1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
47 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info
, node
, sector_t
, _subtree_last
,
57 START
, LAST
, static inline, raid1_rb
);
59 static int check_and_add_serial(struct md_rdev
*rdev
, struct r1bio
*r1_bio
,
60 struct serial_info
*si
, int idx
)
64 sector_t lo
= r1_bio
->sector
;
65 sector_t hi
= lo
+ r1_bio
->sectors
;
66 struct serial_in_rdev
*serial
= &rdev
->serial
[idx
];
68 spin_lock_irqsave(&serial
->serial_lock
, flags
);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial
->serial_rb
, lo
, hi
))
75 raid1_rb_insert(si
, &serial
->serial_rb
);
77 spin_unlock_irqrestore(&serial
->serial_lock
, flags
);
82 static void wait_for_serialization(struct md_rdev
*rdev
, struct r1bio
*r1_bio
)
84 struct mddev
*mddev
= rdev
->mddev
;
85 struct serial_info
*si
;
86 int idx
= sector_to_idx(r1_bio
->sector
);
87 struct serial_in_rdev
*serial
= &rdev
->serial
[idx
];
89 if (WARN_ON(!mddev
->serial_info_pool
))
91 si
= mempool_alloc(mddev
->serial_info_pool
, GFP_NOIO
);
92 wait_event(serial
->serial_io_wait
,
93 check_and_add_serial(rdev
, r1_bio
, si
, idx
) == 0);
96 static void remove_serial(struct md_rdev
*rdev
, sector_t lo
, sector_t hi
)
98 struct serial_info
*si
;
101 struct mddev
*mddev
= rdev
->mddev
;
102 int idx
= sector_to_idx(lo
);
103 struct serial_in_rdev
*serial
= &rdev
->serial
[idx
];
105 spin_lock_irqsave(&serial
->serial_lock
, flags
);
106 for (si
= raid1_rb_iter_first(&serial
->serial_rb
, lo
, hi
);
107 si
; si
= raid1_rb_iter_next(si
, lo
, hi
)) {
108 if (si
->start
== lo
&& si
->last
== hi
) {
109 raid1_rb_remove(si
, &serial
->serial_rb
);
110 mempool_free(si
, mddev
->serial_info_pool
);
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial
->serial_lock
, flags
);
118 wake_up(&serial
->serial_io_wait
);
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
125 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
127 return get_resync_pages(bio
)->raid_bio
;
130 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
132 struct pool_info
*pi
= data
;
133 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size
, gfp_flags
);
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
148 struct pool_info
*pi
= data
;
149 struct r1bio
*r1_bio
;
153 struct resync_pages
*rps
;
155 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
159 rps
= kmalloc_array(pi
->raid_disks
, sizeof(struct resync_pages
),
165 * Allocate bios : 1 for reading, n-1 for writing
167 for (j
= pi
->raid_disks
; j
-- ; ) {
168 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
171 r1_bio
->bios
[j
] = bio
;
174 * Allocate RESYNC_PAGES data pages and attach them to
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
179 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
180 need_pages
= pi
->raid_disks
;
183 for (j
= 0; j
< pi
->raid_disks
; j
++) {
184 struct resync_pages
*rp
= &rps
[j
];
186 bio
= r1_bio
->bios
[j
];
188 if (j
< need_pages
) {
189 if (resync_alloc_pages(rp
, gfp_flags
))
192 memcpy(rp
, &rps
[0], sizeof(*rp
));
193 resync_get_all_pages(rp
);
196 rp
->raid_bio
= r1_bio
;
197 bio
->bi_private
= rp
;
200 r1_bio
->master_bio
= NULL
;
206 resync_free_pages(&rps
[j
]);
209 while (++j
< pi
->raid_disks
)
210 bio_put(r1_bio
->bios
[j
]);
214 rbio_pool_free(r1_bio
, data
);
218 static void r1buf_pool_free(void *__r1_bio
, void *data
)
220 struct pool_info
*pi
= data
;
222 struct r1bio
*r1bio
= __r1_bio
;
223 struct resync_pages
*rp
= NULL
;
225 for (i
= pi
->raid_disks
; i
--; ) {
226 rp
= get_resync_pages(r1bio
->bios
[i
]);
227 resync_free_pages(rp
);
228 bio_put(r1bio
->bios
[i
]);
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r1bio
, data
);
237 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
241 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
242 struct bio
**bio
= r1_bio
->bios
+ i
;
243 if (!BIO_SPECIAL(*bio
))
249 static void free_r1bio(struct r1bio
*r1_bio
)
251 struct r1conf
*conf
= r1_bio
->mddev
->private;
253 put_all_bios(conf
, r1_bio
);
254 mempool_free(r1_bio
, &conf
->r1bio_pool
);
257 static void put_buf(struct r1bio
*r1_bio
)
259 struct r1conf
*conf
= r1_bio
->mddev
->private;
260 sector_t sect
= r1_bio
->sector
;
263 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
264 struct bio
*bio
= r1_bio
->bios
[i
];
266 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
269 mempool_free(r1_bio
, &conf
->r1buf_pool
);
271 lower_barrier(conf
, sect
);
274 static void reschedule_retry(struct r1bio
*r1_bio
)
277 struct mddev
*mddev
= r1_bio
->mddev
;
278 struct r1conf
*conf
= mddev
->private;
281 idx
= sector_to_idx(r1_bio
->sector
);
282 spin_lock_irqsave(&conf
->device_lock
, flags
);
283 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
284 atomic_inc(&conf
->nr_queued
[idx
]);
285 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
287 wake_up(&conf
->wait_barrier
);
288 md_wakeup_thread(mddev
->thread
);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void call_bio_endio(struct r1bio
*r1_bio
)
298 struct bio
*bio
= r1_bio
->master_bio
;
300 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
301 bio
->bi_status
= BLK_STS_IOERR
;
306 static void raid_end_bio_io(struct r1bio
*r1_bio
)
308 struct bio
*bio
= r1_bio
->master_bio
;
309 struct r1conf
*conf
= r1_bio
->mddev
->private;
311 /* if nobody has done the final endio yet, do it now */
312 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
315 (unsigned long long) bio
->bi_iter
.bi_sector
,
316 (unsigned long long) bio_end_sector(bio
) - 1);
318 call_bio_endio(r1_bio
);
321 * Wake up any possible resync thread that waits for the device
322 * to go idle. All I/Os, even write-behind writes, are done.
324 allow_barrier(conf
, r1_bio
->sector
);
330 * Update disk head position estimator based on IRQ completion info.
332 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
334 struct r1conf
*conf
= r1_bio
->mddev
->private;
336 conf
->mirrors
[disk
].head_position
=
337 r1_bio
->sector
+ (r1_bio
->sectors
);
341 * Find the disk number which triggered given bio
343 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
346 struct r1conf
*conf
= r1_bio
->mddev
->private;
347 int raid_disks
= conf
->raid_disks
;
349 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
350 if (r1_bio
->bios
[mirror
] == bio
)
353 BUG_ON(mirror
== raid_disks
* 2);
354 update_head_pos(mirror
, r1_bio
);
359 static void raid1_end_read_request(struct bio
*bio
)
361 int uptodate
= !bio
->bi_status
;
362 struct r1bio
*r1_bio
= bio
->bi_private
;
363 struct r1conf
*conf
= r1_bio
->mddev
->private;
364 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
367 * this branch is our 'one mirror IO has finished' event handler:
369 update_head_pos(r1_bio
->read_disk
, r1_bio
);
372 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
373 else if (test_bit(FailFast
, &rdev
->flags
) &&
374 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
375 /* This was a fail-fast read so we definitely
379 /* If all other devices have failed, we want to return
380 * the error upwards rather than fail the last device.
381 * Here we redefine "uptodate" to mean "Don't want to retry"
384 spin_lock_irqsave(&conf
->device_lock
, flags
);
385 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
386 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
387 test_bit(In_sync
, &rdev
->flags
)))
389 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
393 raid_end_bio_io(r1_bio
);
394 rdev_dec_pending(rdev
, conf
->mddev
);
399 char b
[BDEVNAME_SIZE
];
400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
402 bdevname(rdev
->bdev
, b
),
403 (unsigned long long)r1_bio
->sector
);
404 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
405 reschedule_retry(r1_bio
);
406 /* don't drop the reference on read_disk yet */
410 static void close_write(struct r1bio
*r1_bio
)
412 /* it really is the end of this request */
413 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
414 bio_free_pages(r1_bio
->behind_master_bio
);
415 bio_put(r1_bio
->behind_master_bio
);
416 r1_bio
->behind_master_bio
= NULL
;
418 /* clear the bitmap if all writes complete successfully */
419 md_bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
421 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
422 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
423 md_write_end(r1_bio
->mddev
);
426 static void r1_bio_write_done(struct r1bio
*r1_bio
)
428 if (!atomic_dec_and_test(&r1_bio
->remaining
))
431 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
432 reschedule_retry(r1_bio
);
435 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
436 reschedule_retry(r1_bio
);
438 raid_end_bio_io(r1_bio
);
442 static void raid1_end_write_request(struct bio
*bio
)
444 struct r1bio
*r1_bio
= bio
->bi_private
;
445 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
446 struct r1conf
*conf
= r1_bio
->mddev
->private;
447 struct bio
*to_put
= NULL
;
448 int mirror
= find_bio_disk(r1_bio
, bio
);
449 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
451 sector_t lo
= r1_bio
->sector
;
452 sector_t hi
= r1_bio
->sector
+ r1_bio
->sectors
;
454 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
457 * 'one mirror IO has finished' event handler:
459 if (bio
->bi_status
&& !discard_error
) {
460 set_bit(WriteErrorSeen
, &rdev
->flags
);
461 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
462 set_bit(MD_RECOVERY_NEEDED
, &
463 conf
->mddev
->recovery
);
465 if (test_bit(FailFast
, &rdev
->flags
) &&
466 (bio
->bi_opf
& MD_FAILFAST
) &&
467 /* We never try FailFast to WriteMostly devices */
468 !test_bit(WriteMostly
, &rdev
->flags
)) {
469 md_error(r1_bio
->mddev
, rdev
);
473 * When the device is faulty, it is not necessary to
474 * handle write error.
