1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
24 #include "md-bitmap.h"
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
67 static void allow_barrier(struct r10conf
*conf
);
68 static void lower_barrier(struct r10conf
*conf
);
69 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
70 static int enough(struct r10conf
*conf
, int ignore
);
71 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
73 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
74 static void end_reshape_write(struct bio
*bio
);
75 static void end_reshape(struct r10conf
*conf
);
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
86 static inline struct r10bio
*get_resync_r10bio(struct bio
*bio
)
88 return get_resync_pages(bio
)->raid_bio
;
91 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
93 struct r10conf
*conf
= data
;
94 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
96 /* allocate a r10bio with room for raid_disks entries in the
98 return kzalloc(size
, gfp_flags
);
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
116 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
118 struct r10conf
*conf
= data
;
119 struct r10bio
*r10_bio
;
122 int nalloc
, nalloc_rp
;
123 struct resync_pages
*rps
;
125 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
129 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
130 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
131 nalloc
= conf
->copies
; /* resync */
133 nalloc
= 2; /* recovery */
135 /* allocate once for all bios */
136 if (!conf
->have_replacement
)
139 nalloc_rp
= nalloc
* 2;
140 rps
= kmalloc_array(nalloc_rp
, sizeof(struct resync_pages
), gfp_flags
);
142 goto out_free_r10bio
;
147 for (j
= nalloc
; j
-- ; ) {
148 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
151 r10_bio
->devs
[j
].bio
= bio
;
152 if (!conf
->have_replacement
)
154 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
157 r10_bio
->devs
[j
].repl_bio
= bio
;
160 * Allocate RESYNC_PAGES data pages and attach them
163 for (j
= 0; j
< nalloc
; j
++) {
164 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
165 struct resync_pages
*rp
, *rp_repl
;
169 rp_repl
= &rps
[nalloc
+ j
];
171 bio
= r10_bio
->devs
[j
].bio
;
173 if (!j
|| test_bit(MD_RECOVERY_SYNC
,
174 &conf
->mddev
->recovery
)) {
175 if (resync_alloc_pages(rp
, gfp_flags
))
178 memcpy(rp
, &rps
[0], sizeof(*rp
));
179 resync_get_all_pages(rp
);
182 rp
->raid_bio
= r10_bio
;
183 bio
->bi_private
= rp
;
185 memcpy(rp_repl
, rp
, sizeof(*rp
));
186 rbio
->bi_private
= rp_repl
;
194 resync_free_pages(&rps
[j
]);
198 for ( ; j
< nalloc
; j
++) {
199 if (r10_bio
->devs
[j
].bio
)
200 bio_put(r10_bio
->devs
[j
].bio
);
201 if (r10_bio
->devs
[j
].repl_bio
)
202 bio_put(r10_bio
->devs
[j
].repl_bio
);
206 rbio_pool_free(r10_bio
, conf
);
210 static void r10buf_pool_free(void *__r10_bio
, void *data
)
212 struct r10conf
*conf
= data
;
213 struct r10bio
*r10bio
= __r10_bio
;
215 struct resync_pages
*rp
= NULL
;
217 for (j
= conf
->copies
; j
--; ) {
218 struct bio
*bio
= r10bio
->devs
[j
].bio
;
221 rp
= get_resync_pages(bio
);
222 resync_free_pages(rp
);
226 bio
= r10bio
->devs
[j
].repl_bio
;
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r10bio
, conf
);
237 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
241 for (i
= 0; i
< conf
->copies
; i
++) {
242 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
243 if (!BIO_SPECIAL(*bio
))
246 bio
= &r10_bio
->devs
[i
].repl_bio
;
247 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
253 static void free_r10bio(struct r10bio
*r10_bio
)
255 struct r10conf
*conf
= r10_bio
->mddev
->private;
257 put_all_bios(conf
, r10_bio
);
258 mempool_free(r10_bio
, &conf
->r10bio_pool
);
261 static void put_buf(struct r10bio
*r10_bio
)
263 struct r10conf
*conf
= r10_bio
->mddev
->private;
265 mempool_free(r10_bio
, &conf
->r10buf_pool
);
270 static void reschedule_retry(struct r10bio
*r10_bio
)
273 struct mddev
*mddev
= r10_bio
->mddev
;
274 struct r10conf
*conf
= mddev
->private;
276 spin_lock_irqsave(&conf
->device_lock
, flags
);
277 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
279 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
281 /* wake up frozen array... */
282 wake_up(&conf
->wait_barrier
);
284 md_wakeup_thread(mddev
->thread
);
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
292 static void raid_end_bio_io(struct r10bio
*r10_bio
)
294 struct bio
*bio
= r10_bio
->master_bio
;
295 struct r10conf
*conf
= r10_bio
->mddev
->private;
297 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
298 bio
->bi_status
= BLK_STS_IOERR
;
302 * Wake up any possible resync thread that waits for the device
307 free_r10bio(r10_bio
);
311 * Update disk head position estimator based on IRQ completion info.
313 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
315 struct r10conf
*conf
= r10_bio
->mddev
->private;
317 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
318 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
322 * Find the disk number which triggered given bio
324 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
325 struct bio
*bio
, int *slotp
, int *replp
)
330 for (slot
= 0; slot
< conf
->copies
; slot
++) {
331 if (r10_bio
->devs
[slot
].bio
== bio
)
333 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
339 BUG_ON(slot
== conf
->copies
);
340 update_head_pos(slot
, r10_bio
);
346 return r10_bio
->devs
[slot
].devnum
;
349 static void raid10_end_read_request(struct bio
*bio
)
351 int uptodate
= !bio
->bi_status
;
352 struct r10bio
*r10_bio
= bio
->bi_private
;
354 struct md_rdev
*rdev
;
355 struct r10conf
*conf
= r10_bio
->mddev
->private;
357 slot
= r10_bio
->read_slot
;
358 rdev
= r10_bio
->devs
[slot
].rdev
;
360 * this branch is our 'one mirror IO has finished' event handler:
362 update_head_pos(slot
, r10_bio
);
366 * Set R10BIO_Uptodate in our master bio, so that
367 * we will return a good error code to the higher
368 * levels even if IO on some other mirrored buffer fails.
370 * The 'master' represents the composite IO operation to
371 * user-side. So if something waits for IO, then it will
372 * wait for the 'master' bio.
374 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
376 /* If all other devices that store this block have
377 * failed, we want to return the error upwards rather
378 * than fail the last device. Here we redefine
379 * "uptodate" to mean "Don't want to retry"
381 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
386 raid_end_bio_io(r10_bio
);
387 rdev_dec_pending(rdev
, conf
->mddev
);
390 * oops, read error - keep the refcount on the rdev
392 char b
[BDEVNAME_SIZE
];
393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 bdevname(rdev
->bdev
, b
),
396 (unsigned long long)r10_bio
->sector
);
397 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
398 reschedule_retry(r10_bio
);
402 static void close_write(struct r10bio
*r10_bio
)
404 /* clear the bitmap if all writes complete successfully */
405 md_bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
407 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
409 md_write_end(r10_bio
->mddev
);
412 static void one_write_done(struct r10bio
*r10_bio
)
414 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
415 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
416 reschedule_retry(r10_bio
);
418 close_write(r10_bio
);
419 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
420 reschedule_retry(r10_bio
);
422 raid_end_bio_io(r10_bio
);
427 static void raid10_end_write_request(struct bio
*bio
)
429 struct r10bio
*r10_bio
= bio
->bi_private
;
432 struct r10conf
*conf
= r10_bio
->mddev
->private;
434 struct md_rdev
*rdev
= NULL
;
435 struct bio
*to_put
= NULL
;
438 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
440 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
443 rdev
= conf
->mirrors
[dev
].replacement
;
447 rdev
= conf
->mirrors
[dev
].rdev
;
450 * this branch is our 'one mirror IO has finished' event handler:
452 if (bio
->bi_status
&& !discard_error
) {
454 /* Never record new bad blocks to replacement,
457 md_error(rdev
->mddev
, rdev
);
459 set_bit(WriteErrorSeen
, &rdev
->flags
);
460 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
461 set_bit(MD_RECOVERY_NEEDED
,
462 &rdev
->mddev
->recovery
);
465 if (test_bit(FailFast
, &rdev
->flags
) &&
466 (bio
->bi_opf
& MD_FAILFAST
)) {
467 md_error(rdev
->mddev
, rdev
);
471 * When the device is faulty, it is not necessary to
472 * handle write error.
473 * For failfast, this is the only remaining device,
474 * We need to retry the write without FailFast.
476 if (!test_bit(Faulty
, &rdev
->flags
))
477 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
479 r10_bio
->devs
[slot
].bio
= NULL
;
486 * Set R10BIO_Uptodate in our master bio, so that
487 * we will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer fails.
490 * The 'master' represents the composite IO operation to
491 * user-side. So if something waits for IO, then it will
492 * wait for the 'master' bio.
498 * Do not set R10BIO_Uptodate if the current device is
499 * rebuilding or Faulty. This is because we cannot use
500 * such device for properly reading the data back (we could
501 * potentially use it, if the current write would have felt
502 * before rdev->recovery_offset, but for simplicity we don't
505 if (test_bit(In_sync
, &rdev
->flags
) &&
506 !test_bit(Faulty
, &rdev
->flags
))
507 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
509 /* Maybe we can clear some bad blocks. */
510 if (is_badblock(rdev
,
511 r10_bio
->devs
[slot
].addr
,
513 &first_bad
, &bad_sectors
) && !discard_error
) {
516 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
518 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
520 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
526 * Let's see if all mirrored write operations have finished
529 one_write_done(r10_bio
);
531 rdev_dec_pending(rdev
, conf
->mddev
);
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
561 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
569 int last_far_set_start
, last_far_set_size
;
571 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
572 last_far_set_start
*= geo
->far_set_size
;
574 last_far_set_size
= geo
->far_set_size
;
575 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
577 /* now calculate first sector/dev */
578 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
579 sector
= r10bio
->sector
& geo
->chunk_mask
;
581 chunk
*= geo
->near_copies
;
583 dev
= sector_div(stripe
, geo
->raid_disks
);
585 stripe
*= geo
->far_copies
;
587 sector
+= stripe
<< geo
->chunk_shift
;
589 /* and calculate all the others */
590 for (n
= 0; n
< geo
->near_copies
; n
++) {
594 r10bio
->devs
[slot
].devnum
= d
;
595 r10bio
->devs
[slot
].addr
= s
;
598 for (f
= 1; f
< geo
->far_copies
; f
++) {
599 set
= d
/ geo
->far_set_size
;
600 d
+= geo
->near_copies
;
602 if ((geo
->raid_disks
% geo
->far_set_size
) &&
603 (d
> last_far_set_start
)) {
604 d
-= last_far_set_start
;
605 d
%= last_far_set_size
;
606 d
+= last_far_set_start
;
608 d
%= geo
->far_set_size
;
609 d
+= geo
->far_set_size
* set
;
612 r10bio
->devs
[slot
].devnum
= d
;
613 r10bio
->devs
[slot
].addr
= s
;
617 if (dev
>= geo
->raid_disks
) {
619 sector
+= (geo
->chunk_mask
+ 1);
624 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
626 struct geom
*geo
= &conf
->geo
;
628 if (conf
->reshape_progress
!= MaxSector
&&
629 ((r10bio
->sector
>= conf
->reshape_progress
) !=
630 conf
->mddev
->reshape_backwards
)) {
631 set_bit(R10BIO_Previous
, &r10bio
->state
);
634 clear_bit(R10BIO_Previous
, &r10bio
->state
);
636 __raid10_find_phys(geo
, r10bio
);
639 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
641 sector_t offset
, chunk
, vchunk
;
642 /* Never use conf->prev as this is only called during resync
643 * or recovery, so reshape isn't happening
645 struct geom
*geo
= &conf
->geo
;
646 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
647 int far_set_size
= geo
->far_set_size
;
648 int last_far_set_start
;
650 if (geo
->raid_disks
% geo
->far_set_size
) {
651 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
652 last_far_set_start
*= geo
->far_set_size
;
654 if (dev
>= last_far_set_start
) {
655 far_set_size
= geo
->far_set_size
;
656 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
657 far_set_start
= last_far_set_start
;
661 offset
= sector
& geo
->chunk_mask
;
662 if (geo
->far_offset
) {
664 chunk
= sector
>> geo
->chunk_shift
;
665 fc
= sector_div(chunk
, geo
->far_copies
);
666 dev
-= fc
* geo
->near_copies
;
667 if (dev
< far_set_start
)
670 while (sector
>= geo
->stride
) {
671 sector
-= geo
->stride
;
672 if (dev
< (geo
->near_copies
+ far_set_start
))
673 dev
+= far_set_size
- geo
->near_copies
;
675 dev
-= geo
->near_copies
;
677 chunk
= sector
>> geo
->chunk_shift
;
679 vchunk
= chunk
* geo
->raid_disks
+ dev
;
680 sector_div(vchunk
, geo
->near_copies
);
681 return (vchunk
<< geo
->chunk_shift
) + offset
;
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
696 * The rdev for the device selected will have nr_pending incremented.
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
703 static struct md_rdev
*read_balance(struct r10conf
*conf
,
704 struct r10bio
*r10_bio
,
707 const sector_t this_sector
= r10_bio
->sector
;
709 int sectors
= r10_bio
->sectors
;
710 int best_good_sectors
;
711 sector_t new_distance
, best_dist
;
712 struct md_rdev
*best_dist_rdev
, *best_pending_rdev
, *rdev
= NULL
;
714 int best_dist_slot
, best_pending_slot
;
715 bool has_nonrot_disk
= false;
716 unsigned int min_pending
;
717 struct geom
*geo
= &conf
->geo
;
719 raid10_find_phys(conf
, r10_bio
);
722 min_pending
= UINT_MAX
;
723 best_dist_rdev
= NULL
;
724 best_pending_rdev
= NULL
;
725 best_dist
= MaxSector
;
726 best_good_sectors
= 0;
728 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
730 * Check if we can balance. We can balance on the whole
731 * device if no resync is going on (recovery is ok), or below
732 * the resync window. We take the first readable disk when
733 * above the resync window.
735 if ((conf
->mddev
->recovery_cp
< MaxSector
736 && (this_sector
+ sectors
>= conf
->next_resync
)) ||
737 (mddev_is_clustered(conf
->mddev
) &&
738 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
739 this_sector
+ sectors
)))
742 for (slot
= 0; slot
< conf
->copies
; slot
++) {
746 unsigned int pending
;
749 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
751 disk
= r10_bio
->devs
[slot
].devnum
;
752 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
753 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
754 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
755 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
757 test_bit(Faulty
, &rdev
->flags
))
759 if (!test_bit(In_sync
, &rdev
->flags
) &&
760 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
763 dev_sector
= r10_bio
->devs
[slot
].addr
;
764 if (is_badblock(rdev
, dev_sector
, sectors
,
765 &first_bad
, &bad_sectors
)) {
766 if (best_dist
< MaxSector
)
767 /* Already have a better slot */
769 if (first_bad
<= dev_sector
) {
770 /* Cannot read here. If this is the
771 * 'primary' device, then we must not read
772 * beyond 'bad_sectors' from another device.
