255 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1259 struct bio
*clone
= &tio
->clone
;
1260 struct dm_io
*io
= tio
->io
;
1261 struct dm_target
*ti
= tio
->ti
;
1262 blk_qc_t ret
= BLK_QC_T_NONE
;
1264 clone
->bi_end_io
= clone_endio
;
1267 * Map the clone. If r == 0 we don't need to do
1268 * anything, the target has assumed ownership of
1271 atomic_inc(&io
->io_count
);
1272 sector
= clone
->bi_iter
.bi_sector
;
1274 r
= ti
->type
->map(ti
, clone
);
1276 case DM_MAPIO_SUBMITTED
:
1278 case DM_MAPIO_REMAPPED
:
1279 /* the bio has been remapped so dispatch it */
1280 trace_block_bio_remap(clone
, bio_dev(io
->orig_bio
), sector
);
1281 ret
= submit_bio_noacct(clone
);
1285 dec_pending(io
, BLK_STS_IOERR
);
1287 case DM_MAPIO_REQUEUE
:
1289 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1292 DMWARN("unimplemented target map return value: %d", r
);
1299 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1301 bio
->bi_iter
.bi_sector
= sector
;
1302 bio
->bi_iter
.bi_size
= to_bytes(len
);
1306 * Creates a bio that consists of range of complete bvecs.
1308 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1309 sector_t sector
, unsigned len
)
1311 struct bio
*clone
= &tio
->clone
;
1314 __bio_clone_fast(clone
, bio
);
1316 r
= bio_crypt_clone(clone
, bio
, GFP_NOIO
);
1320 if (bio_integrity(bio
)) {
1321 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1322 !dm_target_passes_integrity(tio
->ti
->type
))) {
1323 DMWARN("%s: the target %s doesn't support integrity data.",
1324 dm_device_name(tio
->io
->md
),
1325 tio
->ti
->type
->name
);
1329 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1334 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1335 clone
->bi_iter
.bi_size
= to_bytes(len
);
1337 if (bio_integrity(bio
))
1338 bio_integrity_trim(clone
);
1343 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1344 struct dm_target
*ti
, unsigned num_bios
)
1346 struct dm_target_io
*tio
;
1352 if (num_bios
== 1) {
1353 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1354 bio_list_add(blist
, &tio
->clone
);
1358 for (try = 0; try < 2; try++) {
1363 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1364 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1365 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1369 bio_list_add(blist
, &tio
->clone
);
1372 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1373 if (bio_nr
== num_bios
)
1376 while ((bio
= bio_list_pop(blist
))) {
1377 tio
= container_of(bio
, struct dm_target_io
, clone
);
1383 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1384 struct dm_target_io
*tio
, unsigned *len
)
1386 struct bio
*clone
= &tio
->clone
;
1390 __bio_clone_fast(clone
, ci
->bio
);
1392 bio_setup_sector(clone
, ci
->sector
, *len
);
1394 return __map_bio(tio
);
1397 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1398 unsigned num_bios
, unsigned *len
)
1400 struct bio_list blist
= BIO_EMPTY_LIST
;
1402 struct dm_target_io
*tio
;
1404 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1406 while ((bio
= bio_list_pop(&blist
))) {
1407 tio
= container_of(bio
, struct dm_target_io
, clone
);
1408 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1412 static int __send_empty_flush(struct clone_info
*ci
)
1414 unsigned target_nr
= 0;
1415 struct dm_target
*ti
;
1416 struct bio flush_bio
;
1419 * Use an on-stack bio for this, it's safe since we don't
1420 * need to reference it after submit. It's just used as
1421 * the basis for the clone(s).
1423 bio_init(&flush_bio
, NULL
, 0);
1424 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1425 flush_bio
.bi_disk
= ci
->io
->md
->disk
;
1426 bio_associate_blkg(&flush_bio
);
1428 ci
->bio
= &flush_bio
;
1429 ci
->sector_count
= 0;
1431 BUG_ON(bio_has_data(ci
->bio
));
1432 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1433 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1435 bio_uninit(ci
->bio
);
1439 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1440 sector_t sector
, unsigned *len
)
1442 struct bio
*bio
= ci
->bio
;
1443 struct dm_target_io
*tio
;
1446 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1448 r
= clone_bio(tio
, bio
, sector
, *len
);
1453 (void) __map_bio(tio
);
1458 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1464 * Even though the device advertised support for this type of
1465 * request, that does not mean every target supports it, and
1466 * reconfiguration might also have changed that since the
1467 * check was performed.