475 * For failfast, this is the only remaining device,
476 * We need to retry the write without FailFast.
478 if (!test_bit(Faulty
, &rdev
->flags
))
479 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
481 /* Finished with this branch */
482 r1_bio
->bios
[mirror
] = NULL
;
487 * Set R1BIO_Uptodate in our master bio, so that we
488 * will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer
492 * The 'master' represents the composite IO operation
493 * to user-side. So if something waits for IO, then it
494 * will wait for the 'master' bio.
499 r1_bio
->bios
[mirror
] = NULL
;
502 * Do not set R1BIO_Uptodate if the current device is
503 * rebuilding or Faulty. This is because we cannot use
504 * such device for properly reading the data back (we could
505 * potentially use it, if the current write would have felt
506 * before rdev->recovery_offset, but for simplicity we don't
509 if (test_bit(In_sync
, &rdev
->flags
) &&
510 !test_bit(Faulty
, &rdev
->flags
))
511 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
513 /* Maybe we can clear some bad blocks. */
514 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
515 &first_bad
, &bad_sectors
) && !discard_error
) {
516 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
517 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
522 if (test_bit(CollisionCheck
, &rdev
->flags
))
523 remove_serial(rdev
, lo
, hi
);
524 if (test_bit(WriteMostly
, &rdev
->flags
))
525 atomic_dec(&r1_bio
->behind_remaining
);
528 * In behind mode, we ACK the master bio once the I/O
529 * has safely reached all non-writemostly
530 * disks. Setting the Returned bit ensures that this
531 * gets done only once -- we don't ever want to return
532 * -EIO here, instead we'll wait
534 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
535 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
536 /* Maybe we can return now */
537 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
538 struct bio
*mbio
= r1_bio
->master_bio
;
539 pr_debug("raid1: behind end write sectors"
541 (unsigned long long) mbio
->bi_iter
.bi_sector
,
542 (unsigned long long) bio_end_sector(mbio
) - 1);
543 call_bio_endio(r1_bio
);
546 } else if (rdev
->mddev
->serialize_policy
)
547 remove_serial(rdev
, lo
, hi
);
548 if (r1_bio
->bios
[mirror
] == NULL
)
549 rdev_dec_pending(rdev
, conf
->mddev
);
552 * Let's see if all mirrored write operations have finished
555 r1_bio_write_done(r1_bio
);
561 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
566 WARN_ON(sectors
== 0);
568 * len is the number of sectors from start_sector to end of the
569 * barrier unit which start_sector belongs to.
571 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
581 * This routine returns the disk from which the requested read should
582 * be done. There is a per-array 'next expected sequential IO' sector
583 * number - if this matches on the next IO then we use the last disk.
584 * There is also a per-disk 'last know head position' sector that is
585 * maintained from IRQ contexts, both the normal and the resync IO
586 * completion handlers update this position correctly. If there is no
587 * perfect sequential match then we pick the disk whose head is closest.
589 * If there are 2 mirrors in the same 2 devices, performance degrades
590 * because position is mirror, not device based.
592 * The rdev for the device selected will have nr_pending incremented.
594 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
596 const sector_t this_sector
= r1_bio
->sector
;
598 int best_good_sectors
;
599 int best_disk
, best_dist_disk
, best_pending_disk
;
603 unsigned int min_pending
;
604 struct md_rdev
*rdev
;
606 int choose_next_idle
;
610 * Check if we can balance. We can balance on the whole
611 * device if no resync is going on, or below the resync window.
612 * We take the first readable disk when above the resync window.
615 sectors
= r1_bio
->sectors
;
618 best_dist
= MaxSector
;
619 best_pending_disk
= -1;
620 min_pending
= UINT_MAX
;
621 best_good_sectors
= 0;
623 choose_next_idle
= 0;
624 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
626 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
627 (mddev_is_clustered(conf
->mddev
) &&
628 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
629 this_sector
+ sectors
)))
634 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
638 unsigned int pending
;
641 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
642 if (r1_bio
->bios
[disk
] == IO_BLOCKED
644 || test_bit(Faulty
, &rdev
->flags
))
646 if (!test_bit(In_sync
, &rdev
->flags
) &&
647 rdev
->recovery_offset
< this_sector
+ sectors
)
649 if (test_bit(WriteMostly
, &rdev
->flags
)) {
650 /* Don't balance among write-mostly, just
651 * use the first as a last resort */
652 if (best_dist_disk
< 0) {
653 if (is_badblock(rdev
, this_sector
, sectors
,
654 &first_bad
, &bad_sectors
)) {
655 if (first_bad
<= this_sector
)
656 /* Cannot use this */
658 best_good_sectors
= first_bad
- this_sector
;
660 best_good_sectors
= sectors
;
661 best_dist_disk
= disk
;
662 best_pending_disk
= disk
;
666 /* This is a reasonable device to use. It might
669 if (is_badblock(rdev
, this_sector
, sectors
,
670 &first_bad
, &bad_sectors
)) {
671 if (best_dist
< MaxSector
)
672 /* already have a better device */
674 if (first_bad
<= this_sector
) {
675 /* cannot read here. If this is the 'primary'
676 * device, then we must not read beyond
677 * bad_sectors from another device..
679 bad_sectors
-= (this_sector
- first_bad
);
680 if (choose_first
&& sectors
> bad_sectors
)
681 sectors
= bad_sectors
;
682 if (best_good_sectors
> sectors
)
683 best_good_sectors
= sectors
;
686 sector_t good_sectors
= first_bad
- this_sector
;
687 if (good_sectors
> best_good_sectors
) {
688 best_good_sectors
= good_sectors
;
696 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
698 best_good_sectors
= sectors
;
702 /* At least two disks to choose from so failfast is OK */
703 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
705 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
706 has_nonrot_disk
|= nonrot
;
707 pending
= atomic_read(&rdev
->nr_pending
);
708 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
713 /* Don't change to another disk for sequential reads */
714 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
716 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
717 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
721 * If buffered sequential IO size exceeds optimal
722 * iosize, check if there is idle disk. If yes, choose
723 * the idle disk. read_balance could already choose an
724 * idle disk before noticing it's a sequential IO in
725 * this disk. This doesn't matter because this disk
726 * will idle, next time it will be utilized after the
727 * first disk has IO size exceeds optimal iosize. In
728 * this way, iosize of the first disk will be optimal
729 * iosize at least. iosize of the second disk might be
730 * small, but not a big deal since when the second disk
731 * starts IO, the first disk is likely still busy.
733 if (nonrot
&& opt_iosize
> 0 &&
734 mirror
->seq_start
!= MaxSector
&&
735 mirror
->next_seq_sect
> opt_iosize
&&
736 mirror
->next_seq_sect
- opt_iosize
>=
738 choose_next_idle
= 1;
744 if (choose_next_idle
)
747 if (min_pending
> pending
) {
748 min_pending
= pending
;
749 best_pending_disk
= disk
;
752 if (dist
< best_dist
) {
754 best_dist_disk
= disk
;
759 * If all disks are rotational, choose the closest disk. If any disk is
760 * non-rotational, choose the disk with less pending request even the
761 * disk is rotational, which might/might not be optimal for raids with
762 * mixed ratation/non-rotational disks depending on workload.
764 if (best_disk
== -1) {
765 if (has_nonrot_disk
|| min_pending
== 0)
766 best_disk
= best_pending_disk
;
768 best_disk
= best_dist_disk
;
771 if (best_disk
>= 0) {
772 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
775 atomic_inc(&rdev
->nr_pending
);
776 sectors
= best_good_sectors
;
778 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
779 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
781 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
784 *max_sectors
= sectors
;
789 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
791 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
792 md_bitmap_unplug(conf
->mddev
->bitmap
);
793 wake_up(&conf
->wait_barrier
);
795 while (bio
) { /* submit pending writes */
796 struct bio
*next
= bio
->bi_next
;
797 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
799 bio_set_dev(bio
, rdev
->bdev
);
800 if (test_bit(Faulty
, &rdev
->flags
)) {
802 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
803 !blk_queue_discard(bio
->bi_disk
->queue
)))
807 submit_bio_noacct(bio
);
813 static void flush_pending_writes(struct r1conf
*conf
)
815 /* Any writes that have been queued but are awaiting
816 * bitmap updates get flushed here.
818 spin_lock_irq(&conf
->device_lock
);
820 if (conf
->pending_bio_list
.head
) {
821 struct blk_plug plug
;
824 bio
= bio_list_get(&conf
->pending_bio_list
);
825 conf
->pending_count
= 0;
826 spin_unlock_irq(&conf
->device_lock
);
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
837 __set_current_state(TASK_RUNNING
);
838 blk_start_plug(&plug
);
839 flush_bio_list(conf
, bio
);
840 blk_finish_plug(&plug
);
842 spin_unlock_irq(&conf
->device_lock
);
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
869 static int raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
871 int idx
= sector_to_idx(sector_nr
);
873 spin_lock_irq(&conf
->resync_lock
);
875 /* Wait until no block IO is waiting */
876 wait_event_lock_irq(conf
->wait_barrier
,
877 !atomic_read(&conf
->nr_waiting
[idx
]),
880 /* block any new IO from starting */
881 atomic_inc(&conf
->barrier
[idx
]);
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
890 smp_mb__after_atomic();
892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
899 wait_event_lock_irq(conf
->wait_barrier
,
900 (!conf
->array_frozen
&&
901 !atomic_read(&conf
->nr_pending
[idx
]) &&
902 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
) ||
903 test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
),
906 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
907 atomic_dec(&conf
->barrier
[idx
]);
908 spin_unlock_irq(&conf
->resync_lock
);
909 wake_up(&conf
->wait_barrier
);
913 atomic_inc(&conf
->nr_sync_pending
);
914 spin_unlock_irq(&conf
->resync_lock
);
919 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
921 int idx
= sector_to_idx(sector_nr
);
923 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
925 atomic_dec(&conf
->barrier
[idx
]);
926 atomic_dec(&conf
->nr_sync_pending
);
927 wake_up(&conf
->wait_barrier
);
930 static void _wait_barrier(struct r1conf
*conf
, int idx
)
933 * We need to increase conf->nr_pending[idx] very early here,
934 * then raise_barrier() can be blocked when it waits for
935 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 * conf->resync_lock when there is no barrier raised in same
937 * barrier unit bucket. Also if the array is frozen, I/O
938 * should be blocked until array is unfrozen.