774 bad_sectors
-= (dev_sector
- first_bad
);
775 if (!do_balance
&& sectors
> bad_sectors
)
776 sectors
= bad_sectors
;
777 if (best_good_sectors
> sectors
)
778 best_good_sectors
= sectors
;
780 sector_t good_sectors
=
781 first_bad
- dev_sector
;
782 if (good_sectors
> best_good_sectors
) {
783 best_good_sectors
= good_sectors
;
784 best_dist_slot
= slot
;
785 best_dist_rdev
= rdev
;
788 /* Must read from here */
793 best_good_sectors
= sectors
;
798 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
799 has_nonrot_disk
|= nonrot
;
800 pending
= atomic_read(&rdev
->nr_pending
);
801 if (min_pending
> pending
&& nonrot
) {
802 min_pending
= pending
;
803 best_pending_slot
= slot
;
804 best_pending_rdev
= rdev
;
807 if (best_dist_slot
>= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
814 if (geo
->near_copies
> 1 && !pending
)
817 /* for far > 1 always use the lowest address */
818 else if (geo
->far_copies
> 1)
819 new_distance
= r10_bio
->devs
[slot
].addr
;
821 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
822 conf
->mirrors
[disk
].head_position
);
824 if (new_distance
< best_dist
) {
825 best_dist
= new_distance
;
826 best_dist_slot
= slot
;
827 best_dist_rdev
= rdev
;
830 if (slot
>= conf
->copies
) {
831 if (has_nonrot_disk
) {
832 slot
= best_pending_slot
;
833 rdev
= best_pending_rdev
;
835 slot
= best_dist_slot
;
836 rdev
= best_dist_rdev
;
841 atomic_inc(&rdev
->nr_pending
);
842 r10_bio
->read_slot
= slot
;
846 *max_sectors
= best_good_sectors
;
851 static void flush_pending_writes(struct r10conf
*conf
)
853 /* Any writes that have been queued but are awaiting
854 * bitmap updates get flushed here.
856 spin_lock_irq(&conf
->device_lock
);
858 if (conf
->pending_bio_list
.head
) {
859 struct blk_plug plug
;
862 bio
= bio_list_get(&conf
->pending_bio_list
);
863 conf
->pending_count
= 0;
864 spin_unlock_irq(&conf
->device_lock
);
867 * As this is called in a wait_event() loop (see freeze_array),
868 * current->state might be TASK_UNINTERRUPTIBLE which will
869 * cause a warning when we prepare to wait again. As it is
870 * rare that this path is taken, it is perfectly safe to force
871 * us to go around the wait_event() loop again, so the warning
872 * is a false-positive. Silence the warning by resetting
875 __set_current_state(TASK_RUNNING
);
877 blk_start_plug(&plug
);
878 /* flush any pending bitmap writes to disk
879 * before proceeding w/ I/O */
880 md_bitmap_unplug(conf
->mddev
->bitmap
);
881 wake_up(&conf
->wait_barrier
);
883 while (bio
) { /* submit pending writes */
884 struct bio
*next
= bio
->bi_next
;
885 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
887 bio_set_dev(bio
, rdev
->bdev
);
888 if (test_bit(Faulty
, &rdev
->flags
)) {
890 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
891 !blk_queue_discard(bio
->bi_disk
->queue
)))
895 submit_bio_noacct(bio
);
898 blk_finish_plug(&plug
);
900 spin_unlock_irq(&conf
->device_lock
);
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
925 static void raise_barrier(struct r10conf
*conf
, int force
)
927 BUG_ON(force
&& !conf
->barrier
);
928 spin_lock_irq(&conf
->resync_lock
);
930 /* Wait until no block IO is waiting (unless 'force') */
931 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
934 /* block any new IO from starting */
937 /* Now wait for all pending IO to complete */
938 wait_event_lock_irq(conf
->wait_barrier
,
939 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
942 spin_unlock_irq(&conf
->resync_lock
);
945 static void lower_barrier(struct r10conf
*conf
)
948 spin_lock_irqsave(&conf
->resync_lock
, flags
);
950 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
951 wake_up(&conf
->wait_barrier
);
954 static void wait_barrier(struct r10conf
*conf
)
956 spin_lock_irq(&conf
->resync_lock
);
958 struct bio_list
*bio_list
= current
->bio_list
;
960 /* Wait for the barrier to drop.
961 * However if there are already pending
962 * requests (preventing the barrier from
963 * rising completely), and the
964 * pre-process bio queue isn't empty,
965 * then don't wait, as we need to empty
966 * that queue to get the nr_pending
969 raid10_log(conf
->mddev
, "wait barrier");
970 wait_event_lock_irq(conf
->wait_barrier
,
972 (atomic_read(&conf
->nr_pending
) &&
974 (!bio_list_empty(&bio_list
[0]) ||
975 !bio_list_empty(&bio_list
[1]))) ||
976 /* move on if recovery thread is
979 (conf
->mddev
->thread
->tsk
== current
&&
980 test_bit(MD_RECOVERY_RUNNING
,
981 &conf
->mddev
->recovery
) &&
982 conf
->nr_queued
> 0),
985 if (!conf
->nr_waiting
)
986 wake_up(&conf
->wait_barrier
);
988 atomic_inc(&conf
->nr_pending
);
989 spin_unlock_irq(&conf
->resync_lock
);
992 static void allow_barrier(struct r10conf
*conf
)
994 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
995 (conf
->array_freeze_pending
))
996 wake_up(&conf
->wait_barrier
);
999 static void freeze_array(struct r10conf
*conf
, int extra
)
1001 /* stop syncio and normal IO and wait for everything to
1003 * We increment barrier and nr_waiting, and then
1004 * wait until nr_pending match nr_queued+extra
1005 * This is called in the context of one normal IO request
1006 * that has failed. Thus any sync request that might be pending
1007 * will be blocked by nr_pending, and we need to wait for
1008 * pending IO requests to complete or be queued for re-try.
1009 * Thus the number queued (nr_queued) plus this request (extra)
1010 * must match the number of pending IOs (nr_pending) before
1013 spin_lock_irq(&conf
->resync_lock
);
1014 conf
->array_freeze_pending
++;
1017 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1018 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1020 flush_pending_writes(conf
));
1022 conf
->array_freeze_pending
--;
1023 spin_unlock_irq(&conf
->resync_lock
);
1026 static void unfreeze_array(struct r10conf
*conf
)
1028 /* reverse the effect of the freeze */
1029 spin_lock_irq(&conf
->resync_lock
);
1032 wake_up(&conf
->wait_barrier
);
1033 spin_unlock_irq(&conf
->resync_lock
);
1036 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1037 struct md_rdev
*rdev
)
1039 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1040 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1041 return rdev
->data_offset
;
1043 return rdev
->new_data_offset
;
1046 struct raid10_plug_cb
{
1047 struct blk_plug_cb cb
;
1048 struct bio_list pending
;
1052 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1054 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1056 struct mddev
*mddev
= plug
->cb
.data
;
1057 struct r10conf
*conf
= mddev
->private;
1060 if (from_schedule
|| current
->bio_list
) {
1061 spin_lock_irq(&conf
->device_lock
);
1062 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1063 conf
->pending_count
+= plug
->pending_cnt
;
1064 spin_unlock_irq(&conf
->device_lock
);
1065 wake_up(&conf
->wait_barrier
);
1066 md_wakeup_thread(mddev
->thread
);
1071 /* we aren't scheduling, so we can do the write-out directly. */
1072 bio
= bio_list_get(&plug
->pending
);
1073 md_bitmap_unplug(mddev
->bitmap
);
1074 wake_up(&conf
->wait_barrier
);
1076 while (bio
) { /* submit pending writes */
1077 struct bio
*next
= bio
->bi_next
;
1078 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
1079 bio
->bi_next
= NULL
;
1080 bio_set_dev(bio
, rdev
->bdev
);
1081 if (test_bit(Faulty
, &rdev
->flags
)) {
1083 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1084 !blk_queue_discard(bio
->bi_disk
->queue
)))
1085 /* Just ignore it */
1088 submit_bio_noacct(bio
);
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1100 static void regular_request_wait(struct mddev
*mddev
, struct r10conf
*conf
,
1101 struct bio
*bio
, sector_t sectors
)
1104 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1105 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1106 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1107 raid10_log(conf
->mddev
, "wait reshape");
1108 allow_barrier(conf
);
1109 wait_event(conf
->wait_barrier
,
1110 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1111 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1117 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1118 struct r10bio
*r10_bio
)
1120 struct r10conf
*conf
= mddev
->private;
1121 struct bio
*read_bio
;
1122 const int op
= bio_op(bio
);
1123 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1125 struct md_rdev
*rdev
;
1126 char b
[BDEVNAME_SIZE
];
1127 int slot
= r10_bio
->read_slot
;
1128 struct md_rdev
*err_rdev
= NULL
;
1129 gfp_t gfp
= GFP_NOIO
;
1131 if (slot
>= 0 && r10_bio
->devs
[slot
].rdev
) {
1133 * This is an error retry, but we cannot
1134 * safely dereference the rdev in the r10_bio,
1135 * we must use the one in conf.
1136 * If it has already been disconnected (unlikely)
1137 * we lose the device name in error messages.
1141 * As we are blocking raid10, it is a little safer to
1144 gfp
= GFP_NOIO
| __GFP_HIGH
;
1147 disk
= r10_bio
->devs
[slot
].devnum
;
1148 err_rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
1150 bdevname(err_rdev
->bdev
, b
);
1153 /* This never gets dereferenced */
1154 err_rdev
= r10_bio
->devs
[slot
].rdev
;
1159 regular_request_wait(mddev
, conf
, bio
, r10_bio
->sectors
);
1160 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165 (unsigned long long)r10_bio
->sector
);
1167 raid_end_bio_io(r10_bio
);
1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173 bdevname(rdev
->bdev
, b
),
1174 (unsigned long long)r10_bio
->sector
);
1175 if (max_sectors
< bio_sectors(bio
)) {
1176 struct bio
*split
= bio_split(bio
, max_sectors
,
1177 gfp
, &conf
->bio_split
);
1178 bio_chain(split
, bio
);
1179 allow_barrier(conf
);
1180 submit_bio_noacct(bio
);
1183 r10_bio
->master_bio
= bio
;
1184 r10_bio
->sectors
= max_sectors
;
1186 slot
= r10_bio
->read_slot
;
1188 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1190 r10_bio
->devs
[slot
].bio
= read_bio
;
1191 r10_bio
->devs
[slot
].rdev
= rdev
;
1193 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1194 choose_data_offset(r10_bio
, rdev
);
1195 bio_set_dev(read_bio
, rdev
->bdev
);
1196 read_bio
->bi_end_io
= raid10_end_read_request
;
1197 bio_set_op_attrs(read_bio
, op
, do_sync
);
1198 if (test_bit(FailFast
, &rdev
->flags
) &&
1199 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1200 read_bio
->bi_opf
|= MD_FAILFAST
;
1201 read_bio
->bi_private
= r10_bio
;
1204 trace_block_bio_remap(read_bio
, disk_devt(mddev
->gendisk
),
1206 submit_bio_noacct(read_bio
);
1210 static void raid10_write_one_disk(struct mddev
*mddev
, struct r10bio
*r10_bio
,
1211 struct bio
*bio
, bool replacement
,
1214 const int op
= bio_op(bio
);
1215 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1216 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1217 unsigned long flags
;
1218 struct blk_plug_cb
*cb
;
1219 struct raid10_plug_cb
*plug
= NULL
;
1220 struct r10conf
*conf
= mddev
->private;
1221 struct md_rdev
*rdev
;
1222 int devnum
= r10_bio
->devs
[n_copy
].devnum
;
1226 rdev
= conf
->mirrors
[devnum
].replacement
;
1228 /* Replacement just got moved to main 'rdev' */
1230 rdev
= conf
->mirrors
[devnum
].rdev
;
1233 rdev
= conf
->mirrors
[devnum
].rdev
;
1235 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1237 r10_bio
->devs
[n_copy
].repl_bio
= mbio
;
1239 r10_bio
->devs
[n_copy
].bio
= mbio
;
1241 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[n_copy
].addr
+
1242 choose_data_offset(r10_bio
, rdev
));
1243 bio_set_dev(mbio
, rdev
->bdev
);
1244 mbio
->bi_end_io
= raid10_end_write_request
;
1245 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1246 if (!replacement
&& test_bit(FailFast
,
1247 &conf
->mirrors
[devnum
].rdev
->flags
)
1248 && enough(conf
, devnum
))
1249 mbio
->bi_opf
|= MD_FAILFAST
;
1250 mbio
->bi_private
= r10_bio
;
1252 if (conf
->mddev
->gendisk
)
1253 trace_block_bio_remap(mbio
, disk_devt(conf
->mddev
->gendisk
),
1255 /* flush_pending_writes() needs access to the rdev so...*/
1256 mbio
->bi_disk
= (void *)rdev
;
1258 atomic_inc(&r10_bio
->remaining
);
1260 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1262 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1266 bio_list_add(&plug
->pending
, mbio
);
1267 plug
->pending_cnt
++;
1269 spin_lock_irqsave(&conf
->device_lock
, flags
);
1270 bio_list_add(&conf
->pending_bio_list
, mbio
);
1271 conf
->pending_count
++;
1272 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1273 md_wakeup_thread(mddev
->thread
);
1277 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1278 struct r10bio
*r10_bio
)
1280 struct r10conf
*conf
= mddev
->private;
1282 struct md_rdev
*blocked_rdev
;
1286 if ((mddev_is_clustered(mddev
) &&
1287 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1288 bio
->bi_iter
.bi_sector
,
1289 bio_end_sector(bio
)))) {
1292 prepare_to_wait(&conf
->wait_barrier
,
1294 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1295 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))
1299 finish_wait(&conf
->wait_barrier
, &w
);
1302 sectors
= r10_bio
->sectors
;
1303 regular_request_wait(mddev
, conf
, bio
, sectors
);
1304 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1305 (mddev
->reshape_backwards
1306 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1307 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1308 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1309 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1310 /* Need to update reshape_position in metadata */
1311 mddev
->reshape_position
= conf
->reshape_progress
;
1312 set_mask_bits(&mddev
->sb_flags
, 0,
1313 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1314 md_wakeup_thread(mddev
->thread
);
1315 raid10_log(conf
->mddev
, "wait reshape metadata");
1316 wait_event(mddev
->sb_wait
,
1317 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1319 conf
->reshape_safe
= mddev
->reshape_position
;
1322 if (conf
->pending_count
>= max_queued_requests
) {
1323 md_wakeup_thread(mddev
->thread
);
1324 raid10_log(mddev
, "wait queued");
1325 wait_event(conf
->wait_barrier
,
1326 conf
->pending_count
< max_queued_requests
);
1328 /* first select target devices under rcu_lock and
1329 * inc refcount on their rdev. Record them by setting
1331 * If there are known/acknowledged bad blocks on any device
1332 * on which we have seen a write error, we want to avoid
1333 * writing to those blocks. This potentially requires several
1334 * writes to write around the bad blocks. Each set of writes
1335 * gets its own r10_bio with a set of bios attached.