1472 len
= min_t(sector_t
, ci
->sector_count
,
1473 max_io_len_target_boundary(ti
, dm_target_offset(ti
, ci
->sector
)));
1475 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1478 ci
->sector_count
-= len
;
1483 static bool is_abnormal_io(struct bio
*bio
)
1487 switch (bio_op(bio
)) {
1488 case REQ_OP_DISCARD
:
1489 case REQ_OP_SECURE_ERASE
:
1490 case REQ_OP_WRITE_SAME
:
1491 case REQ_OP_WRITE_ZEROES
:
1499 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1502 struct bio
*bio
= ci
->bio
;
1503 unsigned num_bios
= 0;
1505 switch (bio_op(bio
)) {
1506 case REQ_OP_DISCARD
:
1507 num_bios
= ti
->num_discard_bios
;
1509 case REQ_OP_SECURE_ERASE
:
1510 num_bios
= ti
->num_secure_erase_bios
;
1512 case REQ_OP_WRITE_SAME
:
1513 num_bios
= ti
->num_write_same_bios
;
1515 case REQ_OP_WRITE_ZEROES
:
1516 num_bios
= ti
->num_write_zeroes_bios
;
1522 *result
= __send_changing_extent_only(ci
, ti
, num_bios
);
1527 * Select the correct strategy for processing a non-flush bio.
1529 static int __split_and_process_non_flush(struct clone_info
*ci
)
1531 struct dm_target
*ti
;
1535 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1539 if (__process_abnormal_io(ci
, ti
, &r
))
1542 len
= min_t(sector_t
, max_io_len(ti
, ci
->sector
), ci
->sector_count
);
1544 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1549 ci
->sector_count
-= len
;
1554 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1555 struct dm_table
*map
, struct bio
*bio
)
1558 ci
->io
= alloc_io(md
, bio
);
1559 ci
->sector
= bio
->bi_iter
.bi_sector
;
1562 #define __dm_part_stat_sub(part, field, subnd) \
1563 (part_stat_get(part, field) -= (subnd))
1566 * Entry point to split a bio into clones and submit them to the targets.
1568 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1569 struct dm_table
*map
, struct bio
*bio
)
1571 struct clone_info ci
;
1572 blk_qc_t ret
= BLK_QC_T_NONE
;
1575 init_clone_info(&ci
, md
, map
, bio
);
1577 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1578 error
= __send_empty_flush(&ci
);
1579 /* dec_pending submits any data associated with flush */
1580 } else if (op_is_zone_mgmt(bio_op(bio
))) {
1582 ci
.sector_count
= 0;
1583 error
= __split_and_process_non_flush(&ci
);
1586 ci
.sector_count
= bio_sectors(bio
);
1587 while (ci
.sector_count
&& !error
) {
1588 error
= __split_and_process_non_flush(&ci
);
1589 if (ci
.sector_count
&& !error
) {
1591 * Remainder must be passed to submit_bio_noacct()
1592 * so that it gets handled *after* bios already submitted
1593 * have been completely processed.
1594 * We take a clone of the original to store in
1595 * ci.io->orig_bio to be used by end_io_acct() and
1596 * for dec_pending to use for completion handling.
1598 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1599 GFP_NOIO
, &md
->queue
->bio_split
);
1600 ci
.io
->orig_bio
= b
;
1603 * Adjust IO stats for each split, otherwise upon queue
1604 * reentry there will be redundant IO accounting.
1605 * NOTE: this is a stop-gap fix, a proper fix involves
1606 * significant refactoring of DM core's bio splitting
1607 * (by eliminating DM's splitting and just using bio_split)
1610 __dm_part_stat_sub(dm_disk(md
)->part0
,
1611 sectors
[op_stat_group(bio_op(bio
))], ci
.sector_count
);
1615 trace_block_split(b
, bio
->bi_iter
.bi_sector
);
1616 ret
= submit_bio_noacct(bio
);
1622 /* drop the extra reference count */
1623 dec_pending(ci
.io
, errno_to_blk_status(error
));
1627 static blk_qc_t
dm_submit_bio(struct bio
*bio
)
1629 struct mapped_device
*md
= bio
->bi_disk
->private_data
;
1630 blk_qc_t ret
= BLK_QC_T_NONE
;
1632 struct dm_table
*map
;
1634 map
= dm_get_live_table(md
, &srcu_idx
);
1635 if (unlikely(!map
)) {
1636 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1637 dm_device_name(md
));
1642 /* If suspended, queue this IO for later */
1643 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1644 if (bio
->bi_opf
& REQ_NOWAIT
)
1645 bio_wouldblock_error(bio
);
1646 else if (bio
->bi_opf
& REQ_RAHEAD
)
1654 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1655 * otherwise associated queue_limits won't be imposed.
1657 if (is_abnormal_io(bio
))
1658 blk_queue_split(&bio
);
1660 ret
= __split_and_process_bio(md
, map
, bio
);
1662 dm_put_live_table(md
, srcu_idx
);
1666 /*-----------------------------------------------------------------
1667 * An IDR is used to keep track of allocated minor numbers.