940 atomic_inc(&conf
->nr_pending
[idx
]);
942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 * will be a race between _wait_barrier() and raise_barrier().
949 smp_mb__after_atomic();
952 * Don't worry about checking two atomic_t variables at same time
953 * here. If during we check conf->barrier[idx], the array is
954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 * 0, it is safe to return and make the I/O continue. Because the
956 * array is frozen, all I/O returned here will eventually complete
957 * or be queued, no race will happen. See code comment in
960 if (!READ_ONCE(conf
->array_frozen
) &&
961 !atomic_read(&conf
->barrier
[idx
]))
965 * After holding conf->resync_lock, conf->nr_pending[idx]
966 * should be decreased before waiting for barrier to drop.
967 * Otherwise, we may encounter a race condition because
968 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 * to be 0 at same time.
971 spin_lock_irq(&conf
->resync_lock
);
972 atomic_inc(&conf
->nr_waiting
[idx
]);
973 atomic_dec(&conf
->nr_pending
[idx
]);
975 * In case freeze_array() is waiting for
976 * get_unqueued_pending() == extra
978 wake_up(&conf
->wait_barrier
);
979 /* Wait for the barrier in same barrier unit bucket to drop. */
980 wait_event_lock_irq(conf
->wait_barrier
,
981 !conf
->array_frozen
&&
982 !atomic_read(&conf
->barrier
[idx
]),
984 atomic_inc(&conf
->nr_pending
[idx
]);
985 atomic_dec(&conf
->nr_waiting
[idx
]);
986 spin_unlock_irq(&conf
->resync_lock
);
989 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
991 int idx
= sector_to_idx(sector_nr
);
994 * Very similar to _wait_barrier(). The difference is, for read
995 * I/O we don't need wait for sync I/O, but if the whole array
996 * is frozen, the read I/O still has to wait until the array is
997 * unfrozen. Since there is no ordering requirement with
998 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1000 atomic_inc(&conf
->nr_pending
[idx
]);
1002 if (!READ_ONCE(conf
->array_frozen
))
1005 spin_lock_irq(&conf
->resync_lock
);
1006 atomic_inc(&conf
->nr_waiting
[idx
]);
1007 atomic_dec(&conf
->nr_pending
[idx
]);
1009 * In case freeze_array() is waiting for
1010 * get_unqueued_pending() == extra
1012 wake_up(&conf
->wait_barrier
);
1013 /* Wait for array to be unfrozen */
1014 wait_event_lock_irq(conf
->wait_barrier
,
1015 !conf
->array_frozen
,
1017 atomic_inc(&conf
->nr_pending
[idx
]);
1018 atomic_dec(&conf
->nr_waiting
[idx
]);
1019 spin_unlock_irq(&conf
->resync_lock
);
1022 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1024 int idx
= sector_to_idx(sector_nr
);
1026 _wait_barrier(conf
, idx
);
1029 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1031 atomic_dec(&conf
->nr_pending
[idx
]);
1032 wake_up(&conf
->wait_barrier
);
1035 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1037 int idx
= sector_to_idx(sector_nr
);
1039 _allow_barrier(conf
, idx
);
1042 /* conf->resync_lock should be held */
1043 static int get_unqueued_pending(struct r1conf
*conf
)
1047 ret
= atomic_read(&conf
->nr_sync_pending
);
1048 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1049 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1050 atomic_read(&conf
->nr_queued
[idx
]);
1055 static void freeze_array(struct r1conf
*conf
, int extra
)
1057 /* Stop sync I/O and normal I/O and wait for everything to
1059 * This is called in two situations:
1060 * 1) management command handlers (reshape, remove disk, quiesce).
1061 * 2) one normal I/O request failed.
1063 * After array_frozen is set to 1, new sync IO will be blocked at
1064 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065 * or wait_read_barrier(). The flying I/Os will either complete or be
1066 * queued. When everything goes quite, there are only queued I/Os left.
1068 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069 * barrier bucket index which this I/O request hits. When all sync and
1070 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072 * in handle_read_error(), we may call freeze_array() before trying to
1073 * fix the read error. In this case, the error read I/O is not queued,
1074 * so get_unqueued_pending() == 1.
1076 * Therefore before this function returns, we need to wait until
1077 * get_unqueued_pendings(conf) gets equal to extra. For
1078 * normal I/O context, extra is 1, in rested situations extra is 0.
1080 spin_lock_irq(&conf
->resync_lock
);
1081 conf
->array_frozen
= 1;
1082 raid1_log(conf
->mddev
, "wait freeze");
1083 wait_event_lock_irq_cmd(
1085 get_unqueued_pending(conf
) == extra
,
1087 flush_pending_writes(conf
));
1088 spin_unlock_irq(&conf
->resync_lock
);
1090 static void unfreeze_array(struct r1conf
*conf
)
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf
->resync_lock
);
1094 conf
->array_frozen
= 0;
1095 spin_unlock_irq(&conf
->resync_lock
);
1096 wake_up(&conf
->wait_barrier
);
1099 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1102 int size
= bio
->bi_iter
.bi_size
;
1103 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1105 struct bio
*behind_bio
= NULL
;
1107 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1111 /* discard op, we don't support writezero/writesame yet */
1112 if (!bio_has_data(bio
)) {
1113 behind_bio
->bi_iter
.bi_size
= size
;
1117 behind_bio
->bi_write_hint
= bio
->bi_write_hint
;
1119 while (i
< vcnt
&& size
) {
1121 int len
= min_t(int, PAGE_SIZE
, size
);
1123 page
= alloc_page(GFP_NOIO
);
1124 if (unlikely(!page
))
1127 bio_add_page(behind_bio
, page
, len
, 0);
1133 bio_copy_data(behind_bio
, bio
);
1135 r1_bio
->behind_master_bio
= behind_bio
;
1136 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1141 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142 bio
->bi_iter
.bi_size
);
1143 bio_free_pages(behind_bio
);
1144 bio_put(behind_bio
);
1147 struct raid1_plug_cb
{
1148 struct blk_plug_cb cb
;
1149 struct bio_list pending
;
1153 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1155 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1157 struct mddev
*mddev
= plug
->cb
.data
;
1158 struct r1conf
*conf
= mddev
->private;
1161 if (from_schedule
|| current
->bio_list
) {
1162 spin_lock_irq(&conf
->device_lock
);
1163 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1164 conf
->pending_count
+= plug
->pending_cnt
;
1165 spin_unlock_irq(&conf
->device_lock
);
1166 wake_up(&conf
->wait_barrier
);
1167 md_wakeup_thread(mddev
->thread
);
1172 /* we aren't scheduling, so we can do the write-out directly. */
1173 bio
= bio_list_get(&plug
->pending
);
1174 flush_bio_list(conf
, bio
);
1178 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1180 r1_bio
->master_bio
= bio
;
1181 r1_bio
->sectors
= bio_sectors(bio
);
1183 r1_bio
->mddev
= mddev
;
1184 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1187 static inline struct r1bio
*
1188 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1190 struct r1conf
*conf
= mddev
->private;
1191 struct r1bio
*r1_bio
;
1193 r1_bio
= mempool_alloc(&conf
->r1bio_pool
, GFP_NOIO
);
1194 /* Ensure no bio records IO_BLOCKED */
1195 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1196 init_r1bio(r1_bio
, mddev
, bio
);
1200 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1201 int max_read_sectors
, struct r1bio
*r1_bio
)
1203 struct r1conf
*conf
= mddev
->private;
1204 struct raid1_info
*mirror
;
1205 struct bio
*read_bio
;
1206 struct bitmap
*bitmap
= mddev
->bitmap
;
1207 const int op
= bio_op(bio
);
1208 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1211 bool print_msg
= !!r1_bio
;
1212 char b
[BDEVNAME_SIZE
];
1215 * If r1_bio is set, we are blocking the raid1d thread
1216 * so there is a tiny risk of deadlock. So ask for
1217 * emergency memory if needed.
1219 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1222 /* Need to get the block device name carefully */
1223 struct md_rdev
*rdev
;
1225 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1227 bdevname(rdev
->bdev
, b
);
1234 * Still need barrier for READ in case that whole
1237 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1240 r1_bio
= alloc_r1bio(mddev
, bio
);
1242 init_r1bio(r1_bio
, mddev
, bio
);
1243 r1_bio
->sectors
= max_read_sectors
;
1246 * make_request() can abort the operation when read-ahead is being
1247 * used and no empty request is available.
1249 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1252 /* couldn't find anywhere to read from */
1254 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1257 (unsigned long long)r1_bio
->sector
);
1259 raid_end_bio_io(r1_bio
);
1262 mirror
= conf
->mirrors
+ rdisk
;
1265 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1267 (unsigned long long)r1_bio
->sector
,
1268 bdevname(mirror
->rdev
->bdev
, b
));
1270 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1273 * Reading from a write-mostly device must take care not to
1274 * over-take any writes that are 'behind'
1276 raid1_log(mddev
, "wait behind writes");
1277 wait_event(bitmap
->behind_wait
,
1278 atomic_read(&bitmap
->behind_writes
) == 0);
1281 if (max_sectors
< bio_sectors(bio
)) {
1282 struct bio
*split
= bio_split(bio
, max_sectors
,
1283 gfp
, &conf
->bio_split
);
1284 bio_chain(split
, bio
);
1285 submit_bio_noacct(bio
);
1287 r1_bio
->master_bio
= bio
;
1288 r1_bio
->sectors
= max_sectors
;
1291 r1_bio
->read_disk
= rdisk
;
1293 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1295 r1_bio
->bios
[rdisk
] = read_bio
;
1297 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1298 mirror
->rdev
->data_offset
;
1299 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1300 read_bio
->bi_end_io
= raid1_end_read_request
;
1301 bio_set_op_attrs(read_bio
, op
, do_sync
);
1302 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1303 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1304 read_bio
->bi_opf
|= MD_FAILFAST
;
1305 read_bio
->bi_private
= r1_bio
;
1308 trace_block_bio_remap(read_bio
, disk_devt(mddev
->gendisk
),
1311 submit_bio_noacct(read_bio
);
1314 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1315 int max_write_sectors
)
1317 struct r1conf
*conf
= mddev
->private;
1318 struct r1bio
*r1_bio
;
1320 struct bitmap
*bitmap
= mddev
->bitmap
;
1321 unsigned long flags
;
1322 struct md_rdev
*blocked_rdev
;
1323 struct blk_plug_cb
*cb
;
1324 struct raid1_plug_cb
*plug
= NULL
;
1328 if (mddev_is_clustered(mddev
) &&
1329 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1330 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))) {
1334 prepare_to_wait(&conf
->wait_barrier
,
1336 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1337 bio
->bi_iter
.bi_sector
,
1338 bio_end_sector(bio
)))
1342 finish_wait(&conf
->wait_barrier
, &w
);
1346 * Register the new request and wait if the reconstruction
1347 * thread has put up a bar for new requests.