1338 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1339 raid10_find_phys(conf
, r10_bio
);
1341 blocked_rdev
= NULL
;
1343 max_sectors
= r10_bio
->sectors
;
1345 for (i
= 0; i
< conf
->copies
; i
++) {
1346 int d
= r10_bio
->devs
[i
].devnum
;
1347 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1348 struct md_rdev
*rrdev
= rcu_dereference(
1349 conf
->mirrors
[d
].replacement
);
1352 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1353 atomic_inc(&rdev
->nr_pending
);
1354 blocked_rdev
= rdev
;
1357 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1358 atomic_inc(&rrdev
->nr_pending
);
1359 blocked_rdev
= rrdev
;
1362 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1364 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1367 r10_bio
->devs
[i
].bio
= NULL
;
1368 r10_bio
->devs
[i
].repl_bio
= NULL
;
1370 if (!rdev
&& !rrdev
) {
1371 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1374 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1376 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1380 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1381 &first_bad
, &bad_sectors
);
1383 /* Mustn't write here until the bad block
1386 atomic_inc(&rdev
->nr_pending
);
1387 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1388 blocked_rdev
= rdev
;
1391 if (is_bad
&& first_bad
<= dev_sector
) {
1392 /* Cannot write here at all */
1393 bad_sectors
-= (dev_sector
- first_bad
);
1394 if (bad_sectors
< max_sectors
)
1395 /* Mustn't write more than bad_sectors
1396 * to other devices yet
1398 max_sectors
= bad_sectors
;
1399 /* We don't set R10BIO_Degraded as that
1400 * only applies if the disk is missing,
1401 * so it might be re-added, and we want to
1402 * know to recover this chunk.
1403 * In this case the device is here, and the
1404 * fact that this chunk is not in-sync is
1405 * recorded in the bad block log.
1410 int good_sectors
= first_bad
- dev_sector
;
1411 if (good_sectors
< max_sectors
)
1412 max_sectors
= good_sectors
;
1416 r10_bio
->devs
[i
].bio
= bio
;
1417 atomic_inc(&rdev
->nr_pending
);
1420 r10_bio
->devs
[i
].repl_bio
= bio
;
1421 atomic_inc(&rrdev
->nr_pending
);
1426 if (unlikely(blocked_rdev
)) {
1427 /* Have to wait for this device to get unblocked, then retry */
1431 for (j
= 0; j
< i
; j
++) {
1432 if (r10_bio
->devs
[j
].bio
) {
1433 d
= r10_bio
->devs
[j
].devnum
;
1434 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1436 if (r10_bio
->devs
[j
].repl_bio
) {
1437 struct md_rdev
*rdev
;
1438 d
= r10_bio
->devs
[j
].devnum
;
1439 rdev
= conf
->mirrors
[d
].replacement
;
1441 /* Race with remove_disk */
1443 rdev
= conf
->mirrors
[d
].rdev
;
1445 rdev_dec_pending(rdev
, mddev
);
1448 allow_barrier(conf
);
1449 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1450 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1455 if (max_sectors
< r10_bio
->sectors
)
1456 r10_bio
->sectors
= max_sectors
;
1458 if (r10_bio
->sectors
< bio_sectors(bio
)) {
1459 struct bio
*split
= bio_split(bio
, r10_bio
->sectors
,
1460 GFP_NOIO
, &conf
->bio_split
);
1461 bio_chain(split
, bio
);
1462 allow_barrier(conf
);
1463 submit_bio_noacct(bio
);
1466 r10_bio
->master_bio
= bio
;
1469 atomic_set(&r10_bio
->remaining
, 1);
1470 md_bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1472 for (i
= 0; i
< conf
->copies
; i
++) {
1473 if (r10_bio
->devs
[i
].bio
)
1474 raid10_write_one_disk(mddev
, r10_bio
, bio
, false, i
);
1475 if (r10_bio
->devs
[i
].repl_bio
)
1476 raid10_write_one_disk(mddev
, r10_bio
, bio
, true, i
);
1478 one_write_done(r10_bio
);
1481 static void __make_request(struct mddev
*mddev
, struct bio
*bio
, int sectors
)
1483 struct r10conf
*conf
= mddev
->private;
1484 struct r10bio
*r10_bio
;
1486 r10_bio
= mempool_alloc(&conf
->r10bio_pool
, GFP_NOIO
);
1488 r10_bio
->master_bio
= bio
;
1489 r10_bio
->sectors
= sectors
;
1491 r10_bio
->mddev
= mddev
;
1492 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1494 r10_bio
->read_slot
= -1;
1495 memset(r10_bio
->devs
, 0, sizeof(r10_bio
->devs
[0]) * conf
->copies
);
1497 if (bio_data_dir(bio
) == READ
)
1498 raid10_read_request(mddev
, bio
, r10_bio
);
1500 raid10_write_request(mddev
, bio
, r10_bio
);
1503 static bool raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1505 struct r10conf
*conf
= mddev
->private;
1506 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1507 int chunk_sects
= chunk_mask
+ 1;
1508 int sectors
= bio_sectors(bio
);
1510 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)
1511 && md_flush_request(mddev
, bio
))
1514 if (!md_write_start(mddev
, bio
))
1518 * If this request crosses a chunk boundary, we need to split
1521 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1522 sectors
> chunk_sects
1523 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1524 || conf
->prev
.near_copies
<
1525 conf
->prev
.raid_disks
)))
1526 sectors
= chunk_sects
-
1527 (bio
->bi_iter
.bi_sector
&
1529 __make_request(mddev
, bio
, sectors
);
1531 /* In case raid10d snuck in to freeze_array */
1532 wake_up(&conf
->wait_barrier
);
1536 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1538 struct r10conf
*conf
= mddev
->private;
1541 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1542 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1543 if (conf
->geo
.near_copies
> 1)
1544 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1545 if (conf
->geo
.far_copies
> 1) {
1546 if (conf
->geo
.far_offset
)
1547 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1549 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1550 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1551 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1553 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1554 conf
->geo
.raid_disks
- mddev
->degraded
);
1556 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1557 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1558 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1561 seq_printf(seq
, "]");
1564 /* check if there are enough drives for
1565 * every block to appear on atleast one.
1566 * Don't consider the device numbered 'ignore'
1567 * as we might be about to remove it.
1569 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1575 disks
= conf
->prev
.raid_disks
;
1576 ncopies
= conf
->prev
.near_copies
;
1578 disks
= conf
->geo
.raid_disks
;
1579 ncopies
= conf
->geo
.near_copies
;
1584 int n
= conf
->copies
;
1588 struct md_rdev
*rdev
;
1589 if (this != ignore
&&
1590 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1591 test_bit(In_sync
, &rdev
->flags
))
1593 this = (this+1) % disks
;
1597 first
= (first
+ ncopies
) % disks
;
1598 } while (first
!= 0);
1605 static int enough(struct r10conf
*conf
, int ignore
)
1607 /* when calling 'enough', both 'prev' and 'geo' must
1609 * This is ensured if ->reconfig_mutex or ->device_lock
1612 return _enough(conf
, 0, ignore
) &&
1613 _enough(conf
, 1, ignore
);
1616 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1618 char b
[BDEVNAME_SIZE
];
1619 struct r10conf
*conf
= mddev
->private;
1620 unsigned long flags
;
1623 * If it is not operational, then we have already marked it as dead
1624 * else if it is the last working disks with "fail_last_dev == false",
1625 * ignore the error, let the next level up know.
1626 * else mark the drive as failed
1628 spin_lock_irqsave(&conf
->device_lock
, flags
);
1629 if (test_bit(In_sync
, &rdev
->flags
) && !mddev
->fail_last_dev
1630 && !enough(conf
, rdev
->raid_disk
)) {
1632 * Don't fail the drive, just return an IO error.
1634 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1637 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1640 * If recovery is running, make sure it aborts.
1642 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1643 set_bit(Blocked
, &rdev
->flags
);
1644 set_bit(Faulty
, &rdev
->flags
);
1645 set_mask_bits(&mddev
->sb_flags
, 0,
1646 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1647 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1648 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid10:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1651 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1654 static void print_conf(struct r10conf
*conf
)
1657 struct md_rdev
*rdev
;
1659 pr_debug("RAID10 conf printout:\n");
1661 pr_debug("(!conf)\n");
1664 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1665 conf
->geo
.raid_disks
);
1667 /* This is only called with ->reconfix_mutex held, so
1668 * rcu protection of rdev is not needed */
1669 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1670 char b
[BDEVNAME_SIZE
];
1671 rdev
= conf
->mirrors
[i
].rdev
;
1673 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1674 i
, !test_bit(In_sync
, &rdev
->flags
),
1675 !test_bit(Faulty
, &rdev
->flags
),
1676 bdevname(rdev
->bdev
,b
));
1680 static void close_sync(struct r10conf
*conf
)
1683 allow_barrier(conf
);
1685 mempool_exit(&conf
->r10buf_pool
);
1688 static int raid10_spare_active(struct mddev
*mddev
)
1691 struct r10conf
*conf
= mddev
->private;
1692 struct raid10_info
*tmp
;
1694 unsigned long flags
;
1697 * Find all non-in_sync disks within the RAID10 configuration
1698 * and mark them in_sync
1700 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1701 tmp
= conf
->mirrors
+ i
;
1702 if (tmp
->replacement
1703 && tmp
->replacement
->recovery_offset
== MaxSector
1704 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1705 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1706 /* Replacement has just become active */
1708 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1711 /* Replaced device not technically faulty,
1712 * but we need to be sure it gets removed
1713 * and never re-added.
1715 set_bit(Faulty
, &tmp
->rdev
->flags
);
1716 sysfs_notify_dirent_safe(
1717 tmp
->rdev
->sysfs_state
);
1719 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1720 } else if (tmp
->rdev
1721 && tmp
->rdev
->recovery_offset
== MaxSector
1722 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1723 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1725 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1728 spin_lock_irqsave(&conf
->device_lock
, flags
);
1729 mddev
->degraded
-= count
;
1730 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1736 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1738 struct r10conf
*conf
= mddev
->private;
1742 int last
= conf
->geo
.raid_disks
- 1;
1744 if (mddev
->recovery_cp
< MaxSector
)
1745 /* only hot-add to in-sync arrays, as recovery is
1746 * very different from resync
1749 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1752 if (md_integrity_add_rdev(rdev
, mddev
))
1755 if (rdev
->raid_disk
>= 0)
1756 first
= last
= rdev
->raid_disk
;
1758 if (rdev
->saved_raid_disk
>= first
&&
1759 rdev
->saved_raid_disk
< conf
->geo
.raid_disks
&&
1760 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1761 mirror
= rdev
->saved_raid_disk
;
1764 for ( ; mirror
<= last
; mirror
++) {
1765 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1766 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1769 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1770 p
->replacement
!= NULL
)
1772 clear_bit(In_sync
, &rdev
->flags
);
1773 set_bit(Replacement
, &rdev
->flags
);
1774 rdev
->raid_disk
= mirror
;
1777 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1778 rdev
->data_offset
<< 9);
1780 rcu_assign_pointer(p
->replacement
, rdev
);
1785 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1786 rdev
->data_offset
<< 9);
1788 p
->head_position
= 0;
1789 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1790 rdev
->raid_disk
= mirror
;
1792 if (rdev
->saved_raid_disk
!= mirror
)
1794 rcu_assign_pointer(p
->rdev
, rdev
);
1797 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1798 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1804 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1806 struct r10conf
*conf
= mddev
->private;
1808 int number
= rdev
->raid_disk
;
1809 struct md_rdev
**rdevp
;
1810 struct raid10_info
*p
= conf
->mirrors
+ number
;
1813 if (rdev
== p
->rdev
)
1815 else if (rdev
== p
->replacement
)
1816 rdevp
= &p
->replacement
;
1820 if (test_bit(In_sync
, &rdev
->flags
) ||
1821 atomic_read(&rdev
->nr_pending
)) {
1825 /* Only remove non-faulty devices if recovery
1828 if (!test_bit(Faulty
, &rdev
->flags
) &&
1829 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1830 (!p
->replacement
|| p
->replacement
== rdev
) &&
1831 number
< conf
->geo
.raid_disks
&&
1837 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1839 if (atomic_read(&rdev
->nr_pending
)) {
1840 /* lost the race, try later */
1846 if (p
->replacement
) {
1847 /* We must have just cleared 'rdev' */
1848 p
->rdev
= p
->replacement
;
1849 clear_bit(Replacement
, &p
->replacement
->flags
);
1850 smp_mb(); /* Make sure other CPUs may see both as identical
1851 * but will never see neither -- if they are careful.
1853 p
->replacement
= NULL
;
1856 clear_bit(WantReplacement
, &rdev
->flags
);
1857 err
= md_integrity_register(mddev
);
1865 static void __end_sync_read(struct r10bio
*r10_bio
, struct bio
*bio
, int d
)
1867 struct r10conf
*conf
= r10_bio
->mddev
->private;
1869 if (!bio
->bi_status
)
1870 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1872 /* The write handler will notice the lack of
1873 * R10BIO_Uptodate and record any errors etc
1875 atomic_add(r10_bio
->sectors
,
1876 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1878 /* for reconstruct, we always reschedule after a read.
1879 * for resync, only after all reads
1881 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1882 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1883 atomic_dec_and_test(&r10_bio
->remaining
)) {
1884 /* we have read all the blocks,
1885 * do the comparison in process context in raid10d
1887 reschedule_retry(r10_bio
);
1891 static void end_sync_read(struct bio
*bio
)
1893 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1894 struct r10conf
*conf
= r10_bio
->mddev
->private;
1895 int d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1897 __end_sync_read(r10_bio
, bio
, d
);
1900 static void end_reshape_read(struct bio
*bio
)
1902 /* reshape read bio isn't allocated from r10buf_pool */
1903 struct r10bio
*r10_bio
= bio
->bi_private
;
1905 __end_sync_read(r10_bio
, bio
, r10_bio
->read_slot
);
1908 static void end_sync_request(struct r10bio
*r10_bio
)
1910 struct mddev
*mddev
= r10_bio
->mddev
;
1912 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1913 if (r10_bio
->master_bio
== NULL
) {
1914 /* the primary of several recovery bios */
1915 sector_t s
= r10_bio
->sectors
;
1916 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1917 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1918 reschedule_retry(r10_bio
);
1921 md_done_sync(mddev
, s
, 1);
1924 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1925 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1926 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1927 reschedule_retry(r10_bio
);
1935 static void end_sync_write(struct bio
*bio
)
1937 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1938 struct mddev
*mddev
= r10_bio
->mddev
;
1939 struct r10conf
*conf
= mddev
->private;
1945 struct md_rdev
*rdev
= NULL
;
1947 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1949 rdev
= conf
->mirrors
[d
].replacement
;
1951 rdev
= conf
->mirrors
[d
].rdev
;
1953 if (bio
->bi_status
) {
1955 md_error(mddev
, rdev
);
1957 set_bit(WriteErrorSeen
, &rdev
->flags
);
1958 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1959 set_bit(MD_RECOVERY_NEEDED
,
1960 &rdev
->mddev
->recovery
);
1961 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1963 } else if (is_badblock(rdev
,
1964 r10_bio
->devs
[slot
].addr
,
1966 &first_bad
, &bad_sectors
))
1967 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1969 rdev_dec_pending(rdev
, mddev
);
1971 end_sync_request(r10_bio
);
1975 * Note: sync and recover and handled very differently for raid10
1976 * This code is for resync.
1977 * For resync, we read through virtual addresses and read all blocks.
1978 * If there is any error, we schedule a write. The lowest numbered
1979 * drive is authoritative.
1980 * However requests come for physical address, so we need to map.
1981 * For every physical address there are raid_disks/copies virtual addresses,
1982 * which is always are least one, but is not necessarly an integer.
1983 * This means that a physical address can span multiple chunks, so we may
1984 * have to submit multiple io requests for a single sync request.