1668 *---------------------------------------------------------------*/
1669 static void free_minor(int minor
)
1671 spin_lock(&_minor_lock
);
1672 idr_remove(&_minor_idr
, minor
);
1673 spin_unlock(&_minor_lock
);
1677 * See if the device with a specific minor # is free.
1679 static int specific_minor(int minor
)
1683 if (minor
>= (1 << MINORBITS
))
1686 idr_preload(GFP_KERNEL
);
1687 spin_lock(&_minor_lock
);
1689 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1691 spin_unlock(&_minor_lock
);
1694 return r
== -ENOSPC
? -EBUSY
: r
;
1698 static int next_free_minor(int *minor
)
1702 idr_preload(GFP_KERNEL
);
1703 spin_lock(&_minor_lock
);
1705 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1707 spin_unlock(&_minor_lock
);
1715 static const struct block_device_operations dm_blk_dops
;
1716 static const struct block_device_operations dm_rq_blk_dops
;
1717 static const struct dax_operations dm_dax_ops
;
1719 static void dm_wq_work(struct work_struct
*work
);
1721 static void cleanup_mapped_device(struct mapped_device
*md
)
1724 destroy_workqueue(md
->wq
);
1725 bioset_exit(&md
->bs
);
1726 bioset_exit(&md
->io_bs
);
1729 kill_dax(md
->dax_dev
);
1730 put_dax(md
->dax_dev
);
1735 spin_lock(&_minor_lock
);
1736 md
->disk
->private_data
= NULL
;
1737 spin_unlock(&_minor_lock
);
1738 del_gendisk(md
->disk
);
1743 blk_cleanup_queue(md
->queue
);
1745 cleanup_srcu_struct(&md
->io_barrier
);
1747 mutex_destroy(&md
->suspend_lock
);
1748 mutex_destroy(&md
->type_lock
);
1749 mutex_destroy(&md
->table_devices_lock
);
1751 dm_mq_cleanup_mapped_device(md
);
1755 * Allocate and initialise a blank device with a given minor.
1757 static struct mapped_device
*alloc_dev(int minor
)
1759 int r
, numa_node_id
= dm_get_numa_node();
1760 struct mapped_device
*md
;
1763 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1765 DMWARN("unable to allocate device, out of memory.");
1769 if (!try_module_get(THIS_MODULE
))
1770 goto bad_module_get
;
1772 /* get a minor number for the dev */
1773 if (minor
== DM_ANY_MINOR
)
1774 r
= next_free_minor(&minor
);
1776 r
= specific_minor(minor
);
1780 r
= init_srcu_struct(&md
->io_barrier
);
1782 goto bad_io_barrier
;
1784 md
->numa_node_id
= numa_node_id
;
1785 md
->init_tio_pdu
= false;
1786 md
->type
= DM_TYPE_NONE
;
1787 mutex_init(&md
->suspend_lock
);
1788 mutex_init(&md
->type_lock
);
1789 mutex_init(&md
->table_devices_lock
);
1790 spin_lock_init(&md
->deferred_lock
);
1791 atomic_set(&md
->holders
, 1);
1792 atomic_set(&md
->open_count
, 0);
1793 atomic_set(&md
->event_nr
, 0);
1794 atomic_set(&md
->uevent_seq
, 0);
1795 INIT_LIST_HEAD(&md
->uevent_list
);
1796 INIT_LIST_HEAD(&md
->table_devices
);
1797 spin_lock_init(&md
->uevent_lock
);
1800 * default to bio-based until DM table is loaded and md->type
1801 * established. If request-based table is loaded: blk-mq will
1802 * override accordingly.
1804 md
->queue
= blk_alloc_queue(numa_node_id
);
1808 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1812 init_waitqueue_head(&md
->wait
);
1813 INIT_WORK(&md
->work
, dm_wq_work
);
1814 init_waitqueue_head(&md
->eventq
);
1815 init_completion(&md
->kobj_holder
.completion
);
1817 md
->disk
->major
= _major
;
1818 md
->disk
->first_minor
= minor
;
1819 md
->disk
->fops
= &dm_blk_dops
;
1820 md
->disk
->queue
= md
->queue
;
1821 md
->disk
->private_data
= md
;
1822 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1824 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1825 md
->dax_dev
= alloc_dax(md
, md
->disk
->disk_name
,
1827 if (IS_ERR(md
->dax_dev
))
1831 add_disk_no_queue_reg(md
->disk
);
1832 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1834 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1838 dm_stats_init(&md
->stats
);
1840 /* Populate the mapping, nobody knows we exist yet */
1841 spin_lock(&_minor_lock
);
1842 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1843 spin_unlock(&_minor_lock
);
1845 BUG_ON(old_md
!= MINOR_ALLOCED
);
1850 cleanup_mapped_device(md
);
1854 module_put(THIS_MODULE
);
1860 static void unlock_fs(struct mapped_device
*md
);
1862 static void free_dev(struct mapped_device
*md
)
1864 int minor
= MINOR(disk_devt(md
->disk
));
1868 cleanup_mapped_device(md
);
1870 free_table_devices(&md
->table_devices
);
1871 dm_stats_cleanup(&md
->stats
);
1874 module_put(THIS_MODULE
);
1878 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1880 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1883 if (dm_table_bio_based(t
)) {
1885 * The md may already have mempools that need changing.