1348 * Continue immediately if no resync is active currently.
1350 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1352 r1_bio
= alloc_r1bio(mddev
, bio
);
1353 r1_bio
->sectors
= max_write_sectors
;
1355 if (conf
->pending_count
>= max_queued_requests
) {
1356 md_wakeup_thread(mddev
->thread
);
1357 raid1_log(mddev
, "wait queued");
1358 wait_event(conf
->wait_barrier
,
1359 conf
->pending_count
< max_queued_requests
);
1361 /* first select target devices under rcu_lock and
1362 * inc refcount on their rdev. Record them by setting
1364 * If there are known/acknowledged bad blocks on any device on
1365 * which we have seen a write error, we want to avoid writing those
1367 * This potentially requires several writes to write around
1368 * the bad blocks. Each set of writes gets it's own r1bio
1369 * with a set of bios attached.
1372 disks
= conf
->raid_disks
* 2;
1374 blocked_rdev
= NULL
;
1376 max_sectors
= r1_bio
->sectors
;
1377 for (i
= 0; i
< disks
; i
++) {
1378 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1379 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1380 atomic_inc(&rdev
->nr_pending
);
1381 blocked_rdev
= rdev
;
1384 r1_bio
->bios
[i
] = NULL
;
1385 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1386 if (i
< conf
->raid_disks
)
1387 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1391 atomic_inc(&rdev
->nr_pending
);
1392 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1397 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1398 &first_bad
, &bad_sectors
);
1400 /* mustn't write here until the bad block is
1402 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1403 blocked_rdev
= rdev
;
1406 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1407 /* Cannot write here at all */
1408 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1409 if (bad_sectors
< max_sectors
)
1410 /* mustn't write more than bad_sectors
1411 * to other devices yet
1413 max_sectors
= bad_sectors
;
1414 rdev_dec_pending(rdev
, mddev
);
1415 /* We don't set R1BIO_Degraded as that
1416 * only applies if the disk is
1417 * missing, so it might be re-added,
1418 * and we want to know to recover this
1420 * In this case the device is here,
1421 * and the fact that this chunk is not
1422 * in-sync is recorded in the bad
1428 int good_sectors
= first_bad
- r1_bio
->sector
;
1429 if (good_sectors
< max_sectors
)
1430 max_sectors
= good_sectors
;
1433 r1_bio
->bios
[i
] = bio
;
1437 if (unlikely(blocked_rdev
)) {
1438 /* Wait for this device to become unblocked */
1441 for (j
= 0; j
< i
; j
++)
1442 if (r1_bio
->bios
[j
])
1443 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1445 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1446 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1447 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1448 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1452 if (max_sectors
< bio_sectors(bio
)) {
1453 struct bio
*split
= bio_split(bio
, max_sectors
,
1454 GFP_NOIO
, &conf
->bio_split
);
1455 bio_chain(split
, bio
);
1456 submit_bio_noacct(bio
);
1458 r1_bio
->master_bio
= bio
;
1459 r1_bio
->sectors
= max_sectors
;
1462 atomic_set(&r1_bio
->remaining
, 1);
1463 atomic_set(&r1_bio
->behind_remaining
, 0);
1467 for (i
= 0; i
< disks
; i
++) {
1468 struct bio
*mbio
= NULL
;
1469 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1470 if (!r1_bio
->bios
[i
])
1475 * Not if there are too many, or cannot
1476 * allocate memory, or a reader on WriteMostly
1477 * is waiting for behind writes to flush */
1479 (atomic_read(&bitmap
->behind_writes
)
1480 < mddev
->bitmap_info
.max_write_behind
) &&
1481 !waitqueue_active(&bitmap
->behind_wait
)) {
1482 alloc_behind_master_bio(r1_bio
, bio
);
1485 md_bitmap_startwrite(bitmap
, r1_bio
->sector
, r1_bio
->sectors
,
1486 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
1490 if (r1_bio
->behind_master_bio
)
1491 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1492 GFP_NOIO
, &mddev
->bio_set
);
1494 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1496 if (r1_bio
->behind_master_bio
) {
1497 if (test_bit(CollisionCheck
, &rdev
->flags
))
1498 wait_for_serialization(rdev
, r1_bio
);
1499 if (test_bit(WriteMostly
, &rdev
->flags
))
1500 atomic_inc(&r1_bio
->behind_remaining
);
1501 } else if (mddev
->serialize_policy
)
1502 wait_for_serialization(rdev
, r1_bio
);
1504 r1_bio
->bios
[i
] = mbio
;
1506 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1507 conf
->mirrors
[i
].rdev
->data_offset
);
1508 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1509 mbio
->bi_end_io
= raid1_end_write_request
;
1510 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1511 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1512 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1513 conf
->raid_disks
- mddev
->degraded
> 1)
1514 mbio
->bi_opf
|= MD_FAILFAST
;
1515 mbio
->bi_private
= r1_bio
;
1517 atomic_inc(&r1_bio
->remaining
);
1520 trace_block_bio_remap(mbio
, disk_devt(mddev
->gendisk
),
1522 /* flush_pending_writes() needs access to the rdev so...*/
1523 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1525 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1527 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1531 bio_list_add(&plug
->pending
, mbio
);
1532 plug
->pending_cnt
++;
1534 spin_lock_irqsave(&conf
->device_lock
, flags
);
1535 bio_list_add(&conf
->pending_bio_list
, mbio
);
1536 conf
->pending_count
++;
1537 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1538 md_wakeup_thread(mddev
->thread
);
1542 r1_bio_write_done(r1_bio
);
1544 /* In case raid1d snuck in to freeze_array */
1545 wake_up(&conf
->wait_barrier
);
1548 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1552 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)
1553 && md_flush_request(mddev
, bio
))
1557 * There is a limit to the maximum size, but
1558 * the read/write handler might find a lower limit
1559 * due to bad blocks. To avoid multiple splits,
1560 * we pass the maximum number of sectors down
1561 * and let the lower level perform the split.
1563 sectors
= align_to_barrier_unit_end(
1564 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1566 if (bio_data_dir(bio
) == READ
)
1567 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1569 if (!md_write_start(mddev
,bio
))
1571 raid1_write_request(mddev
, bio
, sectors
);
1576 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1578 struct r1conf
*conf
= mddev
->private;
1581 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1582 conf
->raid_disks
- mddev
->degraded
);
1584 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1585 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1586 seq_printf(seq
, "%s",
1587 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1590 seq_printf(seq
, "]");
1593 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1595 char b
[BDEVNAME_SIZE
];
1596 struct r1conf
*conf
= mddev
->private;
1597 unsigned long flags
;
1600 * If it is not operational, then we have already marked it as dead
1601 * else if it is the last working disks with "fail_last_dev == false",
1602 * ignore the error, let the next level up know.
1603 * else mark the drive as failed
1605 spin_lock_irqsave(&conf
->device_lock
, flags
);
1606 if (test_bit(In_sync
, &rdev
->flags
) && !mddev
->fail_last_dev
1607 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1609 * Don't fail the drive, act as though we were just a
1610 * normal single drive.
1611 * However don't try a recovery from this drive as
1612 * it is very likely to fail.
1614 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1615 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1618 set_bit(Blocked
, &rdev
->flags
);
1619 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1621 set_bit(Faulty
, &rdev
->flags
);
1622 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1624 * if recovery is running, make sure it aborts.
1626 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1627 set_mask_bits(&mddev
->sb_flags
, 0,
1628 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1629 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1630 "md/raid1:%s: Operation continuing on %d devices.\n",
1631 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1632 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1635 static void print_conf(struct r1conf
*conf
)
1639 pr_debug("RAID1 conf printout:\n");
1641 pr_debug("(!conf)\n");
1644 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1648 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1649 char b
[BDEVNAME_SIZE
];
1650 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1652 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1653 i
, !test_bit(In_sync
, &rdev
->flags
),
1654 !test_bit(Faulty
, &rdev
->flags
),
1655 bdevname(rdev
->bdev
,b
));
1660 static void close_sync(struct r1conf
*conf
)
1664 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1665 _wait_barrier(conf
, idx
);
1666 _allow_barrier(conf
, idx
);
1669 mempool_exit(&conf
->r1buf_pool
);
1672 static int raid1_spare_active(struct mddev
*mddev
)
1675 struct r1conf
*conf
= mddev
->private;
1677 unsigned long flags
;
1680 * Find all failed disks within the RAID1 configuration
1681 * and mark them readable.
1682 * Called under mddev lock, so rcu protection not needed.
1683 * device_lock used to avoid races with raid1_end_read_request
1684 * which expects 'In_sync' flags and ->degraded to be consistent.