1987 * We check if all blocks are in-sync and only write to blocks that
1990 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1992 struct r10conf
*conf
= mddev
->private;
1994 struct bio
*tbio
, *fbio
;
1996 struct page
**tpages
, **fpages
;
1998 atomic_set(&r10_bio
->remaining
, 1);
2000 /* find the first device with a block */
2001 for (i
=0; i
<conf
->copies
; i
++)
2002 if (!r10_bio
->devs
[i
].bio
->bi_status
)
2005 if (i
== conf
->copies
)
2009 fbio
= r10_bio
->devs
[i
].bio
;
2010 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2011 fbio
->bi_iter
.bi_idx
= 0;
2012 fpages
= get_resync_pages(fbio
)->pages
;
2014 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2015 /* now find blocks with errors */
2016 for (i
=0 ; i
< conf
->copies
; i
++) {
2018 struct md_rdev
*rdev
;
2019 struct resync_pages
*rp
;
2021 tbio
= r10_bio
->devs
[i
].bio
;
2023 if (tbio
->bi_end_io
!= end_sync_read
)
2028 tpages
= get_resync_pages(tbio
)->pages
;
2029 d
= r10_bio
->devs
[i
].devnum
;
2030 rdev
= conf
->mirrors
[d
].rdev
;
2031 if (!r10_bio
->devs
[i
].bio
->bi_status
) {
2032 /* We know that the bi_io_vec layout is the same for
2033 * both 'first' and 'i', so we just compare them.
2034 * All vec entries are PAGE_SIZE;
2036 int sectors
= r10_bio
->sectors
;
2037 for (j
= 0; j
< vcnt
; j
++) {
2038 int len
= PAGE_SIZE
;
2039 if (sectors
< (len
/ 512))
2040 len
= sectors
* 512;
2041 if (memcmp(page_address(fpages
[j
]),
2042 page_address(tpages
[j
]),
2049 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2050 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2051 /* Don't fix anything. */
2053 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2054 /* Just give up on this device */
2055 md_error(rdev
->mddev
, rdev
);
2058 /* Ok, we need to write this bio, either to correct an
2059 * inconsistency or to correct an unreadable block.
2060 * First we need to fixup bv_offset, bv_len and
2061 * bi_vecs, as the read request might have corrupted these
2063 rp
= get_resync_pages(tbio
);
2066 md_bio_reset_resync_pages(tbio
, rp
, fbio
->bi_iter
.bi_size
);
2068 rp
->raid_bio
= r10_bio
;
2069 tbio
->bi_private
= rp
;
2070 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2071 tbio
->bi_end_io
= end_sync_write
;
2072 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2074 bio_copy_data(tbio
, fbio
);
2076 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2077 atomic_inc(&r10_bio
->remaining
);
2078 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2080 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2081 tbio
->bi_opf
|= MD_FAILFAST
;
2082 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2083 bio_set_dev(tbio
, conf
->mirrors
[d
].rdev
->bdev
);
2084 submit_bio_noacct(tbio
);
2087 /* Now write out to any replacement devices
2090 for (i
= 0; i
< conf
->copies
; i
++) {
2093 tbio
= r10_bio
->devs
[i
].repl_bio
;
2094 if (!tbio
|| !tbio
->bi_end_io
)
2096 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2097 && r10_bio
->devs
[i
].bio
!= fbio
)
2098 bio_copy_data(tbio
, fbio
);
2099 d
= r10_bio
->devs
[i
].devnum
;
2100 atomic_inc(&r10_bio
->remaining
);
2101 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2103 submit_bio_noacct(tbio
);
2107 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2108 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2114 * Now for the recovery code.
2115 * Recovery happens across physical sectors.
2116 * We recover all non-is_sync drives by finding the virtual address of
2117 * each, and then choose a working drive that also has that virt address.
2118 * There is a separate r10_bio for each non-in_sync drive.
2119 * Only the first two slots are in use. The first for reading,
2120 * The second for writing.
2123 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2125 /* We got a read error during recovery.
2126 * We repeat the read in smaller page-sized sections.
2127 * If a read succeeds, write it to the new device or record
2128 * a bad block if we cannot.
2129 * If a read fails, record a bad block on both old and
2132 struct mddev
*mddev
= r10_bio
->mddev
;
2133 struct r10conf
*conf
= mddev
->private;
2134 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2136 int sectors
= r10_bio
->sectors
;
2138 int dr
= r10_bio
->devs
[0].devnum
;
2139 int dw
= r10_bio
->devs
[1].devnum
;
2140 struct page
**pages
= get_resync_pages(bio
)->pages
;
2144 struct md_rdev
*rdev
;
2148 if (s
> (PAGE_SIZE
>>9))
2151 rdev
= conf
->mirrors
[dr
].rdev
;
2152 addr
= r10_bio
->devs
[0].addr
+ sect
,
2153 ok
= sync_page_io(rdev
,
2157 REQ_OP_READ
, 0, false);
2159 rdev
= conf
->mirrors
[dw
].rdev
;
2160 addr
= r10_bio
->devs
[1].addr
+ sect
;
2161 ok
= sync_page_io(rdev
,
2165 REQ_OP_WRITE
, 0, false);
2167 set_bit(WriteErrorSeen
, &rdev
->flags
);
2168 if (!test_and_set_bit(WantReplacement
,
2170 set_bit(MD_RECOVERY_NEEDED
,
2171 &rdev
->mddev
->recovery
);
2175 /* We don't worry if we cannot set a bad block -
2176 * it really is bad so there is no loss in not
2179 rdev_set_badblocks(rdev
, addr
, s
, 0);
2181 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2182 /* need bad block on destination too */
2183 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2184 addr
= r10_bio
->devs
[1].addr
+ sect
;
2185 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2187 /* just abort the recovery */
2188 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2191 conf
->mirrors
[dw
].recovery_disabled
2192 = mddev
->recovery_disabled
;
2193 set_bit(MD_RECOVERY_INTR
,
2206 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2208 struct r10conf
*conf
= mddev
->private;
2210 struct bio
*wbio
, *wbio2
;
2212 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2213 fix_recovery_read_error(r10_bio
);
2214 end_sync_request(r10_bio
);
2219 * share the pages with the first bio
2220 * and submit the write request
2222 d
= r10_bio
->devs
[1].devnum
;
2223 wbio
= r10_bio
->devs
[1].bio
;
2224 wbio2
= r10_bio
->devs
[1].repl_bio
;
2225 /* Need to test wbio2->bi_end_io before we call
2226 * submit_bio_noacct as if the former is NULL,
2227 * the latter is free to free wbio2.
2229 if (wbio2
&& !wbio2
->bi_end_io
)
2231 if (wbio
->bi_end_io
) {
2232 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2233 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2234 submit_bio_noacct(wbio
);
2237 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2238 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2239 bio_sectors(wbio2
));
2240 submit_bio_noacct(wbio2
);
2245 * Used by fix_read_error() to decay the per rdev read_errors.
2246 * We halve the read error count for every hour that has elapsed
2247 * since the last recorded read error.
2250 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2253 unsigned long hours_since_last
;
2254 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2256 cur_time_mon
= ktime_get_seconds();
2258 if (rdev
->last_read_error
== 0) {
2259 /* first time we've seen a read error */
2260 rdev
->last_read_error
= cur_time_mon
;
2264 hours_since_last
= (long)(cur_time_mon
-
2265 rdev
->last_read_error
) / 3600;
2267 rdev
->last_read_error
= cur_time_mon
;
2270 * if hours_since_last is > the number of bits in read_errors
2271 * just set read errors to 0. We do this to avoid
2272 * overflowing the shift of read_errors by hours_since_last.
2274 if (hours_since_last
>= 8 * sizeof(read_errors
))
2275 atomic_set(&rdev
->read_errors
, 0);
2277 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2280 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2281 int sectors
, struct page
*page
, int rw
)
2286 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2287 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2289 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2293 set_bit(WriteErrorSeen
, &rdev
->flags
);
2294 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2295 set_bit(MD_RECOVERY_NEEDED
,
2296 &rdev
->mddev
->recovery
);
2298 /* need to record an error - either for the block or the device */
2299 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2300 md_error(rdev
->mddev
, rdev
);
2305 * This is a kernel thread which:
2307 * 1. Retries failed read operations on working mirrors.
2308 * 2. Updates the raid superblock when problems encounter.
2309 * 3. Performs writes following reads for array synchronising.
2312 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2314 int sect
= 0; /* Offset from r10_bio->sector */
2315 int sectors
= r10_bio
->sectors
;
2316 struct md_rdev
*rdev
;
2317 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2318 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2320 /* still own a reference to this rdev, so it cannot
2321 * have been cleared recently.
2323 rdev
= conf
->mirrors
[d
].rdev
;
2325 if (test_bit(Faulty
, &rdev
->flags
))
2326 /* drive has already been failed, just ignore any
2327 more fix_read_error() attempts */
2330 check_decay_read_errors(mddev
, rdev
);
2331 atomic_inc(&rdev
->read_errors
);
2332 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2333 char b
[BDEVNAME_SIZE
];
2334 bdevname(rdev
->bdev
, b
);
2336 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338 atomic_read(&rdev
->read_errors
), max_read_errors
);
2339 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341 md_error(mddev
, rdev
);
2342 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2348 int sl
= r10_bio
->read_slot
;
2352 if (s
> (PAGE_SIZE
>>9))
2360 d
= r10_bio
->devs
[sl
].devnum
;
2361 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2363 test_bit(In_sync
, &rdev
->flags
) &&
2364 !test_bit(Faulty
, &rdev
->flags
) &&
2365 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2366 &first_bad
, &bad_sectors
) == 0) {
2367 atomic_inc(&rdev
->nr_pending
);
2369 success
= sync_page_io(rdev
,
2370 r10_bio
->devs
[sl
].addr
+
2374 REQ_OP_READ
, 0, false);
2375 rdev_dec_pending(rdev
, mddev
);
2381 if (sl
== conf
->copies
)
2383 } while (!success
&& sl
!= r10_bio
->read_slot
);
2387 /* Cannot read from anywhere, just mark the block
2388 * as bad on the first device to discourage future
2391 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2392 rdev
= conf
->mirrors
[dn
].rdev
;
2394 if (!rdev_set_badblocks(
2396 r10_bio
->devs
[r10_bio
->read_slot
].addr
2399 md_error(mddev
, rdev
);
2400 r10_bio
->devs
[r10_bio
->read_slot
].bio
2407 /* write it back and re-read */
2409 while (sl
!= r10_bio
->read_slot
) {
2410 char b
[BDEVNAME_SIZE
];
2415 d
= r10_bio
->devs
[sl
].devnum
;
2416 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2418 test_bit(Faulty
, &rdev
->flags
) ||
2419 !test_bit(In_sync
, &rdev
->flags
))
2422 atomic_inc(&rdev
->nr_pending
);
2424 if (r10_sync_page_io(rdev
,
2425 r10_bio
->devs
[sl
].addr
+
2427 s
, conf
->tmppage
, WRITE
)
2429 /* Well, this device is dead */
2430 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432 (unsigned long long)(
2434 choose_data_offset(r10_bio
,
2436 bdevname(rdev
->bdev
, b
));
2437 pr_notice("md/raid10:%s: %s: failing drive\n",
2439 bdevname(rdev
->bdev
, b
));
2441 rdev_dec_pending(rdev
, mddev
);
2445 while (sl
!= r10_bio
->read_slot
) {
2446 char b
[BDEVNAME_SIZE
];
2451 d
= r10_bio
->devs
[sl
].devnum
;
2452 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2454 test_bit(Faulty
, &rdev
->flags
) ||
2455 !test_bit(In_sync
, &rdev
->flags
))
2458 atomic_inc(&rdev
->nr_pending
);
2460 switch (r10_sync_page_io(rdev
,
2461 r10_bio
->devs
[sl
].addr
+
2466 /* Well, this device is dead */
2467 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2469 (unsigned long long)(
2471 choose_data_offset(r10_bio
, rdev
)),
2472 bdevname(rdev
->bdev
, b
));
2473 pr_notice("md/raid10:%s: %s: failing drive\n",
2475 bdevname(rdev
->bdev
, b
));
2478 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2480 (unsigned long long)(
2482 choose_data_offset(r10_bio
, rdev
)),
2483 bdevname(rdev
->bdev
, b
));
2484 atomic_add(s
, &rdev
->corrected_errors
);
2487 rdev_dec_pending(rdev
, mddev
);
2497 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2499 struct bio
*bio
= r10_bio
->master_bio
;
2500 struct mddev
*mddev
= r10_bio
->mddev
;
2501 struct r10conf
*conf
= mddev
->private;
2502 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2503 /* bio has the data to be written to slot 'i' where
2504 * we just recently had a write error.
2505 * We repeatedly clone the bio and trim down to one block,
2506 * then try the write. Where the write fails we record
2508 * It is conceivable that the bio doesn't exactly align with
2509 * blocks. We must handle this.
2511 * We currently own a reference to the rdev.
2517 int sect_to_write
= r10_bio
->sectors
;
2520 if (rdev
->badblocks
.shift
< 0)
2523 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2524 bdev_logical_block_size(rdev
->bdev
) >> 9);
2525 sector
= r10_bio
->sector
;
2526 sectors
= ((r10_bio
->sector
+ block_sectors
)
2527 & ~(sector_t
)(block_sectors
- 1))
2530 while (sect_to_write
) {
2533 if (sectors
> sect_to_write
)
2534 sectors
= sect_to_write
;
2535 /* Write at 'sector' for 'sectors' */
2536 wbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
2537 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2538 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2539 wbio
->bi_iter
.bi_sector
= wsector
+
2540 choose_data_offset(r10_bio
, rdev
);
2541 bio_set_dev(wbio
, rdev
->bdev
);
2542 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2544 if (submit_bio_wait(wbio
) < 0)
2546 ok
= rdev_set_badblocks(rdev
, wsector
,
2551 sect_to_write
-= sectors
;
2553 sectors
= block_sectors
;
2558 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2560 int slot
= r10_bio
->read_slot
;
2562 struct r10conf
*conf
= mddev
->private;
2563 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2565 /* we got a read error. Maybe the drive is bad. Maybe just
2566 * the block and we can fix it.
2567 * We freeze all other IO, and try reading the block from
2568 * other devices. When we find one, we re-write
2569 * and check it that fixes the read error.
2570 * This is all done synchronously while the array is
2573 bio
= r10_bio
->devs
[slot
].bio
;
2575 r10_bio
->devs
[slot
].bio
= NULL
;
2578 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2579 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2580 freeze_array(conf
, 1);
2581 fix_read_error(conf
, mddev
, r10_bio
);
2582 unfreeze_array(conf
);
2584 md_error(mddev
, rdev
);
2586 rdev_dec_pending(rdev
, mddev
);
2587 allow_barrier(conf
);
2589 raid10_read_request(mddev
, r10_bio
->master_bio
, r10_bio
);
2592 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2594 /* Some sort of write request has finished and it
2595 * succeeded in writing where we thought there was a
2596 * bad block. So forget the bad block.