1886 * If so, reload bioset because front_pad may have changed
1887 * because a different table was loaded.
1889 bioset_exit(&md
->bs
);
1890 bioset_exit(&md
->io_bs
);
1892 } else if (bioset_initialized(&md
->bs
)) {
1894 * There's no need to reload with request-based dm
1895 * because the size of front_pad doesn't change.
1896 * Note for future: If you are to reload bioset,
1897 * prep-ed requests in the queue may refer
1898 * to bio from the old bioset, so you must walk
1899 * through the queue to unprep.
1905 bioset_initialized(&md
->bs
) ||
1906 bioset_initialized(&md
->io_bs
));
1908 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
1911 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
1913 bioset_exit(&md
->bs
);
1915 /* mempool bind completed, no longer need any mempools in the table */
1916 dm_table_free_md_mempools(t
);
1921 * Bind a table to the device.
1923 static void event_callback(void *context
)
1925 unsigned long flags
;
1927 struct mapped_device
*md
= (struct mapped_device
*) context
;
1929 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1930 list_splice_init(&md
->uevent_list
, &uevents
);
1931 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1933 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1935 atomic_inc(&md
->event_nr
);
1936 wake_up(&md
->eventq
);
1937 dm_issue_global_event();
1941 * Returns old map, which caller must destroy.
1943 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
1944 struct queue_limits
*limits
)
1946 struct dm_table
*old_map
;
1947 struct request_queue
*q
= md
->queue
;
1948 bool request_based
= dm_table_request_based(t
);
1952 lockdep_assert_held(&md
->suspend_lock
);
1954 size
= dm_table_get_size(t
);
1957 * Wipe any geometry if the size of the table changed.
1959 if (size
!= dm_get_size(md
))
1960 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1962 set_capacity_and_notify(md
->disk
, size
);
1964 dm_table_event_callback(t
, event_callback
, md
);
1967 * The queue hasn't been stopped yet, if the old table type wasn't
1968 * for request-based during suspension. So stop it to prevent
1969 * I/O mapping before resume.
1970 * This must be done before setting the queue restrictions,
1971 * because request-based dm may be run just after the setting.
1976 if (request_based
) {
1978 * Leverage the fact that request-based DM targets are
1979 * immutable singletons - used to optimize dm_mq_queue_rq.
1981 md
->immutable_target
= dm_table_get_immutable_target(t
);
1984 ret
= __bind_mempools(md
, t
);
1986 old_map
= ERR_PTR(ret
);
1990 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
1991 rcu_assign_pointer(md
->map
, (void *)t
);
1992 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
1994 dm_table_set_restrictions(t
, q
, limits
);
2003 * Returns unbound table for the caller to free.
2005 static struct dm_table
*__unbind(struct mapped_device
*md
)
2007 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2012 dm_table_event_callback(map
, NULL
, NULL
);
2013 RCU_INIT_POINTER(md
->map
, NULL
);
2020 * Constructor for a new device.
2022 int dm_create(int minor
, struct mapped_device
**result
)
2025 struct mapped_device
*md
;
2027 md
= alloc_dev(minor
);
2031 r
= dm_sysfs_init(md
);
2042 * Functions to manage md->type.
2043 * All are required to hold md->type_lock.