1686 spin_lock_irqsave(&conf
->device_lock
, flags
);
1687 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1688 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1689 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1691 && !test_bit(Candidate
, &repl
->flags
)
1692 && repl
->recovery_offset
== MaxSector
1693 && !test_bit(Faulty
, &repl
->flags
)
1694 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1695 /* replacement has just become active */
1697 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1700 /* Replaced device not technically
1701 * faulty, but we need to be sure
1702 * it gets removed and never re-added
1704 set_bit(Faulty
, &rdev
->flags
);
1705 sysfs_notify_dirent_safe(
1710 && rdev
->recovery_offset
== MaxSector
1711 && !test_bit(Faulty
, &rdev
->flags
)
1712 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1714 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1717 mddev
->degraded
-= count
;
1718 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1724 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1726 struct r1conf
*conf
= mddev
->private;
1729 struct raid1_info
*p
;
1731 int last
= conf
->raid_disks
- 1;
1733 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1736 if (md_integrity_add_rdev(rdev
, mddev
))
1739 if (rdev
->raid_disk
>= 0)
1740 first
= last
= rdev
->raid_disk
;
1743 * find the disk ... but prefer rdev->saved_raid_disk
1746 if (rdev
->saved_raid_disk
>= 0 &&
1747 rdev
->saved_raid_disk
>= first
&&
1748 rdev
->saved_raid_disk
< conf
->raid_disks
&&
1749 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1750 first
= last
= rdev
->saved_raid_disk
;
1752 for (mirror
= first
; mirror
<= last
; mirror
++) {
1753 p
= conf
->mirrors
+ mirror
;
1756 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1757 rdev
->data_offset
<< 9);
1759 p
->head_position
= 0;
1760 rdev
->raid_disk
= mirror
;
1762 /* As all devices are equivalent, we don't need a full recovery
1763 * if this was recently any drive of the array
1765 if (rdev
->saved_raid_disk
< 0)
1767 rcu_assign_pointer(p
->rdev
, rdev
);
1770 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1771 p
[conf
->raid_disks
].rdev
== NULL
) {
1772 /* Add this device as a replacement */
1773 clear_bit(In_sync
, &rdev
->flags
);
1774 set_bit(Replacement
, &rdev
->flags
);
1775 rdev
->raid_disk
= mirror
;
1778 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1782 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1783 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1788 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1790 struct r1conf
*conf
= mddev
->private;
1792 int number
= rdev
->raid_disk
;
1793 struct raid1_info
*p
= conf
->mirrors
+ number
;
1795 if (rdev
!= p
->rdev
)
1796 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1799 if (rdev
== p
->rdev
) {
1800 if (test_bit(In_sync
, &rdev
->flags
) ||
1801 atomic_read(&rdev
->nr_pending
)) {
1805 /* Only remove non-faulty devices if recovery
1808 if (!test_bit(Faulty
, &rdev
->flags
) &&
1809 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1810 mddev
->degraded
< conf
->raid_disks
) {
1815 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1817 if (atomic_read(&rdev
->nr_pending
)) {
1818 /* lost the race, try later */
1824 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1825 /* We just removed a device that is being replaced.
1826 * Move down the replacement. We drain all IO before
1827 * doing this to avoid confusion.
1829 struct md_rdev
*repl
=
1830 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1831 freeze_array(conf
, 0);
1832 if (atomic_read(&repl
->nr_pending
)) {
1833 /* It means that some queued IO of retry_list
1834 * hold repl. Thus, we cannot set replacement
1835 * as NULL, avoiding rdev NULL pointer
1836 * dereference in sync_request_write and
1837 * handle_write_finished.
1840 unfreeze_array(conf
);
1843 clear_bit(Replacement
, &repl
->flags
);
1845 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1846 unfreeze_array(conf
);
1849 clear_bit(WantReplacement
, &rdev
->flags
);
1850 err
= md_integrity_register(mddev
);
1858 static void end_sync_read(struct bio
*bio
)
1860 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1862 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1865 * we have read a block, now it needs to be re-written,
1866 * or re-read if the read failed.
1867 * We don't do much here, just schedule handling by raid1d
1869 if (!bio
->bi_status
)
1870 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1872 if (atomic_dec_and_test(&r1_bio
->remaining
))
1873 reschedule_retry(r1_bio
);
1876 static void abort_sync_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1878 sector_t sync_blocks
= 0;
1879 sector_t s
= r1_bio
->sector
;
1880 long sectors_to_go
= r1_bio
->sectors
;
1882 /* make sure these bits don't get cleared. */
1884 md_bitmap_end_sync(mddev
->bitmap
, s
, &sync_blocks
, 1);
1886 sectors_to_go
-= sync_blocks
;
1887 } while (sectors_to_go
> 0);
1890 static void put_sync_write_buf(struct r1bio
*r1_bio
, int uptodate
)
1892 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1893 struct mddev
*mddev
= r1_bio
->mddev
;
1894 int s
= r1_bio
->sectors
;
1896 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1897 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1898 reschedule_retry(r1_bio
);
1901 md_done_sync(mddev
, s
, uptodate
);
1906 static void end_sync_write(struct bio
*bio
)
1908 int uptodate
= !bio
->bi_status
;
1909 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1910 struct mddev
*mddev
= r1_bio
->mddev
;
1911 struct r1conf
*conf
= mddev
->private;
1914 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1917 abort_sync_write(mddev
, r1_bio
);
1918 set_bit(WriteErrorSeen
, &rdev
->flags
);
1919 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1920 set_bit(MD_RECOVERY_NEEDED
, &
1922 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1923 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1924 &first_bad
, &bad_sectors
) &&
1925 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1928 &first_bad
, &bad_sectors
)
1930 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1932 put_sync_write_buf(r1_bio
, uptodate
);
1935 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1936 int sectors
, struct page
*page
, int rw
)
1938 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1942 set_bit(WriteErrorSeen
, &rdev
->flags
);
1943 if (!test_and_set_bit(WantReplacement
,
1945 set_bit(MD_RECOVERY_NEEDED
, &
1946 rdev
->mddev
->recovery
);
1948 /* need to record an error - either for the block or the device */
1949 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1950 md_error(rdev
->mddev
, rdev
);
1954 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1956 /* Try some synchronous reads of other devices to get
1957 * good data, much like with normal read errors. Only
1958 * read into the pages we already have so we don't
1959 * need to re-issue the read request.
1960 * We don't need to freeze the array, because being in an
1961 * active sync request, there is no normal IO, and
1962 * no overlapping syncs.
1963 * We don't need to check is_badblock() again as we
1964 * made sure that anything with a bad block in range
1965 * will have bi_end_io clear.
1967 struct mddev
*mddev
= r1_bio
->mddev
;
1968 struct r1conf
*conf
= mddev
->private;
1969 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1970 struct page
**pages
= get_resync_pages(bio
)->pages
;
1971 sector_t sect
= r1_bio
->sector
;
1972 int sectors
= r1_bio
->sectors
;
1974 struct md_rdev
*rdev
;
1976 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1977 if (test_bit(FailFast
, &rdev
->flags
)) {
1978 /* Don't try recovering from here - just fail it
1979 * ... unless it is the last working device of course */
1980 md_error(mddev
, rdev
);
1981 if (test_bit(Faulty
, &rdev
->flags
))
1982 /* Don't try to read from here, but make sure
1983 * put_buf does it's thing
1985 bio
->bi_end_io
= end_sync_write
;
1990 int d
= r1_bio
->read_disk
;
1994 if (s
> (PAGE_SIZE
>>9))
1997 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1998 /* No rcu protection needed here devices
1999 * can only be removed when no resync is
2000 * active, and resync is currently active
2002 rdev
= conf
->mirrors
[d
].rdev
;
2003 if (sync_page_io(rdev
, sect
, s
<<9,
2005 REQ_OP_READ
, 0, false)) {
2011 if (d
== conf
->raid_disks
* 2)
2013 } while (!success
&& d
!= r1_bio
->read_disk
);
2016 char b
[BDEVNAME_SIZE
];
2018 /* Cannot read from anywhere, this block is lost.
2019 * Record a bad block on each device. If that doesn't
2020 * work just disable and interrupt the recovery.
2021 * Don't fail devices as that won't really help.
2023 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2024 mdname(mddev
), bio_devname(bio
, b
),
2025 (unsigned long long)r1_bio
->sector
);
2026 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
2027 rdev
= conf
->mirrors
[d
].rdev
;
2028 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
2030 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2034 conf
->recovery_disabled
=
2035 mddev
->recovery_disabled
;
2036 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2037 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2049 /* write it back and re-read */
2050 while (d
!= r1_bio
->read_disk
) {
2052 d
= conf
->raid_disks
* 2;
2054 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2056 rdev
= conf
->mirrors
[d
].rdev
;
2057 if (r1_sync_page_io(rdev
, sect
, s
,
2060 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2061 rdev_dec_pending(rdev
, mddev
);
2065 while (d
!= r1_bio
->read_disk
) {
2067 d
= conf
->raid_disks
* 2;
2069 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2071 rdev
= conf
->mirrors
[d
].rdev
;
2072 if (r1_sync_page_io(rdev
, sect
, s
,
2075 atomic_add(s
, &rdev
->corrected_errors
);
2081 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2086 static void process_checks(struct r1bio
*r1_bio
)
2088 /* We have read all readable devices. If we haven't
2089 * got the block, then there is no hope left.
2090 * If we have, then we want to do a comparison
2091 * and skip the write if everything is the same.