2597 * Or possibly if failed and we need to record
2601 struct md_rdev
*rdev
;
2603 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2604 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2605 for (m
= 0; m
< conf
->copies
; m
++) {
2606 int dev
= r10_bio
->devs
[m
].devnum
;
2607 rdev
= conf
->mirrors
[dev
].rdev
;
2608 if (r10_bio
->devs
[m
].bio
== NULL
||
2609 r10_bio
->devs
[m
].bio
->bi_end_io
== NULL
)
2611 if (!r10_bio
->devs
[m
].bio
->bi_status
) {
2612 rdev_clear_badblocks(
2614 r10_bio
->devs
[m
].addr
,
2615 r10_bio
->sectors
, 0);
2617 if (!rdev_set_badblocks(
2619 r10_bio
->devs
[m
].addr
,
2620 r10_bio
->sectors
, 0))
2621 md_error(conf
->mddev
, rdev
);
2623 rdev
= conf
->mirrors
[dev
].replacement
;
2624 if (r10_bio
->devs
[m
].repl_bio
== NULL
||
2625 r10_bio
->devs
[m
].repl_bio
->bi_end_io
== NULL
)
2628 if (!r10_bio
->devs
[m
].repl_bio
->bi_status
) {
2629 rdev_clear_badblocks(
2631 r10_bio
->devs
[m
].addr
,
2632 r10_bio
->sectors
, 0);
2634 if (!rdev_set_badblocks(
2636 r10_bio
->devs
[m
].addr
,
2637 r10_bio
->sectors
, 0))
2638 md_error(conf
->mddev
, rdev
);
2644 for (m
= 0; m
< conf
->copies
; m
++) {
2645 int dev
= r10_bio
->devs
[m
].devnum
;
2646 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2647 rdev
= conf
->mirrors
[dev
].rdev
;
2648 if (bio
== IO_MADE_GOOD
) {
2649 rdev_clear_badblocks(
2651 r10_bio
->devs
[m
].addr
,
2652 r10_bio
->sectors
, 0);
2653 rdev_dec_pending(rdev
, conf
->mddev
);
2654 } else if (bio
!= NULL
&& bio
->bi_status
) {
2656 if (!narrow_write_error(r10_bio
, m
)) {
2657 md_error(conf
->mddev
, rdev
);
2658 set_bit(R10BIO_Degraded
,
2661 rdev_dec_pending(rdev
, conf
->mddev
);
2663 bio
= r10_bio
->devs
[m
].repl_bio
;
2664 rdev
= conf
->mirrors
[dev
].replacement
;
2665 if (rdev
&& bio
== IO_MADE_GOOD
) {
2666 rdev_clear_badblocks(
2668 r10_bio
->devs
[m
].addr
,
2669 r10_bio
->sectors
, 0);
2670 rdev_dec_pending(rdev
, conf
->mddev
);
2674 spin_lock_irq(&conf
->device_lock
);
2675 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2677 spin_unlock_irq(&conf
->device_lock
);
2679 * In case freeze_array() is waiting for condition
2680 * nr_pending == nr_queued + extra to be true.
2682 wake_up(&conf
->wait_barrier
);
2683 md_wakeup_thread(conf
->mddev
->thread
);
2685 if (test_bit(R10BIO_WriteError
,
2687 close_write(r10_bio
);
2688 raid_end_bio_io(r10_bio
);
2693 static void raid10d(struct md_thread
*thread
)
2695 struct mddev
*mddev
= thread
->mddev
;
2696 struct r10bio
*r10_bio
;
2697 unsigned long flags
;
2698 struct r10conf
*conf
= mddev
->private;
2699 struct list_head
*head
= &conf
->retry_list
;
2700 struct blk_plug plug
;
2702 md_check_recovery(mddev
);
2704 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2705 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2707 spin_lock_irqsave(&conf
->device_lock
, flags
);
2708 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2709 while (!list_empty(&conf
->bio_end_io_list
)) {
2710 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2714 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2715 while (!list_empty(&tmp
)) {
2716 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2718 list_del(&r10_bio
->retry_list
);
2719 if (mddev
->degraded
)
2720 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2722 if (test_bit(R10BIO_WriteError
,
2724 close_write(r10_bio
);
2725 raid_end_bio_io(r10_bio
);
2729 blk_start_plug(&plug
);
2732 flush_pending_writes(conf
);
2734 spin_lock_irqsave(&conf
->device_lock
, flags
);
2735 if (list_empty(head
)) {
2736 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2739 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2740 list_del(head
->prev
);
2742 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2744 mddev
= r10_bio
->mddev
;
2745 conf
= mddev
->private;
2746 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2747 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2748 handle_write_completed(conf
, r10_bio
);
2749 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2750 reshape_request_write(mddev
, r10_bio
);
2751 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2752 sync_request_write(mddev
, r10_bio
);
2753 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2754 recovery_request_write(mddev
, r10_bio
);
2755 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2756 handle_read_error(mddev
, r10_bio
);
2761 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2762 md_check_recovery(mddev
);
2764 blk_finish_plug(&plug
);
2767 static int init_resync(struct r10conf
*conf
)
2771 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2772 BUG_ON(mempool_initialized(&conf
->r10buf_pool
));
2773 conf
->have_replacement
= 0;
2774 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2775 if (conf
->mirrors
[i
].replacement
)
2776 conf
->have_replacement
= 1;
2777 ret
= mempool_init(&conf
->r10buf_pool
, buffs
,
2778 r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2781 conf
->next_resync
= 0;
2785 static struct r10bio
*raid10_alloc_init_r10buf(struct r10conf
*conf
)
2787 struct r10bio
*r10bio
= mempool_alloc(&conf
->r10buf_pool
, GFP_NOIO
);
2788 struct rsync_pages
*rp
;
2793 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
2794 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
2795 nalloc
= conf
->copies
; /* resync */
2797 nalloc
= 2; /* recovery */
2799 for (i
= 0; i
< nalloc
; i
++) {
2800 bio
= r10bio
->devs
[i
].bio
;
2801 rp
= bio
->bi_private
;
2803 bio
->bi_private
= rp
;
2804 bio
= r10bio
->devs
[i
].repl_bio
;
2806 rp
= bio
->bi_private
;
2808 bio
->bi_private
= rp
;
2815 * Set cluster_sync_high since we need other nodes to add the
2816 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818 static void raid10_set_cluster_sync_high(struct r10conf
*conf
)
2820 sector_t window_size
;
2821 int extra_chunk
, chunks
;
2824 * First, here we define "stripe" as a unit which across
2825 * all member devices one time, so we get chunks by use
2826 * raid_disks / near_copies. Otherwise, if near_copies is
2827 * close to raid_disks, then resync window could increases
2828 * linearly with the increase of raid_disks, which means
2829 * we will suspend a really large IO window while it is not
2830 * necessary. If raid_disks is not divisible by near_copies,
2831 * an extra chunk is needed to ensure the whole "stripe" is
2835 chunks
= conf
->geo
.raid_disks
/ conf
->geo
.near_copies
;
2836 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
== 0)
2840 window_size
= (chunks
+ extra_chunk
) * conf
->mddev
->chunk_sectors
;
2843 * At least use a 32M window to align with raid1's resync window
2845 window_size
= (CLUSTER_RESYNC_WINDOW_SECTORS
> window_size
) ?
2846 CLUSTER_RESYNC_WINDOW_SECTORS
: window_size
;
2848 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ window_size
;
2852 * perform a "sync" on one "block"
2854 * We need to make sure that no normal I/O request - particularly write
2855 * requests - conflict with active sync requests.
2857 * This is achieved by tracking pending requests and a 'barrier' concept
2858 * that can be installed to exclude normal IO requests.
2860 * Resync and recovery are handled very differently.
2861 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863 * For resync, we iterate over virtual addresses, read all copies,
2864 * and update if there are differences. If only one copy is live,
2866 * For recovery, we iterate over physical addresses, read a good
2867 * value for each non-in_sync drive, and over-write.
2869 * So, for recovery we may have several outstanding complex requests for a
2870 * given address, one for each out-of-sync device. We model this by allocating
2871 * a number of r10_bio structures, one for each out-of-sync device.
2872 * As we setup these structures, we collect all bio's together into a list
2873 * which we then process collectively to add pages, and then process again
2874 * to pass to submit_bio_noacct.
2876 * The r10_bio structures are linked using a borrowed master_bio pointer.
2877 * This link is counted in ->remaining. When the r10_bio that points to NULL
2878 * has its remaining count decremented to 0, the whole complex operation
2883 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2886 struct r10conf
*conf
= mddev
->private;
2887 struct r10bio
*r10_bio
;
2888 struct bio
*biolist
= NULL
, *bio
;
2889 sector_t max_sector
, nr_sectors
;
2892 sector_t sync_blocks
;
2893 sector_t sectors_skipped
= 0;
2894 int chunks_skipped
= 0;
2895 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2898 if (!mempool_initialized(&conf
->r10buf_pool
))
2899 if (init_resync(conf
))
2903 * Allow skipping a full rebuild for incremental assembly
2904 * of a clean array, like RAID1 does.
2906 if (mddev
->bitmap
== NULL
&&
2907 mddev
->recovery_cp
== MaxSector
&&
2908 mddev
->reshape_position
== MaxSector
&&
2909 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2910 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2911 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2912 conf
->fullsync
== 0) {
2914 return mddev
->dev_sectors
- sector_nr
;
2918 max_sector
= mddev
->dev_sectors
;
2919 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2920 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2921 max_sector
= mddev
->resync_max_sectors
;
2922 if (sector_nr
>= max_sector
) {
2923 conf
->cluster_sync_low
= 0;
2924 conf
->cluster_sync_high
= 0;
2926 /* If we aborted, we need to abort the
2927 * sync on the 'current' bitmap chucks (there can
2928 * be several when recovering multiple devices).
2929 * as we may have started syncing it but not finished.
2930 * We can find the current address in
2931 * mddev->curr_resync, but for recovery,
2932 * we need to convert that to several
2933 * virtual addresses.
2935 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2941 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2942 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2943 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2945 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2947 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2948 md_bitmap_end_sync(mddev
->bitmap
, sect
,
2952 /* completed sync */
2953 if ((!mddev
->bitmap
|| conf
->fullsync
)
2954 && conf
->have_replacement
2955 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2956 /* Completed a full sync so the replacements
2957 * are now fully recovered.
2960 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2961 struct md_rdev
*rdev
=
2962 rcu_dereference(conf
->mirrors
[i
].replacement
);
2964 rdev
->recovery_offset
= MaxSector
;
2970 md_bitmap_close_sync(mddev
->bitmap
);
2973 return sectors_skipped
;
2976 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2977 return reshape_request(mddev
, sector_nr
, skipped
);
2979 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2980 /* if there has been nothing to do on any drive,
2981 * then there is nothing to do at all..
2984 return (max_sector
- sector_nr
) + sectors_skipped
;
2987 if (max_sector
> mddev
->resync_max
)
2988 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2990 /* make sure whole request will fit in a chunk - if chunks
2993 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2994 max_sector
> (sector_nr
| chunk_mask
))
2995 max_sector
= (sector_nr
| chunk_mask
) + 1;
2998 * If there is non-resync activity waiting for a turn, then let it
2999 * though before starting on this new sync request.
3001 if (conf
->nr_waiting
)
3002 schedule_timeout_uninterruptible(1);
3004 /* Again, very different code for resync and recovery.
3005 * Both must result in an r10bio with a list of bios that
3006 * have bi_end_io, bi_sector, bi_disk set,
3007 * and bi_private set to the r10bio.
3008 * For recovery, we may actually create several r10bios
3009 * with 2 bios in each, that correspond to the bios in the main one.
3010 * In this case, the subordinate r10bios link back through a
3011 * borrowed master_bio pointer, and the counter in the master
3012 * includes a ref from each subordinate.
3014 /* First, we decide what to do and set ->bi_end_io
3015 * To end_sync_read if we want to read, and
3016 * end_sync_write if we will want to write.
3019 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3020 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3021 /* recovery... the complicated one */
3025 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3031 int need_recover
= 0;
3032 int need_replace
= 0;
3033 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3034 struct md_rdev
*mrdev
, *mreplace
;
3037 mrdev
= rcu_dereference(mirror
->rdev
);
3038 mreplace
= rcu_dereference(mirror
->replacement
);
3040 if (mrdev
!= NULL
&&
3041 !test_bit(Faulty
, &mrdev
->flags
) &&
3042 !test_bit(In_sync
, &mrdev
->flags
))
3044 if (mreplace
!= NULL
&&
3045 !test_bit(Faulty
, &mreplace
->flags
))
3048 if (!need_recover
&& !need_replace
) {
3054 /* want to reconstruct this device */
3056 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3057 if (sect
>= mddev
->resync_max_sectors
) {
3058 /* last stripe is not complete - don't
3059 * try to recover this sector.
3064 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3066 /* Unless we are doing a full sync, or a replacement
3067 * we only need to recover the block if it is set in
3070 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3072 if (sync_blocks
< max_sync
)
3073 max_sync
= sync_blocks
;
3077 /* yep, skip the sync_blocks here, but don't assume
3078 * that there will never be anything to do here
3080 chunks_skipped
= -1;
3084 atomic_inc(&mrdev
->nr_pending
);
3086 atomic_inc(&mreplace
->nr_pending
);
3089 r10_bio
= raid10_alloc_init_r10buf(conf
);
3091 raise_barrier(conf
, rb2
!= NULL
);
3092 atomic_set(&r10_bio
->remaining
, 0);
3094 r10_bio
->master_bio
= (struct bio
*)rb2
;
3096 atomic_inc(&rb2
->remaining
);
3097 r10_bio
->mddev
= mddev
;
3098 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3099 r10_bio
->sector
= sect
;
3101 raid10_find_phys(conf
, r10_bio
);
3103 /* Need to check if the array will still be
3107 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3108 struct md_rdev
*rdev
= rcu_dereference(
3109 conf
->mirrors
[j
].rdev
);
3110 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3116 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3117 &sync_blocks
, still_degraded
);
3120 for (j
=0; j
<conf
->copies
;j
++) {
3122 int d
= r10_bio
->devs
[j
].devnum
;
3123 sector_t from_addr
, to_addr
;
3124 struct md_rdev
*rdev
=
3125 rcu_dereference(conf
->mirrors
[d
].rdev
);
3126 sector_t sector
, first_bad
;
3129 !test_bit(In_sync
, &rdev
->flags
))
3131 /* This is where we read from */
3133 sector
= r10_bio
->devs
[j
].addr
;
3135 if (is_badblock(rdev
, sector
, max_sync
,
3136 &first_bad
, &bad_sectors
)) {
3137 if (first_bad
> sector
)
3138 max_sync
= first_bad
- sector
;
3140 bad_sectors
-= (sector
3142 if (max_sync
> bad_sectors
)
3143 max_sync
= bad_sectors
;
3147 bio
= r10_bio
->devs
[0].bio
;
3148 bio
->bi_next
= biolist
;
3150 bio
->bi_end_io
= end_sync_read
;
3151 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3152 if (test_bit(FailFast
, &rdev
->flags
))
3153 bio
->bi_opf
|= MD_FAILFAST
;
3154 from_addr
= r10_bio
->devs
[j
].addr
;
3155 bio
->bi_iter
.bi_sector
= from_addr
+
3157 bio_set_dev(bio
, rdev
->bdev
);
3158 atomic_inc(&rdev
->nr_pending
);
3159 /* and we write to 'i' (if not in_sync) */
3161 for (k
=0; k
<conf
->copies
; k
++)
3162 if (r10_bio
->devs
[k
].devnum
== i
)
3164 BUG_ON(k
== conf
->copies
);
3165 to_addr
= r10_bio
->devs
[k
].addr
;
3166 r10_bio
->devs
[0].devnum
= d
;
3167 r10_bio
->devs
[0].addr
= from_addr
;
3168 r10_bio
->devs
[1].devnum
= i
;
3169 r10_bio
->devs
[1].addr
= to_addr
;
3172 bio
= r10_bio
->devs
[1].bio
;
3173 bio
->bi_next
= biolist
;
3175 bio
->bi_end_io
= end_sync_write
;
3176 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3177 bio
->bi_iter
.bi_sector
= to_addr
3178 + mrdev
->data_offset
;
3179 bio_set_dev(bio
, mrdev
->bdev
);
3180 atomic_inc(&r10_bio
->remaining
);
3182 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3184 /* and maybe write to replacement */
3185 bio
= r10_bio
->devs
[1].repl_bio
;
3187 bio
->bi_end_io
= NULL
;
3188 /* Note: if need_replace, then bio
3189 * cannot be NULL as r10buf_pool_alloc will
3190 * have allocated it.