2045 void dm_lock_md_type(struct mapped_device
*md
)
2047 mutex_lock(&md
->type_lock
);
2050 void dm_unlock_md_type(struct mapped_device
*md
)
2052 mutex_unlock(&md
->type_lock
);
2055 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2057 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2061 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2066 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2068 return md
->immutable_target_type
;
2072 * The queue_limits are only valid as long as you have a reference
2075 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2077 BUG_ON(!atomic_read(&md
->holders
));
2078 return &md
->queue
->limits
;
2080 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2083 * Setup the DM device's queue based on md's type
2085 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2088 struct queue_limits limits
;
2089 enum dm_queue_mode type
= dm_get_md_type(md
);
2092 case DM_TYPE_REQUEST_BASED
:
2093 md
->disk
->fops
= &dm_rq_blk_dops
;
2094 r
= dm_mq_init_request_queue(md
, t
);
2096 DMERR("Cannot initialize queue for request-based dm mapped device");
2100 case DM_TYPE_BIO_BASED
:
2101 case DM_TYPE_DAX_BIO_BASED
:
2108 r
= dm_calculate_queue_limits(t
, &limits
);
2110 DMERR("Cannot calculate initial queue limits");
2113 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2114 blk_register_queue(md
->disk
);
2119 struct mapped_device
*dm_get_md(dev_t dev
)
2121 struct mapped_device
*md
;
2122 unsigned minor
= MINOR(dev
);
2124 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2127 spin_lock(&_minor_lock
);
2129 md
= idr_find(&_minor_idr
, minor
);
2130 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2131 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2137 spin_unlock(&_minor_lock
);
2141 EXPORT_SYMBOL_GPL(dm_get_md
);
2143 void *dm_get_mdptr(struct mapped_device
*md
)
2145 return md
->interface_ptr
;
2148 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2150 md
->interface_ptr
= ptr
;
2153 void dm_get(struct mapped_device
*md
)
2155 atomic_inc(&md
->holders
);
2156 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2159 int dm_hold(struct mapped_device
*md
)
2161 spin_lock(&_minor_lock
);
2162 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2163 spin_unlock(&_minor_lock
);
2167 spin_unlock(&_minor_lock
);
2170 EXPORT_SYMBOL_GPL(dm_hold
);
2172 const char *dm_device_name(struct mapped_device
*md
)
2176 EXPORT_SYMBOL_GPL(dm_device_name
);
2178 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2180 struct dm_table
*map
;
2185 spin_lock(&_minor_lock
);
2186 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2187 set_bit(DMF_FREEING
, &md
->flags
);
2188 spin_unlock(&_minor_lock
);
2190 blk_set_queue_dying(md
->queue
);
2193 * Take suspend_lock so that presuspend and postsuspend methods
2194 * do not race with internal suspend.
2196 mutex_lock(&md
->suspend_lock
);
2197 map
= dm_get_live_table(md
, &srcu_idx
);
2198 if (!dm_suspended_md(md
)) {
2199 dm_table_presuspend_targets(map
);
2200 set_bit(DMF_SUSPENDED
, &md
->flags
);
2201 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2202 dm_table_postsuspend_targets(map
);
2204 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2205 dm_put_live_table(md
, srcu_idx
);
2206 mutex_unlock(&md
->suspend_lock
);
2209 * Rare, but there may be I/O requests still going to complete,
2210 * for example. Wait for all references to disappear.
2211 * No one should increment the reference count of the mapped_device,
2212 * after the mapped_device state becomes DMF_FREEING.
2215 while (atomic_read(&md
->holders
))
2217 else if (atomic_read(&md
->holders
))
2218 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2219 dm_device_name(md
), atomic_read(&md
->holders
));
2222 dm_table_destroy(__unbind(md
));
2226 void dm_destroy(struct mapped_device
*md
)
2228 __dm_destroy(md
, true);
2231 void dm_destroy_immediate(struct mapped_device
*md
)
2233 __dm_destroy(md
, false);
2236 void dm_put(struct mapped_device
*md
)
2238 atomic_dec(&md
->holders
);
2240 EXPORT_SYMBOL_GPL(dm_put
);
2242 static bool md_in_flight_bios(struct mapped_device
*md
)
2245 struct block_device
*part
= dm_disk(md
)->part0
;
2248 for_each_possible_cpu(cpu
) {
2249 sum
+= part_stat_local_read_cpu(part
, in_flight
[0], cpu
);
2250 sum
+= part_stat_local_read_cpu(part
, in_flight
[1], cpu
);
2256 static int dm_wait_for_bios_completion(struct mapped_device
*md
, long task_state
)
2262 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2264 if (!md_in_flight_bios(md
))
2267 if (signal_pending_state(task_state
, current
)) {
2274 finish_wait(&md
->wait
, &wait
);
2279 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2283 if (!queue_is_mq(md
->queue
))
2284 return dm_wait_for_bios_completion(md
, task_state
);
2287 if (!blk_mq_queue_inflight(md
->queue
))
2290 if (signal_pending_state(task_state
, current
)) {
2302 * Process the deferred bios
2304 static void dm_wq_work(struct work_struct
*work
)
2306 struct mapped_device
*md
= container_of(work
, struct mapped_device
, work
);
2309 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2310 spin_lock_irq(&md
->deferred_lock
);
2311 bio
= bio_list_pop(&md
->deferred
);
2312 spin_unlock_irq(&md
->deferred_lock
);
2317 submit_bio_noacct(bio
);
2321 static void dm_queue_flush(struct mapped_device
*md
)
2323 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2324 smp_mb__after_atomic();
2325 queue_work(md
->wq
, &md
->work
);
2329 * Swap in a new table, returning the old one for the caller to destroy.
2331 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2333 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2334 struct queue_limits limits
;
2337 mutex_lock(&md
->suspend_lock
);
2339 /* device must be suspended */
2340 if (!dm_suspended_md(md
))
2344 * If the new table has no data devices, retain the existing limits.