2092 * If any blocks failed to read, then we need to
2093 * attempt an over-write
2095 struct mddev
*mddev
= r1_bio
->mddev
;
2096 struct r1conf
*conf
= mddev
->private;
2101 /* Fix variable parts of all bios */
2102 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2103 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2104 blk_status_t status
;
2105 struct bio
*b
= r1_bio
->bios
[i
];
2106 struct resync_pages
*rp
= get_resync_pages(b
);
2107 if (b
->bi_end_io
!= end_sync_read
)
2109 /* fixup the bio for reuse, but preserve errno */
2110 status
= b
->bi_status
;
2112 b
->bi_status
= status
;
2113 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2114 conf
->mirrors
[i
].rdev
->data_offset
;
2115 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2116 b
->bi_end_io
= end_sync_read
;
2117 rp
->raid_bio
= r1_bio
;
2120 /* initialize bvec table again */
2121 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2123 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2124 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2125 !r1_bio
->bios
[primary
]->bi_status
) {
2126 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2127 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2130 r1_bio
->read_disk
= primary
;
2131 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2133 struct bio
*pbio
= r1_bio
->bios
[primary
];
2134 struct bio
*sbio
= r1_bio
->bios
[i
];
2135 blk_status_t status
= sbio
->bi_status
;
2136 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2137 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2139 int page_len
[RESYNC_PAGES
] = { 0 };
2140 struct bvec_iter_all iter_all
;
2142 if (sbio
->bi_end_io
!= end_sync_read
)
2144 /* Now we can 'fixup' the error value */
2145 sbio
->bi_status
= 0;
2147 bio_for_each_segment_all(bi
, sbio
, iter_all
)
2148 page_len
[j
++] = bi
->bv_len
;
2151 for (j
= vcnt
; j
-- ; ) {
2152 if (memcmp(page_address(ppages
[j
]),
2153 page_address(spages
[j
]),
2160 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2161 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2163 /* No need to write to this device. */
2164 sbio
->bi_end_io
= NULL
;
2165 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2169 bio_copy_data(sbio
, pbio
);
2173 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2175 struct r1conf
*conf
= mddev
->private;
2177 int disks
= conf
->raid_disks
* 2;
2180 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2181 /* ouch - failed to read all of that. */
2182 if (!fix_sync_read_error(r1_bio
))
2185 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2186 process_checks(r1_bio
);
2191 atomic_set(&r1_bio
->remaining
, 1);
2192 for (i
= 0; i
< disks
; i
++) {
2193 wbio
= r1_bio
->bios
[i
];
2194 if (wbio
->bi_end_io
== NULL
||
2195 (wbio
->bi_end_io
== end_sync_read
&&
2196 (i
== r1_bio
->read_disk
||
2197 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2199 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
)) {
2200 abort_sync_write(mddev
, r1_bio
);
2204 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2205 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2206 wbio
->bi_opf
|= MD_FAILFAST
;
2208 wbio
->bi_end_io
= end_sync_write
;
2209 atomic_inc(&r1_bio
->remaining
);
2210 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2212 submit_bio_noacct(wbio
);
2215 put_sync_write_buf(r1_bio
, 1);
2219 * This is a kernel thread which:
2221 * 1. Retries failed read operations on working mirrors.
2222 * 2. Updates the raid superblock when problems encounter.
2223 * 3. Performs writes following reads for array synchronising.
2226 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2227 sector_t sect
, int sectors
)
2229 struct mddev
*mddev
= conf
->mddev
;
2235 struct md_rdev
*rdev
;
2237 if (s
> (PAGE_SIZE
>>9))
2245 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2247 (test_bit(In_sync
, &rdev
->flags
) ||
2248 (!test_bit(Faulty
, &rdev
->flags
) &&
2249 rdev
->recovery_offset
>= sect
+ s
)) &&
2250 is_badblock(rdev
, sect
, s
,
2251 &first_bad
, &bad_sectors
) == 0) {
2252 atomic_inc(&rdev
->nr_pending
);
2254 if (sync_page_io(rdev
, sect
, s
<<9,
2255 conf
->tmppage
, REQ_OP_READ
, 0, false))
2257 rdev_dec_pending(rdev
, mddev
);
2263 if (d
== conf
->raid_disks
* 2)
2265 } while (!success
&& d
!= read_disk
);
2268 /* Cannot read from anywhere - mark it bad */
2269 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2270 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2271 md_error(mddev
, rdev
);
2274 /* write it back and re-read */
2276 while (d
!= read_disk
) {
2278 d
= conf
->raid_disks
* 2;
2281 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2283 !test_bit(Faulty
, &rdev
->flags
)) {
2284 atomic_inc(&rdev
->nr_pending
);
2286 r1_sync_page_io(rdev
, sect
, s
,
2287 conf
->tmppage
, WRITE
);
2288 rdev_dec_pending(rdev
, mddev
);
2293 while (d
!= read_disk
) {
2294 char b
[BDEVNAME_SIZE
];
2296 d
= conf
->raid_disks
* 2;
2299 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2301 !test_bit(Faulty
, &rdev
->flags
)) {
2302 atomic_inc(&rdev
->nr_pending
);
2304 if (r1_sync_page_io(rdev
, sect
, s
,
2305 conf
->tmppage
, READ
)) {
2306 atomic_add(s
, &rdev
->corrected_errors
);
2307 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2309 (unsigned long long)(sect
+
2311 bdevname(rdev
->bdev
, b
));
2313 rdev_dec_pending(rdev
, mddev
);
2322 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2324 struct mddev
*mddev
= r1_bio
->mddev
;
2325 struct r1conf
*conf
= mddev
->private;
2326 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2328 /* bio has the data to be written to device 'i' where
2329 * we just recently had a write error.
2330 * We repeatedly clone the bio and trim down to one block,
2331 * then try the write. Where the write fails we record
2333 * It is conceivable that the bio doesn't exactly align with
2334 * blocks. We must handle this somehow.
2336 * We currently own a reference on the rdev.
2342 int sect_to_write
= r1_bio
->sectors
;
2345 if (rdev
->badblocks
.shift
< 0)
2348 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2349 bdev_logical_block_size(rdev
->bdev
) >> 9);
2350 sector
= r1_bio
->sector
;
2351 sectors
= ((sector
+ block_sectors
)
2352 & ~(sector_t
)(block_sectors
- 1))
2355 while (sect_to_write
) {
2357 if (sectors
> sect_to_write
)
2358 sectors
= sect_to_write
;
2359 /* Write at 'sector' for 'sectors'*/
2361 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2362 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2366 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2370 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2371 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2372 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2374 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2375 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2376 bio_set_dev(wbio
, rdev
->bdev
);
2378 if (submit_bio_wait(wbio
) < 0)
2380 ok
= rdev_set_badblocks(rdev
, sector
,
2385 sect_to_write
-= sectors
;
2387 sectors
= block_sectors
;
2392 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2395 int s
= r1_bio
->sectors
;
2396 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2397 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2398 struct bio
*bio
= r1_bio
->bios
[m
];
2399 if (bio
->bi_end_io
== NULL
)
2401 if (!bio
->bi_status
&&
2402 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2403 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2405 if (bio
->bi_status
&&
2406 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2407 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2408 md_error(conf
->mddev
, rdev
);
2412 md_done_sync(conf
->mddev
, s
, 1);
2415 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2420 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2421 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2422 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2423 rdev_clear_badblocks(rdev
,
2425 r1_bio
->sectors
, 0);
2426 rdev_dec_pending(rdev
, conf
->mddev
);
2427 } else if (r1_bio
->bios
[m
] != NULL
) {
2428 /* This drive got a write error. We need to
2429 * narrow down and record precise write
2433 if (!narrow_write_error(r1_bio
, m
)) {
2434 md_error(conf
->mddev
,
2435 conf
->mirrors
[m
].rdev
);
2436 /* an I/O failed, we can't clear the bitmap */
2437 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2439 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2443 spin_lock_irq(&conf
->device_lock
);
2444 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2445 idx
= sector_to_idx(r1_bio
->sector
);
2446 atomic_inc(&conf
->nr_queued
[idx
]);
2447 spin_unlock_irq(&conf
->device_lock
);
2449 * In case freeze_array() is waiting for condition
2450 * get_unqueued_pending() == extra to be true.
2452 wake_up(&conf
->wait_barrier
);
2453 md_wakeup_thread(conf
->mddev
->thread
);
2455 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2456 close_write(r1_bio
);
2457 raid_end_bio_io(r1_bio
);
2461 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2463 struct mddev
*mddev
= conf
->mddev
;
2465 struct md_rdev
*rdev
;
2467 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2468 /* we got a read error. Maybe the drive is bad. Maybe just
2469 * the block and we can fix it.
2470 * We freeze all other IO, and try reading the block from
2471 * other devices. When we find one, we re-write
2472 * and check it that fixes the read error.
2473 * This is all done synchronously while the array is
2477 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2479 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2481 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2483 && !test_bit(FailFast
, &rdev
->flags
)) {
2484 freeze_array(conf
, 1);
2485 fix_read_error(conf
, r1_bio
->read_disk
,
2486 r1_bio
->sector
, r1_bio
->sectors
);
2487 unfreeze_array(conf
);
2488 } else if (mddev
->ro
== 0 && test_bit(FailFast
, &rdev
->flags
)) {
2489 md_error(mddev
, rdev
);
2491 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2494 rdev_dec_pending(rdev
, conf
->mddev
);
2495 allow_barrier(conf
, r1_bio
->sector
);
2496 bio
= r1_bio
->master_bio
;
2498 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2500 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2503 static void raid1d(struct md_thread
*thread
)
2505 struct mddev
*mddev
= thread
->mddev
;
2506 struct r1bio
*r1_bio
;
2507 unsigned long flags
;
2508 struct r1conf
*conf
= mddev
->private;
2509 struct list_head
*head
= &conf
->retry_list
;
2510 struct blk_plug plug
;
2513 md_check_recovery(mddev
);
2515 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2516 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2518 spin_lock_irqsave(&conf
->device_lock
, flags
);
2519 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2520 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2521 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2522 while (!list_empty(&tmp
)) {
2523 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2525 list_del(&r1_bio
->retry_list
);
2526 idx
= sector_to_idx(r1_bio
->sector
);
2527 atomic_dec(&conf
->nr_queued
[idx
]);
2528 if (mddev
->degraded
)
2529 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2530 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2531 close_write(r1_bio
);
2532 raid_end_bio_io(r1_bio
);
2536 blk_start_plug(&plug
);
2539 flush_pending_writes(conf
);
2541 spin_lock_irqsave(&conf
->device_lock
, flags
);
2542 if (list_empty(head
)) {
2543 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2546 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2547 list_del(head
->prev
);
2548 idx
= sector_to_idx(r1_bio
->sector
);
2549 atomic_dec(&conf
->nr_queued
[idx
]);
2550 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2552 mddev
= r1_bio
->mddev
;
2553 conf
= mddev
->private;
2554 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2555 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2556 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2557 handle_sync_write_finished(conf
, r1_bio
);
2559 sync_request_write(mddev
, r1_bio
);
2560 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2561 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2562 handle_write_finished(conf
, r1_bio
);
2563 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2564 handle_read_error(conf
, r1_bio
);
2569 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2570 md_check_recovery(mddev
);
2572 blk_finish_plug(&plug
);
2575 static int init_resync(struct r1conf
*conf
)
2579 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2580 BUG_ON(mempool_initialized(&conf
->r1buf_pool
));
2582 return mempool_init(&conf
->r1buf_pool
, buffs
, r1buf_pool_alloc
,
2583 r1buf_pool_free
, conf
->poolinfo
);
2586 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2588 struct r1bio
*r1bio
= mempool_alloc(&conf
->r1buf_pool
, GFP_NOIO
);
2589 struct resync_pages
*rps
;
2593 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2594 bio
= r1bio
->bios
[i
];
2595 rps
= bio
->bi_private
;
2597 bio
->bi_private
= rps
;
2599 r1bio
->master_bio
= NULL
;
2604 * perform a "sync" on one "block"
2606 * We need to make sure that no normal I/O request - particularly write
2607 * requests - conflict with active sync requests.