3194 bio
->bi_next
= biolist
;
3196 bio
->bi_end_io
= end_sync_write
;
3197 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3198 bio
->bi_iter
.bi_sector
= to_addr
+
3199 mreplace
->data_offset
;
3200 bio_set_dev(bio
, mreplace
->bdev
);
3201 atomic_inc(&r10_bio
->remaining
);
3205 if (j
== conf
->copies
) {
3206 /* Cannot recover, so abort the recovery or
3207 * record a bad block */
3209 /* problem is that there are bad blocks
3210 * on other device(s)
3213 for (k
= 0; k
< conf
->copies
; k
++)
3214 if (r10_bio
->devs
[k
].devnum
== i
)
3216 if (!test_bit(In_sync
,
3218 && !rdev_set_badblocks(
3220 r10_bio
->devs
[k
].addr
,
3224 !rdev_set_badblocks(
3226 r10_bio
->devs
[k
].addr
,
3231 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3233 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3235 mirror
->recovery_disabled
3236 = mddev
->recovery_disabled
;
3240 atomic_dec(&rb2
->remaining
);
3242 rdev_dec_pending(mrdev
, mddev
);
3244 rdev_dec_pending(mreplace
, mddev
);
3247 rdev_dec_pending(mrdev
, mddev
);
3249 rdev_dec_pending(mreplace
, mddev
);
3250 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3251 /* Only want this if there is elsewhere to
3252 * read from. 'j' is currently the first
3256 for (; j
< conf
->copies
; j
++) {
3257 int d
= r10_bio
->devs
[j
].devnum
;
3258 if (conf
->mirrors
[d
].rdev
&&
3260 &conf
->mirrors
[d
].rdev
->flags
))
3264 r10_bio
->devs
[0].bio
->bi_opf
3268 if (biolist
== NULL
) {
3270 struct r10bio
*rb2
= r10_bio
;
3271 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3272 rb2
->master_bio
= NULL
;
3278 /* resync. Schedule a read for every block at this virt offset */
3282 * Since curr_resync_completed could probably not update in
3283 * time, and we will set cluster_sync_low based on it.
3284 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3285 * safety reason, which ensures curr_resync_completed is
3286 * updated in bitmap_cond_end_sync.
3288 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
3289 mddev_is_clustered(mddev
) &&
3290 (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
3292 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3293 &sync_blocks
, mddev
->degraded
) &&
3294 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3295 &mddev
->recovery
)) {
3296 /* We can skip this block */
3298 return sync_blocks
+ sectors_skipped
;
3300 if (sync_blocks
< max_sync
)
3301 max_sync
= sync_blocks
;
3302 r10_bio
= raid10_alloc_init_r10buf(conf
);
3305 r10_bio
->mddev
= mddev
;
3306 atomic_set(&r10_bio
->remaining
, 0);
3307 raise_barrier(conf
, 0);
3308 conf
->next_resync
= sector_nr
;
3310 r10_bio
->master_bio
= NULL
;
3311 r10_bio
->sector
= sector_nr
;
3312 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3313 raid10_find_phys(conf
, r10_bio
);
3314 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3316 for (i
= 0; i
< conf
->copies
; i
++) {
3317 int d
= r10_bio
->devs
[i
].devnum
;
3318 sector_t first_bad
, sector
;
3320 struct md_rdev
*rdev
;
3322 if (r10_bio
->devs
[i
].repl_bio
)
3323 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3325 bio
= r10_bio
->devs
[i
].bio
;
3326 bio
->bi_status
= BLK_STS_IOERR
;
3328 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3329 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3333 sector
= r10_bio
->devs
[i
].addr
;
3334 if (is_badblock(rdev
, sector
, max_sync
,
3335 &first_bad
, &bad_sectors
)) {
3336 if (first_bad
> sector
)
3337 max_sync
= first_bad
- sector
;
3339 bad_sectors
-= (sector
- first_bad
);
3340 if (max_sync
> bad_sectors
)
3341 max_sync
= bad_sectors
;
3346 atomic_inc(&rdev
->nr_pending
);
3347 atomic_inc(&r10_bio
->remaining
);
3348 bio
->bi_next
= biolist
;
3350 bio
->bi_end_io
= end_sync_read
;
3351 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3352 if (test_bit(FailFast
, &rdev
->flags
))
3353 bio
->bi_opf
|= MD_FAILFAST
;
3354 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3355 bio_set_dev(bio
, rdev
->bdev
);
3358 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3359 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3363 atomic_inc(&rdev
->nr_pending
);
3365 /* Need to set up for writing to the replacement */
3366 bio
= r10_bio
->devs
[i
].repl_bio
;
3367 bio
->bi_status
= BLK_STS_IOERR
;
3369 sector
= r10_bio
->devs
[i
].addr
;
3370 bio
->bi_next
= biolist
;
3372 bio
->bi_end_io
= end_sync_write
;
3373 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3374 if (test_bit(FailFast
, &rdev
->flags
))
3375 bio
->bi_opf
|= MD_FAILFAST
;
3376 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3377 bio_set_dev(bio
, rdev
->bdev
);
3383 for (i
=0; i
<conf
->copies
; i
++) {
3384 int d
= r10_bio
->devs
[i
].devnum
;
3385 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3386 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3388 if (r10_bio
->devs
[i
].repl_bio
&&
3389 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3391 conf
->mirrors
[d
].replacement
,
3401 if (sector_nr
+ max_sync
< max_sector
)
3402 max_sector
= sector_nr
+ max_sync
;
3405 int len
= PAGE_SIZE
;
3406 if (sector_nr
+ (len
>>9) > max_sector
)
3407 len
= (max_sector
- sector_nr
) << 9;
3410 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3411 struct resync_pages
*rp
= get_resync_pages(bio
);
3412 page
= resync_fetch_page(rp
, page_idx
);
3414 * won't fail because the vec table is big enough
3415 * to hold all these pages
3417 bio_add_page(bio
, page
, len
, 0);
3419 nr_sectors
+= len
>>9;
3420 sector_nr
+= len
>>9;
3421 } while (++page_idx
< RESYNC_PAGES
);
3422 r10_bio
->sectors
= nr_sectors
;
3424 if (mddev_is_clustered(mddev
) &&
3425 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3426 /* It is resync not recovery */
3427 if (conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
3428 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
3429 raid10_set_cluster_sync_high(conf
);
3430 /* Send resync message */
3431 md_cluster_ops
->resync_info_update(mddev
,
3432 conf
->cluster_sync_low
,
3433 conf
->cluster_sync_high
);
3435 } else if (mddev_is_clustered(mddev
)) {
3436 /* This is recovery not resync */
3437 sector_t sect_va1
, sect_va2
;
3438 bool broadcast_msg
= false;
3440 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3442 * sector_nr is a device address for recovery, so we
3443 * need translate it to array address before compare
3444 * with cluster_sync_high.
3446 sect_va1
= raid10_find_virt(conf
, sector_nr
, i
);
3448 if (conf
->cluster_sync_high
< sect_va1
+ nr_sectors
) {
3449 broadcast_msg
= true;
3451 * curr_resync_completed is similar as
3452 * sector_nr, so make the translation too.
3454 sect_va2
= raid10_find_virt(conf
,
3455 mddev
->curr_resync_completed
, i
);
3457 if (conf
->cluster_sync_low
== 0 ||
3458 conf
->cluster_sync_low
> sect_va2
)
3459 conf
->cluster_sync_low
= sect_va2
;
3462 if (broadcast_msg
) {
3463 raid10_set_cluster_sync_high(conf
);
3464 md_cluster_ops
->resync_info_update(mddev
,
3465 conf
->cluster_sync_low
,
3466 conf
->cluster_sync_high
);
3472 biolist
= biolist
->bi_next
;
3474 bio
->bi_next
= NULL
;
3475 r10_bio
= get_resync_r10bio(bio
);
3476 r10_bio
->sectors
= nr_sectors
;
3478 if (bio
->bi_end_io
== end_sync_read
) {
3479 md_sync_acct_bio(bio
, nr_sectors
);
3481 submit_bio_noacct(bio
);
3485 if (sectors_skipped
)
3486 /* pretend they weren't skipped, it makes
3487 * no important difference in this case
3489 md_done_sync(mddev
, sectors_skipped
, 1);
3491 return sectors_skipped
+ nr_sectors
;
3493 /* There is nowhere to write, so all non-sync
3494 * drives must be failed or in resync, all drives
3495 * have a bad block, so try the next chunk...
3497 if (sector_nr
+ max_sync
< max_sector
)
3498 max_sector
= sector_nr
+ max_sync
;
3500 sectors_skipped
+= (max_sector
- sector_nr
);
3502 sector_nr
= max_sector
;
3507 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3510 struct r10conf
*conf
= mddev
->private;
3513 raid_disks
= min(conf
->geo
.raid_disks
,
3514 conf
->prev
.raid_disks
);
3516 sectors
= conf
->dev_sectors
;
3518 size
= sectors
>> conf
->geo
.chunk_shift
;
3519 sector_div(size
, conf
->geo
.far_copies
);
3520 size
= size
* raid_disks
;
3521 sector_div(size
, conf
->geo
.near_copies
);
3523 return size
<< conf
->geo
.chunk_shift
;
3526 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3528 /* Calculate the number of sectors-per-device that will
3529 * actually be used, and set conf->dev_sectors and
3533 size
= size
>> conf
->geo
.chunk_shift
;
3534 sector_div(size
, conf
->geo
.far_copies
);
3535 size
= size
* conf
->geo
.raid_disks
;
3536 sector_div(size
, conf
->geo
.near_copies
);
3537 /* 'size' is now the number of chunks in the array */
3538 /* calculate "used chunks per device" */
3539 size
= size
* conf
->copies
;
3541 /* We need to round up when dividing by raid_disks to
3542 * get the stride size.
3544 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3546 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3548 if (conf
->geo
.far_offset
)
3549 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3551 sector_div(size
, conf
->geo
.far_copies
);
3552 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3556 enum geo_type
{geo_new
, geo_old
, geo_start
};
3557 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3560 int layout
, chunk
, disks
;
3563 layout
= mddev
->layout
;
3564 chunk
= mddev
->chunk_sectors
;
3565 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3568 layout
= mddev
->new_layout
;
3569 chunk
= mddev
->new_chunk_sectors
;
3570 disks
= mddev
->raid_disks
;
3572 default: /* avoid 'may be unused' warnings */
3573 case geo_start
: /* new when starting reshape - raid_disks not
3575 layout
= mddev
->new_layout
;
3576 chunk
= mddev
->new_chunk_sectors
;
3577 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3582 if (chunk
< (PAGE_SIZE
>> 9) ||
3583 !is_power_of_2(chunk
))
3586 fc
= (layout
>> 8) & 255;
3587 fo
= layout
& (1<<16);
3588 geo
->raid_disks
= disks
;
3589 geo
->near_copies
= nc
;
3590 geo
->far_copies
= fc
;
3591 geo
->far_offset
= fo
;
3592 switch (layout
>> 17) {
3593 case 0: /* original layout. simple but not always optimal */
3594 geo
->far_set_size
= disks
;
3596 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3597 * actually using this, but leave code here just in case.*/
3598 geo
->far_set_size
= disks
/fc
;
3599 WARN(geo
->far_set_size
< fc
,
3600 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602 case 2: /* "improved" layout fixed to match documentation */
3603 geo
->far_set_size
= fc
* nc
;
3605 default: /* Not a valid layout */
3608 geo
->chunk_mask
= chunk
- 1;
3609 geo
->chunk_shift
= ffz(~chunk
);
3613 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3615 struct r10conf
*conf
= NULL
;
3620 copies
= setup_geo(&geo
, mddev
, geo_new
);
3623 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3624 mdname(mddev
), PAGE_SIZE
);
3628 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3629 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3630 mdname(mddev
), mddev
->new_layout
);
3635 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3639 /* FIXME calc properly */
3640 conf
->mirrors
= kcalloc(mddev
->raid_disks
+ max(0, -mddev
->delta_disks
),
3641 sizeof(struct raid10_info
),
3646 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3651 conf
->copies
= copies
;
3652 err
= mempool_init(&conf
->r10bio_pool
, NR_RAID_BIOS
, r10bio_pool_alloc
,
3653 rbio_pool_free
, conf
);
3657 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
3661 calc_sectors(conf
, mddev
->dev_sectors
);
3662 if (mddev
->reshape_position
== MaxSector
) {
3663 conf
->prev
= conf
->geo
;
3664 conf
->reshape_progress
= MaxSector
;
3666 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3670 conf
->reshape_progress
= mddev
->reshape_position
;
3671 if (conf
->prev
.far_offset
)
3672 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3674 /* far_copies must be 1 */
3675 conf
->prev
.stride
= conf
->dev_sectors
;
3677 conf
->reshape_safe
= conf
->reshape_progress
;
3678 spin_lock_init(&conf
->device_lock
);
3679 INIT_LIST_HEAD(&conf
->retry_list
);
3680 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3682 spin_lock_init(&conf
->resync_lock
);
3683 init_waitqueue_head(&conf
->wait_barrier
);
3684 atomic_set(&conf
->nr_pending
, 0);
3687 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3691 conf
->mddev
= mddev
;
3696 mempool_exit(&conf
->r10bio_pool
);
3697 kfree(conf
->mirrors
);
3698 safe_put_page(conf
->tmppage
);
3699 bioset_exit(&conf
->bio_split
);
3702 return ERR_PTR(err
);
3705 static void raid10_set_io_opt(struct r10conf
*conf
)
3707 int raid_disks
= conf
->geo
.raid_disks
;
3709 if (!(conf
->geo
.raid_disks
% conf
->geo
.near_copies
))
3710 raid_disks
/= conf
->geo
.near_copies
;
3711 blk_queue_io_opt(conf
->mddev
->queue
, (conf
->mddev
->chunk_sectors
<< 9) *
3715 static int raid10_run(struct mddev
*mddev
)
3717 struct r10conf
*conf
;
3719 struct raid10_info
*disk
;
3720 struct md_rdev
*rdev
;
3722 sector_t min_offset_diff
= 0;
3724 bool discard_supported
= false;
3726 if (mddev_init_writes_pending(mddev
) < 0)
3729 if (mddev
->private == NULL
) {
3730 conf
= setup_conf(mddev
);
3732 return PTR_ERR(conf
);
3733 mddev
->private = conf
;
3735 conf
= mddev
->private;
3739 if (mddev_is_clustered(conf
->mddev
)) {
3742 fc
= (mddev
->layout
>> 8) & 255;
3743 fo
= mddev
->layout
& (1<<16);
3744 if (fc
> 1 || fo
> 0) {
3745 pr_err("only near layout is supported by clustered"
3751 mddev
->thread
= conf
->thread
;
3752 conf
->thread
= NULL
;
3755 blk_queue_max_discard_sectors(mddev
->queue
,
3756 mddev
->chunk_sectors
);
3757 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3758 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3759 blk_queue_io_min(mddev
->queue
, mddev
->chunk_sectors
<< 9);
3760 raid10_set_io_opt(conf
);
3763 rdev_for_each(rdev
, mddev
) {
3766 disk_idx
= rdev
->raid_disk
;
3769 if (disk_idx
>= conf
->geo
.raid_disks
&&
3770 disk_idx
>= conf
->prev
.raid_disks
)
3772 disk
= conf
->mirrors
+ disk_idx
;
3774 if (test_bit(Replacement
, &rdev
->flags
)) {
3775 if (disk
->replacement
)
3777 disk
->replacement
= rdev
;
3783 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3784 if (!mddev
->reshape_backwards
)
3788 if (first
|| diff
< min_offset_diff
)
3789 min_offset_diff
= diff
;
3792 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3793 rdev
->data_offset
<< 9);
3795 disk
->head_position
= 0;
3797 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3798 discard_supported
= true;
3803 if (discard_supported
)
3804 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3807 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3810 /* need to check that every block has at least one working mirror */
3811 if (!enough(conf
, -1)) {
3812 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3817 if (conf
->reshape_progress
!= MaxSector
) {
3818 /* must ensure that shape change is supported */
3819 if (conf
->geo
.far_copies
!= 1 &&
3820 conf
->geo
.far_offset
== 0)
3822 if (conf
->prev
.far_copies
!= 1 &&
3823 conf
->prev
.far_offset
== 0)
3827 mddev
->degraded
= 0;
3829 i
< conf
->geo
.raid_disks
3830 || i
< conf
->prev
.raid_disks
;
3833 disk
= conf
->mirrors
+ i
;
3835 if (!disk
->rdev
&& disk
->replacement
) {
3836 /* The replacement is all we have - use it */
3837 disk
->rdev
= disk
->replacement
;
3838 disk
->replacement
= NULL
;
3839 clear_bit(Replacement
, &disk
->rdev
->flags
);
3843 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3844 disk
->head_position
= 0;
3847 disk
->rdev
->saved_raid_disk
< 0)
3851 if (disk
->replacement
&&
3852 !test_bit(In_sync
, &disk
->replacement
->flags
) &&
3853 disk
->replacement
->saved_raid_disk
< 0) {
3857 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3860 if (mddev
->recovery_cp
!= MaxSector
)
3861 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3863 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3864 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3865 conf
->geo
.raid_disks
);
3867 * Ok, everything is just fine now
3869 mddev
->dev_sectors
= conf
->dev_sectors
;
3870 size
= raid10_size(mddev
, 0, 0);
3871 md_set_array_sectors(mddev
, size
);
3872 mddev
->resync_max_sectors
= size
;
3873 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3875 if (md_integrity_register(mddev
))
3878 if (conf
->reshape_progress
!= MaxSector
) {
3879 unsigned long before_length
, after_length
;
3881 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3882 conf
->prev
.far_copies
);
3883 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3884 conf
->geo
.far_copies
);
3886 if (max(before_length
, after_length
) > min_offset_diff
) {
3887 /* This cannot work */
3888 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3891 conf
->offset_diff
= min_offset_diff
;
3893 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3894 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3895 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3896 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3897 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3899 if (!mddev
->sync_thread
)
3906 md_unregister_thread(&mddev
->thread
);
3907 mempool_exit(&conf
->r10bio_pool
);
3908 safe_put_page(conf
->tmppage
);
3909 kfree(conf
->mirrors
);
3911 mddev
->private = NULL
;
3916 static void raid10_free(struct mddev
*mddev
, void *priv
)
3918 struct r10conf
*conf
= priv
;
3920 mempool_exit(&conf
->r10bio_pool
);
3921 safe_put_page(conf
->tmppage
);
3922 kfree(conf
->mirrors
);
3923 kfree(conf
->mirrors_old
);
3924 kfree(conf
->mirrors_new
);
3925 bioset_exit(&conf
->bio_split
);
3929 static void raid10_quiesce(struct mddev
*mddev
, int quiesce
)
3931 struct r10conf
*conf
= mddev
->private;
3934 raise_barrier(conf
, 0);
3936 lower_barrier(conf
);
3939 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3941 /* Resize of 'far' arrays is not supported.