2345 * This helps multipath with queue_if_no_path if all paths disappear,
2346 * then new I/O is queued based on these limits, and then some paths
2349 if (dm_table_has_no_data_devices(table
)) {
2350 live_map
= dm_get_live_table_fast(md
);
2352 limits
= md
->queue
->limits
;
2353 dm_put_live_table_fast(md
);
2357 r
= dm_calculate_queue_limits(table
, &limits
);
2364 map
= __bind(md
, table
, &limits
);
2365 dm_issue_global_event();
2368 mutex_unlock(&md
->suspend_lock
);
2373 * Functions to lock and unlock any filesystem running on the
2376 static int lock_fs(struct mapped_device
*md
)
2380 WARN_ON(test_bit(DMF_FROZEN
, &md
->flags
));
2382 r
= freeze_bdev(md
->disk
->part0
);
2384 set_bit(DMF_FROZEN
, &md
->flags
);
2388 static void unlock_fs(struct mapped_device
*md
)
2390 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2392 thaw_bdev(md
->disk
->part0
);
2393 clear_bit(DMF_FROZEN
, &md
->flags
);
2397 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2398 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2399 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2401 * If __dm_suspend returns 0, the device is completely quiescent
2402 * now. There is no request-processing activity. All new requests
2403 * are being added to md->deferred list.
2405 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2406 unsigned suspend_flags
, long task_state
,
2407 int dmf_suspended_flag
)
2409 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2410 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2413 lockdep_assert_held(&md
->suspend_lock
);
2416 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2417 * This flag is cleared before dm_suspend returns.
2420 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2422 DMDEBUG("%s: suspending with flush", dm_device_name(md
));
2425 * This gets reverted if there's an error later and the targets
2426 * provide the .presuspend_undo hook.
2428 dm_table_presuspend_targets(map
);
2431 * Flush I/O to the device.
2432 * Any I/O submitted after lock_fs() may not be flushed.
2433 * noflush takes precedence over do_lockfs.
2434 * (lock_fs() flushes I/Os and waits for them to complete.)
2436 if (!noflush
&& do_lockfs
) {
2439 dm_table_presuspend_undo_targets(map
);
2445 * Here we must make sure that no processes are submitting requests
2446 * to target drivers i.e. no one may be executing
2447 * __split_and_process_bio from dm_submit_bio.
2449 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2450 * we take the write lock. To prevent any process from reentering
2451 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2452 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2453 * flush_workqueue(md->wq).
2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2457 synchronize_srcu(&md
->io_barrier
);
2460 * Stop md->queue before flushing md->wq in case request-based
2461 * dm defers requests to md->wq from md->queue.
2463 if (dm_request_based(md
))
2464 dm_stop_queue(md
->queue
);
2466 flush_workqueue(md
->wq
);
2469 * At this point no more requests are entering target request routines.
2470 * We call dm_wait_for_completion to wait for all existing requests
2473 r
= dm_wait_for_completion(md
, task_state
);
2475 set_bit(dmf_suspended_flag
, &md
->flags
);
2478 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2480 synchronize_srcu(&md
->io_barrier
);
2482 /* were we interrupted ? */
2486 if (dm_request_based(md
))
2487 dm_start_queue(md
->queue
);
2490 dm_table_presuspend_undo_targets(map
);
2491 /* pushback list is already flushed, so skip flush */
2498 * We need to be able to change a mapping table under a mounted
2499 * filesystem. For example we might want to move some data in
2500 * the background. Before the table can be swapped with
2501 * dm_bind_table, dm_suspend must be called to flush any in
2502 * flight bios and ensure that any further io gets deferred.
2505 * Suspend mechanism in request-based dm.
2507 * 1. Flush all I/Os by lock_fs() if needed.
2508 * 2. Stop dispatching any I/O by stopping the request_queue.
2509 * 3. Wait for all in-flight I/Os to be completed or requeued.
2511 * To abort suspend, start the request_queue.
2513 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2515 struct dm_table
*map
= NULL
;
2519 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2521 if (dm_suspended_md(md
)) {
2526 if (dm_suspended_internally_md(md
)) {
2527 /* already internally suspended, wait for internal resume */
2528 mutex_unlock(&md
->suspend_lock
);
2529 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2535 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2537 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2541 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2542 dm_table_postsuspend_targets(map
);
2543 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2546 mutex_unlock(&md
->suspend_lock
);
2550 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2553 int r
= dm_table_resume_targets(map
);
2561 * Flushing deferred I/Os must be done after targets are resumed
2562 * so that mapping of targets can work correctly.
2563 * Request-based dm is queueing the deferred I/Os in its request_queue.