2609 * This is achieved by tracking pending requests and a 'barrier' concept
2610 * that can be installed to exclude normal IO requests.
2613 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2616 struct r1conf
*conf
= mddev
->private;
2617 struct r1bio
*r1_bio
;
2619 sector_t max_sector
, nr_sectors
;
2623 int write_targets
= 0, read_targets
= 0;
2624 sector_t sync_blocks
;
2625 int still_degraded
= 0;
2626 int good_sectors
= RESYNC_SECTORS
;
2627 int min_bad
= 0; /* number of sectors that are bad in all devices */
2628 int idx
= sector_to_idx(sector_nr
);
2631 if (!mempool_initialized(&conf
->r1buf_pool
))
2632 if (init_resync(conf
))
2635 max_sector
= mddev
->dev_sectors
;
2636 if (sector_nr
>= max_sector
) {
2637 /* If we aborted, we need to abort the
2638 * sync on the 'current' bitmap chunk (there will
2639 * only be one in raid1 resync.
2640 * We can find the current addess in mddev->curr_resync
2642 if (mddev
->curr_resync
< max_sector
) /* aborted */
2643 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2645 else /* completed sync */
2648 md_bitmap_close_sync(mddev
->bitmap
);
2651 if (mddev_is_clustered(mddev
)) {
2652 conf
->cluster_sync_low
= 0;
2653 conf
->cluster_sync_high
= 0;
2658 if (mddev
->bitmap
== NULL
&&
2659 mddev
->recovery_cp
== MaxSector
&&
2660 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2661 conf
->fullsync
== 0) {
2663 return max_sector
- sector_nr
;
2665 /* before building a request, check if we can skip these blocks..
2666 * This call the bitmap_start_sync doesn't actually record anything
2668 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2669 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2670 /* We can skip this block, and probably several more */
2676 * If there is non-resync activity waiting for a turn, then let it
2677 * though before starting on this new sync request.
2679 if (atomic_read(&conf
->nr_waiting
[idx
]))
2680 schedule_timeout_uninterruptible(1);
2682 /* we are incrementing sector_nr below. To be safe, we check against
2683 * sector_nr + two times RESYNC_SECTORS
2686 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2687 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2690 if (raise_barrier(conf
, sector_nr
))
2693 r1_bio
= raid1_alloc_init_r1buf(conf
);
2697 * If we get a correctably read error during resync or recovery,
2698 * we might want to read from a different device. So we
2699 * flag all drives that could conceivably be read from for READ,
2700 * and any others (which will be non-In_sync devices) for WRITE.
2701 * If a read fails, we try reading from something else for which READ
2705 r1_bio
->mddev
= mddev
;
2706 r1_bio
->sector
= sector_nr
;
2708 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2709 /* make sure good_sectors won't go across barrier unit boundary */
2710 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2712 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2713 struct md_rdev
*rdev
;
2714 bio
= r1_bio
->bios
[i
];
2716 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2718 test_bit(Faulty
, &rdev
->flags
)) {
2719 if (i
< conf
->raid_disks
)
2721 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2722 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2723 bio
->bi_end_io
= end_sync_write
;
2726 /* may need to read from here */
2727 sector_t first_bad
= MaxSector
;
2730 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2731 &first_bad
, &bad_sectors
)) {
2732 if (first_bad
> sector_nr
)
2733 good_sectors
= first_bad
- sector_nr
;
2735 bad_sectors
-= (sector_nr
- first_bad
);
2737 min_bad
> bad_sectors
)
2738 min_bad
= bad_sectors
;
2741 if (sector_nr
< first_bad
) {
2742 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2749 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2750 bio
->bi_end_io
= end_sync_read
;
2752 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2753 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2754 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2756 * The device is suitable for reading (InSync),
2757 * but has bad block(s) here. Let's try to correct them,
2758 * if we are doing resync or repair. Otherwise, leave
2759 * this device alone for this sync request.
2761 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2762 bio
->bi_end_io
= end_sync_write
;
2766 if (rdev
&& bio
->bi_end_io
) {
2767 atomic_inc(&rdev
->nr_pending
);
2768 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2769 bio_set_dev(bio
, rdev
->bdev
);
2770 if (test_bit(FailFast
, &rdev
->flags
))
2771 bio
->bi_opf
|= MD_FAILFAST
;
2777 r1_bio
->read_disk
= disk
;
2779 if (read_targets
== 0 && min_bad
> 0) {
2780 /* These sectors are bad on all InSync devices, so we
2781 * need to mark them bad on all write targets
2784 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2785 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2786 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2787 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2791 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2796 /* Cannot record the badblocks, so need to
2798 * If there are multiple read targets, could just
2799 * fail the really bad ones ???
2801 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2802 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2808 if (min_bad
> 0 && min_bad
< good_sectors
) {
2809 /* only resync enough to reach the next bad->good
2811 good_sectors
= min_bad
;
2814 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2815 /* extra read targets are also write targets */
2816 write_targets
+= read_targets
-1;
2818 if (write_targets
== 0 || read_targets
== 0) {
2819 /* There is nowhere to write, so all non-sync
2820 * drives must be failed - so we are finished
2824 max_sector
= sector_nr
+ min_bad
;
2825 rv
= max_sector
- sector_nr
;
2831 if (max_sector
> mddev
->resync_max
)
2832 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2833 if (max_sector
> sector_nr
+ good_sectors
)
2834 max_sector
= sector_nr
+ good_sectors
;
2839 int len
= PAGE_SIZE
;
2840 if (sector_nr
+ (len
>>9) > max_sector
)
2841 len
= (max_sector
- sector_nr
) << 9;
2844 if (sync_blocks
== 0) {
2845 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2846 &sync_blocks
, still_degraded
) &&
2848 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2850 if ((len
>> 9) > sync_blocks
)
2851 len
= sync_blocks
<<9;
2854 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2855 struct resync_pages
*rp
;
2857 bio
= r1_bio
->bios
[i
];
2858 rp
= get_resync_pages(bio
);
2859 if (bio
->bi_end_io
) {
2860 page
= resync_fetch_page(rp
, page_idx
);
2863 * won't fail because the vec table is big
2864 * enough to hold all these pages
2866 bio_add_page(bio
, page
, len
, 0);
2869 nr_sectors
+= len
>>9;
2870 sector_nr
+= len
>>9;
2871 sync_blocks
-= (len
>>9);
2872 } while (++page_idx
< RESYNC_PAGES
);
2874 r1_bio
->sectors
= nr_sectors
;
2876 if (mddev_is_clustered(mddev
) &&
2877 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2878 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2879 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2880 /* Send resync message */
2881 md_cluster_ops
->resync_info_update(mddev
,
2882 conf
->cluster_sync_low
,
2883 conf
->cluster_sync_high
);
2886 /* For a user-requested sync, we read all readable devices and do a
2889 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2890 atomic_set(&r1_bio
->remaining
, read_targets
);
2891 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2892 bio
= r1_bio
->bios
[i
];
2893 if (bio
->bi_end_io
== end_sync_read
) {
2895 md_sync_acct_bio(bio
, nr_sectors
);
2896 if (read_targets
== 1)
2897 bio
->bi_opf
&= ~MD_FAILFAST
;
2898 submit_bio_noacct(bio
);
2902 atomic_set(&r1_bio
->remaining
, 1);
2903 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2904 md_sync_acct_bio(bio
, nr_sectors
);
2905 if (read_targets
== 1)
2906 bio
->bi_opf
&= ~MD_FAILFAST
;
2907 submit_bio_noacct(bio
);
2912 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2917 return mddev
->dev_sectors
;
2920 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2922 struct r1conf
*conf
;
2924 struct raid1_info
*disk
;
2925 struct md_rdev
*rdev
;
2928 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2932 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2933 sizeof(atomic_t
), GFP_KERNEL
);
2934 if (!conf
->nr_pending
)
2937 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2938 sizeof(atomic_t
), GFP_KERNEL
);
2939 if (!conf
->nr_waiting
)
2942 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2943 sizeof(atomic_t
), GFP_KERNEL
);
2944 if (!conf
->nr_queued
)
2947 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2948 sizeof(atomic_t
), GFP_KERNEL
);
2952 conf
->mirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
2953 mddev
->raid_disks
, 2),
2958 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2962 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2963 if (!conf
->poolinfo
)
2965 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2966 err
= mempool_init(&conf
->r1bio_pool
, NR_RAID_BIOS
, r1bio_pool_alloc
,
2967 rbio_pool_free
, conf
->poolinfo
);
2971 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
2975 conf
->poolinfo
->mddev
= mddev
;
2978 spin_lock_init(&conf
->device_lock
);
2979 rdev_for_each(rdev
, mddev
) {
2980 int disk_idx
= rdev
->raid_disk
;
2981 if (disk_idx
>= mddev
->raid_disks
2984 if (test_bit(Replacement
, &rdev
->flags
))
2985 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2987 disk
= conf
->mirrors
+ disk_idx
;
2992 disk
->head_position
= 0;
2993 disk