3942 * For 'near' and 'offset' arrays we can set the
3943 * number of sectors used to be an appropriate multiple
3944 * of the chunk size.
3945 * For 'offset', this is far_copies*chunksize.
3946 * For 'near' the multiplier is the LCM of
3947 * near_copies and raid_disks.
3948 * So if far_copies > 1 && !far_offset, fail.
3949 * Else find LCM(raid_disks, near_copy)*far_copies and
3950 * multiply by chunk_size. Then round to this number.
3951 * This is mostly done by raid10_size()
3953 struct r10conf
*conf
= mddev
->private;
3954 sector_t oldsize
, size
;
3956 if (mddev
->reshape_position
!= MaxSector
)
3959 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3962 oldsize
= raid10_size(mddev
, 0, 0);
3963 size
= raid10_size(mddev
, sectors
, 0);
3964 if (mddev
->external_size
&&
3965 mddev
->array_sectors
> size
)
3967 if (mddev
->bitmap
) {
3968 int ret
= md_bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3972 md_set_array_sectors(mddev
, size
);
3973 if (sectors
> mddev
->dev_sectors
&&
3974 mddev
->recovery_cp
> oldsize
) {
3975 mddev
->recovery_cp
= oldsize
;
3976 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3978 calc_sectors(conf
, sectors
);
3979 mddev
->dev_sectors
= conf
->dev_sectors
;
3980 mddev
->resync_max_sectors
= size
;
3984 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3986 struct md_rdev
*rdev
;
3987 struct r10conf
*conf
;
3989 if (mddev
->degraded
> 0) {
3990 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3992 return ERR_PTR(-EINVAL
);
3994 sector_div(size
, devs
);
3996 /* Set new parameters */
3997 mddev
->new_level
= 10;
3998 /* new layout: far_copies = 1, near_copies = 2 */
3999 mddev
->new_layout
= (1<<8) + 2;
4000 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4001 mddev
->delta_disks
= mddev
->raid_disks
;
4002 mddev
->raid_disks
*= 2;
4003 /* make sure it will be not marked as dirty */
4004 mddev
->recovery_cp
= MaxSector
;
4005 mddev
->dev_sectors
= size
;
4007 conf
= setup_conf(mddev
);
4008 if (!IS_ERR(conf
)) {
4009 rdev_for_each(rdev
, mddev
)
4010 if (rdev
->raid_disk
>= 0) {
4011 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
4012 rdev
->sectors
= size
;
4020 static void *raid10_takeover(struct mddev
*mddev
)
4022 struct r0conf
*raid0_conf
;
4024 /* raid10 can take over:
4025 * raid0 - providing it has only two drives
4027 if (mddev
->level
== 0) {
4028 /* for raid0 takeover only one zone is supported */
4029 raid0_conf
= mddev
->private;
4030 if (raid0_conf
->nr_strip_zones
> 1) {
4031 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4033 return ERR_PTR(-EINVAL
);
4035 return raid10_takeover_raid0(mddev
,
4036 raid0_conf
->strip_zone
->zone_end
,
4037 raid0_conf
->strip_zone
->nb_dev
);
4039 return ERR_PTR(-EINVAL
);
4042 static int raid10_check_reshape(struct mddev
*mddev
)
4044 /* Called when there is a request to change
4045 * - layout (to ->new_layout)
4046 * - chunk size (to ->new_chunk_sectors)
4047 * - raid_disks (by delta_disks)
4048 * or when trying to restart a reshape that was ongoing.
4050 * We need to validate the request and possibly allocate
4051 * space if that might be an issue later.
4053 * Currently we reject any reshape of a 'far' mode array,
4054 * allow chunk size to change if new is generally acceptable,
4055 * allow raid_disks to increase, and allow
4056 * a switch between 'near' mode and 'offset' mode.
4058 struct r10conf
*conf
= mddev
->private;
4061 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4064 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4065 /* mustn't change number of copies */
4067 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4068 /* Cannot switch to 'far' mode */
4071 if (mddev
->array_sectors
& geo
.chunk_mask
)
4072 /* not factor of array size */
4075 if (!enough(conf
, -1))
4078 kfree(conf
->mirrors_new
);
4079 conf
->mirrors_new
= NULL
;
4080 if (mddev
->delta_disks
> 0) {
4081 /* allocate new 'mirrors' list */
4083 kcalloc(mddev
->raid_disks
+ mddev
->delta_disks
,
4084 sizeof(struct raid10_info
),
4086 if (!conf
->mirrors_new
)
4093 * Need to check if array has failed when deciding whether to:
4095 * - remove non-faulty devices
4098 * This determination is simple when no reshape is happening.
4099 * However if there is a reshape, we need to carefully check
4100 * both the before and after sections.
4101 * This is because some failed devices may only affect one
4102 * of the two sections, and some non-in_sync devices may
4103 * be insync in the section most affected by failed devices.
4105 static int calc_degraded(struct r10conf
*conf
)
4107 int degraded
, degraded2
;
4112 /* 'prev' section first */
4113 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4114 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4115 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4117 else if (!test_bit(In_sync
, &rdev
->flags
))
4118 /* When we can reduce the number of devices in
4119 * an array, this might not contribute to
4120 * 'degraded'. It does now.
4125 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4129 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4130 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4131 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4133 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4134 /* If reshape is increasing the number of devices,
4135 * this section has already been recovered, so
4136 * it doesn't contribute to degraded.
4139 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4144 if (degraded2
> degraded
)
4149 static int raid10_start_reshape(struct mddev
*mddev
)
4151 /* A 'reshape' has been requested. This commits
4152 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4153 * This also checks if there are enough spares and adds them
4155 * We currently require enough spares to make the final
4156 * array non-degraded. We also require that the difference
4157 * between old and new data_offset - on each device - is
4158 * enough that we never risk over-writing.
4161 unsigned long before_length
, after_length
;
4162 sector_t min_offset_diff
= 0;
4165 struct r10conf
*conf
= mddev
->private;
4166 struct md_rdev
*rdev
;
4170 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4173 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4176 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4177 conf
->prev
.far_copies
);
4178 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4179 conf
->geo
.far_copies
);
4181 rdev_for_each(rdev
, mddev
) {
4182 if (!test_bit(In_sync
, &rdev
->flags
)
4183 && !test_bit(Faulty
, &rdev
->flags
))
4185 if (rdev
->raid_disk
>= 0) {
4186 long long diff
= (rdev
->new_data_offset
4187 - rdev
->data_offset
);
4188 if (!mddev
->reshape_backwards
)
4192 if (first
|| diff
< min_offset_diff
)
4193 min_offset_diff
= diff
;
4198 if (max(before_length
, after_length
) > min_offset_diff
)
4201 if (spares
< mddev
->delta_disks
)
4204 conf
->offset_diff
= min_offset_diff
;
4205 spin_lock_irq(&conf
->device_lock
);
4206 if (conf
->mirrors_new
) {
4207 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4208 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4210 kfree(conf
->mirrors_old
);
4211 conf
->mirrors_old
= conf
->mirrors
;
4212 conf
->mirrors
= conf
->mirrors_new
;
4213 conf
->mirrors_new
= NULL
;
4215 setup_geo(&conf
->geo
, mddev
, geo_start
);
4217 if (mddev
->reshape_backwards
) {
4218 sector_t size
= raid10_size(mddev
, 0, 0);
4219 if (size
< mddev
->array_sectors
) {
4220 spin_unlock_irq(&conf
->device_lock
);
4221 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4225 mddev
->resync_max_sectors
= size
;
4226 conf
->reshape_progress
= size
;
4228 conf
->reshape_progress
= 0;
4229 conf
->reshape_safe
= conf
->reshape_progress
;
4230 spin_unlock_irq(&conf
->device_lock
);
4232 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4233 struct mdp_superblock_1
*sb
= NULL
;
4234 sector_t oldsize
, newsize
;
4236 oldsize
= raid10_size(mddev
, 0, 0);
4237 newsize
= raid10_size(mddev
, 0, conf
->geo
.raid_disks
);
4239 if (!mddev_is_clustered(mddev
)) {
4240 ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
4247 rdev_for_each(rdev
, mddev
) {
4248 if (rdev
->raid_disk
> -1 &&
4249 !test_bit(Faulty
, &rdev
->flags
))
4250 sb
= page_address(rdev
->sb_page
);
4254 * some node is already performing reshape, and no need to
4255 * call md_bitmap_resize again since it should be called when
4256 * receiving BITMAP_RESIZE msg
4258 if ((sb
&& (le32_to_cpu(sb
->feature_map
) &
4259 MD_FEATURE_RESHAPE_ACTIVE
)) || (oldsize
== newsize
))
4262 ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
4266 ret
= md_cluster_ops
->resize_bitmaps(mddev
, newsize
, oldsize
);
4268 md_bitmap_resize(mddev
->bitmap
, oldsize
, 0, 0);
4273 if (mddev
->delta_disks
> 0) {
4274 rdev_for_each(rdev
, mddev
)
4275 if (rdev
->raid_disk
< 0 &&
4276 !test_bit(Faulty
, &rdev
->flags
)) {
4277 if (raid10_add_disk(mddev
, rdev
) == 0) {
4278 if (rdev
->raid_disk
>=
4279 conf
->prev
.raid_disks
)
4280 set_bit(In_sync
, &rdev
->flags
);
4282 rdev
->recovery_offset
= 0;
4284 /* Failure here is OK */
4285 sysfs_link_rdev(mddev
, rdev
);
4287 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4288 && !test_bit(Faulty
, &rdev
->flags
)) {
4289 /* This is a spare that was manually added */
4290 set_bit(In_sync
, &rdev
->flags
);
4293 /* When a reshape changes the number of devices,
4294 * ->degraded is measured against the larger of the
4295 * pre and post numbers.
4297 spin_lock_irq(&conf
->device_lock
);
4298 mddev
->degraded
= calc_degraded(conf
);
4299 spin_unlock_irq(&conf
->device_lock
);
4300 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4301 mddev
->reshape_position
= conf
->reshape_progress
;
4302 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4304 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4305 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4306 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4307 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4308 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4310 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4312 if (!mddev
->sync_thread
) {
4316 conf
->reshape_checkpoint
= jiffies
;
4317 md_wakeup_thread(mddev
->sync_thread
);
4318 md_new_event(mddev
);
4322 mddev
->recovery
= 0;
4323 spin_lock_irq(&conf
->device_lock
);
4324 conf
->geo
= conf
->prev
;
4325 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4326 rdev_for_each(rdev
, mddev
)
4327 rdev
->new_data_offset
= rdev
->data_offset
;
4329 conf
->reshape_progress
= MaxSector
;
4330 conf
->reshape_safe
= MaxSector
;
4331 mddev
->reshape_position
= MaxSector
;
4332 spin_unlock_irq(&conf
->device_lock
);
4336 /* Calculate the last device-address that could contain
4337 * any block from the chunk that includes the array-address 's'
4338 * and report the next address.
4339 * i.e. the address returned will be chunk-aligned and after
4340 * any data that is in the chunk containing 's'.
4342 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4344 s
= (s
| geo
->chunk_mask
) + 1;
4345 s
>>= geo
->chunk_shift
;
4346 s
*= geo
->near_copies
;
4347 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4348 s
*= geo
->far_copies
;
4349 s
<<= geo
->chunk_shift
;
4353 /* Calculate the first device-address that could contain
4354 * any block from the chunk that includes the array-address 's'.