2565 if (dm_request_based(md
))
2566 dm_start_queue(md
->queue
);
2573 int dm_resume(struct mapped_device
*md
)
2576 struct dm_table
*map
= NULL
;
2580 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2582 if (!dm_suspended_md(md
))
2585 if (dm_suspended_internally_md(md
)) {
2586 /* already internally suspended, wait for internal resume */
2587 mutex_unlock(&md
->suspend_lock
);
2588 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2594 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2595 if (!map
|| !dm_table_get_size(map
))
2598 r
= __dm_resume(md
, map
);
2602 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2604 mutex_unlock(&md
->suspend_lock
);
2610 * Internal suspend/resume works like userspace-driven suspend. It waits
2611 * until all bios finish and prevents issuing new bios to the target drivers.
2612 * It may be used only from the kernel.
2615 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2617 struct dm_table
*map
= NULL
;
2619 lockdep_assert_held(&md
->suspend_lock
);
2621 if (md
->internal_suspend_count
++)
2622 return; /* nested internal suspend */
2624 if (dm_suspended_md(md
)) {
2625 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2626 return; /* nest suspend */
2629 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2632 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2633 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2634 * would require changing .presuspend to return an error -- avoid this
2635 * until there is a need for more elaborate variants of internal suspend.
2637 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2638 DMF_SUSPENDED_INTERNALLY
);
2640 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2641 dm_table_postsuspend_targets(map
);
2642 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2645 static void __dm_internal_resume(struct mapped_device
*md
)
2647 BUG_ON(!md
->internal_suspend_count
);
2649 if (--md
->internal_suspend_count
)
2650 return; /* resume from nested internal suspend */
2652 if (dm_suspended_md(md
))
2653 goto done
; /* resume from nested suspend */
2656 * NOTE: existing callers don't need to call dm_table_resume_targets
2657 * (which may fail -- so best to avoid it for now by passing NULL map)
2659 (void) __dm_resume(md
, NULL
);
2662 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2663 smp_mb__after_atomic();
2664 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2667 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2669 mutex_lock(&md
->suspend_lock
);
2670 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2671 mutex_unlock(&md
->suspend_lock
);
2673 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2675 void dm_internal_resume(struct mapped_device
*md
)
2677 mutex_lock(&md
->suspend_lock
);
2678 __dm_internal_resume(md
);
2679 mutex_unlock(&md
->suspend_lock
);
2681 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2684 * Fast variants of internal suspend/resume hold md->suspend_lock,
2685 * which prevents interaction with userspace-driven suspend.
2688 void dm_internal_suspend_fast(struct mapped_device
*md
)
2690 mutex_lock(&md
->suspend_lock
);
2691 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2694 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2695 synchronize_srcu(&md
->io_barrier
);
2696 flush_workqueue(md
->wq
);
2697 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2699 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2701 void dm_internal_resume_fast(struct mapped_device
*md
)
2703 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2709 mutex_unlock(&md
->suspend_lock
);
2711 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2713 /*-----------------------------------------------------------------
2714 * Event notification.
2715 *---------------------------------------------------------------*/
2716 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2721 char udev_cookie
[DM_COOKIE_LENGTH
];
2722 char *envp
[] = { udev_cookie
, NULL
};
2724 noio_flag
= memalloc_noio_save();
2727 r
= kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2729 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2730 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2731 r
= kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2735 memalloc_noio_restore(noio_flag
);
2740 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2742 return atomic_add_return(1, &md
->uevent_seq
);
2745 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2747 return atomic_read(&md
->event_nr
);
2750 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2752 return wait_event_interruptible(md
->eventq
,
2753 (event_nr
!= atomic_read(&md
->event_nr
)));
2756 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2758 unsigned long flags
;
2760 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2761 list_add(elist
, &md
->uevent_list
);
2762 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2766 * The gendisk is only valid as long as you have a reference
2769 struct gendisk
*dm_disk(struct mapped_device
*md
)
2773 EXPORT_SYMBOL_GPL(dm_disk
);
2775 struct kobject
*dm_kobject(struct mapped_device
*md
)
2777 return &md
->kobj_holder
.kobj
;
2780 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2782 struct mapped_device
*md
;
2784 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2786 spin_lock(&_minor_lock
);
2787 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2793 spin_unlock(&_minor_lock
);
2798 int dm_suspended_md(struct mapped_device
*md
)
2800 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2803 static int dm_post_suspending_md(struct mapped_device
*md
)
2805 return test_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2808 int dm_suspended_internally_md(struct mapped_device
*md
)
2810 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2813 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2815 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2818 int dm_suspended(struct dm_target
*ti
)