->seq_start
= MaxSector
;
2995 conf
->raid_disks
= mddev
->raid_disks
;
2996 conf
->mddev
= mddev
;
2997 INIT_LIST_HEAD(&conf
->retry_list
);
2998 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3000 spin_lock_init(&conf
->resync_lock
);
3001 init_waitqueue_head(&conf
->wait_barrier
);
3003 bio_list_init(&conf
->pending_bio_list
);
3004 conf
->pending_count
= 0;
3005 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3008 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
3010 disk
= conf
->mirrors
+ i
;
3012 if (i
< conf
->raid_disks
&&
3013 disk
[conf
->raid_disks
].rdev
) {
3014 /* This slot has a replacement. */
3016 /* No original, just make the replacement
3017 * a recovering spare
3020 disk
[conf
->raid_disks
].rdev
;
3021 disk
[conf
->raid_disks
].rdev
= NULL
;
3022 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3023 /* Original is not in_sync - bad */
3028 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3029 disk
->head_position
= 0;
3031 (disk
->rdev
->saved_raid_disk
< 0))
3037 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3045 mempool_exit(&conf
->r1bio_pool
);
3046 kfree(conf
->mirrors
);
3047 safe_put_page(conf
->tmppage
);
3048 kfree(conf
->poolinfo
);
3049 kfree(conf
->nr_pending
);
3050 kfree(conf
->nr_waiting
);
3051 kfree(conf
->nr_queued
);
3052 kfree(conf
->barrier
);
3053 bioset_exit(&conf
->bio_split
);
3056 return ERR_PTR(err
);
3059 static void raid1_free(struct mddev
*mddev
, void *priv
);
3060 static int raid1_run(struct mddev
*mddev
)
3062 struct r1conf
*conf
;
3064 struct md_rdev
*rdev
;
3066 bool discard_supported
= false;
3068 if (mddev
->level
!= 1) {
3069 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3070 mdname(mddev
), mddev
->level
);
3073 if (mddev
->reshape_position
!= MaxSector
) {
3074 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3078 if (mddev_init_writes_pending(mddev
) < 0)
3081 * copy the already verified devices into our private RAID1
3082 * bookkeeping area. [whatever we allocate in run(),
3083 * should be freed in raid1_free()]
3085 if (mddev
->private == NULL
)
3086 conf
= setup_conf(mddev
);
3088 conf
= mddev
->private;
3091 return PTR_ERR(conf
);
3094 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3095 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3098 rdev_for_each(rdev
, mddev
) {
3099 if (!mddev
->gendisk
)
3101 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3102 rdev
->data_offset
<< 9);
3103 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3104 discard_supported
= true;
3107 mddev
->degraded
= 0;
3108 for (i
= 0; i
< conf
->raid_disks
; i
++)
3109 if (conf
->mirrors
[i
].rdev
== NULL
||
3110 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3111 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3114 * RAID1 needs at least one disk in active
3116 if (conf
->raid_disks
- mddev
->degraded
< 1) {
3121 if (conf
->raid_disks
- mddev
->degraded
== 1)
3122 mddev
->recovery_cp
= MaxSector
;
3124 if (mddev
->recovery_cp
!= MaxSector
)
3125 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3127 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3128 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3132 * Ok, everything is just fine now
3134 mddev
->thread
= conf
->thread
;
3135 conf
->thread
= NULL
;
3136 mddev
->private = conf
;
3137 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3139 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3142 if (discard_supported
)
3143 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3146 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3150 ret
= md_integrity_register(mddev
);
3152 md_unregister_thread(&mddev
->thread
);
3158 raid1_free(mddev
, conf
);
3162 static void raid1_free(struct mddev
*mddev
, void *priv
)
3164 struct r1conf
*conf
= priv
;
3166 mempool_exit(&conf
->r1bio_pool
);
3167 kfree(conf
->mirrors
);
3168 safe_put_page(conf
->tmppage
);
3169 kfree(conf
->poolinfo
);
3170 kfree(conf
->nr_pending
);
3171 kfree(conf
->nr_waiting
);
3172 kfree(conf
->nr_queued
);
3173 kfree(conf
->barrier
);
3174 bioset_exit(&conf
->bio_split
);
3178 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3180 /* no resync is happening, and there is enough space
3181 * on all devices, so we can resize.
3182 * We need to make sure resync covers any new space.
3183 * If the array is shrinking we should possibly wait until
3184 * any io in the removed space completes, but it hardly seems
3187 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3188 if (mddev
->external_size
&&
3189 mddev
->array_sectors
> newsize
)
3191 if (mddev
->bitmap
) {
3192 int ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3196 md_set_array_sectors(mddev
, newsize
);
3197 if (sectors
> mddev
->dev_sectors
&&
3198 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3199 mddev
->recovery_cp
= mddev
->dev_sectors
;
3200 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3202 mddev
->dev_sectors
= sectors
;
3203 mddev
->resync_max_sectors
= sectors
;
3207 static int raid1_reshape(struct mddev
*mddev
)
3210 * 1/ resize the r1bio_pool
3211 * 2/ resize conf->mirrors
3213 * We allocate a new r1bio_pool if we can.
3214 * Then raise a device barrier and wait until all IO stops.
3215 * Then resize conf->mirrors and swap in the new r1bio pool.
3217 * At the same time, we "pack" the devices so that all the missing
3218 * devices have the higher raid_disk numbers.
3220 mempool_t newpool
, oldpool
;
3221 struct pool_info
*newpoolinfo
;
3222 struct raid1_info
*newmirrors
;
3223 struct r1conf
*conf
= mddev
->private;
3224 int cnt
, raid_disks
;
3225 unsigned long flags
;
3229 memset(&newpool
, 0, sizeof(newpool
));
3230 memset(&oldpool
, 0, sizeof(oldpool
));
3232 /* Cannot change chunk_size, layout, or level */
3233 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3234 mddev
->layout
!= mddev
->new_layout
||
3235 mddev
->level
!= mddev
->new_level
) {
3236 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3237 mddev
->new_layout
= mddev
->layout
;
3238 mddev
->new_level
= mddev
->level
;
3242 if (!mddev_is_clustered(mddev
))
3243 md_allow_write(mddev
);
3245 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3247 if (raid_disks
< conf
->raid_disks
) {
3249 for (d
= 0; d
< conf
->raid_disks
; d
++)
3250 if (conf
->mirrors
[d
].rdev
)
3252 if (cnt
> raid_disks
)
3256 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3259 newpoolinfo
->mddev
= mddev
;
3260 newpoolinfo
->raid_disks
= raid_disks
* 2;
3262 ret
= mempool_init(&newpool
, NR_RAID_BIOS
, r1bio_pool_alloc
,
3263 rbio_pool_free
, newpoolinfo
);
3268 newmirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
3273 mempool_exit(&newpool
);
3277 freeze_array(conf
, 0);
3279 /* ok, everything is stopped */
3280 oldpool
= conf
->r1bio_pool
;
3281 conf
->r1bio_pool
= newpool
;
3283 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3284 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3285 if (rdev
&& rdev
->raid_disk
!= d2
) {
3286 sysfs_unlink_rdev(mddev
, rdev
);
3287 rdev
->raid_disk
= d2
;
3288 sysfs_unlink_rdev(mddev
, rdev
);
3289 if (sysfs_link_rdev(mddev
, rdev
))
3290 pr_warn("md/raid1:%s: cannot register rd%d\n",
3291 mdname(mddev
), rdev
->raid_disk
);
3294 newmirrors
[d2
++].rdev
= rdev
;
3296 kfree(conf
->mirrors
);
3297 conf
->mirrors
= newmirrors
;
3298 kfree(conf
->poolinfo
);
3299 conf
->poolinfo
= newpoolinfo
;
3301 spin_lock_irqsave(&conf
->device_lock
, flags
);
3302 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3303 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3304 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3305 mddev
->delta_disks
= 0;
3307 unfreeze_array(conf
);
3309 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3310 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3311 md_wakeup_thread(mddev
->thread
);
3313 mempool_exit(&oldpool
);
3317 static void raid1_quiesce(struct mddev
*mddev
, int quiesce
)
3319 struct r1conf
*conf
= mddev
->private;
3322 freeze_array(conf
, 0);
3324 unfreeze_array(conf
);
3327 static void *raid1_takeover(struct mddev
*mddev
)
3329 /* raid1 can take over:
3330 * raid5 with 2 devices, any layout or chunk size
3332 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3333 struct r1conf
*conf
;
3334 mddev
->new_level
= 1;
3335 mddev
->new_layout
= 0;
3336 mddev
->new_chunk_sectors
= 0;
3337 conf
= setup_conf(mddev
);
3338 if (!IS_ERR(conf
)) {
3339 /* Array must appear to be quiesced */
3340 conf
->array_frozen
= 1;
3341 mddev_clear_unsupported_flags(mddev
,
3342 UNSUPPORTED_MDDEV_FLAGS
);
3346 return ERR_PTR(-EINVAL
);
3349 static struct md_personality raid1_personality
=
3353 .owner
= THIS_MODULE
,
3354 .make_request
= raid1_make_request
,
3357 .status
= raid1_status
,
3358 .error_handler
= raid1_error
,
3359 .hot_add_disk
= raid1_add_disk
,
3360 .hot_remove_disk
= raid1_remove_disk
,
3361 .spare_active
= raid1_spare_active
,
3362 .sync_request
= raid1_sync_request
,
3363 .resize
= raid1_resize
,
3365 .check_reshape
= raid1_reshape
,
3366 .quiesce
= raid1_quiesce
,
3367 .takeover
= raid1_takeover
,
3370 static int __init
raid_init(void)
3372 return register_md_personality(&raid1_personality
);
3375 static void raid_exit(void)
3377 unregister_md_personality(&raid1_personality
);
3380 module_init(raid_init
);
3381 module_exit(raid_exit
);
3382 MODULE_LICENSE("GPL");
3383 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3384 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3385 MODULE_ALIAS("md-raid1");
3386 MODULE_ALIAS("md-level-1");
3388 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);