4355 * This too will be the start of a chunk
4357 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4359 s
>>= geo
->chunk_shift
;
4360 s
*= geo
->near_copies
;
4361 sector_div(s
, geo
->raid_disks
);
4362 s
*= geo
->far_copies
;
4363 s
<<= geo
->chunk_shift
;
4367 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4370 /* We simply copy at most one chunk (smallest of old and new)
4371 * at a time, possibly less if that exceeds RESYNC_PAGES,
4372 * or we hit a bad block or something.
4373 * This might mean we pause for normal IO in the middle of
4374 * a chunk, but that is not a problem as mddev->reshape_position
4375 * can record any location.
4377 * If we will want to write to a location that isn't
4378 * yet recorded as 'safe' (i.e. in metadata on disk) then
4379 * we need to flush all reshape requests and update the metadata.
4381 * When reshaping forwards (e.g. to more devices), we interpret
4382 * 'safe' as the earliest block which might not have been copied
4383 * down yet. We divide this by previous stripe size and multiply
4384 * by previous stripe length to get lowest device offset that we
4385 * cannot write to yet.
4386 * We interpret 'sector_nr' as an address that we want to write to.
4387 * From this we use last_device_address() to find where we might
4388 * write to, and first_device_address on the 'safe' position.
4389 * If this 'next' write position is after the 'safe' position,
4390 * we must update the metadata to increase the 'safe' position.
4392 * When reshaping backwards, we round in the opposite direction
4393 * and perform the reverse test: next write position must not be
4394 * less than current safe position.
4396 * In all this the minimum difference in data offsets
4397 * (conf->offset_diff - always positive) allows a bit of slack,
4398 * so next can be after 'safe', but not by more than offset_diff
4400 * We need to prepare all the bios here before we start any IO
4401 * to ensure the size we choose is acceptable to all devices.
4402 * The means one for each copy for write-out and an extra one for
4404 * We store the read-in bio in ->master_bio and the others in
4405 * ->devs[x].bio and ->devs[x].repl_bio.
4407 struct r10conf
*conf
= mddev
->private;
4408 struct r10bio
*r10_bio
;
4409 sector_t next
, safe
, last
;
4413 struct md_rdev
*rdev
;
4416 struct bio
*bio
, *read_bio
;
4417 int sectors_done
= 0;
4418 struct page
**pages
;
4420 if (sector_nr
== 0) {
4421 /* If restarting in the middle, skip the initial sectors */
4422 if (mddev
->reshape_backwards
&&
4423 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4424 sector_nr
= (raid10_size(mddev
, 0, 0)
4425 - conf
->reshape_progress
);
4426 } else if (!mddev
->reshape_backwards
&&
4427 conf
->reshape_progress
> 0)
4428 sector_nr
= conf
->reshape_progress
;
4430 mddev
->curr_resync_completed
= sector_nr
;
4431 sysfs_notify_dirent_safe(mddev
->sysfs_completed
);
4437 /* We don't use sector_nr to track where we are up to
4438 * as that doesn't work well for ->reshape_backwards.
4439 * So just use ->reshape_progress.
4441 if (mddev
->reshape_backwards
) {
4442 /* 'next' is the earliest device address that we might
4443 * write to for this chunk in the new layout
4445 next
= first_dev_address(conf
->reshape_progress
- 1,
4448 /* 'safe' is the last device address that we might read from
4449 * in the old layout after a restart
4451 safe
= last_dev_address(conf
->reshape_safe
- 1,
4454 if (next
+ conf
->offset_diff
< safe
)
4457 last
= conf
->reshape_progress
- 1;
4458 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4459 & conf
->prev
.chunk_mask
);
4460 if (sector_nr
+ RESYNC_SECTORS
< last
)
4461 sector_nr
= last
+ 1 - RESYNC_SECTORS
;
4463 /* 'next' is after the last device address that we
4464 * might write to for this chunk in the new layout
4466 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4468 /* 'safe' is the earliest device address that we might
4469 * read from in the old layout after a restart
4471 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4473 /* Need to update metadata if 'next' might be beyond 'safe'
4474 * as that would possibly corrupt data
4476 if (next
> safe
+ conf
->offset_diff
)
4479 sector_nr
= conf
->reshape_progress
;
4480 last
= sector_nr
| (conf
->geo
.chunk_mask
4481 & conf
->prev
.chunk_mask
);
4483 if (sector_nr
+ RESYNC_SECTORS
<= last
)
4484 last
= sector_nr
+ RESYNC_SECTORS
- 1;
4488 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4489 /* Need to update reshape_position in metadata */
4491 mddev
->reshape_position
= conf
->reshape_progress
;
4492 if (mddev
->reshape_backwards
)
4493 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4494 - conf
->reshape_progress
;
4496 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4497 conf
->reshape_checkpoint
= jiffies
;
4498 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4499 md_wakeup_thread(mddev
->thread
);
4500 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4501 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4502 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4503 allow_barrier(conf
);
4504 return sectors_done
;
4506 conf
->reshape_safe
= mddev
->reshape_position
;
4507 allow_barrier(conf
);
4510 raise_barrier(conf
, 0);
4512 /* Now schedule reads for blocks from sector_nr to last */
4513 r10_bio
= raid10_alloc_init_r10buf(conf
);
4515 raise_barrier(conf
, 1);
4516 atomic_set(&r10_bio
->remaining
, 0);
4517 r10_bio
->mddev
= mddev
;
4518 r10_bio
->sector
= sector_nr
;
4519 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4520 r10_bio
->sectors
= last
- sector_nr
+ 1;
4521 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4522 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4525 /* Cannot read from here, so need to record bad blocks
4526 * on all the target devices.
4529 mempool_free(r10_bio
, &conf
->r10buf_pool
);
4530 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4531 return sectors_done
;
4534 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4536 bio_set_dev(read_bio
, rdev
->bdev
);
4537 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4538 + rdev
->data_offset
);
4539 read_bio
->bi_private
= r10_bio
;
4540 read_bio
->bi_end_io
= end_reshape_read
;
4541 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4542 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4543 read_bio
->bi_status
= 0;
4544 read_bio
->bi_vcnt
= 0;
4545 read_bio
->bi_iter
.bi_size
= 0;
4546 r10_bio
->master_bio
= read_bio
;
4547 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4550 * Broadcast RESYNC message to other nodes, so all nodes would not
4551 * write to the region to avoid conflict.
4553 if (mddev_is_clustered(mddev
) && conf
->cluster_sync_high
<= sector_nr
) {
4554 struct mdp_superblock_1
*sb
= NULL
;
4555 int sb_reshape_pos
= 0;
4557 conf
->cluster_sync_low
= sector_nr
;
4558 conf
->cluster_sync_high
= sector_nr
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
4559 sb
= page_address(rdev
->sb_page
);
4561 sb_reshape_pos
= le64_to_cpu(sb
->reshape_position
);
4563 * Set cluster_sync_low again if next address for array
4564 * reshape is less than cluster_sync_low. Since we can't
4565 * update cluster_sync_low until it has finished reshape.
4567 if (sb_reshape_pos
< conf
->cluster_sync_low
)
4568 conf
->cluster_sync_low
= sb_reshape_pos
;
4571 md_cluster_ops
->resync_info_update(mddev
, conf
->cluster_sync_low
,
4572 conf
->cluster_sync_high
);
4575 /* Now find the locations in the new layout */
4576 __raid10_find_phys(&conf
->geo
, r10_bio
);
4579 read_bio
->bi_next
= NULL
;
4582 for (s
= 0; s
< conf
->copies
*2; s
++) {
4584 int d
= r10_bio
->devs
[s
/2].devnum
;
4585 struct md_rdev
*rdev2
;
4587 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4588 b
= r10_bio
->devs
[s
/2].repl_bio
;
4590 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4591 b
= r10_bio
->devs
[s
/2].bio
;
4593 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4596 bio_set_dev(b
, rdev2
->bdev
);
4597 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4598 rdev2
->new_data_offset
;
4599 b
->bi_end_io
= end_reshape_write
;
4600 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4605 /* Now add as many pages as possible to all of these bios. */
4608 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4609 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4610 struct page
*page
= pages
[s
/ (PAGE_SIZE
>> 9)];
4611 int len
= (max_sectors
- s
) << 9;
4612 if (len
> PAGE_SIZE
)
4614 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4616 * won't fail because the vec table is big enough
4617 * to hold all these pages
4619 bio_add_page(bio
, page
, len
, 0);
4621 sector_nr
+= len
>> 9;
4622 nr_sectors
+= len
>> 9;
4625 r10_bio
->sectors
= nr_sectors
;
4627 /* Now submit the read */
4628 md_sync_acct_bio(read_bio
, r10_bio
->sectors
);
4629 atomic_inc(&r10_bio
->remaining
);
4630 read_bio
->bi_next
= NULL
;
4631 submit_bio_noacct(read_bio
);
4632 sectors_done
+= nr_sectors
;
4633 if (sector_nr
<= last
)
4636 lower_barrier(conf
);
4638 /* Now that we have done the whole section we can
4639 * update reshape_progress
4641 if (mddev
->reshape_backwards
)
4642 conf
->reshape_progress
-= sectors_done
;
4644 conf
->reshape_progress
+= sectors_done
;
4646 return sectors_done
;
4649 static void end_reshape_request(struct r10bio
*r10_bio
);
4650 static int handle_reshape_read_error(struct mddev
*mddev
,
4651 struct r10bio
*r10_bio
);
4652 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4654 /* Reshape read completed. Hopefully we have a block
4656 * If we got a read error then we do sync 1-page reads from
4657 * elsewhere until we find the data - or give up.
4659 struct r10conf
*conf
= mddev
->private;
4662 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4663 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4664 /* Reshape has been aborted */
4665 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4669 /* We definitely have the data in the pages, schedule the
4672 atomic_set(&r10_bio
->remaining
, 1);
4673 for (s
= 0; s
< conf
->copies
*2; s
++) {
4675 int d
= r10_bio
->devs
[s
/2].devnum
;
4676 struct md_rdev
*rdev
;
4679 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4680 b
= r10_bio
->devs
[s
/2].repl_bio
;
4682 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4683 b
= r10_bio
->devs
[s
/2].bio
;
4685 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4689 atomic_inc(&rdev
->nr_pending
);
4691 md_sync_acct_bio(b
, r10_bio
->sectors
);
4692 atomic_inc(&r10_bio
->remaining
);
4694 submit_bio_noacct(b
);
4696 end_reshape_request(r10_bio
);
4699 static void end_reshape(struct r10conf
*conf
)
4701 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4704 spin_lock_irq(&conf
->device_lock
);
4705 conf
->prev
= conf
->geo
;
4706 md_finish_reshape(conf
->mddev
);
4708 conf
->reshape_progress
= MaxSector
;
4709 conf
->reshape_safe
= MaxSector
;
4710 spin_unlock_irq(&conf
->device_lock
);
4712 if (conf
->mddev
->queue
)
4713 raid10_set_io_opt(conf
);
4717 static void raid10_update_reshape_pos(struct mddev
*mddev
)
4719 struct r10conf
*conf
= mddev
->private;
4722 md_cluster_ops
->resync_info_get(mddev
, &lo
, &hi
);
4723 if (((mddev
->reshape_position
<= hi
) && (mddev
->reshape_position
>= lo
))
4724 || mddev
->reshape_position
== MaxSector
)
4725 conf
->reshape_progress
= mddev
->reshape_position
;
4730 static int handle_reshape_read_error(struct mddev
*mddev
,
4731 struct r10bio
*r10_bio
)
4733 /* Use sync reads to get the blocks from somewhere else */
4734 int sectors
= r10_bio
->sectors
;
4735 struct r10conf
*conf
= mddev
->private;
4736 struct r10bio
*r10b
;
4739 struct page
**pages
;
4741 r10b
= kmalloc(struct_size(r10b
, devs
, conf
->copies
), GFP_NOIO
);
4743 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4747 /* reshape IOs share pages from .devs[0].bio */
4748 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4750 r10b
->sector
= r10_bio
->sector
;
4751 __raid10_find_phys(&conf
->prev
, r10b
);
4756 int first_slot
= slot
;
4758 if (s
> (PAGE_SIZE
>> 9))
4763 int d
= r10b
->devs
[slot
].devnum
;
4764 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4767 test_bit(Faulty
, &rdev
->flags
) ||
4768 !test_bit(In_sync
, &rdev
->flags
))
4771 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4772 atomic_inc(&rdev
->nr_pending
);
4774 success
= sync_page_io(rdev
,
4778 REQ_OP_READ
, 0, false);
4779 rdev_dec_pending(rdev
, mddev
);
4785 if (slot
>= conf
->copies
)
4787 if (slot
== first_slot
)
4792 /* couldn't read this block, must give up */
4793 set_bit(MD_RECOVERY_INTR
,
4805 static void end_reshape_write(struct bio
*bio
)
4807 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
4808 struct mddev
*mddev
= r10_bio
->mddev
;
4809 struct r10conf
*conf
= mddev
->private;
4813 struct md_rdev
*rdev
= NULL
;
4815 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4817 rdev
= conf
->mirrors
[d
].replacement
;
4820 rdev
= conf
->mirrors
[d
].rdev
;
4823 if (bio
->bi_status
) {
4824 /* FIXME should record badblock */
4825 md_error(mddev
, rdev
);
4828 rdev_dec_pending(rdev
, mddev
);
4829 end_reshape_request(r10_bio
);
4832 static void end_reshape_request(struct r10bio
*r10_bio
)
4834 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4836 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4837 bio_put(r10_bio
->master_bio
);
4841 static void raid10_finish_reshape(struct mddev
*mddev
)
4843 struct r10conf
*conf
= mddev
->private;
4845 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4848 if (mddev
->delta_disks
> 0) {
4849 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4850 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4851 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4853 mddev
->resync_max_sectors
= mddev
->array_sectors
;
4857 for (d
= conf
->geo
.raid_disks
;
4858 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4860 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4862 clear_bit(In_sync
, &rdev
->flags
);
4863 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4865 clear_bit(In_sync
, &rdev
->flags
);
4869 mddev
->layout
= mddev
->new_layout
;
4870 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4871 mddev
->reshape_position
= MaxSector
;
4872 mddev
->delta_disks
= 0;
4873 mddev
->reshape_backwards
= 0;
4876 static struct md_personality raid10_personality
=
4880 .owner
= THIS_MODULE
,
4881 .make_request
= raid10_make_request
,
4883 .free
= raid10_free
,
4884 .status
= raid10_status
,
4885 .error_handler
= raid10_error
,
4886 .hot_add_disk
= raid10_add_disk
,
4887 .hot_remove_disk
= raid10_remove_disk
,
4888 .spare_active
= raid10_spare_active
,
4889 .sync_request
= raid10_sync_request
,
4890 .quiesce
= raid10_quiesce
,
4891 .size
= raid10_size
,
4892 .resize
= raid10_resize
,
4893 .takeover
= raid10_takeover
,
4894 .check_reshape
= raid10_check_reshape
,
4895 .start_reshape
= raid10_start_reshape
,
4896 .finish_reshape
= raid10_finish_reshape
,
4897 .update_reshape_pos
= raid10_update_reshape_pos
,
4900 static int __init
raid_init(void)
4902 return register_md_personality(&raid10_personality
);
4905 static void raid_exit(void)
4907 unregister_md_personality(&raid10_personality
);
4910 module_init(raid_init
);
4911 module_exit(raid_exit
);
4912 MODULE_LICENSE("GPL");
4913 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4914 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4915 MODULE_ALIAS("md-raid10");
4916 MODULE_ALIAS("md-level-10");
4918 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);