2820 return dm_suspended_md(ti
->table
->md
);
2822 EXPORT_SYMBOL_GPL(dm_suspended
);
2824 int dm_post_suspending(struct dm_target
*ti
)
2826 return dm_post_suspending_md(ti
->table
->md
);
2828 EXPORT_SYMBOL_GPL(dm_post_suspending
);
2830 int dm_noflush_suspending(struct dm_target
*ti
)
2832 return __noflush_suspending(ti
->table
->md
);
2834 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2836 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2837 unsigned integrity
, unsigned per_io_data_size
,
2838 unsigned min_pool_size
)
2840 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2841 unsigned int pool_size
= 0;
2842 unsigned int front_pad
, io_front_pad
;
2849 case DM_TYPE_BIO_BASED
:
2850 case DM_TYPE_DAX_BIO_BASED
:
2851 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2852 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2853 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
2854 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
2857 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
2860 case DM_TYPE_REQUEST_BASED
:
2861 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
2862 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2863 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2869 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
2873 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
2879 dm_free_md_mempools(pools
);
2884 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2889 bioset_exit(&pools
->bs
);
2890 bioset_exit(&pools
->io_bs
);
2902 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
2905 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2906 struct dm_table
*table
;
2907 struct dm_target
*ti
;
2908 int ret
= -ENOTTY
, srcu_idx
;
2910 table
= dm_get_live_table(md
, &srcu_idx
);
2911 if (!table
|| !dm_table_get_size(table
))
2914 /* We only support devices that have a single target */
2915 if (dm_table_get_num_targets(table
) != 1)
2917 ti
= dm_table_get_target(table
, 0);
2920 if (!ti
->type
->iterate_devices
)
2923 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
2925 dm_put_live_table(md
, srcu_idx
);
2930 * For register / unregister we need to manually call out to every path.
2932 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
2933 sector_t start
, sector_t len
, void *data
)
2935 struct dm_pr
*pr
= data
;
2936 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
2938 if (!ops
|| !ops
->pr_register
)
2940 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
2943 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2954 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2955 if (ret
&& new_key
) {
2956 /* unregister all paths if we failed to register any path */
2957 pr
.old_key
= new_key
;
2960 pr
.fail_early
= false;
2961 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2967 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
2970 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2971 const struct pr_ops
*ops
;
2974 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
2978 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2979 if (ops
&& ops
->pr_reserve
)
2980 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
2984 dm_unprepare_ioctl(md
, srcu_idx
);
2988 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
2990 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2991 const struct pr_ops
*ops
;
2994 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
2998 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2999 if (ops
&& ops
->pr_release
)
3000 r
= ops
->pr_release(bdev
, key
, type
);
3004 dm_unprepare_ioctl(md
, srcu_idx
);
3008 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3009 enum pr_type type
, bool abort
)
3011 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3012 const struct pr_ops
*ops
;
3015 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3019 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3020 if (ops
&& ops
->pr_preempt
)
3021 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3025 dm_unprepare_ioctl(md
, srcu_idx
);
3029 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3031 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3032 const struct pr_ops
*ops
;
3035 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3039 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3040 if (ops
&& ops
->pr_clear
)
3041 r
= ops
->pr_clear(bdev
, key
);
3045 dm_unprepare_ioctl(md
, srcu_idx
);
3049 static const struct pr_ops dm_pr_ops
= {
3050 .pr_register
= dm_pr_register
,
3051 .pr_reserve
= dm_pr_reserve
,
3052 .pr_release
= dm_pr_release
,
3053 .pr_preempt
= dm_pr_preempt
,
3054 .pr_clear
= dm_pr_clear
,
3057 static const struct block_device_operations dm_blk_dops
= {
3058 .submit_bio
= dm_submit_bio
,
3059 .open
= dm_blk_open
,
3060 .release
= dm_blk_close
,
3061 .ioctl
= dm_blk_ioctl
,
3062 .getgeo
= dm_blk_getgeo
,
3063 .report_zones
= dm_blk_report_zones
,
3064 .pr_ops
= &dm_pr_ops
,
3065 .owner
= THIS_MODULE
3068 static const struct block_device_operations dm_rq_blk_dops
= {
3069 .open
= dm_blk_open
,
3070 .release
= dm_blk_close
,
3071 .ioctl
= dm_blk_ioctl
,
3072 .getgeo
= dm_blk_getgeo
,
3073 .pr_ops
= &dm_pr_ops
,
3074 .owner
= THIS_MODULE
3077 static const struct dax_operations dm_dax_ops
= {
3078 .direct_access
= dm_dax_direct_access
,
3079 .dax_supported
= dm_dax_supported
,
3080 .copy_from_iter
= dm_dax_copy_from_iter
,
3081 .copy_to_iter
= dm_dax_copy_to_iter
,
3082 .zero_page_range
= dm_dax_zero_page_range
,
3088 module_init(dm_init
);
3089 module_exit(dm_exit
);
3091 module_param(major
, uint
, 0);
3092 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3094 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3095 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3097 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3098 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3100 MODULE_DESCRIPTION(DM_NAME
" driver");
3101 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3102 MODULE_LICENSE("GPL");